Graphs with Girth $2 \ell+1$ and Without Longer Odd Holes that Contain an Odd K_{4}-Subdivision

Rong Chen ${ }^{a} \quad$ Yidong Zhou ${ }^{a}$
Submitted: Jun 14, 2023; Accepted: Dec 29, 2023; Published: Feb 23, 2024
(C) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

We say that a graph G has an odd K_{4}-subdivision if some subgraph of G is isomorphic to a K_{4}-subdivision which if embedded in the plane the boundary of each of its faces has odd length and is an induced cycle of G. For a number $\ell \geqslant 2$, let \mathcal{G}_{ℓ} denote the family of graphs which have girth $2 \ell+1$ and have no odd hole with length greater than $2 \ell+1$. Wu, Xu and Xu conjectured that every graph in $\bigcup_{\ell \geqslant 2} \mathcal{G}_{\ell}$ is 3 -colorable. Recently, Chudnovsky et al. and Wu et al., respectively, proved that every graph in \mathcal{G}_{2} and \mathcal{G}_{3} is 3 -colorable. In this paper, we prove that no 4 -vertex-critical graph in $\bigcup_{\ell>5} \mathcal{G}_{\ell}$ has an odd K_{4}-subdivision. Using this result, Chen proved that all graphs in $\bigcup_{\ell \geqslant 5} \mathcal{G}_{\ell}$ are 3 -colorable.

Keywords: chromatic number, odd holes
Mathematics Subject Classifications: 05C15, 05C17, 05C69

1 Introduction

All graphs considered in this paper are finite, simple, and undirected. A proper coloring of a graph G is an assignment of colors to the vertices of G such that no two adjacent vertices receive the same color. A graph is k-colorable if it has a proper coloring using at most k colors. The chromatic number of G, denoted by $\chi(G)$, is the minimum number k such that G is k-colorable.

The girth of a graph G, denoted by $g(G)$, is the minimum length of cycles in G. A hole in a graph is an induced cycle of length at least four. An odd hole means a hole of odd length. For any integer $\ell \geqslant 2$, let \mathcal{G}_{ℓ} be the family of graphs that have girth $2 \ell+1$ and have no odd holes of length at least $2 \ell+3$. Robertson conjectured in [4] that the Petersen graph is the only graph in \mathcal{G}_{2} that is 3 -connected and internally 4 -connected. Plummer and Zha [5] disproved Robertson's conjecture and proposed the conjecture that all 3-connected and internally 4 -connected graphs in \mathcal{G}_{2} have bounded chromatic numbers, and proposed

[^0]the strong conjecture that such graphs are 3 -colorable. The first was proved by Xu, Yu, and Zha [9], who proved that all graphs in \mathcal{G}_{2} are 4-colorable. The strong conjecture proposed by Plummer and Zha in [5] was solved by Chudnovsky and Seymour [2]. Wu, Xu , and $\mathrm{Xu}[7]$ showed that graphs in $\bigcup_{\ell \geqslant 2} \mathcal{G}_{\ell}$ are 4-colorable and conjectured

Conjecture 1. ([7], Conjecture 6.1.) For each integer $\ell \geqslant 2$, every graph in \mathcal{G}_{ℓ} is 3-colorable.
Wu, Xu and $\mathrm{Xu}[8]$ recently proved that Conjecture 1 holds for $\ell=3$.
We say that a graph G has an odd K_{4}-subdivision if some subgraph of G is isomorphic to a K_{4}-subdivision which if embedded in the plane the boundary of each of its faces has odd length and is an induced cycle of G. Note that an odd K_{4}-subdivision of G maybe not induced. However, when $G \in \mathcal{G}_{\ell}$ for each integer $\ell \geqslant 2$, all odd K_{4}-subdivisions of G are induced by Lemma 8 (2). In this paper, we prove the following theorem.

Theorem 2. No 4-vertex-critical graph in $\bigcup_{\ell \geqslant 5} \mathcal{G}_{\ell}$ has an odd K_{4}-subdivision.
Using Theorem 2, Chen [1] proved that Conjecture 1 holds for all $\ell \geqslant 5$. Recently, following idea in this paper and [1], Wang and Wu [6] further proved that Conjecture 1 holds for $\ell=4$.

2 Preliminaries

A cycle is a connected 2-regular graph. Let G be a graph. A vertex $v \in V(G)$ is called a degree-k vertex if it has exactly k neighbours. For any $U \subseteq V(G)$, let $G[U]$ be the subgraph of G induced on U. For subgraphs H and H^{\prime} of G, set $|H|:=|E(H)|$ and $H \Delta H^{\prime}:=E(H) \Delta E\left(H^{\prime}\right)$. Let $H \cup H^{\prime}$ denote the subgraph of G whose vertex set is $V(H) \cup V\left(H^{\prime}\right)$ and edge set is $E(H) \cup E\left(H^{\prime}\right)$. Let $H \cap H^{\prime}$ denote the subgraph of G with edge set $E(H) \cap E\left(H^{\prime}\right)$ and without isolated vertex. Let $N(H)$ be the set of vertices in $V(G)-V(H)$ that have a neighbour in H. Set $N[H]:=N(H) \cup V(H)$.

Let P be an (x, y)-path and Q be a (y, z)-path. When P and Q are internally disjoint, let $P Q$ denote the (x, z)-path $P \cup Q$. Evidently, $P Q$ is a path when $x \neq z$, and $P Q$ is a cycle when $x=z$. Let P^{*} denote the set of internal vertices of P. When $u, v \in V(P)$, let $P(u, v)$ denote the subpath of P with ends u, v. For simplicity, we will let $P^{*}(u, v)$ denote $(P(u, v))^{*}$.

A graph is k-vertex-critical if $\chi(G)=k$ but $\chi(G \backslash v)<k$ for each $v \in V(G)$. Dirac in [3] proved that every k-vertex-critical graph is $(k-1)$-edge-connected. Hence, we have

Lemma 3. For each integer $k \geqslant 4$, each k-vertex-critical graph G has no 2-edge-cut.
A theta graph is a graph that consists of a pair of distinct vertices joined by three internally disjoint paths. Let C be a hole of a graph G. A path P of G is a chordal path of C if $V\left(P^{*}\right) \cap V(C)=\emptyset$ and $C \cup P$ is an induced theta-subgraph of G. Lemma 4 will be frequently used.

Lemma 4. Let $\ell \geqslant 2$ be an integer and C be an odd hole of a graph $G \in \mathcal{G}_{\ell}$. Let P be a chordal path of C, and P_{1}, P_{2} be the internally disjoint paths of C that have the same ends as P. Assume that $|P|$ and $\left|P_{1}\right|$ have the same parity. If $\left|P_{1}\right| \neq 1$, then $\left|P_{1}\right|>\left|P_{2}\right|$ and all chordal paths of C with the same ends as P_{1} have length $\left|P_{1}\right|$.

Proof. Since $|C|=2 \ell+1,\left|P_{1}\right| \neq 1$ and $|P|$ and $\left|P_{1}\right|$ have the same parity, $P \cup P_{2}$ is an odd hole. Moreover, since $g(G)=2 \ell+1$ and all odd holes in G have length $2 \ell+1$, we have $\ell+1 \leqslant\left|P_{1}\right|=|P|$ and $\left|P_{2}\right| \leqslant \ell$, so $\left|P_{1}\right|>\left|P_{2}\right|$ and all chordal paths of C with the same ends as P_{1} have length $\left|P_{1}\right|$.

Let P be a path with i vertices. If $G-V(P)$ is disconnected, then we say that P is a P_{i}-cut. Usually, a P_{2}-cut is also called a K_{2}-cut. Evidently, every k-vertex-critical graph has no K_{2}-cut. Chudnovsky and Seymour in [2] proved that every 4 -vertex-critical graph G in \mathcal{G}_{2} has no P_{3}-cut. Using the same argument as [2], Wu et al. [8] extend this result to graphs in $\bigcup_{\ell \geqslant 2} \mathcal{G}_{\ell}$. Since the paper [8] does not include a proof of Lemma 5, we give a proof here for completeness.

Lemma 5. ([8]) For any number $\ell \geqslant 2$, every 4 -vertex-critical graph in \mathcal{G}_{ℓ} has neither a K_{2}-cut nor a P_{3}-cut.

Proof. It is well-known that every k-vertex-critical graph has no clique as a cut. Hence, it suffice to show that every 4 -vertex-critical graph in \mathcal{G}_{ℓ} has no P_{3}-cut. Let $G \in \mathcal{G}_{\ell}$ be a 4 -vertex-critical graph. Assume to the contrary that $P=v_{1} v_{2} v_{3}$ is a path such that $G \backslash\left\{v_{1}, v_{2}, v_{3}\right\}$ is disconnected. Since G has no K_{3} as its cut, $v_{1} v_{3} \notin E(G)$. Let A_{1} be the a component of $G \backslash\left\{v_{1}, v_{2}, v_{3}\right\}$, and let A_{2} be the union of all other components. Set $G_{i}:=G\left[A_{i} \cup\left\{v_{1}, v_{2}, v_{3}\right\}\right]$ for $i=1,2$. Since G is 4-vertex-critical, both G_{1} and G_{2} are 3 -colorable. Let $\phi_{i}: V\left(G_{i}\right) \rightarrow\{1,2,3\}$ be a 3 -coloring for $i=1,2$. By symmetry we may assume that $\phi_{i}\left(v_{1}\right)=1$ and $\phi_{i}\left(v_{2}\right)=2$ for $i=1,2$. Thus $\phi_{1}\left(v_{3}\right), \phi_{2}\left(v_{3}\right) \in\{1,3\}$. If $\phi_{1}\left(v_{3}\right)=\phi_{2}\left(v_{3}\right)$, then G is 3 -colorable, which is a contradiction. Thus by symmetry we may assume that $\phi_{1}\left(v_{3}\right)=1$ and $\phi_{2}\left(v_{3}\right)=3$. Let H_{1} be the subgraph of G_{1} induced on the set of vertices $v \in V\left(G_{1}\right)$ with $\phi_{1}(v) \in\{1,3\}$. If v_{1}, v_{3} belong to different components of H_{1}, then by exchanging colors in the component containing v_{3}, we obtain another 3coloring of G_{1} that can be combined with ϕ_{2} to show that G is 3 -colorable. So v_{1}, v_{3} belong to the same component of H_{1}. Then there is an induced $\left(v_{1}, v_{3}\right)$-path P_{1} in H_{1} having even length as $\phi_{1}\left(v_{1}\right)=1=\phi_{1}\left(v_{3}\right)$. Similarly, there is an induced $\left(v_{1}, v_{3}\right)$-path P_{2} in G_{2} having odd length as $\phi_{2}\left(v_{1}\right)=1$ and $\phi_{2}\left(v_{3}\right)=3$. Moreover, since $P P_{1}, P P_{2}$ are cycles of G and $g(G)=2 \ell+1$, we have $\left|P_{1}\right| \geqslant 2 \ell-1$ and $\left|P_{2}\right| \geqslant 2 \ell$, so $P_{1} \cup P_{2}$ is an odd hole of G of length at least $4 \ell-1$, which is a contradiction as $G \in \mathcal{G}_{\ell}$.

Lemma 6. Let $\ell \geqslant 2$ be an integer and x, y be non-adjacent vertices of a graph $G \in \mathcal{G}_{\ell}$. Let P be an induced (x, y)-path of G. If $|P| \leqslant \ell$ and all induced (x, y)-paths have length $|P|$, then no block of G contains two non-adjacent vertices in $V(P)$. In particular, each vertex in P^{*} is a cut-vertex of G.

Proof. Assume not. Then there is a block B of G containing two consecutive edges of P. Let Q be an induced path in B with ends in $V(P)$ and with $V(P) \cap V\left(Q^{*}\right)=\emptyset$.

Since every pair of edges in a 2 -connected graph is contained in a cycle, such a Q exists. Without loss of generality we may further assume that Q is chosen with $|Q|$ as small as possible. Let C be the unique cycle in $P \cup Q$. Then $C \Delta P$ is an (x, y)-path. Since Q is induced, the ends of Q are not adjacent. Moreover, since Q is chosen with $|Q|$ as small as possible, $C \Delta P$ is an induced (x, y)-path, so $|C \Delta P|=|P| \leqslant \ell$ by the assumption of the lemma. Hence, $|C| \leqslant 2 \ell$, contrary to the fact $g(G)=2 \ell+1$.

Lemma 7. Let $\ell \geqslant 4$ be an integer and x, y be non-adjacent vertices of a graph $G \in \mathcal{G}_{\ell}$. Let X be a vertex cut of G with $\{x, y\} \subseteq X \subseteq N[\{x, y\}]$, and G_{1} be an induced subgraph of G whose vertex set consists of X and the vertex set of a component of $G-X$. If all induced (x, y)-paths in G_{1} have length k with $4 \leqslant k \leqslant \ell$, then G has a degree- 2 vertex, a K_{1}-cut, or a K_{2}-cut.

Proof. Assume that G has no degree-2 vertices. Let P be an induced (x, y)-path in G_{1}. Let uvw be a subpath of P^{*}. Such uvw exists as $k \geqslant 4$. By the definition of G_{1}, we have $v \notin X$, so $N_{G}[v]=N_{G_{1}}[v]$, which implies $d_{G_{1}}(v) \geqslant 3$. By applying Lemma 6 to G_{1}, there is a block B of G_{1} such that either $V(B) \cap V(P)=\{v\}$, or B is not isomorphic to K_{2} and $V(B) \cap V(P)$ is $\{u, v\}$ or $\{u, v\}$. When the first case happens, since $X \subseteq N[\{x, y\}]$, $x, y \notin B$ and $v \notin X$, we have $X \cap V(B)=\emptyset$, for otherwise $P(x, v)$ or $P(v, y)$ is contained in a cycle of $P \cup B$, so the vertex v is a cut-vertex of G as X is a vertex cut of G. When the latter case happens, by symmetry we may assume that $V(B) \cap V(P)=\{u, v\}$. Since B is a block of $G_{1}, X \subseteq N[\{x, y\}]$ and $u v w$ is a subpath of P^{*}, we have $V(B) \cap X=\{u\} \cap X$, so $\{u, v\}$ is a K_{2}-cut of G_{1} and G.

H

Figure 1: $u_{1}, u_{2}, u_{3}, u_{4}$ are the degree- 3 vertices of H. All faces $C_{1}, C_{2}, C_{3}, C_{4}$ of H are odd holes. $\left\{P_{1}, P_{2}\right\},\left\{Q_{1}, Q_{2}\right\},\left\{L_{1}, L_{2}\right\}$ are the pairs of vertex disjoint arrises of H.

Let H be a graph that is isomorphic to a subdivision of K_{4}, and let P be a path of H whose ends are degree-3 vertices in H. If P^{*} contains no degree-3 vertex of H, then we say that P is an arris of H. Evidently, there are exactly six arrises of H. See Figure 1 .

Lemma 8. For any integer $\ell \geqslant 2$, if a graph $G \in \mathcal{G}_{\ell}$ has an an odd K_{4}-subdivision H, then the following statements hold.
(1) Each pair of vertex disjoint arrises in H have the same length and their lengths are at most ℓ.
(2) H is an induced subgraph of G.
(3) When $\ell \geqslant 3$, every vertex in $V(G)-V(H)$ has at most one neighbour in $V(H)$.

Proof. Without loss of generality we may assume that H is pictured as the graph in Figure 1. First, we prove that (1) is true. Assume that $\left|P_{1}\right|>\left|P_{2}\right|$. Since C_{1} and C_{4} are odd holes, $\left|Q_{1}\right|<\left|Q_{2}\right|$. Hence, $\left|P_{2} \cup Q_{1} \cup L_{2}\right|<\left|P_{1} \cup Q_{2} \cup L_{2}\right|$, which is a contradiction to the fact that C_{2} and C_{3} are both odd holes. So $\left|P_{1}\right|=\left|P_{2}\right|$. By symmetry each pair of vertex-disjoint arrises have the same length. Moreover, since $C_{1} \Delta C_{2}$ is an even cycle with length at least $2 \ell+2$, we have $\left|P_{1}\right| \leqslant \ell$. By symmetry we have $\left|Q_{1}\right|,\left|L_{1}\right| \leqslant \ell$. So (1) holds.

Secondly, we prove that (2) is true. Suppose not. Since odd holes have no chord, by symmetry we may assume that there is an edge st in G with $s \in V\left(P_{1}^{*}\right)$ and $t \in V\left(P_{2}^{*}\right)$. On one hand, since $P_{1}\left(u_{1}, s\right) s t P_{2}\left(t, u_{4}\right) Q_{2}$ and $P_{1}\left(u_{2}, s\right) s t P_{2}\left(t, u_{3}\right) Q_{1}$ are cycles, by (1) we have

$$
\left|P_{1}\right|+\left|P_{2}\right|+\left|Q_{1}\right|+\left|Q_{2}\right|+2=2\left(\left|P_{1}\right|+\left|Q_{1}\right|+1\right) \geqslant 2(2 \ell+1)
$$

On the other hand, since $\left|P_{1}\right|,\left|Q_{1}\right| \leqslant \ell$ by (1), we have $\left|P_{1}\right|=\left|Q_{1}\right|=\ell$, implying that $\left|L_{1}\right|=\left|L_{2}\right|=1$. Moreover, by the symmetry between L_{1}, L_{2} and Q_{1}, Q_{2}, we have $\left|Q_{1}\right|=\left|Q_{2}\right|=1$, which is a contradiction as $\left|Q_{1}\right|=\ell \geqslant 2$. So (2) holds.

Finally, we prove that (3) is true. Suppose to the contrary that some vertex $x \in$ $V(G)-V(H)$ has at least two neighbours in $V(H)$. Since a vertex not in an odd hole can not have two neighbours in the odd hole, x has exactly two neighbours x_{1}, x_{2} in $V(H)$. By symmetry we may further assume that $x_{1} \in V\left(P_{1}^{*}\right)$ and $x_{2} \in V\left(P_{2}^{*}\right)$. Since $C_{1}^{\prime}=P_{1}\left(u_{1}, x_{1}\right) x_{1} x x_{2} P_{2}\left(x_{2}, u_{3}\right) L_{1}$ and $C_{2}^{\prime}=P_{1}\left(u_{1}, x_{1}\right) x_{1} x x_{2} P_{2}\left(x_{2}, u_{4}\right) Q_{2}$ are cycles whose lengths have different parity,

$$
\left|C_{1}^{\prime}\right|+\left|C_{2}^{\prime}\right|=2 \ell+1+2\left(2+\left|P_{1}\left(u_{1}, x_{1}\right)\right|\right) \geqslant 4 \ell+3 .
$$

Hence, $\left|P_{1}\left(u_{1}, x_{1}\right)\right|=\ell-1$ and $x_{1} u_{2} \in E(H)$ as $\left|P_{1}\right| \leqslant \ell$ by (1). This implies that $u_{2} x_{1} x x_{2}$ is a chordal path of C_{3} with length 3 , which is a contradiction to Lemma 4 as $\ell \geqslant 3$.

By Lemma 8 (1), all odd K_{4}-subdivisions of a graph $G \in \mathcal{G}_{\ell}$ have exactly $4 \ell+2$ edges for each number $\ell \geqslant 2$.

3 Proof of Theorem 2

Let H_{1}, H_{2} be vertex disjoint induced subgraphs of a graph G. An induced $\left(v_{1}, v_{2}\right)$-path P is a direct connection linking H_{1} and H_{2} if v_{i} is the only vertex in $V(P)$ having a neighbour in $V\left(H_{i}\right)$ for each $i \in\{1,2\}$. Evidently, $V(P) \cap V\left(H_{1} \cup H_{2}\right)=\emptyset$ and the set
of internal vertices of each shortest path joining H_{1} and H_{2} induces a direct connection linking H_{1} and H_{2}.

For convenience, Theorem 2 is restated here in another way.
Theorem 9. Let $\ell \geqslant 5$ be an integer, and G be a graph in \mathcal{G}_{ℓ}. If G is 4-vertex-critical, then G has no odd K_{4}-subdivisions.

Proof. Suppose not. Let H be a subgraph of G that is isomorphic to an odd K_{4} subdivision and pictured as the graph in Figure 1. By Lemma 8 (2), H is an induced subgraph of G. By Lemma 8 (1), we have

$$
\begin{equation*}
\left|P_{1}\right|=\left|P_{2}\right| \leqslant \ell, \quad\left|Q_{1}\right|=\left|Q_{2}\right| \leqslant \ell, \quad \text { and } \quad\left|L_{1}\right|=\left|L_{2}\right| \leqslant \ell . \tag{3.1}
\end{equation*}
$$

Without loss of generality we may assume that P_{1}, P_{2} are longest arrises in H.
Let e, f be the edges of P_{2} incident with u_{3}, u_{4}, respectively. Since G is 4 -vertexcritical, $\{e, f\}$ is not an edge-cut of G by Lemma 3, so there is a direct connection P in $G \backslash\{e, f\}$ linking P_{2}^{*} and $H-V\left(P_{2}^{*}\right)$. Let v_{1}, v_{2} be the ends of P with v_{2} having a neighbour in P_{2}^{*} and v_{1} having a neighbour in $H-V\left(P_{2}^{*}\right)$. By Lemma 8 (3), both v_{1} and v_{2} have a unique neighbour in $V(H)$. Let x, y be the neighbours of v_{1} and v_{2} in $V(H)$, respectively. That is, $x \in V(H)-V\left(P_{2}^{*}\right)$ and $y \in V\left(P_{2}^{*}\right)$. Set $P^{\prime}:=x v_{1} P v_{2} y$. Since H is an induced subgraph of G, so is $H \cup P^{\prime}$.
9.1. $x \notin\left\{u_{1}, u_{2}\right\}$.

Subproof. Assume not. By symmetry we assume that $x=u_{1}$. Set $C_{4}^{\prime}=L_{1} P^{\prime} P_{2}\left(y, u_{3}\right)$. Since C_{4} is an odd hole, by symmetry we may assume that C_{4}^{\prime} is an even hole and $C_{4} \Delta C_{4}^{\prime}$ is an odd hole. Since $P^{\prime} P_{2}\left(y, u_{3}\right)$ is a chordal path of C_{1}, by (3.1) and Lemma 4 , we have $\left|L_{1}\right|=1$. So $\left|P_{1}\right|=\left|Q_{1}\right|=\ell$ by (3.1) again. Since $P^{\prime} P_{2}\left(y, u_{4}\right)$ is a chordal path of C_{2} and $C_{4} \Delta C_{4}^{\prime}$ is an odd hole, $\left|P^{\prime} P_{2}\left(y, u_{4}\right)\right|=\left|P_{1} L_{2}\right|=\ell+1$ by (3.1) and Lemma 4 again. Moreover, since $\left|P_{2}\right|=\ell$ and $\left|L_{1}\right|=1$, we have $\left|C_{4}^{\prime}\right| \leqslant 2 \ell$, which is not possible. So $x \neq u_{1}$.

Set $d(H):=\left|P_{1}\right|-\min \left\{\left|Q_{1}\right|,\left|L_{1}\right|\right\}$. We say that $d(H)$ is the difference of H. Without loss of generality we may assume that among all odd K_{4}-subdivisions, H is chosen with difference as small as possible.
9.2. $x \notin V\left(P_{1}\right)$.

Subproof. Suppose to the contrary that $x \in V\left(P_{1}\right)$. Then $x \in V\left(P_{1}^{*}\right)$ by 9.1. Without loss of generality we may assume that $\left|L_{1}\right| \geqslant\left|Q_{1}\right|$. Set $C_{2}^{\prime}=Q_{2} P_{1}\left(u_{1}, x\right) P^{\prime} P_{2}\left(y, u_{4}\right)$. Since C_{4} is an odd hole, either C_{2}^{\prime} or $C_{4} \Delta C_{2}^{\prime}$ is an odd hole. Suppose that $C_{4} \Delta C_{2}^{\prime}$ is an odd hole. Since $C_{1} \cup C_{3} \cup P^{\prime}$ is an odd K_{4}-subdivision, by Lemma 8 (1) and (3.1), we have $\left|P^{\prime}\right|=\left|Q_{1}\right|$, $\left|P_{1}\left(u_{1}, x\right)\right|=\left|P_{2}\left(u_{4}, y\right)\right|$, and $\left|P_{1}\left(u_{2}, x\right)\right|=\left|P_{2}\left(u_{3}, y\right)\right|$. So C_{2}^{\prime} is an even hole of length $2\left(\left|Q_{2}\right|+\left|P_{1}\left(u_{1}, x\right)\right|\right)$ by (3.1) again, implying $\left|L_{1}\right|+\left|P_{1}\left(u_{1}, x\right)\right| \geqslant\left|Q_{2}\right|+\left|P_{1}\left(u_{1}, x\right)\right| \geqslant \ell+1$ as $\left|L_{1}\right| \geqslant\left|Q_{1}\right|$. Then $\left|C_{4} \Delta C_{2}^{\prime} \Delta C_{1}\right|=2\left|P_{1}\left(x, u_{2}\right) Q_{1}\right| \leqslant 2 \ell$, contrary to the fact $g(G)=2 \ell+1$. So C_{2}^{\prime} is an odd hole.

Since $C_{2} \cup C_{2}^{\prime} \cup C_{3}$ is an odd K_{4}-subdivision, it follows from Lemma 8 (1) and (3.1) that

$$
\begin{equation*}
\left|P^{\prime}\right|=\left|L_{2}\right|,\left|P_{1}\left(u_{1}, x\right)\right|=\left|P_{2}\left(u_{3}, y\right)\right|, \text { and }\left|P_{1}\left(u_{2}, x\right)\right|=\left|P_{2}\left(u_{4}, y\right)\right| . \tag{3.2}
\end{equation*}
$$

Then $\left|C_{2} \Delta C_{2}^{\prime} \Delta C_{1}\right|=2\left|L_{1}\right|+2 \ell+1$. Since $C_{2} \Delta C_{2}^{\prime} \Delta C_{1}$ is not an odd hole,

$$
\begin{equation*}
1 \in\left\{\left|Q_{2}\right|,\left|P_{1}\left(u_{2}, x\right)\right|,\left|P_{2}\left(u_{3}, y\right)\right|\right\} . \tag{3.3}
\end{equation*}
$$

When $\left|P_{1}\left(u_{2}, x\right)\right|=1$, since $\left|C_{2} \Delta C_{2}^{\prime} \Delta C_{1}\right|=2\left|L_{1}\right|+2 \ell+1$ and $g(G)=2 \ell+1$, we have $\left|L_{1}\right|=\left|P^{\prime}\right|=\ell$ by (3.2), implying $\left|P_{1}\right|=\ell$ and $\left|Q_{1}\right|=1$ as P_{1}, P_{2} are longest arrises in H. Hence, $d(H)=\ell-1$. Then $G\left[V\left(C_{1} \cup C_{2}^{\prime} \cup P_{2}\right)\right]$ is an odd K_{4}-subdivision with difference $\ell-2$, which is a contradiction to the choice of H. So $\left|P_{1}\left(u_{2}, x\right)\right| \geqslant 2$. Assume that $\left|Q_{2}\right|=1$. Then $\left|L_{1}\right|=\left|P_{1}\right|=\ell$ by (3.1). Since $\left|P_{1}\left(u_{2}, x\right)\right| \geqslant 2$, the graph $G\left[V\left(C_{2}^{\prime} \cup C_{2} \cup C_{3}\right)\right]$ is an odd K_{4}-subdivision whose difference is at most $\ell-2$, which is a contradiction to the choice of H as $d(H)=\ell-1$. So $\left|Q_{2}\right| \geqslant 2$. Then $y u_{3} \in E(H)$ by (3.3), implying $x u_{1} \in E(H)$ by (3.2). Hence, $\left|C_{4} \Delta C_{2}^{\prime}\right|=2+2\left|L_{1}\right|$ by (3.1) and (3.2), and so $\left|L_{1}\right|=\ell$ by (3.1) again. Since $\left|P_{1}\right| \geqslant\left|L_{1}\right|$, we have $\left|P_{1}\right|=\ell$ and $\left|Q_{1}\right|=1$ by (3.1), which is a contradiction as $\left|Q_{2}\right| \geqslant 2$.
9.3. When $x \in\left\{u_{3}, u_{4}\right\}$, the vertices x and y are adjacent, that is, $x y \in\{e, f\}$.

Subproof. By symmetry we may assume that $x=u_{3}$. Assume to the contrary that x, y are not adjacent. Set $C_{3}^{\prime}=P^{\prime} P_{2}\left(y, u_{3}\right)$. Since P^{\prime} is a chordal path of C_{3}, we have that C_{3}^{\prime} is an odd hole by Lemma 4 and (3.1). Since $C_{3}^{\prime} \Delta C_{3}$ is an even hole, $\left|Q_{1}\right|=\left|L_{2}\right|=1$ by (3.1) and Lemma 4 again. Then $\left|P_{1}\right|=2 \ell-1>\ell$, which is a contradiction to (3.1). So $e=x y$.
9.4. When $x \in V\left(L_{1}^{*}\right)$, we have that $\left|Q_{1}\right|=1,\left|P_{1}\right|=\left|L_{1}\right|=\ell,\left|P^{\prime}\right|=2 \ell-1, x u_{3}, y u_{3} \in$ $E(H)$ and $x u_{3} y P^{\prime}$ is an odd hole.

Subproof. Set $C_{4}^{\prime}=L_{1}\left(x, u_{1}\right) Q_{2} P_{2}\left(u_{4}, y\right) P^{\prime}$. We claim that $C_{4} \Delta C_{4}^{\prime}$ is an odd hole. Assume to the contrary that $C_{4} \Delta C_{4}^{\prime}$ is an even hole. Since $x \neq u_{3}$, the subgraph $C_{1} \cup\left(C_{4} \Delta C_{4}^{\prime}\right)$ is an induced theta subgraph. Hence, $x u_{3} \in E(H)$ by (3.1) and Lemma 4. Similarly, $y u_{3} \in E(H)$. Since P^{\prime} is a chordal path of C_{4}, we get a contradiction to Lemma 4. So the claim holds, implying that C_{4}^{\prime} is an even hole.

Since $x \neq u_{3}$, the graph $C_{2} \cup C_{4}^{\prime}$ is an induced theta subgraph of G. Moreover, since C_{4}^{\prime} is an even hole, $\left|Q_{2}\right|=1$ by (3.1) and Lemma 4. Hence, $\left|P_{1}\right|=\left|L_{1}\right|=\ell$ by (3.1) again. Assume that y, u_{3} are not adjacent. Since $C_{1} \cup C_{4}^{\prime}$ is an induced theta subgraph of G, we have $x u_{1} \in E(H)$, implying $\left|P\left(x, u_{3}\right)\right|=\ell-1$. Since P^{\prime} is a chordal path of C_{4} and $C_{4} \Delta C_{4}^{\prime}$ is an odd hole, $y u_{3} \in E(H)$ by Lemma 4, a contradiction. Hence, $y u_{3} \in E(H)$. By symmetry we have $x u_{3} \in E(H)$. This proves 9.4.
9.5. Assume that P^{\prime} has the structure stated as in 9.4. Then no vertex in $V(G)-V\left(H \cup P^{\prime}\right)$ has two neighbours in $H \cup P^{\prime}$.

Subproof. Assume to the contrary that some vertex $a \in V(G)-V\left(H \cup P^{\prime}\right)$ has two neighbours a_{1}, a_{2} in $H \cup P^{\prime}$. Since no vertex has two neighbours in an odd hole, it follows from Lemma 8 (3) and 9.4 that a has exactly two neighbours in $H \cup P^{\prime}$ with $a_{1} \in V(H)-\left\{x, y, u_{3}\right\}$ and $a_{2} \in V(P)$. When $x a_{2} \notin E\left(P^{\prime}\right)$, let Q be the unique ($\left.y, a_{1}\right)$ path in $G\left[V(P) \cup\left\{a_{1}, y\right\}\right]$. Since Q^{*} is a direct connection in $G \backslash\{e, f\}$ linking P_{2}^{*} and $H-V\left(P_{2}^{*}\right)$, by 9.2-9.4 and the symmetry between P^{\prime} and Q, we have $a_{1} \in\left\{x, u_{3}\right\}$, contrary to the fact $a_{1} \in V(H)-\left\{x, y, u_{3}\right\}$. So $x a_{2} \in E\left(P^{\prime}\right)$. Moreover, since $\left|P_{1}\right|=\left|L_{1}\right|=\ell \geqslant 5$ and $g(G)=2 \ell+1$, we have $a_{1} \notin V\left(P_{1}\right)$. Let u_{1}^{\prime} be the neighbour of u_{1} in L_{1}. When $a_{1} \in V\left(C_{2}\right)-V\left(P_{1}\right)$, since $a a_{2}$ is a direct connection in $G \backslash\left\{u_{1} u_{1}^{\prime}, u_{3} x\right\}$ linking L_{1}^{*} and $H-V\left(L_{1}^{*}\right)$, which is not possible by 9.4 and the symmetry between P_{2} and L_{1}. So $a \in V\left(L_{1}^{*}\right)$. Then $x a_{2} a a_{1}$ is a chordal path of C_{1} with length 3 , contrary to Lemma 4 .
9.6. $x \in\left\{u_{3}, u_{4}\right\}$ and $x y \in\{e, f\}$.

Subproof. By 9.1-9.3, it suffices to show that $x \notin V\left(L_{1}^{*} \cup L_{2}^{*} \cup Q_{1}^{*} \cup Q_{2}^{*}\right)$. Assume not. By symmetry we may assume that $x \in V\left(L_{1}^{*}\right)$. By 9.4, we have that

$$
x u_{3} \in E\left(L_{1}\right), e=y u_{3},\left|P^{\prime}\right|=2 \ell-1,\left|P_{1}\right|=\left|L_{1}\right|=\ell, \text { and }\left|Q_{1}\right|=1 .
$$

Since no 4 -vertex-critical graph has a P_{3}-cut by Lemma 5 , to prove that 9.6 is true, it suffice to show that $\left\{x, y, u_{3}\right\}$ is a P_{3}-cut of G. Suppose not. Let R be a shortest induced path in $G-\left\{x, y, u_{3}\right\}$ linking P and $H-\left\{x, y, u_{3}\right\}$. Let s and t be the ends of R with $s \in V(P)$. By $9.5,|R| \geqslant 3$ and no vertex in $V\left(H \cup P^{\prime}\right)-\left\{x, y, u_{3}, s, t\right\}$ has a neighbour in R^{*}.

We claim that $t \notin V\left(L_{1} \cup P_{2}\right)-\left\{x, y, u_{3}\right\}$. Suppose not. By symmetry we may assume that $t \in V\left(L_{1}\right)-\left\{x, u_{3}\right\}$. Let R_{1} be the induced (y, t)-path in $G\left[V\left(P^{\prime} \cup R\right)-\{x\}\right]$. When u_{3} has no neighbour in R_{1}^{*}, set $R_{2}:=R_{1}$ and $C:=R_{2} L_{1}\left(t, u_{3}\right) u_{3} y$. When u_{3} has a neighbour in R_{1}^{*}, let $t^{\prime} \in V\left(R_{1}^{*}\right)$ be a neighbour of u_{3} closest to t and set $R_{2}:=u_{3} t^{\prime} R_{1}\left(t^{\prime}, t\right)$ and $C:=R_{2} L_{1}\left(t, u_{3}\right)$. Note that $C_{4} \Delta C$ is a hole, although C maybe not a hole. Since $C \Delta C_{1} \Delta C_{2}$ is an odd hole with length at least $2 \ell+3$ when C is an odd cycle, to prove the claim, it suffices to show that $|C|$ is odd. When x has a neighbour in R_{2}^{*}, since $\left|R_{2}\right| \geqslant 2 \ell$ by (3.1) and the fact that $g(G)=2 \ell+1$, the subgraph $C_{4} \Delta C$ is an even hole, which implies that C is an odd cycle. So we may assume that x has no neighbour in R_{2}^{*}. When u_{3} is an end of R_{2}, since R_{2} is a chordal path of C_{1}, it follows from Lemma 4 and (3.1) that C is an odd hole. When y is an end of R_{2} and $u_{3} y R_{2}$ is a chordal path of C_{1}, for the similar reason, C is an odd hole. Hence, we may assume that y is an end of R_{2} and $u_{3} y R_{2}$ is not a chordal path of C_{1}, implying $x s \in E\left(P^{\prime}\right)$ and $s \in V\left(R_{2}\right)$. Since $P \subset R_{2}$, we have $\left|R_{2}\right|>2 \ell$, so $C_{4} \Delta C$ is an even hole, implying that C is an odd cycle. Hence, this proves the claim.

By symmetry we may therefore assume that $t \in V\left(P_{1}\right)-\left\{u_{1}\right\}$. Let R_{1} be the induced (y, t)-path in $G\left[V\left(P^{\prime} \cup R\right)-\{x\}\right]$. By 9.1 and 9.2 , either $x s \in E\left(P^{\prime}\right)$ and y has no neighbour in R or some vertex in $\left\{x, u_{3}\right\}$ has a neighbour in R_{1}^{*}. No matter which case happens, we have $\left|R_{1}\right| \geqslant 2 \ell$. That is, $R_{1} P_{2}\left(y, u_{4}\right)$ is a chordal path of C_{2} with length at least $3 \ell-1$, which is a contradiction to Lemma 4 as t, u_{4} are non-adjacent. Hence, $\left\{x, y, u_{3}\right\}$ is a P_{3}-cut of G.

By 9.6, there is a minimal vertex cut X of G with $\left\{u_{3}, u_{4}\right\} \subseteq X \subset N\left[\left\{u_{3}, u_{4}\right\}\right]$ and $\left\{u_{3}, u_{4}\right\}=X \cap V(H)$. Let G_{1} be the induced subgraph of G whose vertex set consists of X and the vertex set of the component of $G-X$ containing P_{2}^{*}. Since $\ell \geqslant 5$, we have $\left|P_{2}\right| \geqslant 4$ by (3.1). If all induced (u_{3}, u_{4})-paths in G_{1} have length $\left|P_{2}\right|$, by Lemma $7, G$ has a degree-2 vertex, a K_{1}-cut or a K_{2}-cut, which is not possible as G is 4 -vertex-critical. Hence, to finish the proof of Theorem 9, it suffices to show that all induced (u_{3}, u_{4})-paths in G_{1} have length $\left|P_{2}\right|$.

Let Q be an arbitrary induced $\left(u_{3}, u_{4}\right)$-path in G_{1}. When $\left|L_{1}\right| \geqslant 2$, since $Q Q_{2}$ is a chordal path of C_{1} by Lemma 8 (3) and the definition of G_{1}, we have $\left|Q Q_{2}\right|=\left|Q_{1} P_{1}\right|$ by Lemma 4 , so $|Q|=\left|P_{1}\right|$ by (3.1). Hence, by (3.1) we may assume that $\left|L_{1}\right|=1$ and $\left|Q_{1}\right|=\left|P_{1}\right|=\ell$. Since $Q_{1} L_{2}$ is an induced $\left(u_{3}, u_{4}\right)$-path of length $\ell+1$, either $|Q|=\left|P_{2}\right|=\ell$ or $|Q| \geqslant \ell+1$ and $|Q|$ has the same parity as $\ell+1$. Assume that the latter case happens. Without loss of generality we may further assume that Q is chosen with length at least $\ell+1$ and with $\left|P_{2} \cup Q\right|$ as small as possible. Since $|Q|$ and $\left|P_{2}\right|$ have different parity, $P_{2} \cup Q$ is not bipartite. Moreover, by the choice of Q, the subgraph $P_{2} \cup Q$ contains a unique cycle C and $|C|$ is odd. Since $Q=P_{2} \Delta C$ is an induced path of length at least $\ell+1$, we have $|C \cap Q|>\left|C \cap P_{2}\right| \geqslant 2$. So $C \Delta C_{3} \Delta C_{1}$ is an odd hole of length at least $2 \ell+3$, which is not possible.

Acknowledgements

The authors thank the referees for their careful reading of this manuscript and pointing out an error in our original version. This research was partially supported by grants from the National Natural Sciences Foundation of China (No. 11971111).

References

[1] R. Chen, Graphs with girth $2 \ell+1$ and without longer odd holes are 3 -colorable, arXiv:2301.00112, 2023.
[2] M. Chudnovsky, P. Seymour, Proof of a conjecture of Plummer and Zha, J. Graph Theory, 103:437-450, 2023.
[3] G. Dirac, The structure of k-chromatic graphs, Fund. Math., 40:\#P42.55, 1953.
[4] D. Nelson, M. Plummer, N. Robertson, X. Zha, On a conjecture concerning the Petersen graph, The Electronic J. of Combin., 18:\#P20, 2011.
[5] M. Plummer, X. Zha, On a conjecture concerning the Petersen Graph: Part II, The Electronic J. of Combin., 21:\#P1.34, 2014.
[6] Y. Wang, R. Wu, Graphs with girth 9 and without longer odd holes are 3-colorable, arXiv:2307.01460, 2023.
[7] D. Wu, B. Xu, Y. Xu, On coloring of graphs of girth $2 \ell+1$ without longer odd holes (in Chinese), Sci Sin Math., 53:103-120, 2023.
[8] D. Wu, B. Xu, Y. Xu, The chromatic number of heptagraphs, arXiv:2206.01400v1, 2022.
[9] B. Xu, G. Yu, X. Zha, A note on chromatic number and induced odd cycles, The Electronic J. of Combin., 24(4):\#P4.32, 2017.

[^0]: ${ }^{a}$ Center for Discrete Mathematics, Fuzhou University, Fuzhou, P. R. China (rongchen@fzu.edu.cn, zoed98@126.com).

