
Graphs with Girth 2` + 1 and Without Longer Odd

Holes that Contain an Odd K4-Subdivision

Rong Chena Yidong Zhoua

Submitted: Jun 14, 2023; Accepted: Dec 29, 2023; Published: Feb 23, 2024

©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

We say that a graph G has an odd K4-subdivision if some subgraph of G is
isomorphic to a K4-subdivision which if embedded in the plane the boundary of
each of its faces has odd length and is an induced cycle of G. For a number ` > 2,
let G` denote the family of graphs which have girth 2` + 1 and have no odd hole
with length greater than 2` + 1. Wu, Xu and Xu conjectured that every graph in⋃

`>2 G` is 3-colorable. Recently, Chudnovsky et al. and Wu et al., respectively,
proved that every graph in G2 and G3 is 3-colorable. In this paper, we prove that
no 4-vertex-critical graph in

⋃
`>5 G` has an odd K4-subdivision. Using this result,

Chen proved that all graphs in
⋃

`>5 G` are 3-colorable.

Keywords: chromatic number, odd holes

Mathematics Subject Classifications: 05C15, 05C17, 05C69

1 Introduction

All graphs considered in this paper are finite, simple, and undirected. A proper coloring
of a graph G is an assignment of colors to the vertices of G such that no two adjacent
vertices receive the same color. A graph is k-colorable if it has a proper coloring using at
most k colors. The chromatic number of G, denoted by χ(G), is the minimum number k
such that G is k-colorable.

The girth of a graph G, denoted by g(G), is the minimum length of cycles in G. A hole
in a graph is an induced cycle of length at least four. An odd hole means a hole of odd
length. For any integer ` > 2, let G` be the family of graphs that have girth 2` + 1 and
have no odd holes of length at least 2`+3. Robertson conjectured in [4] that the Petersen
graph is the only graph in G2 that is 3-connected and internally 4-connected. Plummer and
Zha [5] disproved Robertson’s conjecture and proposed the conjecture that all 3-connected
and internally 4-connected graphs in G2 have bounded chromatic numbers, and proposed
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the strong conjecture that such graphs are 3-colorable. The first was proved by Xu, Yu,
and Zha [9], who proved that all graphs in G2 are 4-colorable. The strong conjecture
proposed by Plummer and Zha in [5] was solved by Chudnovsky and Seymour [2]. Wu,
Xu, and Xu [7] showed that graphs in

⋃
`>2 G` are 4-colorable and conjectured

Conjecture 1. ( [7], Conjecture 6.1.) For each integer ` > 2, every graph in G` is
3-colorable.

Wu, Xu and Xu [8] recently proved that Conjecture 1 holds for ` = 3.
We say that a graph G has an odd K4-subdivision if some subgraph of G is isomorphic

to a K4-subdivision which if embedded in the plane the boundary of each of its faces has
odd length and is an induced cycle of G. Note that an odd K4-subdivision of G maybe
not induced. However, when G ∈ G` for each integer ` > 2, all odd K4-subdivisions of G
are induced by Lemma 8 (2). In this paper, we prove the following theorem.

Theorem 2. No 4-vertex-critical graph in
⋃

`>5 G` has an odd K4-subdivision.

Using Theorem 2, Chen [1] proved that Conjecture 1 holds for all ` > 5. Recently,
following idea in this paper and [1], Wang and Wu [6] further proved that Conjecture 1
holds for ` = 4.

2 Preliminaries

A cycle is a connected 2-regular graph. Let G be a graph. A vertex v ∈ V (G) is called
a degree-k vertex if it has exactly k neighbours. For any U ⊆ V (G), let G[U ] be the
subgraph of G induced on U . For subgraphs H and H ′ of G, set |H| := |E(H)| and
H∆H ′ := E(H)∆E(H ′). Let H ∪ H ′ denote the subgraph of G whose vertex set is
V (H)∪ V (H ′) and edge set is E(H)∪E(H ′). Let H ∩H ′ denote the subgraph of G with
edge set E(H) ∩ E(H ′) and without isolated vertex. Let N(H) be the set of vertices in
V (G)− V (H) that have a neighbour in H. Set N [H] := N(H) ∪ V (H).

Let P be an (x, y)-path and Q be a (y, z)-path. When P and Q are internally disjoint,
let PQ denote the (x, z)-path P ∪Q. Evidently, PQ is a path when x 6= z, and PQ is a
cycle when x = z. Let P ∗ denote the set of internal vertices of P . When u, v ∈ V (P ), let
P (u, v) denote the subpath of P with ends u, v. For simplicity, we will let P ∗(u, v) denote
(P (u, v))∗.

A graph is k-vertex-critical if χ(G) = k but χ(G \ v) < k for each v ∈ V (G). Dirac
in [3] proved that every k-vertex-critical graph is (k− 1)-edge-connected. Hence, we have

Lemma 3. For each integer k > 4, each k-vertex-critical graph G has no 2-edge-cut.

A theta graph is a graph that consists of a pair of distinct vertices joined by three
internally disjoint paths. Let C be a hole of a graph G. A path P of G is a chordal path
of C if V (P ∗) ∩ V (C) = ∅ and C ∪ P is an induced theta-subgraph of G. Lemma 4 will
be frequently used.
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Lemma 4. Let ` > 2 be an integer and C be an odd hole of a graph G ∈ G`. Let P be
a chordal path of C, and P1, P2 be the internally disjoint paths of C that have the same
ends as P . Assume that |P | and |P1| have the same parity. If |P1| 6= 1, then |P1| > |P2|
and all chordal paths of C with the same ends as P1 have length |P1|.

Proof. Since |C| = 2` + 1, |P1| 6= 1 and |P | and |P1| have the same parity, P ∪ P2 is an
odd hole. Moreover, since g(G) = 2` + 1 and all odd holes in G have length 2` + 1, we
have ` + 1 6 |P1| = |P | and |P2| 6 `, so |P1| > |P2| and all chordal paths of C with the
same ends as P1 have length |P1|.

Let P be a path with i vertices. If G− V (P ) is disconnected, then we say that P is a
Pi-cut. Usually, a P2-cut is also called a K2-cut. Evidently, every k-vertex-critical graph
has no K2-cut. Chudnovsky and Seymour in [2] proved that every 4-vertex-critical graph
G in G2 has no P3-cut. Using the same argument as [2], Wu et al. [8] extend this result
to graphs in

⋃
`>2 G`. Since the paper [8] does not include a proof of Lemma 5, we give a

proof here for completeness.

Lemma 5. ( [8]) For any number ` > 2, every 4-vertex-critical graph in G` has neither a
K2-cut nor a P3-cut.

Proof. It is well-known that every k-vertex-critical graph has no clique as a cut. Hence,
it suffice to show that every 4-vertex-critical graph in G` has no P3-cut. Let G ∈ G` be
a 4-vertex-critical graph. Assume to the contrary that P = v1v2v3 is a path such that
G\{v1, v2, v3} is disconnected. Since G has no K3 as its cut, v1v3 /∈ E(G). Let A1 be
the a component of G\{v1, v2, v3}, and let A2 be the union of all other components. Set
Gi := G[Ai ∪ {v1, v2, v3}] for i = 1, 2. Since G is 4-vertex-critical, both G1 and G2 are
3-colorable. Let φi : V (Gi) → {1, 2, 3} be a 3-coloring for i = 1, 2. By symmetry we
may assume that φi(v1) = 1 and φi(v2) = 2 for i = 1, 2. Thus φ1(v3), φ2(v3) ∈ {1, 3}. If
φ1(v3) = φ2(v3), then G is 3-colorable, which is a contradiction. Thus by symmetry we
may assume that φ1(v3) = 1 and φ2(v3) = 3. Let H1 be the subgraph of G1 induced on
the set of vertices v ∈ V (G1) with φ1(v) ∈ {1, 3}. If v1, v3 belong to different components
of H1, then by exchanging colors in the component containing v3, we obtain another 3-
coloring of G1 that can be combined with φ2 to show that G is 3-colorable. So v1, v3
belong to the same component of H1. Then there is an induced (v1, v3)-path P1 in H1

having even length as φ1(v1) = 1 = φ1(v3). Similarly, there is an induced (v1, v3)-path
P2 in G2 having odd length as φ2(v1) = 1 and φ2(v3) = 3. Moreover, since PP1, PP2 are
cycles of G and g(G) = 2`+ 1, we have |P1| > 2`− 1 and |P2| > 2`, so P1 ∪ P2 is an odd
hole of G of length at least 4`− 1, which is a contradiction as G ∈ G`.

Lemma 6. Let ` > 2 be an integer and x, y be non-adjacent vertices of a graph G ∈ G`.
Let P be an induced (x, y)-path of G. If |P | 6 ` and all induced (x, y)-paths have length
|P |, then no block of G contains two non-adjacent vertices in V (P ). In particular, each
vertex in P ∗ is a cut-vertex of G.

Proof. Assume not. Then there is a block B of G containing two consecutive edges of
P . Let Q be an induced path in B with ends in V (P ) and with V (P ) ∩ V (Q∗) = ∅.
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Since every pair of edges in a 2-connected graph is contained in a cycle, such a Q exists.
Without loss of generality we may further assume that Q is chosen with |Q| as small as
possible. Let C be the unique cycle in P ∪ Q. Then C∆P is an (x, y)-path. Since Q is
induced, the ends of Q are not adjacent. Moreover, since Q is chosen with |Q| as small as
possible, C∆P is an induced (x, y)-path, so |C∆P | = |P | 6 ` by the assumption of the
lemma. Hence, |C| 6 2`, contrary to the fact g(G) = 2`+ 1.

Lemma 7. Let ` > 4 be an integer and x, y be non-adjacent vertices of a graph G ∈ G`.
Let X be a vertex cut of G with {x, y} ⊆ X ⊆ N [{x, y}], and G1 be an induced subgraph
of G whose vertex set consists of X and the vertex set of a component of G − X. If all
induced (x, y)-paths in G1 have length k with 4 6 k 6 `, then G has a degree-2 vertex, a
K1-cut, or a K2-cut.

Proof. Assume that G has no degree-2 vertices. Let P be an induced (x, y)-path in G1.
Let uvw be a subpath of P ∗. Such uvw exists as k > 4. By the definition of G1, we have
v /∈ X, so NG[v] = NG1 [v], which implies dG1(v) > 3. By applying Lemma 6 to G1, there
is a block B of G1 such that either V (B) ∩ V (P ) = {v}, or B is not isomorphic to K2

and V (B) ∩ V (P ) is {u, v} or {u, v}. When the first case happens, since X ⊆ N [{x, y}],
x, y /∈ B and v /∈ X, we have X ∩ V (B) = ∅, for otherwise P (x, v) or P (v, y) is contained
in a cycle of P ∪B, so the vertex v is a cut-vertex of G as X is a vertex cut of G. When the
latter case happens, by symmetry we may assume that V (B)∩V (P ) = {u, v}. Since B is
a block of G1, X ⊆ N [{x, y}] and uvw is a subpath of P ∗, we have V (B)∩X = {u} ∩X,
so {u, v} is a K2-cut of G1 and G.

u1 u2

u3

u4

C1

C2
C3

C4

P1

Q2

P2

Q1

L1

L2

H
Figure 1: u1, u2, u3, u4 are the degree-3 vertices of H. All faces C1, C2, C3, C4 of H are
odd holes. {P1, P2}, {Q1, Q2}, {L1, L2} are the pairs of vertex disjoint arrises of H.

Let H be a graph that is isomorphic to a subdivision of K4, and let P be a path of H
whose ends are degree-3 vertices in H. If P ∗ contains no degree-3 vertex of H, then we
say that P is an arris of H. Evidently, there are exactly six arrises of H. See Figure 1.
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Lemma 8. For any integer ` > 2, if a graph G ∈ G` has an an odd K4-subdivision H,
then the following statements hold.

(1) Each pair of vertex disjoint arrises in H have the same length and their lengths are
at most `.

(2) H is an induced subgraph of G.

(3) When ` > 3, every vertex in V (G)− V (H) has at most one neighbour in V (H).

Proof. Without loss of generality we may assume that H is pictured as the graph in Figure
1. First, we prove that (1) is true. Assume that |P1| > |P2|. Since C1 and C4 are odd
holes, |Q1| < |Q2|. Hence, |P2 ∪ Q1 ∪ L2| < |P1 ∪ Q2 ∪ L2|, which is a contradiction to
the fact that C2 and C3 are both odd holes. So |P1| = |P2|. By symmetry each pair of
vertex-disjoint arrises have the same length. Moreover, since C1∆C2 is an even cycle with
length at least 2` + 2, we have |P1| 6 `. By symmetry we have |Q1|, |L1| 6 `. So (1)
holds.

Secondly, we prove that (2) is true. Suppose not. Since odd holes have no chord, by
symmetry we may assume that there is an edge st in G with s ∈ V (P ∗1 ) and t ∈ V (P ∗2 ).
On one hand, since P1(u1, s)stP2(t, u4)Q2 and P1(u2, s)stP2(t, u3)Q1 are cycles, by (1) we
have

|P1|+ |P2|+ |Q1|+ |Q2|+ 2 = 2(|P1|+ |Q1|+ 1) > 2(2`+ 1).

On the other hand, since |P1|, |Q1| 6 ` by (1), we have |P1| = |Q1| = `, implying
that |L1| = |L2| = 1. Moreover, by the symmetry between L1, L2 and Q1, Q2, we have
|Q1| = |Q2| = 1, which is a contradiction as |Q1| = ` > 2. So (2) holds.

Finally, we prove that (3) is true. Suppose to the contrary that some vertex x ∈
V (G) − V (H) has at least two neighbours in V (H). Since a vertex not in an odd hole
can not have two neighbours in the odd hole, x has exactly two neighbours x1, x2 in
V (H). By symmetry we may further assume that x1 ∈ V (P ∗1 ) and x2 ∈ V (P ∗2 ). Since
C ′1 = P1(u1, x1)x1xx2P2(x2, u3)L1 and C ′2 = P1(u1, x1)x1xx2P2(x2, u4)Q2 are cycles whose
lengths have different parity,

|C ′1|+ |C ′2| = 2`+ 1 + 2(2 + |P1(u1, x1)|) > 4`+ 3.

Hence, |P1(u1, x1)| = `−1 and x1u2 ∈ E(H) as |P1| 6 ` by (1). This implies that u2x1xx2
is a chordal path of C3 with length 3, which is a contradiction to Lemma 4 as ` > 3.

By Lemma 8 (1), all odd K4-subdivisions of a graph G ∈ G` have exactly 4`+ 2 edges
for each number ` > 2.

3 Proof of Theorem 2

Let H1, H2 be vertex disjoint induced subgraphs of a graph G. An induced (v1, v2)-path
P is a direct connection linking H1 and H2 if vi is the only vertex in V (P ) having a
neighbour in V (Hi) for each i ∈ {1, 2}. Evidently, V (P ) ∩ V (H1 ∪ H2) = ∅ and the set
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of internal vertices of each shortest path joining H1 and H2 induces a direct connection
linking H1 and H2.

For convenience, Theorem 2 is restated here in another way.

Theorem 9. Let ` > 5 be an integer, and G be a graph in G`. If G is 4-vertex-critical,
then G has no odd K4-subdivisions.

Proof. Suppose not. Let H be a subgraph of G that is isomorphic to an odd K4-
subdivision and pictured as the graph in Figure 1. By Lemma 8 (2), H is an induced
subgraph of G. By Lemma 8 (1), we have

|P1| = |P2| 6 `, |Q1| = |Q2| 6 `, and |L1| = |L2| 6 `. (3.1)

Without loss of generality we may assume that P1, P2 are longest arrises in H.
Let e, f be the edges of P2 incident with u3, u4, respectively. Since G is 4-vertex-

critical, {e, f} is not an edge-cut of G by Lemma 3, so there is a direct connection P
in G\{e, f} linking P ∗2 and H − V (P ∗2 ). Let v1, v2 be the ends of P with v2 having a
neighbour in P ∗2 and v1 having a neighbour in H − V (P ∗2 ). By Lemma 8 (3), both v1 and
v2 have a unique neighbour in V (H). Let x, y be the neighbours of v1 and v2 in V (H),
respectively. That is, x ∈ V (H)− V (P ∗2 ) and y ∈ V (P ∗2 ). Set P ′ := xv1Pv2y. Since H is
an induced subgraph of G, so is H ∪ P ′.

9.1. x /∈ {u1, u2}.

Subproof. Assume not. By symmetry we assume that x = u1. Set C ′4 = L1P
′P2(y, u3).

Since C4 is an odd hole, by symmetry we may assume that C ′4 is an even hole and C4∆C
′
4

is an odd hole. Since P ′P2(y, u3) is a chordal path of C1, by (3.1) and Lemma 4, we have
|L1| = 1. So |P1| = |Q1| = ` by (3.1) again. Since P ′P2(y, u4) is a chordal path of C2

and C4∆C
′
4 is an odd hole, |P ′P2(y, u4)| = |P1L2| = ` + 1 by (3.1) and Lemma 4 again.

Moreover, since |P2| = ` and |L1| = 1, we have |C ′4| 6 2`, which is not possible. So
x 6= u1.

Set d(H) := |P1| −min{|Q1|, |L1|}. We say that d(H) is the difference of H. Without
loss of generality we may assume that among all odd K4-subdivisions, H is chosen with
difference as small as possible.

9.2. x /∈ V (P1).

Subproof. Suppose to the contrary that x ∈ V (P1). Then x ∈ V (P ∗1 ) by 9.1. Without loss
of generality we may assume that |L1| > |Q1|. Set C ′2 = Q2P1(u1, x)P ′P2(y, u4). Since C4

is an odd hole, either C ′2 or C4∆C
′
2 is an odd hole. Suppose that C4∆C

′
2 is an odd hole.

Since C1∪C3∪P ′ is an odd K4-subdivision, by Lemma 8 (1) and (3.1), we have |P ′| = |Q1|,
|P1(u1, x)| = |P2(u4, y)|, and |P1(u2, x)| = |P2(u3, y)|. So C ′2 is an even hole of length
2(|Q2|+|P1(u1, x)|) by (3.1) again, implying |L1|+|P1(u1, x)| > |Q2|+|P1(u1, x)| > `+1 as
|L1| > |Q1|. Then |C4∆C

′
2∆C1| = 2|P1(x, u2)Q1| 6 2`, contrary to the fact g(G) = 2`+1.

So C ′2 is an odd hole.
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Since C2 ∪ C ′2 ∪ C3 is an odd K4-subdivision, it follows from Lemma 8 (1) and (3.1)
that

|P ′| = |L2|, |P1(u1, x)| = |P2(u3, y)|, and |P1(u2, x)| = |P2(u4, y)|. (3.2)

Then |C2∆C
′
2∆C1| = 2|L1|+ 2`+ 1. Since C2∆C

′
2∆C1 is not an odd hole,

1 ∈ {|Q2|, |P1(u2, x)|, |P2(u3, y)|}. (3.3)

When |P1(u2, x)| = 1, since |C2∆C
′
2∆C1| = 2|L1| + 2` + 1 and g(G) = 2` + 1, we have

|L1| = |P ′| = ` by (3.2), implying |P1| = ` and |Q1| = 1 as P1, P2 are longest arrises in H.
Hence, d(H) = `− 1. Then G[V (C1 ∪ C ′2 ∪ P2)] is an odd K4-subdivision with difference
`−2, which is a contradiction to the choice of H. So |P1(u2, x)| > 2. Assume that |Q2| = 1.
Then |L1| = |P1| = ` by (3.1). Since |P1(u2, x)| > 2, the graph G[V (C ′2 ∪ C2 ∪ C3)] is an
odd K4-subdivision whose difference is at most `−2, which is a contradiction to the choice
of H as d(H) = ` − 1. So |Q2| > 2. Then yu3 ∈ E(H) by (3.3), implying xu1 ∈ E(H)
by (3.2). Hence, |C4∆C

′
2| = 2 + 2|L1| by (3.1) and (3.2), and so |L1| = ` by (3.1) again.

Since |P1| > |L1|, we have |P1| = ` and |Q1| = 1 by (3.1), which is a contradiction as
|Q2| > 2.

9.3. When x ∈ {u3, u4}, the vertices x and y are adjacent, that is, xy ∈ {e, f}.

Subproof. By symmetry we may assume that x = u3. Assume to the contrary that x, y
are not adjacent. Set C ′3 = P ′P2(y, u3). Since P ′ is a chordal path of C3, we have that C ′3
is an odd hole by Lemma 4 and (3.1). Since C ′3∆C3 is an even hole, |Q1| = |L2| = 1 by
(3.1) and Lemma 4 again. Then |P1| = 2` − 1 > `, which is a contradiction to (3.1). So
e = xy.

9.4. When x ∈ V (L∗1), we have that |Q1| = 1, |P1| = |L1| = `, |P ′| = 2` − 1, xu3, yu3 ∈
E(H) and xu3yP

′ is an odd hole.

Subproof. Set C ′4 = L1(x, u1)Q2P2(u4, y)P ′. We claim that C4∆C
′
4 is an odd hole. Assume

to the contrary that C4∆C
′
4 is an even hole. Since x 6= u3, the subgraph C1 ∪ (C4∆C

′
4)

is an induced theta subgraph. Hence, xu3 ∈ E(H) by (3.1) and Lemma 4. Similarly,
yu3 ∈ E(H). Since P ′ is a chordal path of C4, we get a contradiction to Lemma 4. So
the claim holds, implying that C ′4 is an even hole.

Since x 6= u3, the graph C2 ∪ C ′4 is an induced theta subgraph of G. Moreover, since
C ′4 is an even hole, |Q2| = 1 by (3.1) and Lemma 4. Hence, |P1| = |L1| = ` by (3.1) again.
Assume that y, u3 are not adjacent. Since C1 ∪ C ′4 is an induced theta subgraph of G,
we have xu1 ∈ E(H), implying |P (x, u3)| = ` − 1. Since P ′ is a chordal path of C4 and
C4∆C

′
4 is an odd hole, yu3 ∈ E(H) by Lemma 4, a contradiction. Hence, yu3 ∈ E(H).

By symmetry we have xu3 ∈ E(H). This proves 9.4.

9.5. Assume that P ′ has the structure stated as in 9.4. Then no vertex in V (G)−V (H∪P ′)
has two neighbours in H ∪ P ′.
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Subproof. Assume to the contrary that some vertex a ∈ V (G) − V (H ∪ P ′) has two
neighbours a1, a2 in H ∪ P ′. Since no vertex has two neighbours in an odd hole, it
follows from Lemma 8 (3) and 9.4 that a has exactly two neighbours in H ∪ P ′ with
a1 ∈ V (H) − {x, y, u3} and a2 ∈ V (P ). When xa2 /∈ E(P ′), let Q be the unique (y, a1)-
path in G[V (P ) ∪ {a1, y}]. Since Q∗ is a direct connection in G\{e, f} linking P ∗2 and
H−V (P ∗2 ), by 9.2-9.4 and the symmetry between P ′ and Q, we have a1 ∈ {x, u3}, contrary
to the fact a1 ∈ V (H)− {x, y, u3}. So xa2 ∈ E(P ′). Moreover, since |P1| = |L1| = ` > 5
and g(G) = 2` + 1, we have a1 /∈ V (P1). Let u′1 be the neighbour of u1 in L1. When
a1 ∈ V (C2) − V (P1), since aa2 is a direct connection in G\{u1u′1, u3x} linking L∗1 and
H − V (L∗1), which is not possible by 9.4 and the symmetry between P2 and L1. So
a ∈ V (L∗1). Then xa2aa1 is a chordal path of C1 with length 3, contrary to Lemma 4.

9.6. x ∈ {u3, u4} and xy ∈ {e, f}.

Subproof. By 9.1-9.3, it suffices to show that x /∈ V (L∗1 ∪L∗2 ∪Q∗1 ∪Q∗2). Assume not. By
symmetry we may assume that x ∈ V (L∗1). By 9.4, we have that

xu3 ∈ E(L1), e = yu3, |P ′| = 2`− 1, |P1| = |L1| = `, and |Q1| = 1.

Since no 4-vertex-critical graph has a P3-cut by Lemma 5, to prove that 9.6 is true, it
suffice to show that {x, y, u3} is a P3-cut of G. Suppose not. Let R be a shortest induced
path in G − {x, y, u3} linking P and H − {x, y, u3}. Let s and t be the ends of R with
s ∈ V (P ). By 9.5, |R| > 3 and no vertex in V (H ∪ P ′) − {x, y, u3, s, t} has a neighbour
in R∗.

We claim that t /∈ V (L1∪P2)−{x, y, u3}. Suppose not. By symmetry we may assume
that t ∈ V (L1) − {x, u3}. Let R1 be the induced (y, t)-path in G[V (P ′ ∪ R) − {x}].
When u3 has no neighbour in R∗1, set R2 := R1 and C := R2L1(t, u3)u3y. When u3 has a
neighbour in R∗1, let t′ ∈ V (R∗1) be a neighbour of u3 closest to t and set R2 := u3t

′R1(t
′, t)

and C := R2L1(t, u3). Note that C4∆C is a hole, although C maybe not a hole. Since
C∆C1∆C2 is an odd hole with length at least 2`+ 3 when C is an odd cycle, to prove the
claim, it suffices to show that |C| is odd. When x has a neighbour in R∗2, since |R2| > 2`
by (3.1) and the fact that g(G) = 2` + 1, the subgraph C4∆C is an even hole, which
implies that C is an odd cycle. So we may assume that x has no neighbour in R∗2. When
u3 is an end of R2, since R2 is a chordal path of C1, it follows from Lemma 4 and (3.1)
that C is an odd hole. When y is an end of R2 and u3yR2 is a chordal path of C1, for
the similar reason, C is an odd hole. Hence, we may assume that y is an end of R2 and
u3yR2 is not a chordal path of C1, implying xs ∈ E(P ′) and s ∈ V (R2). Since P ⊂ R2,
we have |R2| > 2`, so C4∆C is an even hole, implying that C is an odd cycle. Hence, this
proves the claim.

By symmetry we may therefore assume that t ∈ V (P1)−{u1}. Let R1 be the induced
(y, t)-path in G[V (P ′ ∪ R) − {x}]. By 9.1 and 9.2, either xs ∈ E(P ′) and y has no
neighbour in R or some vertex in {x, u3} has a neighbour in R∗1. No matter which case
happens, we have |R1| > 2`. That is, R1P2(y, u4) is a chordal path of C2 with length
at least 3` − 1, which is a contradiction to Lemma 4 as t, u4 are non-adjacent. Hence,
{x, y, u3} is a P3-cut of G.
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By 9.6, there is a minimal vertex cut X of G with {u3, u4} ⊆ X ⊂ N [{u3, u4}] and
{u3, u4} = X ∩ V (H). Let G1 be the induced subgraph of G whose vertex set consists of
X and the vertex set of the component of G − X containing P ∗2 . Since ` > 5, we have
|P2| > 4 by (3.1). If all induced (u3, u4)-paths in G1 have length |P2|, by Lemma 7, G has
a degree-2 vertex, a K1-cut or a K2-cut, which is not possible as G is 4-vertex-critical.
Hence, to finish the proof of Theorem 9, it suffices to show that all induced (u3, u4)-paths
in G1 have length |P2|.

Let Q be an arbitrary induced (u3, u4)-path in G1. When |L1| > 2, since QQ2 is a
chordal path of C1 by Lemma 8 (3) and the definition of G1, we have |QQ2| = |Q1P1|
by Lemma 4, so |Q| = |P1| by (3.1). Hence, by (3.1) we may assume that |L1| = 1
and |Q1| = |P1| = `. Since Q1L2 is an induced (u3, u4)-path of length ` + 1, either
|Q| = |P2| = ` or |Q| > ` + 1 and |Q| has the same parity as ` + 1. Assume that the
latter case happens. Without loss of generality we may further assume that Q is chosen
with length at least `+ 1 and with |P2 ∪Q| as small as possible. Since |Q| and |P2| have
different parity, P2∪Q is not bipartite. Moreover, by the choice of Q, the subgraph P2∪Q
contains a unique cycle C and |C| is odd. Since Q = P2∆C is an induced path of length
at least `+ 1, we have |C ∩Q| > |C ∩ P2| > 2. So C∆C3∆C1 is an odd hole of length at
least 2`+ 3, which is not possible.
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