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Abstract

The Demazure product (also called the 0-Hecke product or greedy product) is an
associative operation on Coxeter groups with interesting properties and important
applications. In this paper, we study permutation groups and present a way to com-
pute the Demazure product of two permutations using only their one-line notation
and not relying on reduced words. The algorithm starts from their usual product
and then applies a new operator, which we call the hopping operator. We also give
an analogous result for the group of signed permutations.
Mathematics Subject Classifications: 20F55, 05E15, 20B30, 22E40

1 Introduction

Coxeter groups play an important role in the representation theory of Lie groups and the
geometry of their associated flag varieties and Schubert varieties. There is an interesting
associative operation on Coxeter groups called theDemazure product [5] (also 0-Hecke
or greedy product). In this paper, we study the Demazure product for two classes of
Coxeter groups: permutations and signed permutations. Our main result is a method
to compute this product using a new operator which we call the hopping operator,
that allows us to compute the Demazure product without using reduced words, lengths,
or simple transpositions. This result is stated for permutations in Theorem 12 and for
signed permutations in Theorem 20.
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Let W be a Coxeter group with generating set S. It has relations of the the form

(st)mst = id, s, t ∈ S (1)

for some values mst ∈ Z>0 ∪ {∞} where mst = 1 if and only if s = t. Coxeter groups
come equipped with a length function ` : W → Z>0 and a partial order 6 called the
Bruhat order. For more details on the basic properties of Coxeter groups, see [3]. The
Coxeter monoid structure (also called the 0-Iwahari-Hecke monoid structure) on W
is defined to be the monoid generated by S with a product ? satisfying the Coxeter braid
relations in Equation (1) for s 6= t along with the relation s ? s = s for all s ∈ S (this new
relation replaces s2 = id in the usual product). This monoid product what we refer to
as the Demazure product and was first studied by Norton in [12] in the context of Hecke
algebras. It is well known that, as sets, W = 〈S, ?〉. We say an expression w = s1 · · · sk is
reduced if `(w) = k. Recall that if `(w) = k, then w cannot be expressed with fewer than
k generators in S. We say u 6 w in the Bruhat order if there exists a reduced word
of u that is a subword of some reduced word of w ([3], Theorem 2.2.2). The next lemma
records some basic facts about the Coxeter monoid.

Lemma 1. [12, Lemma 1.3, Corollary 1.4] Let W be a Coxeter group with generating set
S. Then the following are true:

1. Let (s1, . . . , sk) be a sequence of generators in S. Then

s1 · · · sk 6 s1 ? · · · ? sk

with equality if and only if (s1, . . . , sk) is a reduced expression.

2. For any s ∈ S and w ∈ W ,

s ? w =

{
w if `(sw) < `(w)

sw if `(sw) > `(w).

As a consequence, there is a very nice interpretation of w ? u for any w, u ∈ W in
terms of Bruhat intervals. Define the Bruhat interval [u,w] := {v ∈ W | u 6 v 6 w}.
If u = id, then [id, w] is called the lower interval of w.

Proposition 2. [7, Lemma 1], [8, Proposition 8] For any w, u ∈ W , the lower interval

[id, w ? u] = {ab | a ∈ [id, w], b ∈ [id, u]}.

We give an example of this phenomenon. The poset in Figure 1 is the Bruhat order
of the symmetric group S4 which has three simple generators s1, s2, s3. The elements in
the lower interval of s1s2s3s2s1 = s1s2s3 ? s2s1 are colored red. All elements in the lower
interval [id, s1s2s3s2s1] can be written as a?b where a 6 s1s2s3 and b 6 s2s1. For example,
s2s3s1 can be written as s2s3 ? s1.
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s1s2s3s1s2s1

s2s3s2s1s2s1s2s3s2s1 s1s2s3s1s2

s2s3s2s1 s3s1s2s1s2s3s1s2s1s2s3s2 s1s2s3s1

s2s3s2 s3s2s1 s3s1s2s2s3s1 s1s2s1s1s2s3

s3s2s2s3 s3s1 s2s1 s1s2

s3 s2 s1

id

Figure 1: The Bruhat order of S4 and the lower interval of s1s2s3s2s1 in red.

This product has been used and studied in various fields that depend on Coxeter
groups [6], [9], [10], [13], [14], [15]. For example, in Lie theory, the Demazure product
naturally arises in the study of BN pairs and reductive groups. Specifically, the relation
on Borel double orbit closures is given by

BwBuB = B(w ? u)B.

While the product w ? u has been well studied for many years, it is difficult to calculate
using reduced expressions of w and u. In this paper, we present a new method to compute
the Demazure product of two permutations in the symmetric group using their one-line
notation. This algorithm starts with the usual product of permutations and a brand
new operation we call hopping. We state this result in Theorem 12. In Section 4, we
prove an analogous result for signed permutations which is stated in Theorem 20. We
remark that other “reduced word free" characterizations of the Demazure product exist for
permutations. In [4, Fact 2.4], Chan and Pflueger give a characterization of the Demazure
product for permutations in terms of rank functions. In [14], Pflueger later shows that
this characterization of the Demazure product extends to the larger classes of almost-
sign-preserving permutations. In [17], a recursive algorithm for computing the Demazure
product starting with the Monge matrix (rank matrix) of a permutation and applying
tropical operations.
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2 The hopping operator

In this section, we focus on the permutation group or symmetric group Sn. These groups
are also known as Coxeter groups of type A. The group Sn is a Coxeter group with simple
generating set S = {s1, . . . , sn−1} satisfying the relations s2i = id and

(sisj)
2 = id if |i− j| > 1 and (sisi+1)

3 = id. (2)

The generator si corresponds to the simple transposition (i, i + 1) and for w ∈ Sn, let
w = w(1)w(2) · · ·w(n) denote the permutation in one-line notation. We denote the set of
integers JnK := {1, 2, . . . , n} and use the notation L := [a1, . . . , ak] to denote an ordered
subset of JnK (without repetition). Note that with this notation, [a] 6= JaK. We define a
new operator on permutations called the hopping operator.

Definition 3. For t ∈ JnK and L an ordered subset of JnK, the hopping operator

ht,L : Sn → Sn

acts on a permutation w according to the following algorithm: Scan to the right (within
the one-line notation of w) of t and look for the element furthest to the right in L that
is greater than t. If it exists, swap t and that element, replace w with the resulting
permutation, and repeat. The algorithm ends when there are no elements of L within w
to the right of t.

For example, take n = 8 and w = 891726435. Then h1,[2,3,4,5,6,7,8](w) = 897625431 is
obtained by the following process:

891726435→ 897126435→ 897621435→ 897625431.

For another example, we have h1,[3,6,5,7,2](w) = 892756431 and is obtained by the following
process:

891726435→ 892716435→ 892756431.

Remark 4. There are some trivial manipulations that we can do to the ordered subset L
in a hopping operator and keep the operator the same. Fix w ∈ Sn, t ∈ JnK and L to be
an ordered subset of JnK.

• (truncate) Let L′ denote the ordered subset obtained from L by removing all ele-
ments smaller than t or that do not appear to the right of t within w. Then we have
ht,L = ht,L′ .

• (split/merge) Suppose that L is the concatenation of two ordered subsets L1 and
L2. Then ht,L = ht,L1ht,L2 .

For any ordered subset L ⊆ JnK, let w(L) ⊆ JnK denote the ordered list obtained by w
acting on the elements of L. While a permutation may not preserve L, it can be viewed
as an operator on ordered subsets of JnK preserving size.
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For any i < j, let us define the transposition

τi,j := sisi+1 · · · sj−1 · · · si+1si.

In other words, τi,j is the transposition that swaps i and j. It is easy to see that

siτi,jsi = τi+1,j (3)

for any 1 6 i 6 n − 1 and i + 1 < j 6 n. Hopping operators satisfy the following
commuting relation with simple transpositions:

Lemma 5. Let w ∈ Sn. For any i > t and ordered subset L ⊆ JnK, we have

siht,L(w) = ht,si(L)(siw).

Proof. We will prove ht,L = siht,si(L)si by induction on the length of L. If |L| = 1, then
L = [`] for some ` ∈ JnK. We have two cases based on whether or not ` precedes t in the
one-line notation of w. First, if ` precedes t, then ht,[`](w) = w and ht,si([`])(siw) = siw.
Otherwise, if t precedes `, we consider two subcases. If ` 6∈ {i, i+1}, then τt,` = τt,si(`) and
τt,` commute with si. This implies that ht,[`] = τt,` and siht,si([`])si = siτt,si(`)si = τt,si(`)
are the same. If ` ∈ {i, i+ 1}, then the lemma follows from Equation (3).

Now assume for the sake of induction that the lemma is true for ordered subsets of
sizes smaller than L. We split L into L′ and [`], where ` is the last element of L. We have
ht,[`] = siht,si([`])si and ht,L′ = siht,si(L′)si from the induction hypothesis. Combining these
equations using Remark 4, we get

ht,L = ht,L′ht,[`] = siht,si(L′)ht,si([`])si = siht,si(L)si.

This completes the proof.

For example, let w = 514632. We compare the action of s3h1,[2,3,4,5] and h1,[2,4,3,5]s3 on
w. First, we have

514632 −−−−−→
h1,[2,3,4,5]

543621 −−−−→
s3

534621.

On the other hand, we get

514632 −−−−→
s3

513642 −−−−−→
h1,[2,4,3,5]

534621,

yielding the same result as Lemma 5.
Notice that the above Lemma 5 only works when i > t. In the case i = t, we have a

result below that is similar in flavor but slightly different:

Lemma 6. Let w ∈ Sn. For any 1 6 i 6 n− 1 and L an ordered subset of JnK \ Ji+1K =
{i+ 2, . . . , n}, we have

sihi+1,L(w) = hi,L(siw).
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Proof. We will prove sihi+1,Lsi = hi,L by induction on the length of L. First, it is easy
to check that when |L| = 1, the lemma follows from Equation (3). Now assume for the
sake of induction that the lemma is true for ordered subsets of size smaller than L. We
split L into L′ and `, where ` is the last element of L. We have sihi+1,L′si = hi,L′ and
sihi+1,[`]si = hi,[`] from the induction hypothesis. Using Remark 4, we get

hi,L = hi,L′hi,[`] = sihi+1,L′sisihi+1,[`]si = sihi+1,Lsi.

This completes the proof.

In the next lemma, we describe how the Demazure operator and the hopping operator
interact with each other.

Lemma 7. For any 1 6 i 6 n− 1 and w ∈ Sn, we have

si ? w = hi,[i+1](siw).

Proof. We have two cases based on whether or not i+1 comes after i in w. First, if i+1
appears before i in w, then si ? w = w, and in siw we have i appearing before i + 1. So
hi,[i+1](siw) = si(siw) = w. Otherwise, if i+1 appears after i in w, then si ?w = siw, and
in siw we have i+ 1 appearing before i so the hopping operator hi,[i+1] makes no changes
to siw.

Throughout the paper, we will denote the product of a sequence of consecutive simple
transpositions by

Ca,b := sasa+1 · · · sa+b−1.

If b = 0, then Ca,0 is the identity. The operator Ca,b acts on a permutation w by mapping
each of a, a+1, . . . , a+b to a+1, . . . , a+b, a respectively. In other words, it is a cyclic shift
of the elements a, a + 1, . . . , a + b by one. For example, in S8, we have C2,4 = s2s3s4s5
corresponding to the permutation 13456278. From Lemma 5 we immediately get the
following corollary:

Corollary 8. Let w ∈ Sn. For any a > t and ordered subset L ⊆ JnK, we have

Ca,b ht,L(w) = ht,Ca,b(L) Ca,b(w).

The Demazure product with Ca,b can be described using the usual product on permu-
tations and a hopping operator as follows:

Proposition 9. For any 1 6 i 6 j 6 n− 1 and w ∈ Sn, we have

Ci,j−i+1 ?w = hi,[i+1,...,j+1](Ci,j−i+1w). (4)

Proof. We use strong induction on j − i. The j − i = 0 case follows from Lemma 7.
Assume for sake of induction that we have

Ci+1,j−(i+1)+1 ?w = hi+1,[i+2,...,j+1](Ci+1,j−(i+1)+1w) (5)
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for any permutation w. We denote the expression given in Equation (5) as α. Then
the left-hand side of Equation (4) can be expressed as si ? α, which in turn is equal to
hi,[i+1](siα) from Lemma 7. It suffices to prove

hi,[i+1]sihi+1,[i+2,...,j+1](Ci+1,j−(i+1)+1w) = hi,[i+1,...,j+1](siCi+1,j−(i+1)+1w).

Therefore our goal is to show hi,[i+1]sihi+1,[i+2,...,j+1]si = hi,[i+1,...,j+1]. Remark 4 implies
that we can split hi,[i+1,...,j+1] = hi,[i+1]hi,[i+2,...,j+1]. Now the Proposition follows from
Lemma 6.

For example, let w = 124567893 = s3s4s5s6s7s8 = C3,6 and v = 891726435. The
above proposition implies that w ? v = h3,[4,5,6,7,8,9](wv). Starting with the usual product
wv = 931827546, we get

931827546→ 981327546→ 981723546→ 981726543.

Thus w ? v = 981726543.

Definition 10. Given w ∈ Sn, we let w ↖ a stand for the subword of w obtained by
restricting to the subword strictly left of a, then removing all elements smaller than a.

For example, take w = 891726435. We have w ↖ 2 = 897, obtained by taking the
subword strictly left of two and then removing elements smaller than two. Similarly, we
get w ↖ 4 = 8976, again obtained by taking the subword strictly left of four and then
removing elements smaller than four.

Notice that if w = sisi+1 · · · sj, then w ↖ i = [i + 1, i + 2, . . . , j + 1]. Proposition 9
implies that if w = sisi+1 · · · sj, then w ? v = hi,w↖i(wv).

3 The main result

In this section we give a formula for the Demazure product between two arbitrary permu-
tations by writing one of the permutations as a product Ci,j’s and then carefully iterating
Proposition 9.

Definition 11. Given a word w on a set of elements in JnK and a subset L ⊆ JnK, we use
w|L to denote the subword obtained from w by only taking the entries contained in L.

Theorem 12. For any w, v ∈ Sn, we have w ? v = hn−1,w↖n−1 · · ·h2,w↖2h1,w↖1(wv).

Proof. Let (j1, . . . , jn−1) denote the inversion sequence of w (see [16, Chapter 1.3]). In
other words, ji denotes the number of inversions in w of the form (k, i). It is easy to check
that

w = Cn−1,jn−1 · · ·C2,j2 C1,j1 . (6)

The reason we use this decomposition is that for each i, we have

(Cn−1,jn−1 · · ·Ci,ji)|{i+1,...,n} = w|{i+1,...,n}.
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To see this, notice that w is obtained from the expression in Equation 6, and
Ci−1,ji−1

· · ·C1,j1 does not change the ordering between i, . . . , n.
From Proposition 9, we get that

w ? v = · · ·hi,[i+1,...,i+ji] Ci,ji · · ·h2,[3,...,2+j2] C2,j2(h1,[2,...,1+j1] C1,j1 v).

Note that if ji = 0, then we set the corresponding hopping operator to the identity. To
the left of hi,[i+1,...,i+ji] we have some other hopping operators and Cn−1,jn−1 , . . . ,Ci+1,ji+1

in the above expression. Our strategy is to move each hopping operator to the left, passing
through all Ca,b’s, using Corollary 8. We start from the leftmost hopping operator, and
eventually all hopping operators will be at the prefix of the expression describing w ? v.
With this in mind, to prove the claim, we need to show that for each i < n, we get

Cn−1,jn−1 · · ·Ci+1,ji+1
hi,[i+1,...,i+ji] = hi,w↖iCn−1,jn−1 · · ·Ci+1,ji+1

.

Let α denote the permutation Cn−1,jn−1 · · ·Ci+1,ji+1
. From Corollary 8 we get

αhi,[i+1,...,i+ji] = hi,α([i+1,...,i+ji])α.

As in the observation following Equation 6, we have α([i + 1, . . . , i + ji]) = w↖ i,
which finishes the proof.

For example, let w = 6541723 and v = 5436217. The usual product of these two
permutations is wv = 7142563. The Demazure product w?v corresponds to the sequence
of hopping operators

h5,[6]h4,[6,5]h3,[6,5,4,7]h2,[6,5,4,7]h1,[6,5,4]

acting on the usual product wv. Applying each of the hopping operators in order to wv,
we get

7142563 −−−−→
h1,[6,5,4]

7452613 −−−−−→
h2,[6,5,4,7]

7456213

−−−−−→
h3,[6,5,4,7]

7456213 −−−→
h4,[6,5]

7564213 −−−→
h5,[6]

7654213.

This gives us 6541723 ? 5436217 = 7654213.

4 Signed permutations

In this section, we prove an analogue of Theorem 12 for the group of signed permutations,
also known as Coxeter groups of type B (or equivalently, type C). Signed permutations
can be viewed as a permutation subgroup of S2n. Let {s′1, . . . , s′2n−1} be the simple gen-
erators of the permutation group S2n. We define Bn to be the subgroup of S2n generated
by S := {s1, . . . , sn} where

si := s′i s
′
2n−i for 1 6 i < n and sn := s′n. (7)
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We use the convention from [1] when working with type B simple transpositions. As
a Coxeter group, the generators s1, . . . , sn−1 of Bn satisfy the same relations as in type A
(see Equation (2)) with the last generator sn satisfying:

(sisn)
2 = id for 1 6 i < n− 1 and (sn−1sn)

4 = id.

Similar to the symmetric group, the elements of the Coxeter group Bn can be expressed
using a decorated one-line notation as follows:

Definition 13. A signed permutation of type Bn is a permutation of JnK along with
a sign of + or − attached to each number.

For example, the signed permutation [+4,−2,+3,−1] = [4,−2, 3,−1] is an element
of B4. For notational simplicity we drop the “+" signs from the one-line notation. The
generator si ∈ Bn corresponds to the simple transposition swapping i and i + 1 if i < n
and sn to the transposition swapping n with −n. The convention we use here is slightly
different from that of Bjorner and Brenti in [3] in the sense that sn plays the role of s0. The
product structure on signed permutations is just the usual composition of permutations
with the added condition that w(−i) = −w(i). Let ±JnK denote the set JnK∪−JnK, where
−JnK := {−1, . . . ,−n}. We impose the total ordering on ±JnK given by:

1 < 2 < · · · < n < −n < · · · < −2 < −1.

By unfolding of a signed permutation w ∈ Bn we mean the following: to the right
of w, attach a reverse ordered copy of w with the signs flipped to get a permutation of
±JnK. The unfolding map respects the embedding of Bn as a subgroup of S2n given above.
Specifically, if we replace −JnK with {n + 1, . . . , 2n}, then the unfolding map assigns to
each signed permutation in Bn a standard permutation in S2n. For example the unfolding
of [4,−2, 3,−1] is

[4,−2, 3,−1, 1,−3, 2,−4]

and the corresponding permutation of J8K is [4, 7, 3, 8, 1, 6, 2, 5]. Conversely, given a per-
mutation of of ±JnK where the i-th entry is the opposite sign of (2n + 1 − i)-th entry,
we can fold the permutation to get a signed permutation on JnK. In this section, we will
slightly abuse notation and identify a signed permutation of Bn with its unfolding in S2n.
When referring to the generators of S2n, we set

s′−i := s′2n−i

and hence si := s′is
′
−i for any i < n.

Lemma 14. For any signed permutations w, v ∈ Bn, we have

w ? v = fold(unfold(w) ? unfold(v)). (8)
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Proof. First observe that Equation (8) holds if we replace ? with the group product since
the unfolding map corresponds to the embedding of Bn into S2n. We proceed by induction
on the length of w and will use `B, `A to denote length in the Coxeter groups Bn and S2n

respectively. First, suppose that w = si where i < n. Then unfold(w) = s′i s
′
−i with

respect to the embedding of Bn into S2n. Since s′i commutes with s′−i, we have that
`B(siv) = `B(v)− 1 if and only if `A(unfold(siv)) = `A(unfold(v))− 2. Lemma 1 part (2)
implies

si ? v = fold(unfold(si ? v)) = fold(unfold(si) ? unfold(v)).

A similar argument holds when w = sn and unfold(w) = s′n. This proves the lemma in
the case when `B(w) = 1. Now suppose that `B(w) > 1 and write w = sw′ for some s ∈ S
and w′ ∈ Bn where `B(w) = `B(w

′) + 1. By induction we get

w ? v = sw′ ? v = s ? (w′ ? v) = s ? fold(unfold(w′) ? unfold(v)).

The inductive base case above implies

s ? fold(unfold(w′) ? unfold(v)) = fold(unfold(s) ? unfold(w′) ? unfold(v))

= fold(unfold(w) ? unfold(v)).

This completes the proof.

Next, we define a hopping operator for Bn analogous to Definition 3 for Sn.

Definition 15. Let t ∈ ±JnK and L an ordered subset ±JnK (without repetition). The
hopping operator

ht,L : Bn → Bn

acts on a signed permutation w by the following algorithm: scan to the right (within the
unfolding of w) of t and look for the element furthest to the right in L that is greater than
t. If it exists, say q, then swap t and q and also swap −t with −q (unless t = −q). Replace
w with the resulting unfolded signed permutation and repeat. The algorithm ends when
there are no elements of L within w to the right of t.

For example, let w = [2, 3, 5,−1, 4] with t = 1 and L = [−2,−3, 4]. We calculate the
hopping h1,[−2,−3,4](w). First we unfold w, which gives

unfold(w) = [2, 3, 5,−1, 4,−4, 1,−5,−3,−2].

To the right of 1 we have [−5,−3,−2]. We first swap 1 for −3, since −3 is the right-
most element of L that exists here. This gives us [2,−1, 5, 3, 4,−4,−3,−5, 1,−2]. Af-
ter that, we again scan to the right of 1 to find [−2]. Then we swap 1 with −2,
to get [−1, 2, 5, 3, 4,−4,−3,−5,−2, 1]. So, the signed permutation we end up with is
[−1, 2, 5, 3, 4].

Similar to the type A case, hopping operators satisfy a commuting relation with sim-
ple transpositions as in Lemma 18. We omit the proof, since it is analogous to that
of Lemma 18. Similar to the type A case, we let Bn act on sublists of ±[n] via the
corresponding signed permutation.
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Lemma 16. Let w ∈ Bn. For any 1 6 t < i 6 n and ordered subset L ⊆ ±JnK we have

siht,L(w) = ht,si(L)(siw).

Recall that for Sn, we defined Ca,b := sa · · · sa+b−1 and used the fact that any permu-
tation naturally decomposes into a product of Ca,b’s (see Equation (6)). For the type Bn

case, we will define the analogous product of simple generators

CB
a,b := sa · · · sa+b−1

where for any j > 1, we set sn+j := sn−j. Note that if a 6 n, then 1 6 b 6 2n − a. For
example, in B7, we have

CB
5,6 = s5s6s7s8s9s10 = s5s6s7s6s5s4.

As a signed permutation, the product CB
a,b corresponds to unfolding the identity permuta-

tion [1, 2, . . . , n] and shifting a to the right by b positions, then placing −a in the mirrored
position. For example, in B7 we have

CB
5,6 = [1, 2, 3,−5, 4, 6, 7,−7,−6,−4, 5,−3,−2,−1] = [1, 2, 3,−5, 4, 6, 7].

Notice that when b 6 2n − 2a + 1, the support of CB
a,b does not involve s1, . . . , sa−1.

From this, an immediate corollary of Lemma 16 is the following.

Corollary 17. Let w ∈ Bn with 1 6 t < a 6 n and 1 6 b 6 2n− 2a+1. For any ordered
subset L ⊆ ±JnK, we have

CB
a,b ht,L(w) = ht,CB

a,b(L)
(CB

a,bw).

As in the type A case, the Demazure product with CB
a,b can be described using the

usual composition product on signed permutations and the hopping operator given in
Definition 15. Recall that we identified sn+j with sn−j for 1 6 j < n. Similarly, we use
n+ j to denote −(n+ 1− j) for 1 6 j < n when we are dealing with elements of ±JnK.

Lemma 18. Let v ∈ Bn. For any 1 6 i 6 n, we have

si ? v = hi,[i+1](siv).

Proof. In this proof, let hAi,L denote the hopping operator given in Definition 3 acting on
the permutation group S2n and hBi,L denote the hopping operator given in Definition 15
acting on Bn ⊆ S2n. If i < n, then si = s′−is

′
i and by Lemma 14, we have

unfold(si ? v) = s′−is
′
i ? unfold(v).

Proposition 9 implies

(s′−isi
′) ? unfold(v) = hA−(i+1),[−i]h

A
i,[i+1]s

′
−isi

′ unfold(v).
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Note that swapping i with i+1 in hAi,[i+1] mirrors swapping −(i+1) with −i in hA−(i+1),[−i].
Hence Lemma 14 implies

fold((s′−isi
′) ? unfold(v)) = hBi,[i+1](siv).

In the case of i = n, note that sn ? v = v if the sign of n in v is negative and sn ? v = snv
otherwise. From this it follows that sn ? v = hn,[−n](snv). Since n + 1 stands for −n in
our convention, the proof is complete.

Proposition 19. Let w ∈ Bn. For any 1 6 i 6 j 6 2n− 1, we have

CB
i,j−i+1 ?w = hi,[i+1,...,j+1](C

B
i,j−i+1w).

Proof. First, consider the case i > n. We have

CB
i,j−i+1 = si · · · sj = (s′i · · · s′j)(s′−i · · · s′−j) = Ci,j−i+1C−i,−(j−i+1) .

The first portion (s′i · · · s′j) acts on the negative entries in the unfolding of w, whereas the
second portion (s′−i · · · s′−j) acts on the positive entries of w, mirroring what happens for
the negative entries. From Proposition 9, we have

C−i,−(j−i+1) ? unfold(w)|JnK = h−i,[−(i+1),...,−(j+1)] C−i,−(j−i+1) unfold(w)|JnK.

Since what happens for the negative entries of w mirrors that of what happens for positive
entries of w, we get

Ci,(j−i+1) ? unfold(w)|−JnK = hi,[(i+1),...,(j+1)] Ci,(j−i+1) unfold(w)|−JnK.

Now using Lemma 14, we get the desired proposition.
Next, we resolve the remaining case i 6 n by using induction on n − i. First, when

n − i = −1, the proposition follows from the above case. Suppose that n − i > 0 and
suppose for the sake of induction that we have the proposition is true for all i′ such that
n − i′ < n − i. We start by analyzing the expression si ? ((si+1 · · · sj) ? v). From the
induction hypothesis, we have that

(si+1 · · · sj) ? v = hi+1,[i+2,...,j+1](si+1 · · · sj+1v).

By Lemma 18, in order to prove the claim, it suffices to show hi,[i+1]sihi+1,[i+2,...,j+1] =
hi,[i+1,...,j+1]si. Lemma 16 implies

sihi+1,[i+2,...,j+1]si = hi,[i+2,...,j+1]

and together with merging hi,[i+1]hi,[i+2,...,j+1] into hi,[i+1,...,j+1] by Remark 4, we get our
desired result.
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We now give an analogue of Definition 10 for signed permutations. For any w ∈ Bn and
i > 0, define w ↖ i to be the subword of unfold(w) obtained be restricting to numbers
to the left of i that are either greater than i, or less or equal to −i. For example, if
w = [−5, 3, 1,−2, 4], then

unfold(w) = [−5, 3, 1,−2, 4,−4, 2,−1,−3, 5].

In this case we have w ↖ 1 = [−5, 3] and w ↖ 2 = [−5, 3,−2, 4,−4].

Theorem 20. For any w, v ∈ Bn, we have w ? v = hn−1,w↖n−1h2,w↖2h1,w↖1(wv).

Proof. We show that the signed permutation w has a unique decomposition

w = CB
n,jn · · ·C

B
2,j2

CB
1,j1

(9)

where ji is the cardinality of w↖ i. We let wi denote CB
n,jn · · ·C

B
i,ji

.
We use induction on n− i to show that wi|±{i,...,n} = w|±{i,...,n}. In the base case, when

n− i = 0, we only look at the ordering between n and −n. We have jn = 1 if and only if
−n appears before n in w, and hence we get the desired result. Now assume for the sake
of induction that we have the equality for all i′ > i. Within the unfolding of w|±{i,...,n},
the entry i has exactly w↖ i many elements to its left. Therefore, to obtain w|±{i,...,n}
from the unfolding of wi+1|±{i,...,n}, we need to move i exactly ji = |w↖ i| many times
to the right, which corresponds to multiplying CB

i,ji
to the right of wi+1|±{i,...,n}. Since

wi+1CB
i,ji

= wi, we have completed the proof of the decomposition.
The theorem now follows an analogue of the proof of Theorem 12 where we use Propo-

sition 19 and Corollary 17 instead of Proposition 9 and Corollary 8.

We give an example of computing the Demazure product on signed permutations using
Theorem 20. Let w = [−5, 3, 1,−2, 4] and v = [−4, 2,−1,−3, 5] in B5. The unfolding of
w is [−5, 3, 1,−2, 4,−4, 2,−1,−3, 5]. The decomposition we get is

w = CB
5,1C

B
4,1C

B
3,1C

B
2,5C

B
1,2 .

We start with the usual product wv = [2, 3, 5,−1, 4].We apply the sequence of hopping
operators

h5,[−5]h4,[−5]h3,[−5]h2,[−5,3,−2,4,−4]h1,[−5,3]

to wv giving:

[2, 3, 5,−1, 4,−4, 1,−5,−3,−2] −−−−→
h1,[−5,3]

[2, 3,−1, 5, 4,−4,−5, 1,−3,−2] −−−−−−−−−→
h2,[−5,3,−2,4,−4]

[−2, 3,−1, 5,−4, 4,−5, 1,−3, 2] −−−→
h3,[−5]

[−2,−5,−1,−3,−4, 4, 3, 1, 5, 2] −−−→
h4,[−5]

[−2,−5,−1,−3,−4, 4, 3, 1, 5, 2] −−−→
h5,[−5]

[−2,−5,−1,−3,−4, 4, 3, 1, 5, 2]

Theorem 20 implies that the Demazure product w?v = [−2,−5,−1,−3,−4]. We conclude
this section with some questions.
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Question 21. Can the Demazure product for Coxeter groups of type D be described
similarly to the case of type B?

Question 22. In [2], Billey and Weaver give a “one-line notation" algorithm to compute
the maximal element in the intersection of a lower interval with an arbitrary coset of a
maximal parabolic subgroup of type A. In [13], there is an alternate algorithm to compute
the maximal element using the Demazure product (this second formula is for any Coxeter
group and parabolic subgroup). Is there a way to apply Theorem 12 to recover the
algorithm in [2]? If so, is there a generalization of the algorithm in [2] to the case where
the parabolic subgroup is not maximal? or to the case of signed permutations? We note
that the existence of such a maximal element for any Coxeter group W and a parabolic
subgroup WJ was established in [11].
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