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Abstract

Shamir and Spencer proved in the 1980s that the chromatic number of the
binomial random graph Gn,p is concentrated in an interval of length at most ω

√
n,

and in the 1990s Alon showed that an interval of length ω
√
n/ log n suffices for

constant edge-probabilities p ∈ (0, 1). We prove a similar logarithmic improvement
of the Shamir-Spencer concentration results for the sparse case p = p(n)→ 0, and
uncover a surprising concentration ‘jump’ of the chromatic number in the very dense
case p = p(n)→ 1.

Mathematics Subject Classifications: 05C15, 05C80

1 Introduction

What can we say about the chromatic number χ(Gn,p) of an n-vertex binomial random
graph Gn,p? From a combinatorial perspective, it is natural to ask about the typical value
of χ(Gn,p), i.e., upper and lower bounds that are close to each other. From a probabilistic
perspective, it is also natural to ask about the concentration of χ(Gn,p), i.e., how much
this random variable varies. Among these two fundamental questions, significantly less is
known about the concentration question that we shall study in this paper.

In a landmark paper from 1987, Shamir and Spencer [26] proved that the chro-
matic number χ(Gn,p) is typically contained in an interval of length at most ω

√
n,

where ω = ω(n) is an arbitrary function with ω →∞ as n→∞, as usual. For con-
stant edge-probabilities p ∈ (0, 1), Alon noticed in the 1990s that this concentration
interval length can be slightly improved to ω

√
n/ log n, by adapting a coloring argu-

ment of Bollobás [4], see [3, Excercise 7.9.3] and Scott’s note [25]. For uniform edge-
probability p = 1/2, Heckel and Riordan [9] proved in 2021 that these old concentration
bounds are in fact best possible to up poly-logarithmic factors.
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Given the increasing knowledge about the concentration of χ(Gn,p) in the dense case
where p ∈ (0, 1) is constant, it is important to clarify our understanding of the sparse case
where p = p(n)→ 0 vanishes as n→∞. For edge-probabilities of form p = n−α with
α ∈ (0, 1/2), Shamir and Spencer proved in their 1987 paper that χ(Gn,p) is typically
contained in an interval of length at most ω

√
np log n, and a modern inspection of their

proof reveals that length ω
√
np suffices. With Alon’s improvement for constant p in mind,

it is natural to wonder if further improvements of these sparse concentration bounds
are possible.

In this paper we sharpen the concentration of χ(Gn,p) in the sparse case p = p(n)→ 0,
by extending Alon’s logarithmic improvement to smaller edge-probabilities: Theorem 1
improves the Shamir-Spencer bound from 1987, by showing that χ(Gn,p) is typically
contained in an interval of length at most ω

√
np/ log n.

Theorem 1 (Improved concentration bound). Let ω = ω(n)→∞ as n→∞ be an ar-
bitrary function, and let δ ∈ (0, 1) be a constant. If the edge-probability p = p(n) satisfies
n−1/2+δ � p 6 1− δ, then there is an interval of length bω

√
np/ log nc that contains the

chromatic number χ(Gn,p) of the random graph Gn,p with high probability, i.e., with prob-
ability tending to one as n→∞.

Our proof of Theorem 1 refines the basic ideas of Shamir, Spencer and Alon using two
greedy algorithms, which enable us to bypass large deviation inequalities such as Janson’s
inequality via more robust Chernoff bound based arguments. Note that the concentration
bound of length bω

√
np/ log nc is meaningful, since typically χ(Gn,p) = Θ(np/ log(np))

holds [4, 16, 12]. Furthermore, the restriction to p� n−1/2+δ is close to best possible,
since for n−1 � p� n−1/2−δ the chromatic number is concentrated on two different val-
ues [17, 2, 1], whereas the bound from Theorem 1 would imply one-point concentration;
see Section 2 for our more general chromatic number concentration bounds for other
ranges of edge-probabilities p = p(n).

In this paper we also uncover a surprising concentration behavior of χ(Gn,p) in the
very dense case where p = p(n)→ 1 tends to one as n→∞: Theorem 2 shows that the
typical length of the shortest interval containing χ(Gn,p) undergoes a polynomial ‘jump’
around edge-probability p = 1− n−1+o(1); see Figure 1.

Theorem 2 (Concentration ‘jump’ in the very dense case). Given ε > 0, the
following holds for the random graph Gn,p with edge-probability p = p(n), setting
ϕ = ϕ(n, p) := n(1− p).

(i) If n−o(1) 6 ϕ � log n, then no interval of length
⌊
n1/2−ε⌋ contains χ(Gn,p) with

high probability.

(ii) If log n � ϕ 6 no(1), then there is an interval of length
⌊
nε
⌋

that contains χ(Gn,p)
with high probability.

The concentration bounds (i)–(ii) demonstrate that the typical length of the shortest
interval containing χ(Gn,p) is neither monotone nor smooth in p, which both are surprising
features. We believe that the intriguing concentration jump of χ(Gn,p) described by
Theorem 2 happens infinitely many times as we vary the edge-probability p = 1− n−Ω(1);
see Section 3 and Figure 1 for more details and further results.
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Figure 1: The exponent of the concentration interval length of very dense random
graphs Gn,p: when n2(1− p) = nx+o(1) with x ∈ (0, 2), then Conjecture 8 predicts
that ny+o(1) with y = y(x) ∈ [0, 1/2] is the length of the shortest interval that con-
tains χ(Gn,p) with high probability. Interestingly, this proposes that the concentration
interval length of χ(Gn,p) has infinitely many polynomial ‘jumps’ from n1/2+o(1) to no(1)

as we vary the edge-probability p = 1 − n−2+x+o(1); see Theorem 2 and Section 3 for
more details.

2 Concentration bounds for χ(Gn,p)

The following concentration result for the chromatic number χ(Gn,p) generalizes Theo-
rem 1, by removing the assumed lower bound on the edge-probability p = p(n). Interest-
ingly, the form of the concentration bounds (1a)–(1b) changes when ω

√
np is around log n

(here we lose nothing by formally ignoring the case ω
√
np = Θ(log n), since in that case we

can then simply apply (1b) after replacing ω with
√
ω, say). Note that L = Θ(zp/ log(zp))

when zp� (log n)1+ε, so that Theorem 3 implies Theorem 1 by rescaling ω.

Theorem 3. Let ω = ω(n)→∞ as n→∞ be an arbitrary function, and let γ ∈ (0, 1) be
a constant. If the edge-probability p = p(n) of the random graph Gn,p satisfies 0 < p 6 γ,
then there is an interval of length at most L = L(n, p, γ) that contains the chromatic
number χ(Gn,p) with high probability, with

L :=


Czp

log(zp/ log n)
if zp� log n, (1a)

C log n

log(log n/zp)
if zp� log n, (1b)

where C = C(γ) > 0 is a constant and z = z(n, ω) is defined as

z = z(n, ω) := ω
√
n. (2)

Theorem 3 implies that χ(Gn,p) is typically contained in an interval of length
O(ω
√
n/ log n) for constant p ∈ (0, 1), and in an interval of length O(1) for p 6 n−1/2−δ.

These bounds match the best-known upper bounds up to constant factors [26, 2, 25], and
the best-known lower bounds up to poly-logarithmic factors [2, 9]. For n−1/2 6 p� 1
we leave it as an interesting open problem whether the concentration bounds (1a)–(1b)
for χ(Gn,p) are close to best possible or not.
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The starting point for Theorems 1 and 3 as well as many earlier concentration
proofs [26, 17, 15, 2, 25] is an observation about the chromatic number χ(Gn,p) that
can be traced back to Shamir and Spencer [26], which intuitively says (see Lemma 5) that
with high probability the median of χ(Gn,p) satisfies∣∣∣χ(Gn,p)−Median

(
χ(Gn,p)

)∣∣∣ 6 max
Z⊆[n]:|Z|6z

χ
(
Gn,p[Z]

)
, (3)

where z is defined as in (2). The induced subgraph Gn,p[Z] has the same distribution
as G|Z|,p, so for suitable ranges of p we know [16, 12] that for a fixed vertex-subset Z ⊆ [n]
with |Z| ≈ z we typically have χ(Gn,p[Z]) = Θ(zp/ log(zp)), which suggests that Theo-
rem 1 and (1a) are more or less the best concentration bounds we can deduce from (3).

Alon noted that for constant p ∈ (0, 1) one can bound (3) by adapting Bollobás’ anal-
ysis [4] of χ(Gn,p) to χ

(
Gn,p[Z]

)
for all vertex-subsets Z ⊆ [n] with |Z| 6 z. Here the

main probabilistic ingredient are large deviation inequalities such as Janson’s inequal-
ity [11, 22]: these allow us to show that, with high probability, all vertex-subsets of Gn,p

with m ≈
√
n/(log n) vertices contain an independent set on k = Θ(log n/p

)
vertices. To

color any Gn,p[Z], we can thus iteratively remove a largest independent set from Z and
assign its vertices one new color, until at most m uncolored vertices remain, which then
each obtain a new color. For constant p ∈ (0, 1) this yields χ

(
Gn,p[Z]

)
6 |Z|/k +m =

O(zp/ log n) for all relevant Z ⊆ [n], which together with (3) recovers the ω
√
np/ log n

concentration bound from Theorem 1 up to irrelevant constant factors.
On first sight one might think that an extra twist can extend the outlined coloring ar-

gument for χ
(
Gn,p[Z]

)
to the sparse case p = p(n)→ 0 considered by Theorem 1: indeed,

a simple greedy algorithm can color the remaining m vertices with only O(mp) colors, so
for any relevant Z ⊆ [n] we should overall only need

χ
(
Gn,p[Z]

)
6
|Z|
k

+O
(
mp
)

= O

(
zp

log n

)
(4)

colors, which together with (3) seemingly recovers the ω
√
np/ log n concentration bound

from Theorem 1 up to constant factors. Unfortunately, there is another major bottleneck
we inherited from Bollobás’ analysis of χ(Gn,p): due to union bound issues1 large deviation
inequalities can only guarantee k-vertex independent sets in every m-vertex subset as long
as p > n−σ+o(1) for some small σ > 0. To extend the range of p = p(n) we borrow ideas
from Grimmett and McDiarmid’s earlier analysis [6] of χ(Gn,p) from 1975, and make
Chernoff bounds the main probabilistic ingredient: these allow us to show that, with high
probability, all large subgraphs of Gn,p contain a vertex whose degree is small relative to
the size of the subgraph, which enables a simple greedy algorithm to find independent
sets of size Θ(log n/p

)
in any m-vertex subset of Gn,p (this was also used by Scott [25] for

1Using large deviation inequalities inequalities the issue is that, well before p = n−1/2+δ, the probability
that one m-vertex subset does not contain a k-vertex independent set is no longer small enough to take
a union bond over all m-vertex subsets (no matter if ones uses Janson’s inequality [11, 22], Talagrand’s
inequality [21], or the bounded differences inequality [19, 27]); this issue is also the reason why Bollobás’
analysis of χ(Gn,p) breaks around p = n−1/3, see [14, Section 3] and [12, Section 7.5].
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constant p). We find it surprising that a combination of the two discussed simple greedy
based refinements not only yields (4) and thus Theorem 1, but also establishes the more
general Theorem 3 by a refined analysis; see Section 2.1 for the details.

In our discussion of the concentration of χ(Gn,p) we so far tacitly ignored the very
dense case p = p(n)→ 1: this conveniently allowed us to work with independent sets of
size Θ(log n/p) instead of size Θ

(
log1/(1−p)(n)

)
, which in turn allowed us to write Θ(p)

instead of log
(
1/(1− p)

)
=
∑

k>1 p
k/k in the numerators appearing in Theorem 1 as well

as equations (1a) and (4). Theorem 4 effectively says that we only need to reverse this
simplification in order to extend Theorems 1 and 3 to edge-probabilities p = p(n) → 1
that tend to one.

Theorem 4. Let ω = ω(n)→∞ as n→∞ be an arbitrary function, and let γ ∈ (0, 1) be
a constant. If the edge-probability p = p(n) of the random graph Gn,p satisfies γ 6 p < 1,
then there is an interval of length bCω

√
n/ log1/(1−p)(n)c that contains χ(Gn,p) with

high probability, where C = C(γ) > 0 is a constant.

This concentration bound is meaningful, since typically χ(Gn,p) = Θ
(
n/ log1/(1−p)(n)

)
in the assumed range of p; see Section 3.3. For p = 1 − n−Θ(1) the bound of Theorem 4
effectively reduces to the ω

√
n concentration bound of Shamir and Spencer, which in fact

is best possible for p = 1 − Θ(n−1) due to Theorem 9 and the earlier work of Alon and
Krivelevich [2]. Given any integer r > 2, we similarly believe that no further concen-
tration improvements are possible for p = 1 − Θ(n−2/r); see Figure 1 and Conjecture 8.
In Section 3 we discuss in more detail the behavior of the chromatic number χ(Gn,p)
when p = 1− n−Ω(1).

2.1 Proofs of Theorem 3 and 4

As discussed, the starting point for our proofs of Theorem 3 and 4 is the following useful
observation about the concentration of χ(Gn,p). The intuition behind Lemma 5 is that,
after removing at most z = ω

√
n vertices from Gn,p, we can color the remaining vertices

of Gn,p with about M colors, where the median M = M(n, p) of χ(Gn,p) does not depend
on z or ω (which is a non-standard feature: usually a different function M is used that
explicitly depends on z or ω); we defer the concentration-based proof to Appendix 4.

Lemma 5 (Chromatic number: concentration around median). For any p = p(n) ∈ [0, 1]
and z = z(n, ω) as in (2), the following holds for the random graph Gn,p. If there is a
function Γ = Γ(z, n, p) for which the event

max
Z⊆[n]:|Z|6z

χ
(
Gn,p[Z]

)
6 Γ (5)

holds with high probability, then with high probability we also have∣∣χ(Gn,p)−M
∣∣ 6 Γ, (6)

where M = M(n, p) is defined as the smallest integer with P(χ(Gn,p) 6 M) > 1/2.
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To show concentration of χ(Gn,p), it thus suffices to show that we can color any
induced subgraph Gn,p[Z] on |Z| 6 z vertices with few colors. To efficiently color Gn,p[Z]
we exploit local sparsity by combining standard Chernoff bounds with the following two
greedy-based results, whose routine proofs we defer to Appendix 4. In brief, Lemma 6
enables us to iteratively remove a large independent set from Z and assign its vertices one
new color, until few vertices of Z remain, which we then color using Lemma 7. Below we
write δ(G) and α(G) for the minimum degree of G and the size of the largest independent
set of G, respectively.

Lemma 6 (Large independent sets: greedy bound). Given a graph G and parame-
ters 0 < d < 1 < u, assume that the minimum degree satisfies δ(G[S]) 6 d(|S|− 1) for all
vertex-subsets S ⊆ V (G) of size |S| > u. Then α(G[W ]) > − log(1−d)(1−1/u)

(
|W |/u

)
for

any vertex-subset W ⊆ V (G) of size |W | > u.

Lemma 7 (Chromatic number: greedy bound). Given a graph G and a parameter r > 0,
assume that the minimum degree satisfies δ(G[S]) 6 r for all vertex-subsets S ⊆ V (G).
Then χ(G) 6 r + 1.

In the remainder of this section we prove the concentration bounds of Theorems 3–4
by combining Lemma 5 with variants of the above-discussed two-phase greedy coloring
argument for Gn,p[Z].

2.1.1 Proof of Theorem 3 when zp � logn

In the case zp � log n of Theorem 3, our proof strategy uses Chernoff bounds to
color Gn,p[Z] as follows. By iteratively applying Lemma 6 with u = Θ(log n/p)
and d ≈ p � 1/u to extract large independent sets from Gn,p[Z], in the first phase
the idea is to color all but O(u) many vertices of Z using O

(
zp/ log(zp/ log n)

)
colors,

see (11) below for the details (which take into account that the largest independent sets
get smaller as fewer vertices of Z remain). By applying Lemma 7 with r = Θ(up), in
the second phase then idea is to then color the remaining O(u) uncolored vertices using
only r + 1 = Θ(log n)� zp/ log(zp/ log n) additional colors.

Proof of Theorem 3 when zp� log n. Set ε := (1 − γ)/(1 + γ), d := (1 + ε)p as well
as u := 24ε−2(log n)/p and r = d2e2upe. Note that d < 1 � u. With an eye on the
minimum degree based Lemmas 6–7, let D denote the event that δ(Gn,p[S]) 6 d(|S| − 1)
for all S ⊆ [n] with |S| > u, and let E denote the event that δ(Gn,p[S]) 6 2r − 1 for
all S ⊆ [n] with |S| 6 4u. Note that ¬D implies existence of S ⊆ [n] with |S| > u such
that Gn,p[S] has at least (1+ ε)p

(|S|
2

)
edges. Using standard Chernoff bounds (such as [12,

Theorem 2.1]) and ε2up/12 = 2 log n, a routine union bound argument shows that

P(¬D) 6
∑
u6s6n

(
n

s

)
e−ε

2(s
2)p/3 6

∑
u6s6n

(
ne−ε

2up/12
)s

6
∑
s>u

n−s = o(1). (7)
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Exploiting r > 2e2up > 2 log n, we similarly see that

P(¬E) 6
∑

16s64u

(
n

s

)((s
2

)
sr

)
psr

6
∑

16s64u

[
n

(
4upe

2r

)r]s
6
∑
s>1

(
ne−r

)s
6
∑
s>1

n−s = o(1).

(8)

We henceforth assume that the events D and E both hold. Consequently, if a vertex
subset W ⊆ [n] has size at least |W | > 2u, then using Lemma 6 as well as 1/u � d =
(1+ε)p 6 (1+ε)γ and− log(1−d) 6 d/(1−d) it follows that the induced subgraph Gn,p[W ]
contains an independent set of size at least

α
(
Gn,p[W ]

)
> − log(1−d)(1−1/u)

(
|W |/u

)
>

log
(
|W |/u

)
−2 log

(
1− d

) >
log
(
|W |/u

)
Ap

=: I
(
|W |

)
(9)

for a suitable constant A = A(ε, γ) ∈ (0,∞). In order to color any vertex subset Z ⊆ [n]
of size at most |Z| 6 z, among the so-far uncolored vertices of Z we iteratively choose
a largest independent set and assign its vertices one new color, until a set R ⊆ Z of at
most |R| 6 4u uncolored vertices remains. Applying Lemma 7 to Gn,p[R], in view of the
event E and zp/ log n� 1 we then color R using at most

χ
(
Gn,p[R]

)
6 2r = Θ

(
ε−2 log n

)
� zp

log(zp/log n)
(10)

many colors. To bound the number of colors used for Z \ R, for a fixed integer i > 0 we
shall first bound the number of independent sets chosen while the number of uncolored
vertices from Z is between z2−(i+1) and z2−i, and then sum over all feasible integers i > 0.
Namely, after recalling u = Θ(ε−2(log n)/p) and zp� log n, it follows in view of (9) that
the procedure colors Z \R using at most

χ
(
Gn,p[Z \R]

)
6

∑
i>0:z2−i>4u

z2−i

I
(
z2−(i+1)

) 6
Azp

log(z/u)

∑
i>0

(i+ 2)

2i
6

O(Azp)

log(zp/log n)
(11)

many colors, where the second inequality exploits z2−i > 4u to infer log(z2−(i+1)/u) >
log(z/u)/(i+ 2). Combining (10)–(11) with Lemma 5 and estimates (7)–(8) then im-
plies (1a) for suitable C = C(γ) > 0.

2.1.2 Proof of Theorem 3 when zp � logn

In the remaining case zp � log n of Theorem 3, we can directly bound χ(Gn,p[Z]) us-
ing Lemma 7.

Proof of Theorem 3 when zp� log n. Set r :=
⌈
4 log n/log

(
logn
zp

)⌉
and C := 16, say.

Let E denote the event that δ(Gn,p[S]) 6 2r − 1 for all S ⊆ [n] with |S| 6 z. Not-

ing that zp � log n implies zp/r �
√
zp/ log n, similar to (8) it follows via a standard
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union bound argument that

P(¬E) 6
∑

16s6z

(
n

s

)((s
2

)
sr

)
psr

6
∑

16s6z

[
n

(
zpe

2r

)r]s
6
∑
s>1

[
n

(
zp

log n

)r/2]s
6
∑
s>1

n−s = o(1).

We henceforth assume that the event E holds. Applying Lemma 7, we then color
any Z ⊆ [n] with |Z| 6 z using at most χ(Gn,p[Z]) 6 2r many colors, which together
with Lemma 5 implies (1b) for r > 2 (in which case the ceiling in the definition of r
causes no major rounding issues).

In the remaining case r = 1 it is easy to see that p� n−4 holds (with room to spare),
so that Gn,p has with high probability no edges. Hence χ(Gn,p) is concentrated on one
value, which trivially establishes (1b).

2.1.3 Proof of Theorem 4

The proof strategy for Theorem 4 is similar but simpler to Section 2.1.1. Namely, by itera-
tively applying Lemma 6 to extract independent sets of size Θ

(
log1/(1−p)(n)

)
from Gn,p[Z],

we first color all but at most n1/3 many vertices of Z using O
(
z/ log1/(1−p)(n)

)
colors, and

then trivially color the remaining uncolored vertices using at most n1/3 � z/ log1/(1−p)(n)
additional colors (by giving each vertex a new color).

Proof of Theorem 4. Set q := 1−p, d := 1−q/2 as well as u := 96(log n)/q and m := n1/3.
If q 6 n−1/9 then Lemma 5 implies the claimed bound in Theorem 4 by noting
that χ(Gn,p[Z]) 6 |Z| 6 z 6 9z log(1/q)/ log n, so we henceforth assume that q > n−1/9.
Let D denote the event that δ(Gn,p[S]) 6 d(|S| − 1) for all S ⊆ [n] with |S| > u. Note

that ¬D implies existence of S ⊆ [n] with |S| > u such that Gn,p[S] has at most q/2 ·
(|S|

2

)
non-edges. Similarly to (7), using 1− p = q and uq/48 = 2 log n it routinely follows that

P(¬D) 6
∑
u6s6n

(
n

s

)
e−(s

2)q/12 6
∑
u6s6n

(
ne−uq/48

)s
6
∑
s>u

n−s = o(1). (12)

We henceforth assume that the event D holds. Consequently, if a vertex sub-
set W ⊆ [n] has size at least |W | > m, then using Lemma 6 together with m/u � n1/6

as well as 1/u � p = 1 − q and q 6 1 − γ it follows that the induced subgraph Gn,p[W ]
contains an independent set of size at least

α
(
Gn,p[W ]

)
> − log[q/2·(1−1/u)]

(
|W |/u

)
>

log(m/u)

log(2/q2)
>

log n

A log(1/q)
=: k

for a suitable constant A = A(γ) ∈ (0,∞). In order to color any vertex subset Z ⊆ [n]
of size at most |Z| 6 z, among the so-far uncolored vertices of Z we iteratively choose an
independent set of size at least k and assign its vertices one new color, until at most m
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uncolored vertices remain, and then use one new color for each remaining vertex. In view
of |Z| 6 z and m� z/k it follows that this procedure colors Z using at most

χ
(
Gn,p[Z]

)
6
|Z|
k

+m 6
2z

k
6

2Az

log1/q(n)

many colors, which together with Lemma 5 and estimate (12) completes our proof
with C := max{4A, 18}.

3 Concentration of χ(Gn,p): the very dense case

We conclude by discussing the behavior of the chromatic number χ(Gn,p) in the very dense
case 1− p = n−Ω(1). Here χ(Gn,p) is closely linked to the size α = α(Gn,p) of the largest
independent set of Gn,p. Namely, inspired by [9], it seems plausible that a near-optimal
coloring can be obtained by first picking as many vertex-disjoint independent sets of size α
as possible, and then covering (almost all of) the remaining vertices with independent sets
of size α− 1. More concretely, for n−2/r � 1− p� n−2/(r+1) we expect to have about

µr+1 = µr+1(n, p) :=

(
n

r + 1

)
(1− p)(

r+1
2 ) (13)

many vertices in independent sets of largest size α = α(Gn,p) = r + 1 (which in fact
are mostly vertex-disjoint). Since µr+1 = o(n), the near-optimal coloring heuristic then
suggests that χ(Gn,p) ≈ o(n) + n/r ≈ n/r, as we shall make rigorous in Section 3.3.
Furthermore, since in our coloring heuristic we pick almost all independent sets of size r+1,
whose number is well-known to fluctuate by about

√
µr+1 in Gn,p (see [23]), it then

becomes plausible that χ(Gn,p) should also vary by this amount, as formalized by the
following conjecture.

Conjecture 8. If the edge-probability p = p(n) satisfies (log n)1/(r
2)n−2/r � 1 − p 6

(1 + o(1))n−2/(r+1) for some integer r > 1, then the following holds, for any ε > 0 and any
function ω = ω(n)→∞ as n→∞.

(i) There is an interval of length
⌊
ω
√
µr+1

⌋
that contains χ(Gn,p) with high probability.

(ii) No interval of length
⌊
c
√
µr+1

⌋
contains χ(Gn,p) with probability at least ε + o(1),

where c = c(ε, r) > 0.

Note that
√
µr+1 increases from Θ(1) to Θ(

√
n) as 1 − p increases from n−2/r

to n−2/(r+1), so Conjecture 8 predicts that the concentration interval length of χ(Gn,p)
is neither monotone nor smooth in p. Furthermore, Conjecture 8(i) proposes a refinement
of the well-known ω

√
n concentration bound of Shamir and Spencer [26]. More interest-

ingly, by varying r > 1, Conjecture 8 also predicts that the concentration interval length
changes infinitely many times from n1/2+o(1) to (log n)Θ(1) as 1 − p decreases from n−o(1)

to n−2+o(1); see also Figure 1. This intriguing behavior differs conceptually from very
recent predictions [9] for constant p ∈ (0, 1).
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The remainder of this section is organized as follows. In Section 3.1 we prove Conjec-
ture 8 for r = 1, and in Section 3.2 we establish Theorem 2, i.e., show that the concen-
tration interval length of χ(Gn,p) undergoes a polynomial ‘jump’ around 1− p = n−1+o(1).
In Section 3.3 we then prove that, under the assumptions of Conjecture 8, the chromatic
number is typically χ(Gn,p) = (1 + o(1))n/r, as predicted above.

3.1 Concentration result: proof of Conjecture 8 for r = 1

The following result verifies the case r = 1 of Conjecture 8: it states that χ(Gn,p) is

concentrated on an interval of length about
√
n ·
√
n(1− p) when n−2 � 1− p = O(1/n).

In this range of p, Theorem 9(i) refines the well-known ω
√
n concentration bound of

Shamir and Spencer [26]. Theorem 9(ii) extends observations of Alon and Krivelevich [2]
and Bollobás [5] for p = 1− 1/(10n) and n−2 � 1− p� n−3/2, respectively.

Theorem 9. If p = p(n) satisfies n−2 � 1 − p 6 (D + o(1))/n for some con-
stant D ∈ (0,∞), then for q := 1− p the following holds, for any ε > 0 and any func-
tion ω = ω(n)→∞ as n→∞.

(i) There is an interval of length
⌊
ωn
√
q
⌋

that contains χ(Gn,p) with high probability.

(ii) No interval of length
⌊
cn
√
q
⌋

contains χ(Gn,p) with probability at least ε + o(1),
where c = c(ε,D) > 0.

Proof. The main idea is that the study of study of χ(Gn,p) effectively reduces to the
study of the maximum matching in the complement. Writing M for the maximum size
(counting number of edges) of a matching in the complement of Gn,p, we have χ(Gn,p) 6
M + (n − 2M) = n − M . Furthermore, for any proper coloring of Gn,p with color
classes (Is)16s6χ(Gn,p) we have n = χ(Gn,p) +

∑
s(|Is| − 1). Defining Xi as the number of

independent sets of size i in Gn,p, for Y :=
∑

i>3 iXi it then readily follows that

n−M − Y 6 χ(Gn,p) 6 n−M. (14)

Since EXi+1/EXi = µi+1/µi 6 nqi = o(q) for i > 3, it routinely follows that EY =
(1 + o(1))3µ3 = Θ(n3q3) = o(n

√
q). Applying Markov’s inequality to Y , from (14) it

follows that with high probability

χ(Gn,p) = n−M − o(n√q). (15)

Gearing up towards applying a combinatorial version of Talagrand’s inequality, note
that M > s can be certified by s non-edges of Gn,p, and that adding or removing an
edge from Gn,p changes M by at most one. Since EM 6

(
n
2

)
q, a standard application of

Talagrand’s inequality (such as [21, Theorem 2]) thus yields

P
(
|M − EM | > ωn

√
q/3
)
6 2 · exp

(
−Θ

(
ω2n2q

EM + ωn
√
q

))
= o(1),

which together with (15) completes the proof of case (i).
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Finally, the remaining case (ii) follows immediately from (15) and Lemma 10 below
(since the complement of Gn,p has the same distribution as Gn,q, where qn 6 D + o(1)
and n

√
q � 1 hold by assumption).

Lemma 10. Let q = q(n) ∈ [0, 1] satisfy n
√
qe−qn � 1, and define M as the max-

imum size (counting number of edges) of a matching in Gn,q. Then for any ε > 0
there is a constant d = d(ε) > 0 such that for any interval I of length

⌊
dn
√
qe−qn

⌋
we have P(M ∈ I) 6 ε+ o(1).

Proof-Outline of Lemma 10. The heuristic idea is that fluctuations in the number of
isolated edges is a source of fluctuations of M . Defining GL

n,q ⊆ Gn,q as the induced
subgraph of Gn,q consisting of all connected components of size at least three, we
set Y := n− |V (GL

n,q)|. We also define X1 as the number of isolated edges in Gn,q, and
define X2 as the maximum size of a matching in GL

n,q. The main idea is then to show that,
after conditioning on a fixed graph GL

n,q = G with Y ≈ EY , the number X1 of isolated

edges fluctuates by Θ(
√
EX1) = Θ(n

√
qe−qn). Since X2 is determined by the graph G we

conditioned on, this then allows us to show that M = X1 +X2 fluctuates by the same
order of magnitude. See Appendix 5 for the full technical details of the proof of Lemma 10
(which are rather tangential to the other arguments here).

Remark 11 (Extension of Theorem 9). After refining the deviation from cn
√
q to cn

√
qe−nq

for suitable c = c(ε) > 0, the above proof of Theorem 9 (ii) carries over under
the weaker assumption n

√
qe−nq � max{1, (nq)3}, which in particular holds for

when n−1 � nq � log n, say.

3.2 Polynomial concentration jump: proof of Theorem 2

The following simple lemma proves a weak version of Conjecture 8(i) for r > 2, with
deviation ω

√
µr+1 replaced by ωµr+1. For our purposes, the crux is that Lemma 12 estab-

lishes concentration of χ(Gn,p) on no(1) values near the transition points 1−p = n−2/r+o(1).
By combining the case r = 2 of Lemma 12 with Remark 11 we thus immediately estab-
lish Theorem 2, which essentially says that the typical length of the shortest interval
containing χ(Gn,p) undergoes a steep transition from Ω(n1/2−ε) down to O(nε) around
edge-probability p = 1− n−1+o(1), as illustrated by Figure 1 and predicted by Conjec-
ture 8. This polynomial concentration ‘jump’ is intriguing, and we remark that a related
phenomenon also occurs in [20, 18].

Lemma 12. Let ω = ω(n) → ∞ as n → ∞ be an arbitrary function, and let r > 2 be

an integer. If p = p(n) satisfies (log n)1/(r
2)n−2/r � 1 − p � (log n)n−2/(r+1), then there

is an interval of length
⌊
ωµr+1

⌋
that contains χ(Gn,p) with high probability. Furthermore,

for 1− p = n−2/rx we have ωµr+1 6 ωx(r+1
2 ).

Proof. Using the assumed lower bound on q := 1 − p, a celebrated result of Johans-
son, Kahn and Vu [13, Theorem 2.1] implies that the complement of Gn,p with high
probability containsbn/rc vertex-disjoint cliques of size r, meaning that we can color all
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but n− rbn/rc 6 r vertices of Gn,p using at most n/r colors. By coloring the remaining
uncolored vertices with distinct new colors, it follows that with high probability

χ(Gn,p) 6 n/r + r. (16)

To obtain a lower bound on χ(Gn,p) we shall use a variant of the argument leading
to (14), again writing Xi for the number of independent sets of size i in Gn,p. Indeed,
for any proper coloring of Gn,p with color classes (Is)16s6χ(Gn,p) we have n =

∑
s |Is| 6

Y + r · χ(Gn,p) for Y :=
∑

i>r iXi, so that

χ(Gn,p) > (n− Y )/r. (17)

Using the assumed upper bound on q = 1 − p we infer that EXi+1/EXi 6 nqi = o(q)
for i > r + 1 (with room to spare), and so it routinely follows that EY = Θ(µr+1). Finally,
in view of (16)–(17), now an application of Markov’s inequality to Y readily completes
the proof.

The deviation ωµr+1 in Lemma 12 can be further reduced using a two-round exposure
argument (in some range of p), but a proof of the conjectured deviation ω

√
µr+1 seems to

require additional ideas.

3.3 The typical value

Finally, an approximate coloring argument similar to Section 3.2 also allows us to deter-
mine the with high probability asymptotics of the chromatic number χ(Gn,p) for most
edge-probabilities of form 1− p = n−Ω(1), settling a recent conjecture of Isaev and Kang,
see [10, Conjecture 1.2].

Theorem 13. If the edge-probability p = p(n) satisfies n−2/r � 1− p� n−2/(r+1) for
some fixed integer r > 1, then with high probability χ(Gn,p) = (1 + o(1))n/r.

Proof. For the lower bound we exploit that the argument leading to (17) again

gives χ(Gn,p) > (n − Y )/r and EY = Θ
(
nr+1(1 − p)(

r+1
2 )
)

. Since 1 − p � n−2/(r+1)

implies EY = o(n), now an application of Markov’s inequality to Y readily shows that
with high probability χ(Gn,p) > (1− o(1))n/r.

We also include the upper bound argument from [10] for completeness. Namely, us-
ing 1− p� n−2/r, an old result of Ruciński [24, Theorem 4] implies that the complement
of Gn,p with high probability contains (1− o(1))n/r vertex-disjoint cliques of size r, mean-
ing that we can color all but o(n) vertices of Gn,p using at most n/r colors. By coloring
the remaining uncolored vertices with distinct new colors, it follows that with high prob-
ability χ(Gn,p) 6 n/r + o(n) 6 (1 + o(1))n/r, completing the proof.

Note that the estimate χ(Gn,p) = (1+o(1))n/r from Theorem 13 can also be rewritten
as

χ(Gn,p) =
(1 + o(1))n⌊

2 log1/(1−p)(np)
⌋ . (18)
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Interestingly, the same expression (18) also gives the with high probability asymptotics
of χ(Gn,p) when the edge-probability p = p(n) satisfies 1/n� p 6 1−n−o(1), see [4, 16, 10].
We leave it as an intriguing open problem to determine the asymptotics of χ(Gn,p) for
edge-probabilities of the form p = 1 − Θ(n−2/r), in which case the behavior of related
graph parameters also remains open, see [7, Section 4.2].
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4 Appendix: proofs of Lemmas 5–7

Proof of Lemma 5. Define λ = λ(n, p, ω) as the smallest integer with
P(χ(Gn,p) 6 λ) > 1/ω. Let Y denote the minimum size of a vertex subset Z ⊆ [n]
with χ

(
Gn,p

[
[n] \ Z

])
6 λ. By definition of λ we have

P(χ(Gn,p) < λ) 6 1/ω 6 P(Y = 0). (19)

Using the vertex-exposure approach to the bounded difference inequality, we write Y =
Y (X1, . . . , Xn) where the independent auxiliary variables Xi := {(i, j) ∈ E(Gn,p) : i < j}
contain the edges of Gn,p between vertex i and vertices {i+1, . . . , n}. Note that changing
a single Xi can change Y by at most one. In view of (19), now a routine application of
the bounded differences inequality (such as [12, Corollary 2.7]) to Y yields

1/ω 6 P(Y = 0) = P(Y 6 EY − EY ) 6 exp

(
−(EY )2

2n

)
,

which implies that EY 6
√

2n lnω. Since z = ω
√
n �

√
2n lnω, by again applying the

bounded differences inequality to Y it then follows that

P(Y > z) 6 P
(
Y > EY +

√
2n lnω

)
6 1/ω,

which together with estimate (19) and the ‘with high probability’ event (5) implies that

P
(
λ 6 χ(Gn,p) 6 λ+ Γ

)
> 1− 2/ω − P

(
event (5) fails

)
= 1− o(1). (20)

Combining the definition of the median M = M(n, p) with (19) and (20), it deterministi-
cally follows that

λ 6 M 6 λ+ Γ

for all sufficiently large n, which together with (20) then completes the proof of Lemma 5.

Proof of Lemma 6. Given a vertex subset W ⊆ V (G) of size |W | > u, we construct an
independent set greedily: set W0 = W and, for i > 1, pick wi ∈ Wi−1 with minimal degree
in G[Wi−1] and set

Wi =
{
v ∈ Wi−1 : v not adjacent to wi

}
.

We terminate as soon as Wj is empty, in which case we obtain an independent
set {w1, . . . , wj} ⊆ W . If |Wi−1| > u holds, then we know that wi has degree at
most d(|Wi| − 1) in G[Wi], implying that

|Wi| > (1− d)(|Wi−1| − 1) > (1− d)(1− 1/u)|Wi−1|.

It follows that Wi is non-empty as long as

i− 1 6 − log(1−d)(1−1/u)

(
|W |/u

)
=: I

(
W |
)
,

so we terminate with an independent set {w1, . . . , wj} ⊆ W of size j >
⌊
I(|W |) + 1

⌋
>

I(|W |).
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Proof of Lemma 7. We apply induction on the number of vertices. The base
case |V (G)| = 1 is trivial. For the induction step |V (G)| > 1, we pick a vertex v of mini-
mum degree, inductively color the subgraph G− v (obtained by removing v) using r + 1
colors, and color v with a color not used by its at most r neighbors.

5 Appendix: proof of Lemma 10

Proof of Lemma 10. We keep the setup from the proof-outline in Section 3.1. In partic-
ular, we define GL

n,q ⊆ Gn,q as the induced subgraph of Gn,q consisting of all connected
components of size at least three, define X1 as the number of isolated edges in Gn,q, and
define X2 as the maximum size (counting number of edges) of a matching in GL

n,q. Turning
to the typical number Y := n − |V (GL

n,q)| of vertices in components of size at most two,
note that the expected number of isolated vertices in Gn,q is

λ0 := n(1− q)n−1 ∼ ne−qn,

and that the expected number of isolated edges in Gn,q is

λ1 :=

(
n

2

)
q(1− q)2n−4 ∼ n2qe−2qn

2
,

where we use the shorthand an ∼ bn for an = (1 + o(1))bn to avoid clutter. Note
that EY = λ0 + 2λ1. By a routine second moment calculation, for suitable εn = o(1)
it follows that with high probability

Y = (1± εn)(λ0 + 2λ1). (21)

Deferring the choice of the sufficiently small constant d = d(ε) > 0, set

N := bdn√qe−qnc ∼ d
√

2λ1 � 1. (22)

Since M = X1 + X2, with X2 determined by GL
n,q, for any interval I of length N it

follows that

P(M ∈ I) 6 P
(
estimate (21) fails

)
+
∑
G

P
(
X1 +X2 ∈ I | GL

n,q = G
)
P(GL

n,q = G)

6 o(1) + max
G,J

P
(
X1 ∈ J | GL

n,q = G
)
,

(23)

where J is taken over all intervals of length N , and G is taken over all graphs for which
(i) all connected components all have size at least three and (ii) its number of vertices n−Y
is compatible with (21).

To complete the proof, it suffices to show that the final probability appearing in (23)
is at most ε for sufficiently large n. To this end we henceforth fix a graph G that occurs
in the maximum of (23) described above, and let J be any interval of length N that
maximizes P(X1 ∈ J | GL

n,q = G). We define GS
n,q ⊆ Gn,q as the induced subgraph of Gn,q
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consisting of all connected components of size at most two. Note that GS
n,q has Y ver-

tices, with Y = n − |V (GL
n,q)| determined by GL

n,q. After conditioning on GL
n,q = G, a

moment’s thought reveals that GS
n,q has the same distribution as GY,q conditioned on all

connected components having size at most two. Since there are 1
u!

∏
06i<u

(
Y−2i

2

)
graphs

on Y vertices that consist of u isolated edges and Y − 2u isolated vertices, it follows for
any integer 0 6 m 6 Y/2− 1 that

ΦG(m) :=
P
(
X1 = m | GL

n,q = G
)

P
(
X1 = m+ 1 | GL

n,q = G
)

=
1
m!

∏
06i<m

(
Y−2i

2

)
· qm(1− q)(

Y
2)−m

1
(m+1)!

∏
06i6m

(
Y−2i

2

)
· qm+1(1− q)(

Y
2)−(m+1)

=
(1− q)(m+ 1)

q
(
Y−2m

2

) .

(24)

To get a handle on these probabilities, first note that λ0 = Ω(λ1) follows from λ1/λ0 =
Θ(nqe−nq) = O(1). Using (21) we then deduce

√
q Y = Θ(

√
qλ0) = Θ(n

√
qe−qn) � 1 as

well as

ΦG

(
0
)

=
Θ(1)

(
√
q Y )2

� 1 and ΦG

(
Y/2− 1

)
=

Θ(
√
q Y )

q3/2
� 1,

so by the intermediate value theorem there exists a real 0 < m0 < Y/2− 1 satisfy-
ing ΦG(m0) = 1. Noting that ΦG(m) is a strictly increasing function, it now is rou-
tine to check that m0 ∼ λ1, since for any m ∼ λ1 we have Y − 2m ∼ λ0 + o(λ1) ∼ λ0

and ΦG(m) ∼ λ1/(qλ
2
0/2) ∼ 1. Using ΦG(m0) = 1 together with Y − 2m0 ∼ λ0 = Ω(λ1)

and m0 ∼ λ1, for any integer m = m0 + i with i = o(λ1) we similarly infer that

ΦG(m) =
ΦG(m0 + i)

ΦG(m0)
=

(
y−2m0

2

)(
y−2m0−2i

2

)m0 + i+ 1

m0 + 1

=

(
1 +

2i

y − 2m0 − 2i+O(1)

)2(
1 +

i

m0 + 1

)
= 1 +

Θ(i)

λ1

.

(25)

Since the probability ratio ΦG(m) from (24) is a strictly increasing function, the inter-
val J must intersect

{
dm0e − 1, . . . , bm0c+ 1

}
in at least one element, because other-

wise we could increase the probability P(X1 ∈ J | GL
n,q = G) by shifting the interval J

by plus or minus one (contradicting maximality). Furthermore, by definition of m0, we
have ΦG(m) 6 1 for all m 6 m0. By choosing the constant d = d(ε) > 0 sufficiently small,
for all integers m ∈ J and 1 6 s 6 d2/εe it follows in view of (24), (25) and (22) that

P
(
X1 = m | GL

n,q = G
)

P
(
X1 = m+ 2Ns | GL

n,q = G
) =

∏
06i<2sN

ΦG(m)

6

(
1 +

Θ(sN)

λ1

)2Ns

6 eO(s2d2)

6 2. (26)
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Since the interval J has length N , by applying (26) to each m ∈ J it then follows that

2/ε · P
(
X1 ∈ J | GL

n,q = G
)
6

∑
16s6d2/εe

2 P
(
X1 − 2Ns ∈ J | GL

n,q = G
)
6 2,

which together with estimate (23) completes the proof of Lemma 10, as discussed.
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