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Abstract

The machinery of zonotopal algebra is linked with two particular polytopes: the
Stanley-Pitman polytope and the regular simplex Simn(t1, . . . , tn) with parameters
t1, . . . , tn ∈ Rn

+, defined by the inequalities
∑n

i=1 ri 6
∑n

i=1 ti, ri ∈ Rn
+, where the

(ri)i∈[n] are variables.
Specifically, we will discuss the central Dahmen-Micchelli space of the broken

wheel graph BWn and its dual, the P-central space. We will observe that the P-
central space of BWn is monomial, with a basis given by the BWn-parking functions.
We will show that the volume polynomial of the the Stanley-Pitman polytope lies
in the central Dahmen-Micchelli space of BWn and is precisely the polynomial in
a particular basis of the central Dahmen-Micchelli space which corresponds to the
monomial t1t2 · · · tn in the dual monomial basis of the P-central space.

We will then define the generalized broken wheel graph GBWn(T ) for a given
rooted tree T on n vertices. For every such tree, we can construct 2n−1 directed
graphs, which we will refer to as generalized broken wheel graphs. Each generalized
broken wheel graph constructed from T will give us a polytope, its volume poly-
nomial, and a reference monomial. The 2n−1 polytopes together give a polyhedral
subdivision of Simn(t1, . . . , tn), their volume polynomials together give a basis for
the subspace of homogeneous polynomials of degree n of the corresponding central
Dahmen-Micchelli space, and their reference monomials together give a basis for its
dual.

Mathematics Subject Classifications: 05E45, 05E40, 05E14

1 Introduction

The theory of zonotopal algebras introduced by Holtz and Ron [HR07] gives a means
of associating some of the most fundamental objects in combinatorics to solution sets of
differential equations. Starting with a box-spline, the central Dahmen-Micchelli space can
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be constructed: a space of polynomials which satisfies the same differential equations as
the polynomials locally describing the starting box-spline. The central Dahmen-Micchelli
space is the Macaulay inverse system of an ideal generated by powers of linear forms;
these linear forms are indexed by the cocircuits of the matroid whose ground set consists
of the vectors defining the underlying zonotope of the starting box-spline. Holtz and Ron
[HR07] also define a dual space to the central Dahmen-Micchelli space, the P-central
space, which has the same Hilbert polynomial as the central Dahmen-Micchelli space and
can be associated to a hyperplane arrangement derived from a power ideal in which the
P-central space is the Macaulay inverse system of. There is also the internal and external
Dahmen-Micchelli spaces and their duals as well, leaving us with many algebraic objects
to play with.

Having this strong bridge between approximation theory (via the box-spline) and com-
binatorics is powerful. But the question still remains, where can this powerful bridge be
applied? Here we link the machinery of zonotopal algebra with two particular polytopes,
showing that the zonotopal spaces derived from two particular graphs captures the vol-
umes of these polytopes, as well as the volumes of polytopes appearing in particular
polyhedral subdivisions of these polytopes.

The first of the two is the Stanley-Pitman polytope. The Stanley-Pitman polytope,
introduced by Stanley and Pitman [PS99], has a polyhedral subdivision whose chambers
are indexed naturally by rooted binary trees, giving us a representation of the associahe-
dra. For t ∈ Rn

+, the Stanley-Pitman polytope is specifically the n-dimensional polytope
Qn(t) defined by the equations

Qn(t) := {r ∈ Rn
+ :

n∑
i=j

ri 6
n∑

i=j

ti, 1 6 j 6 n},

where we define R+ := [0,∞). Stanley and Pitman study the volume of Qn(t),

qn(t) := vol(Qn(t)),

and show in [PS99] that qn(t) is a polynomial which is the sum of exactly Cn :=
(2n

n )
n+1

normalized monomials.

Proposition 1 (Pitman and Stanley, [PS99]). For each n ∈ N\{0}, we have that

qn(t) =
∑
k∈Kn

n∏
i=1

tkii
ki!

=
1

n!

∑
k∈Kn

(
n

k1, . . . , kn

)
tk11 · · · tknn ,

where

Kn := {k ∈ Nn :

j∑
i=1

ki > j for all 1 6 i 6 n− 1 and
n∑

i=1

ki = n}

with N := {0, 1, 2, . . . }.
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The volume qn(t) of the Stanley-Pitman polytope Qn(t) can be captured via the zono-
topal algebra of the broken wheel graph BWn: a finite undirected graph with n+1 vertices
and 2n edges, which defines the graphical matroid needed for our constructions. In sec-
tion 2, we will rigorously define the broken wheel graph BWn, define what it means to
be a parking function of BWn, and discuss some properties of such parking function.
We will then use these properties in section 3, where we will discuss the Tutte poly-
nomial and Hilbert series of BWn, as well as develop the zonotopal algebra of BWn,
after giving a review of the general theory of zonotopal algebra. Section 4 of this paper
will specifically address the Stanley-Pitman polytope and use the machinery developed
to prove that the Stanley-Pitman volume polynomial qn(t) is the monic polynomial in
the central Dahmen-Micchelli space of BWn which corresponds to the parking function
(1, . . . , 1) ∈ Rn, and that it is the unique internally monic polynomial of maximal degree
in the internal Dahmen-Micchelli space of BWn which corresponds to the unique internal
parking function (1, 1, . . . , 1, 0) ∈ Rn+1. Using the following notation, we will also further
characterize the volume polynomial qn(t) with the following two Theorems: denote partial
differentiation with respect to ti by Di; i.e with pi : Rn → Rn, t 7→ ti, we have Di := pi(D),
and D0 := 0. We then have that:

Theorem 2. The polynomial qn(t) is the only polynomial (up to normalization) of degree
n that is annihilated by each of the following differential operators

Di(Di −Di−1), i = 1, . . . , n.

Moreover, let Pn,j be the subspace of homogeneous polynomials (in n-indeterminates) of
degree j that are annihilated by each of the above differential operators. Then:

1. Pn,j lies in the span of the translates of qn(t).

2. dim Pn,j =
(
n
j

)
.

Theorem 3. The polynomial qn(t) is the only polynomial q(t) (in n variables) that satisfies
the following two properties:

1. With m the square-free monomial

m : t 7→
n∏

i=1

ti,

the monomial support of (q−m)(t) is disjoint of the monomial support of the poly-
nomial

t 7→
n∏

i=1

(ti + ti−1), t0 := 0.

2. q(t) is annihilated by each of the following differential operators:

(Dj+1 −Dj)(

j∏
k=i

Dk)(Di −Di−1), 1 6 i 6 j < n,
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and

(
n∏

k=1

Dk)(Di −Di−1), 1 6 i 6 n.

We will then review the polyhedral subdivision of Qn(t) given by Pitman and Stanley
[PS99], whose set of interior faces, ordered by inclusion, is isomorphic to the face lattice
of the dual associahedron, and note how the volume of each polytope in this subdivision
is captured by the zonotopal algebra of the broken wheel graph. This observation is
motivation for studying the volumes of polyhedral subdivisions in terms of zonotopal
algebras and lead us to our study of the second polytope.

In section 5 we will introduce the second polytope: the regular simplex Simn(t1, . . . , tn)
with parameters t1, . . . , tn ∈ Rn

+, defined by the inequalities

n∑
i=1

ri 6
n∑

i=1

ti, ri ∈ Rn
+,

where the (ri)i∈[n] are variables. For every rooted tree T with n vertices, we can construct
2n−1 directed graphs, which we will refer to as generalized broken wheel graphs. Each
generalized broken wheel graph constructed from T will give us a polytope, its volume
polynomial, and a reference monomial. The 2n−1 polytopes together give a polyhedral
subdivision of Simn(t1, . . . , tn), their volume polynomials together give a basis for the
subspace of homogeneous polynomials of degree n of the corresponding central Dahmen-
Micchelli space, and their reference monomials together give a basis for its dual. And so,
for each rooted tree with n vertices we have a polyhedral subdivision of Simn(t1, . . . , tn)
completely characterized by the zonotopal algebra of the generalized broken wheel graphs
constructed from T .

Our study provides intriguing and quite rich examples of zonotopal algebra, on the one
hand, and sheds new light on how volumes of polytopes, and their polyhedral subdivisions,
can be studied on the other. This paper is meant for both the eyes of those familiar and
unfamiliar with the study of zonotopal algebras. For those familiar, we hope to provide you
with an enriching application which will spark your further interest. For those unfamiliar,
we hope to illustrate to you the potential of zonotopal algebras as a combinatorial way to
connect to analytic tools.

2 The Broken Wheel Graph

Before we jump into the details of the broken wheel graph, let’s define it precisely. The
broken wheel graph BWn is a finite undirected graph with n + 1 vertices [0 : n] and 2n
edges. The root vertex 0 is connected twice to the vertex 1, and once to each other vertex.
In addition, a single edge connects each consecutive pair i and i+1, with i = 1, . . . , n−1.

A wheel graph Wn consists of the edges of a regular n-gon, together with all the radii
that connect the vertices of the n-gon to its center. In algebraic graph theory, the n
verities of the n-gon are associated with the standard basis (ei)

n
i=1 of Rn, while the center
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is identified with e0 := 0. The edge that connects the vertices i and j is realized by the
vector ei− ej (or ej− ei, as the sign will not matter for us). For certain purposes (such as
the definition of the internal activity and the external activity of the forests of the graph)
it is necessary to order the edges, viz. their vector realization. The order that serves our
needs is as follows:

x2i−1 = ei − ei−1, x2i = ei, i = 1, 2, . . . , n.

The vectors Xn := (x1, . . . , x2n) correspond to the edges of the wheel Wn: odd numbered
vectors corresponding to the edges of the n-gon and the even vectors corresponding to
the radii. Note that we have written x1 = e1 − e0 = e1. This is because the broken wheel
BWn is obtained from the wheel Wn when replacing the n-gon edge e1− en by the radius
e1. Thus, the edge e1 is doubled in BWn. Let’s identify each vertex 0 6 i 6 n of BWn

with the vector ei and each edge that connects vertex i to vertex j > i with the vector
ej − ei. We then use the following order on the edge set of BWn:

BWn := (x1 ≺ x2 ≺ · · · ≺ x2n).

0

1

2

3

4
x4

x6

x8

x2 x1
x3

x5 x7

Figure 1: The broken wheel graph BW4.

With this order, the edges of BWn form the columns of an n× 2n matrix denoted Xn.
For example, the matrix X4 is

X4 =


1 1 −1 0 0 0 0 0
0 0 1 1 −1 0 0 0
0 0 0 0 1 1 −1 0
0 0 0 0 0 0 1 1

 .
With this identification, ordering of the edges of BWn, and the matrix Xn we have

enough to construct three pairs of polynomial spaces, which are examples of the funda-
mental pairs of polynomial spaces studied generally in the field zonotopal algebra. Before
we do this (in section 3), we need to talk about the parking functions of BWn, as they
are key to discussing these pairs of spaces.
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2.1 The Parking Functions of the Broken Wheel Graph

Given a subset of consecutive vertices [i : j] of BWn and a vertex k ∈ [i : j], we denote by

d(i, k, j)

the out-degree of k, viz. the number of edges that connect k to vertices in the complement
of [i : j]. Note that d(i, k, j) ∈ {1, 2, 3}, 0 < i 6 k 6 j 6 n, for BWn. Parking functions
of graphs are studied in generality by Postnikov and Shapiro in [PS03]. Following their
definition, a parking function of the graph is a function s ∈ Nn, with s(i) denoting the ith

entry of s, which satisfies the following condition: given any 1 6 i 6 j 6 n, there exists
a k ∈ [i : j] such that s(k) < d(i, k, j). This definition follows suit from the definition
of parking functions given in [PS99]. A parking function s is called an internal parking
function of a graph if for every 1 6 i 6 j 6 n, we either have a k ∈ [i : j − 1] such
that s(k) < d(i, k, j) or s(j) < d(i, j, j) − 1. Let the set of parking functions of BWn be
denoted by

S(BWn)

and the set of internal parking functions of BWn by

S−(BWn).

Lemma 4. If s is a parking function of BWn, then
∏j

k=i s(k) 6 2, while
∏n

k=i s(k) 6 1,
for every 1 6 i 6 j 6 n.

Proof. Now let’s consider s ∈ S(BWn). If i = j = n, then the only k we can choose is
k = n and we must then have that s(n) 6 1, as d(n, n, n) = 2 for BWn. If we choose
i = j < n, then the only k we can choose is k = i = j < n and we must then have that
s(n) 6 2.

If we have that s(i) = 2, and we choose j to be n, then we can see that d(i, i, n) = 2
and, for k > i, d(i, k, n) = 1. We can then conclude from these two observations that
s(k) = 0 for some k > i, as this is the only way we can find a k ∈ [i : n] such that
s(k) < d(i, k, n).

Let’s now assume a bit further that s(i) = s(j) = 2 for some 1 6 i < j < n. As
d(i, i, j) = d(i, j, j) = 2, while d(i, k, j) = 1 for i < k < j, we can see that s(k) = 0 for
some i < k < j.

From all of these observations, we can conclude that, in order for s to be a parking
function of BWn, we must have that

∏j
k=i s(k) 6 2, while

∏n
k=i s(k) 6 1, for every

1 6 i 6 j 6 n.

Let us now define a particular subset of S(BWn) which will be necessary for our
studies. The set of maximal parking functions Smax(BWn) of BWn is defined as

Smax(BWn) := {s ∈ S(BWn) : |s| :=
n∑

i=1

s(i) = n}.
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We can explicitly define the sets S(BWn), Smax(BWn), and S−(BWn) as the support of
certain polynomials. For s ∈ N, let us define the monomial

ms : t 7→ ts :=
n∏

i=1

t
s(i)
i .

Then, given a polynomial p ∈ K[t1, . . . , tn], where K is a field of characteristic 0, the
monomial support supp p(t) of p(t) is the set of vectors s ∈ N for which

ms(D)p(t)|t=0 6= 0.

Example 5. For q2(t) = t22/2 + t1t2, we have that supp q2(t) = {(1, 1), (0, 2)}.

We now have the following two Propositions that characterize the sets S(BWn),
Smax(BWn), and S−(BWn) as the support of certain polynomials:

Proposition 6. For a ∈ {0, 1}, let

pn,a(t) :=
n∏

i=1

(a+ ti−1 + ti), t0 := 0.

Then
Smax(BWn) = supp pn,0(t) and S(BWn) = supp pn,1(t),

and we have that

|Smax(BWn)| = 2n−1 and |S(BWn)| 6 2 · 3n−1.

Proof. Consider the polynomial expansion of pn,0(t):

pn,0(t) =
n∏

i=1

(ti−1 + ti) = (t21 + t1t2)
n∏

i=3

(ti−1 + ti). (1)

We can see that pn,0(t) is a polynomial with 2n−1 monomials, as it is a polynomial which
can be factored into n binomials. Thus we have that |supp pn,0(t)| = 2n−1.

Let us prove the equality in question by induction on n. First, let us assume that
n = 1. We then have that p1,0(t) = t1, giving us that supp p1,0(t) = {(1)}. Corollary 12
of this note tells us that the set of maximal parking functions is exactly the subset of Nn

of all sequences s that can be written as a sum

s = e1 +
n−1∑
j=1

aj,

with (ei)
n
i=1 the standard basis for Nn, and aj ∈ {ej, ej+1} for every j. Noting that

Corollary 12 is independent of this Proposition’s truth, we thus have that Smax(BW1) =
{(1)} and we have equality for our base case.
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Now, assuming that Smax(BWk) = supp pk,0(t) for k 6 n, we have

pn+1,0(t) = pn,0(t)(tn + tn+1) = pn,0(t)tn + pn,0(t)tn+1.

First, let us consider any s ∈ supp pn,0(t)tn. We have that the first n− 1 entries of s are
going to satisfy the conditions of corollary 12, the nth entry of s is going to be either 1 or
2 (as the degree of tn for any term of pn,0(t) is 0 or 1), and that the (n + 1)th entry of s
is 0. Thus, s is such a vector described in corollary 12, meaning that s ∈ Smax(BWn+1)
and supp pn,0(t)tn ⊆ Smax(BWn+1). Similarly, let’s consider any s ∈ supp pn,0(t)tn+1. We
then have that the first n − 1 entries of s satisfy the conditions of corollary 12, the nth

entry of s is going to be either 0 or 1, and that the (n+1)th entry of s is 1. Thus, s is such
a vector described in corollary 12, meaning that s ∈ Smax(BWn+1) and supp pn,0(t)tn+1 ⊆
Smax(BWn+1). Thus, supp pn+1,0(t) = supp pn,0(t)tn ∪ supp pn,0(t)tn+1 ⊆ Smax(BWn+1).
To show that our inclusion is actually an equality, let us assume our inclusion is strict
and find a contradiction. If our inclusion is strict, then there exists an s ∈ Smax(BWn+1)
such that s /∈ supp pn+1,0(t). We then have that

ms(D)pn+1,0(t) = ms(D)[pn,0(t)(tn + tn+1)]|t=0 = 0.

Since we have that ms(D)pn,0(t)|t=0 6= 0 by our induction hypothesis, we must have
s(n) = s(n + 1) = 0. This means, however, that when expressing s as stipulated in
corollary 12,

s = e1 +
n∑

j=1

aj,

we cannot have an ∈ {en, en+1} as required. Thus, we have our contradiction and the
equality desired. And so, in particular, we have that |Smax(BWn)| = 2n−1.

Now, let us consider pn,1(t). We can see that pn,1(t) is a polynomial with 2 ·3n−1 terms
by noting that

pn,1(t) = (1 + t1)
n∏

i=2

(1 + ti−1 + ti).

For n = 1, we have that p1,1(t) = 1 + t1 and thus that supp p1,1(t) = {(0), (1)}.
Checking the definition of a parking function against each element of the support of
p1,1(t), we can see that our only choice for i and j is i = j = 1. We can then see that
0 < d(1, 1, 1) = 2 and 1 < d(1, 1, 1) = 2; this shows us that supp p1,1(t) ⊂ S(BW1). And
as |S(BW1)| = 2, as the number of spanning trees of SW1 is 2, we have equality.

Now, assuming S(BWk) = supp pk,1(t) for k 6 n, let’s consider

pn+1,1(t) = pn,1(t)(1 + tn + tn+1) = pn,1(t) + tnpn,1(t) + tn+1pn,1(t),

a polynomial with at most 2 · 3n−1 terms; thus |supp pn+1,1(t)| 6 2 · 3n−1. We have
established in Lemma 4 that if a vector s is a parking function of BWn+1 then

∏j
k=i s(k) 6

2 and
∏n+1

k=1 s(k) 6 1 for every 1 6 i 6 j 6 n + 1. For supp pn,1(t), these conditions are
met by our induction hypothesis.
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For supp tnpn,1(t), we also have that our conditions are met:

n+1∏
k=1

s(k) = 1 ·
n∏

k=1

s(k) 6 1,

and as
∏n

k=i s(k) 6 1 for every 1 6 i 6 j 6 n, we have that
∏n

k=i s(k) 6 2 for every 1 6
i 6 j 6 n+1 via our extra factor of tn in every monomial of tnpn,1(t). For supp tn+1pn,1(t),
we also have that our conditions are met, as adding a 1 to either of the products in question
will not change their numerical value. As supp pn+1,1(t) = supp pn,1(t) ∪ supp tnpn,1(t) ∪
supp tn+1pn,1(t), we thus have that supp pn+1,1(t) ⊆ S(BWn+1).

To prove that this inclusion is actually an equality, let us assume that the inclusion is
strict and find a contradiction. If our inclusion is strict, then there exists an s ∈ S(BWn+1)
such that s /∈ supp pn+1,1. We then have that

ms(D)pn+1,1|t=0 = ms(D)[pn,1(1 + tn + tn+1)] = 0.

This would then imply that ms(D)pn,1 = 0, a contradiction to our induction hypoth-
esis. Thus, we must have the equality desired. And so, in particular, we have that
|S(BWn+1)| 6 2 · 3n−1.

Proposition 7. Let

pn,−(t) :=
n−1∏
i=1

(1 + ti).

Then S−(BWn) = supp pn,−(t) and |S−(BWn)| = 2n−1.

Proof. Let us consider the polynomial pn,−(t) :=
∏n−1

i=1 (1 + ti) and prove our Proposition
by induction on n. As always, let’s first consider our base case, n = 1. We then have
that p1,−(t) = 1. The support of this polynomial is supp p1,−(t) = {(0)}. Following the
definition of an internal parking function, as our only choice for i and j is i = j = 1, we
have that 0 < d(1, 1, 1)− 1 = 2− 1 = 1. Thus, we have that (0) is in S−(BW1) and that
supp p1,−(t) = S−(BW1).

Now, let us assume that S−(BWk) = supp pk,−(t) for k 6 n and show that this equality
is also true for k = n + 1. We have that pn+1,−(t) :=

∏n
i=1(1 + ti) = pn,−(t)(1 + tn) =

pn,−(t) + pn,−(t)tn. Thus, supp pn+1,−(t) = supp pn,−(t) ∪ supp pn,−(t)tn, where pn,1(t) is
considered as a polynomial in n variables. If s ∈ supp pn,−(t), then we know that for every
k ∈ [i : j − 1], 1 6 i 6 j 6 n, we have that either s(k) < d(i, k, j) or s(j) < d(i, j, j)− 1.
We also know that s(n) = 0, meaning that these inequalities certainly still hold after we
extend 1 6 i 6 j 6 n to 1 6 i 6 j 6 n+1. Thus, we have that supp pn,−(t) ⊆ S(BWn+1).
If s ∈ supp pn,−(t)tn, then we know that s(n) = 1. As we know that for every k ∈ [i : j−1],
1 6 i 6 j 6 n, we have that either s(k) < d(i, k, j) or s(j) < d(i, j, j) − 1, we need
to only check the cases when i = j = n + 1 and when j = n + 1 and i < n + 1.
For when i = j = n + 1, we have that s(n) = 1 < d(n, n, n) = 3. For i < n + 1,
we have that s(n) = 1 < 2 6 d(i, n, n). Thus, our conditions are satisfied and that
supp pn,−(t)tn ⊆ S(BWn+1). We know have that supp pn+1,−(t) ⊆ S(BWn+1). To prove
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that this inclusion is actually an equality, let us assume that the inclusion is strict and
find a contradiction. If our inclusion is strict, then there exists an s ∈ S(BWn+1) which
is not in supp pn+1,−(t). We then must have that

ms(D)pn+1,−(t)|t=0 = ms(D)[pn,−(t)(1 + tn)]|t=0 = 0.

This would then mean that ms(D)pn,−(t)|t=0 = 0, a contradiction to our induction hy-
pothesis. Thus we must have equality. And in particular, we have |S−(BWn)| = 2n−1.

Note that, while qn(t) and pn,0(t) are both homogeneous polynomials of degree n in n
variables, their support is almost disjoint:

supp pn,0(t) ∩ supp qn(t) = {(1, . . . , 1)}.

This observation is key to the proof of Theorem 3. As for the internal parking functions
of BWn, we have

|{s ∈ S−(BWn+1) : |s| = j}| =
(
n− 1

j

)
, 0 6 j 6 n− 1.

This observation is key to the proof of Theorem 2.
We will see that the zonotopal algebra of BWn hinges on the parking functions of

BWn. The Hilbert series presented in the next section, the monomial bases for the P-
central and P-internal spaces, and the results connecting to the Stanley-Pitman polytope
are all framed in terms of the parking functions of BWn.

3 The Zonotopal Algebra of the Broken Wheel Graph

The zonotopal algebra of a graph consists of three pairs of polynomial spaces: a central
pair, an internal pair, and an external pair. We will discuss the central and internal pairs
of spaces for the broken wheel graph, and not the external pair as it does not play a role
in our study. We will discuss the central Dahmen-Micchelli space D(Xn) of BWn and its
dual, the P-central space P(Xn). We will observe that P(Xn) is monomial ; i.e. has a
monomial basis. Postnikov and Shapiro [PS03] show that the monomial basis for P(Xn)
must be given by the parking functions:

{ms : s ∈ S(Xn)},

where Xn corresponds to the edges of a regular n-gon, as defined in section 2. We will
show that the volume polynomial qn(t) of the Stanley-Pitman polytope lies in D(Xn), and
that qn(t) is precisely the polynomial in a particular basis of D(Xn) which corresponds
to the monomial t1t2 · · · tn in the monomial basis of P(Xn). Theorem 3 follows from
this observation. We also show that once we reverse the order of the variables in qn(t),
q̄n(t1, . . . , tn) := qn(tn, . . . , t1), the polynomial q̄n(t) lies in the internal zonotopal space
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D−(Xn+1). At the same time, the internal zonotopal space P−(Xn+1) is monomial, with
its monomial basis necessarily determined by the internal parking functions

{ms : s ∈ S−(Xn+1)}.

Theorem 2 follows from this observation. But in order to define and discuss these spaces
in detail, we must first discuss the Tutte polynomial and Hilbert series of the broken wheel
graph.

3.1 The Tutte Polynomial and Hilbert Series of the Broken Wheel Graph

Let X be the oriented incidence matrix of a graph. Recall that the collection of its
spanning trees B(X) correspond to the n×n invertible submatrices of X. We now define
two valuations on the set B(X) that are the reversal of the external activity and internal
activity as defined by Tutte.

Both valuations require an ordering on X, we use the above-defined order ≺: xi ≺ xj
if and only if i < j. Given B ∈ B(X), its valuation is defined by

val(B) := |{x ∈ (X\B) : {x} ∪ {b ∈ B : b ≺ x} is independent (in Rn)}| .

Its dual valuation is then defined as

val∗(B) := |{b ∈ B : {B\b} ∪ {x ∈ X\B : b ≺ x} spans Rn}| .

The Tutte polynomial is defined as the following bivariate polynomial, in the variables s
and t:

TX(s, t) :=
∑

B∈B(X)

sn−val(B)tn−val
∗(B).

Proposition 8. The Tutte polynomial TXn(s, t) of the broken wheel graph BWn is sym-
metric:

TXn(s, t) = TXn(t, s).

Proof. Let A be the 2n× Z matrix whose first row has entries

a(1, u) :=


1 j = 1, 2
−1 j = 3
0 Otherwise

and whose entries are a(i, j) := a(1, i + j − 1) everywhere else. Note that each even row
of this matrix is orthogonal to all the odd rows. We can see that Xn is the submatrix of
A that corresponds to the rows indexed by 1, 3, . . . , 2n − 1 and columns 1, . . . , 2n. Let
Yn be the matrix which has the same columns as Xn, but the complementary set of rows.
The rows of Yn are still orthogonal to entries of Xn. Moreover, the matrix Yn is obtained
from Xn by performing the following operations:

(i) Multiply by -1 each odd column x2i−1,
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(ii) Reverse the order of the columns.

Thus Yn represents the same graph as Xn, with respect to a reverse order of the edges.
Since the Tutte polynomial is invariant to the ordering of the edges, TXn(s, t) = TYn(s, t).
On the other hand, since the row span of Yn is orthogonal to the row span of Xn, Yn is
isomorphic to the dual matroid of Xn. It is further known that for every matroid X with
dual X̂, TX(s, t) = TX̂(t, s). And so we have

YXn(s, t) = TYn(s, t) = TX̂n
(s, t) = TXn(t, s).

A spanning tree B ∈ B(X) is called internal if val∗(B) = n and maximal if val(B) = n.
Note that the number of internal trees of a graph X equals TX(1, 0), while the number of
maximal trees equals TX(0, 1).

Proposition 9. The Tutte polynomial of the broken wheel BWn satisfies

TXn(1, 0) = TXn(0, 1) = 2n−1.

Proof. Let’s consider first the set Bmax(Xn) of maximal trees. For every B ∈ Bmax(Xn),
it follows directly from the definition that x1 /∈ B, while x2n ∈ B. After removing
x2n from each maximal basis, we obtain a modified set B′max(Xn). It is impossible that
{x2i, x2i+1} ⊂ B for some 1 6 i < n, since x2i + x2i+1 = x2i+2. Thus, we have

B′max(Xn) ⊂ ×n−1
i=1 {x2i, x2i+1},

and in particular
|Bmax(Xn)| 6 2n−1.

Consider now the set B−(Xn) of internal trees. The definition of an internal tree implies
directly that x2n /∈ B, hence that x2n−1 ∈ B, for every internal basis. Removing x2n−1
from each internal basis, we obtain the set B′−(Xn). Now, consider the cross product

A := ×n−1
i=1 {x2i−1, x2i}.

If we append x2n−1 to any set in A, we obtain a basis B ∈ B(Xn); by induction on j,
this follows from the assertion that every forest in ×j

i=1{x2i−1, x2i}, 1 6 j 6 n − 1 is a
spanning tree on the subgraph that corresponds to the vertices 0, . . . , j.

Now, let B = (b1 ≺ b2 ≺ · · · ≺ bn−1) be a tree in A. If bi = x2i−1, then B\bi is
completed to a spanning tree by x2i, since (b1, . . . , bi−1) connects the vertices 0, . . . , i− 1
and each of x2i−1 and x2i connects this vertex set to the vertex i.

If bi = x2i, since J := (b1, . . . , bi−1) is a spanning tree of 0, . . . , i − 1, the union
I ∪ J ∪ {x2n−1} is full-rank, and hence bi is not internally active in B. Thus, A ⊂
B′−(X), and |B−(Xn)| > 2n−1. This completes the proof, since the symmetry of the Tutte
polynomial implies that |Bmax(Xn)| = |B−(Xn)|.
Corollary 10. We have that

Bmax(Xn) = ×n−1
i=1 {x2i, x2i+1} × {x2n},

and
B−(Xn) = ×n−1

i=1 {x2i−1, x2i} × {x2n−1}.
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It is known [PS03] that the number of parking functions of any graph G equals the
number of spanning threes of that graph:

|S(G)| = |B(Xn)| .

The central Hilbert series hn := hXn is defined as

hn(j) := |{B ∈ X : val(B) = j}| .

The Tutte polynomial determines hn; i.e hn records the coefficients of Tn(t, 1) (in reverse
enumerations). Note that Proposition 9 asserts thus that hn(n) = 2n−1. Parking functions
could also be used to determine hn:

Proposition 11 (Holtz and Ron, [HR11]). For each 0 6 j 6 n,

hn(j) =

∣∣∣∣∣{s ∈ S(BWn) : |s| :=
n∑

i=1

s(i) = j}

∣∣∣∣∣ .
Thus there must be exactly 2n−1 parking functions with |s| = n.

Corollary 12. The maximal parking functions Smax(BWn) are exactly the subset N of
Nn of all sequences s that can be written as a sum

s = e1 +
n−1∑
j=1

aj,

with (ei)
n
i=1 the standard basis for Nn, and aj ∈ {ej, ej+1} for every j.

Proof. From Proposition 9, we know that the number of parking functions s with |s| = n
is hn(n) = 2n−1. Since |N | = 2n−1, we merely need to verify that N ⊂ Smax(BWn). The
fact that N ⊂ {0, 1, 2}n is clear, and so is the fact that s(n) 6 1 for s ∈ N . Now, suppose
that s ∈ N and s(j) = 2. Then aj = ej, and hence

∑n−1
i=j+1 s(i) = |[j + 1 : n− 1]| < n− j,

which means that s(k) = 0 for some k > i. Finally, if s(j) = s(i) = 2 for some j < i < n,
then aj = ej, while ai−1 = ei. Hence

∑i−1
k=j+1 s(k) = |[j + 1 : i− 2]| < j − i− 1, meaning

that s must vanish in between j and i. Thus, s is a parking function, and our claim
follows.

Example 13. The maximal parking functions of BW3 are

e1+e1+e2 = (2, 1, 0), e1+e1+e3 = (2, 0, 1), e1+e2+e2 = (1, 2, 0), and e1+e2+e3 = (1, 1, 1).

Recall the set B−(Xn) of internal bases. When restricting the valuation function to
the internal bases, we obtain the internal Hilbert series

hn,−(j) := |{B ∈ B−(Xn) : val(B) = j}| .
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This function is also recorded by the Tutte polynomial and it is completely computable
via the internal parking functions of BWn. It is known that the cardinality of the set of
internal parking functions agrees with the number of internal bases, hence

|S−(BWn)| = 2n−1.

More concretely,

Corollary 14. We have that S−(BWn) = {s ∈ {0, 1}n : s(n) = 0}.

Proof. Since both sets above have the same cardinality 2n−1, we only need to check that
every internal parking function must lie in S−(BWn). Let s be internal. Since d(n, n, n) =
2, we conclude that s(n) = 0. Since d(i, i, i) = 3, for i < n, we conclude that d(i) 6 1.

It is known, [HR07] that the internal Hilbert series is graded by the internal parking
functions,

hn,−(j) = {s ∈ S−(BWn) : |s| = j}.
We therefore conclude:

Theorem 15. The internal Hilbert series of Xn is binomial:

hn,−(j) =

{ (n−1
j

)
, 0 6 j < n

0, otherwise

We will now discuss zonotopal algebra in general, so that we have the framework for
understanding the zonotopal algebra of the broken wheel graph, as well as the zonotopal
algebra of the generalized broken wheel graph section 5.

3.2 Zonotopal Spaces

Let X be a matrix whose columns lie in Rn \0 and span Rn. We can consider two families
of variable convex (bounded) polytopes:

Πr(t) := {r : Xr = t, r ∈ R>0} and Π1
r(t) := {r : Xr = t, r ∈ [0, 1]n}.

The box spline Br(t) is the volume of Π1
r(t). As discussed in [dBHR93], Br(t) is a piecewise

polynomial. With K a field of characteristic zero, the central Dahmen-Micchelli space,
or central D-space, D(X) of Br(t) is the vector space in K[t1, . . . , tn] generated by all
polynomials in Br(t) and their partial derivatives.

Viewing X as a matroid whose ground set is the columns of X, D(X) can also be
defined as the Macaulay inverse system [Mac94] of a certain ideal J (X). To define this
ideal, first note that a vector r ∈ Rn written in the basis (t1, . . . , tn) naturally defines
the polynomial pr =

∑n
i=1 λiti in K[t1, . . . , tn]; if R is a set of vectors, then let pR :=∏

r∈R pr ∈ K[t1, . . . , tn]. The ideal J (X) is generated by the polynomials in K[t1, . . . , tn]
defined by the cocircuits of X:

J (X) := ideal{pC : C ⊆ X cocircuit} ⊆ K[t1, . . . , tn].
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We then have that

D(X) = kerJ (X) := {f ∈ K[t1, . . . , tn] : p(
∂

∂t1
, . . . ,

∂

∂tn
)f = 0},

where p runs over a set of generators of J (X). It was shown in [Jia85] that the dimension
of D(X) is |B(X)|, where B(X) is the set of bases of Rn which can be selected from X.
Note that we use the same notation here as we did in the section above for the spanning
trees of a matrix define by a graph, as when dealing with a graphical matroid (as we are),
these sets are the same.

The central P-space of X is defined as

P(X) := span{pR : R ⊆ X,X \R has full rank} ⊆ K[t1, . . . , tn].

P(X) can also be expressed as a Macaulay inverse system of a power ideal generated by
products of linear forms defining particular hyperplanes defined by X; see [dBDR91] for
more details. As proven in [ND90], the central D(X) and P(X)-spaces are dual under the
pairing 〈·, ·〉 : D(X)→ P(X)∗, f 7→ 〈·, f〉, giving us that their Hilbert series are equal.

There are two more dual pairs which make up the zonotopal algebra of X. In order to
define these pairs, we must define the set of internal bases B−(X) and the set of external
bases B+(X) of X. Let B0 = (b1, . . . , bn) be an arbitrary basis for Rn which is not
necessarily contained in B(X). Let X ′ = (X,B0) and let

ex : {I ⊆ X : I linearly independent} → B(X ′)

be the function mapping an independent set in X to its greedy extension in X ′; i.e. for
such an I, the vectors b1, . . . , bn are added successively to I unless the resulting set would
be linearly dependent to get its image under ex. The set of external bases B+(X) is then
defined as

B+(X) := {B ∈ B(X ′) : B = ex(I) for some I ⊆ X independent},

and the set of internal bases B−(X) is defined as

B−(X) := {B ∈ B(X) : B contains no internally active elements}.

Note that the sets B−(X) and B+(X) as defined in the section above are equal to these
sets for graphical matroids. We then have the following objects which define the internal
D−-space and external D+-space of X:

J−(X) := ideal{pC : C ⊆ B−(X)-cocircuit} ⊆ K[t1, . . . , tn],

D−(X) := kerJ−(X) ⊆ K[t1, . . . , tn],

J+(X) := ideal{pC : C ⊆ B+(X)-cocircuit} ⊆ K[t1, . . . , tn],

D+(X) := kerJ+(X) ⊆ K[t1, . . . , tn],
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where a B−(X)-cocircuit (or B+(X)-cocircuit) is a subset of X that intersects all bases
in B−(X) (or B+(X)), which is inclusion-minimal with this property. We then have that
the internal P−-space and external P+-space of X are defined as:

P−(X) := span{pY : Y ⊆ X} and P+(X) :=
⋂
x∈X

P(X \ x).

These three pairs of spaces make up the study of zonotopal algebras, and are discussed
in great detail by Holtz and Ron in [HR07]. Now that we are familiar with their general
definitions, we are ready to specialize our discussion to the case of the broken wheel graph.

3.3 The Zonotopal Spaces of the Broken Wheel Graph

We will now construct the zonotopal spaces associated to Xn. With K a field of charac-
teristic zero, let K[t1, . . . , tn]j be the subspace of K[t1, . . . , tn] consisting of homogeneous
polynomials of degree j. Per [HR07], each graph is associated with three pairs of sub-
spaces of K[t1, . . . , tn]: a central pair, an internal pair, and an external pair. As mentioned
before, we will not need and hence will not introduce, the external pair. We will first in-
troduce the central and internal Dahmen-Micchelli zonotopal spaces D(Xn) and D−(Xn),
respectively. We would like to stress that the latter space depends on the ordering we
impose on the edges of the graph. The definition we give below corresponds to ordering
the edges of Xn in reverse. In fact, some of the proofs in this paper may be simplified once
we use the reverse ordering. However, this reverse ordering is not inductive: the index of
a given edge in the graph depends not only on the vertices that are connected, but also
on the rank of the graph. To this end, we single out, for 1 6 i 6 j < n, the following
subset of Xn:

Xi,j,n := {x2i, . . . , x2j} ∪ {x2i−1, x2j+1}.

For j = n, the definition is as follows:

Xi,n,n := {x2i, . . . , x2j} ∪ {x2i−1}.

The central Dahmen-Micchelli space D(Xn) is defined as the space of all polynomials
in K[t1, . . . , tn] that are annihilated by each of the following differential operators:

pXi,j,n
(D), 1 6 i 6 j 6 n.

The internal Dahmen-Micchelli space D−(Xn) is defined as the space of all polynomials
in K[t1, . . . , tn] that are annihilated by each of the following differential operators:

px2i
(D)px2i+1

(D), 1 6 i < n, and px2n(D).

Note that these definitions are derived by considering all polynomials pC , where C
is a cocircuit of Xn, and considering all differential operators which annihilate theses
polynomials. This is the very construction of the central Dahmen-Micchelli space of Xn.
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Example 16. The differential operators which define D(X2) correspond to the subsets

{x3, x4}, {x1, x2, x3}, {x1, x2, x4}.

Those which correspond to D−(X3) are

{x6}, {x4, x5}, {x2, x3}.

Thus, while both spaces consist of polynomials in the variables t1 and t2 of degree not
exceeding 2 the spaces themselves are different. Incidentally, the polynomial t22/2 + t1t2
lies in the first, while t21/2 + t1t2 lies in the second.

Next we will introduce the space dual to the central Dahmen-Micchelli space, called
the P-central space, and the space dual to the internal Dahmen-Micchelli space, called
the P-internal space. Here, and elsewhere, we denote by

px(D), x ∈ Rn,

the directional derivative in the x direction. Also, for Y ⊂ X,

pY :=
∏
x∈Y

px.

The P-central space P(Xn) is the space of all polynomials in K[t1, . . . , tn] that are anni-
hilated by each of the following differential operators:

p1i,j(D)j−i+3, 1 6 i 6 j < n,

and
p1i,n(D)n−i+2, 1 6 i < n.

Where 1i,j := ei +ei+1 + · · ·+ej, and p1i,j(D)k is k-fold differentiation in the ii,j direction.
The P-internal space P−(Xn) is the space of all polynomials in K[t1, . . . , tn] that are
annihilated by each of the following differential operators:

p1i,j(D)j−i+2, 1 6 i 6 j < n,

and
p1i,n(D)n−i+1, i 6 i 6 n.

Note that the set of differential operators given in the definition of the P-internal
space is redundant. However, we defined it in this way to demonstrate the parallels to the
central case definition. This also makes it easier to check that the definition is consistent
with the general definition of the internal space, as given in [HR07].

The Hilbert series of the broken wheel graph is captured by the homogeneous dimen-
sions of the zonotopal spaces:
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Proposition 17 (Holtz and Ron, [HR07]). For each j > 0, we have

hn(j) = dim(P(Xn) ∩K[t1, . . . , tn]j),

and
hn,−(j) = dim(P−(Xn) ∩K[t1, . . . , tn]j).

Recall that a polynomial space is monomial if it is spanned by monomials. The
general theory of zonotopal algebra implies that once a P-space of a graph is monomial,
the corresponding parking functions yield a monomial basis for the space. This is exactly
the case here.

Theorem 18. The zonotopal spaces P(Xn) and P−(Xn) are monomial. Consequently, a
basis for P(Xn) is given by the monomials

ms : t 7→ ts, s ∈ Sn,

while a basis for P−(Xn) is given by the square-free monomials in the first n−1 variables.

Proof. We simply verify that each of the aforementioned monomials is annihilated by each
of the requisite differential operators. The rest follows from Proposition 17.

Let s ∈ S−(BWn), and choose 1 6 i 6 n. Since ms does not involve the variable tn,
ms is a polynomial of degree 6 n − i in variables ti, . . . , tn; hence, it is annihilated by
p1i,n(D)n−i+1. Now choose 1 6 i 6 j < n. Then ms is a polynomial of degree 6 n− i+ 1
in the variables ti, . . . , tj; hence, it is annihilated by p1i,j(D)n−i+2. This completes the
proof for the internal case.

Assume now that s ∈ Sn. Note that the characterization of s implies that
∑n

j=i s(j) 6
n− i+ 1 (since the number of 2-entries on [i : n] cannot exceed the number of 0 entries),
while

∑k
j=i s(j) 6 n − i + 2. Thus, an analogous argument to the above yields the

result.

We note in passing that the P-external space is not monomial. In fact, external
zonotopal spaces are never monomial unless the underlying linear matroid in the tensor
of rank-1 matroids.

The general theory of zonotopal algebra tells us that the central spaces form a dual
pair, and that the same is true for the internal pair. To this end, we make the following def-
inition: Let X be a graph, and s a parking function of X. A polynomial p ∈ K[t1, . . . , tn]
is called s-monic in X if p ∈ D(X), the monomial ms appears in the monomial expansion
of p with coefficient 1, and all other monomials ms′ that correspond to the other parking
functions of X appear with coefficient 0 in this expansion.

Similarly, for an internal parking function s of X, p ∈ K[t1, . . . , tn] is internally s-monic
in X if p ∈ D−(X) (for the fixed ordering of X that is considered), ms appears in the
monomial expansion of p with coefficient 1, and all other monomials ms′ that correspond
to the other internal parking functions appear with coefficient 0.
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Proposition 19 (Holtz and Ron, [HR07]). Let X be a graphic matroid, and assume
that P(X) is monomial. Then, for each parking function s of X there exists a unique
s-monic polynomial in X. Similarly, if P−(X) is monomial, and s is an internal parking
function, there exist a unique internal s-monic polynomial in X. The collection of all s-
monic polynomials in D(X) form a basis for D(X) (which is dual to the monomial basis
of P(X)); similarly for D−(X).

Corollary 20. For each broken wheel graph BWn, there is a unique basis for D(Xn)
which is monic in Xn. Similarly, there is a unique basis for D−(Xn) which is internally
monic in Xn.

Example 21. In example 16, the polynomial t22/2+ t1t2 is (1,1)-monic in X2 and t21 + t1t2
is internally (1,1,0)-monic in X3.

4 The Stanley-Pitman Polytope

Pitman and Stanley [PS99] studied the n-dimensional polytope

Qn(t) := {r ∈ Rn
+ :

n∑
i=j

ri 6
n∑

i=j

ti, 1 6 j 6 n},

and outlined several of its properties as well as found an explicit expression for it’s volume

qn(t) := vol(Qn(t)).

In this section, we will draw a connection between the Stanley-Pitman polytope Qn(t)
and zonotopal algebra of the broken wheel graph as well as prove Theorems 2 and 3 from
the introduction.

4.1 Connecting to the Zonotopal Algbra of the Broken Wheel Graph

We first need to introduce the additional variables (u1, . . . , un) such that, for each j, we
have

uj +

j∑
i=1

ri =

j∑
i=1

ti.

Equivalently,
uj + rj − uj−1 = tj, j = 2, . . . , n,

and
u1 + r1 = t1.

We then observe that these equations are equivalent to

Xna = t,
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with the 2n-vector a obtained from the concatenated u, r by a suitable permutation: ui
corresponds to a21−1, and ri corresponds to a2i. We also have the “side condition” that
a ∈ R2n

+ . With this, we have the conditions necessary to link the zonotopal algebra of
the broken wheel graph with the Stanley-Pitman polytope. With this, we have that
the volume polynomial qn(t) is a homogeneous polynomial of maximal degree n in the
zonotopal space D(Xn):

Theorem 22. The Stanley-Pitman volume polynomial qn(t) is the monic polynomial in
D(Xn) that corresponds to the parking function (1, . . . , 1) ∈ Rn. In addition, it is also the
unique internally monic polynomial of maximal degree in D−(Xn+1) which corresponds to
the unique internal parking function in Xn+1 of maximal degree, viz (1, 1, . . . , 1, 0) ∈ Rn+1.

Proof. We have that qn(t) is the polynomial consisting of the sum of all the normalized
monomials ms

s!
of degree n which satisfy

i∑
j=1

s(j) 6 i, 1 6 i 6 n. (2)

This can be seen by applying our notation to Proposition 1, the main Theorem of Pitman
and Stanley in [PS99]. Let Cn be the set of vectors s such that ms

s!
is a term of qn(t). We

notice that if s ∈ Cn is a maximal parking function, then it must satisfy

i 6
i∑

j=1

s(j) 6 i+ 1. (3)

We can see this via corollary 12. Thus, we must have that
∑i

j=1 s(j) = i for all j;
in other words, s = (1, . . . , 1), making qn(t) the unique (1, . . . , 1)-monic polynomial in
D(Xn).

In order to show that qn(t) is the unique internally monic polynomial of maximal
degree in D−(Xn+1) which corresponds to the unique internal parking function in Xn+1 of
maximal degree, we only need to show that qn(t) ∈ D−(Xn+1), as our argument directly
above gives us our correspondence between qn(t) and (1,,1,0), up to normalization.

We thus need to check that qn(t) is annihilated by the polynomials

px2i
(D)px2i+1

(D), 1 6 i < n+ 1, and px2(n+1)
(D).

We can quickly see that px2(n+1)
(D) annihilates qn(t) as px2(n+1)

(D) is differentiation in the
tn+1 variable, of which there are none in qn(t). The other operators we need to consider
are

Di+1Di −D2
i , i = 1, . . . , n.

When i = n, we have that (Dn+1Dn − D2
n)qn(t) = Dn+1Dnqn(t) − D2

nqn(t) = 0, as the
degree of tn+1 is 0 and the degree of tn is either 0 or 1 for any term of qn(t).

For i < n, let’s consider a term ms/s! of qn(t). If s(i) 6 1, we then have that ms/s!
is annihilated by Di+1Di − D2

i . If s(i) > 2, then let us prove that s ∈ Cn if and only if
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ŝ := s−ei +ei+1 ∈ Cn, as we will then see that the annihilation of qn(t) by the differential
operators in question will directly follow from this statement. First, let’s assume that
s ∈ Cn. We can then see that

i∑
j=1

s(j) =
i∑

j=1

ŝ(j) 6 i.

Thus, ŝ satisfies the inequalities (2), meaning that ŝ ∈ Cn. Now, let us assume that
ŝ ∈ Cn, and let us further assume for contradiction that s /∈ Cn. Then there exists some
i such that

∑i
j=1 s(j) > i. As ŝ ∈ Cn, we know that

i+1∑
j=1

s(j) =
i+1∑
j=1

ŝ(j) 6 i+ 1,

meaning that i + 1 6 s(1) + · · · + s(i) 6 s(1) + · · · + s(i) + s(i + 1) 6 i + 1. This then
means that s(i+ 1) = 0 and that

∑i
j=1 s(j) = i+ 1. But this then means that

i∑
j=1

ŝ(j) =
i∑

j=1

s(j) = i+ 1 6 i,

a contradiction to our assumption that ŝ ∈ Cn. Thus, we must have that s ∈ Cn. Now,
we can see, for s ∈ Cn with s(i) > 2, that

D2
i (ms/s!) = Di+1Di(mŝ/ŝ!) = ms−2ei/(s− 2ei)!

and thus that the D2
i (ms/s!) term and the Di+1Di(mŝ/ŝ!) term in (Di+1Di − D2

i )qn(t)
cancel each other out. Furthermore, we know there exists a t ∈ Cn (i.e. t = s+ ei− ei+1)
such that s = t̂ and that ˆ̂s ∈ Cn. From this we know that the D2

i (mt/t!) term and
the Di+1Di(ms/s!) term cancel each other out, and that the D2

i (mŝ/ŝ!) term and the
Di+1Di(mˆ̂s/

ˆ̂s!) term cancel each other out. Carrying on in this fashion, we have that all
of the terms of (Di+1Di−D2

i )qn(t) are cancelled and we have that (Di+1Di−D2
i )qn(t) = 0

as desired. We thus have that qn(t) ∈ D−(Xn+1), giving us our result.

Corollary 23. The polynomial space q̄n(t) that is generated by the derivatives (of all
orders) of the polynomial qn(t) is the zonotopal space D−(Xn+1). Thus, its homogeneous
dimensions are binomial:

dim(qn(t) ∩
0∏
j

) =

(
n

j

)
, j = 0, . . . , n.

Proof. We know from Theorem 18 that P−(Xn+1) is generated by the square-free mono-
mials in the first n variables. Let’s consider the generator of maximal degree, t1 · · · tn.
As we take partial derivatives of all orders of this monomial, we can see that we will
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generate all square-free monomials of degree 6 n. Thus, we have that P−(Xn+1) is the
space generated by the derivatives (of all orders) of the monomial t1 · · · tn.

Via Proposition 19, we know that for every generator ms of P−(Xn+1), there is a
corresponding generator of D−(Xn+1) which is the unique internal s-monic polynomial in
Xn+1.

Now, let’s consider the polynomial qn(t), and let q′(t) := Dk1
1 · · ·Dkn

n qn(t). We then
know that q′(t) ∈ D−(Xn+1) and that the square-free monomial Dk1

1 · · ·Dkn
n t1 · · · tn is a

term of q′(t). Let s be the exponent vector of Dk1
1 · · ·Dkn

n t1 · · · tn. Then we know that s
is an internal parking function, meaning that q′(t) must be the unique internal s-monic
polynomial and thus is also a generator of D−(Xn+1).

Every generator of D−(Xn+1) is a derivative of qn(t), and every derivative of qn(t) is a
generator of D−(Xn+1). Thus, we have that D−(Xn+1) is the polynomial space generated
by the derivatives (of all orders) of the polynomial qn(t) as desired.

4.2 Proving Theorems 2 and 3 From the Introduction

From Theorem 22 and corollary 20, the proofs of Theorems 2 and 3 from the introduction
become clear. Let us now prove these Theorems. Recall that we denote partial differen-
tiation with respect to ti by Di; i.e. with pi : Rn → Rn, t 7→ ti, we have Di := pi(D), and
D0 := 0.

Theorem 24. (Theorem 2) The polynomial qn(t) is the only polynomial (up to normal-
ization) of degree n that is annihilated by each of the following differential operators

Di(Di −Di−1), i = 1, . . . , n.

Moreover, let Pn,j be the subspace of homogeneous polynomials (in n-indeterminates) of
degree j that are annihilated by each of the above differential operators. Then:

1. Pn,j lies in the span of the translates of qn.

2. dim Pn,j =
(
n
j

)
.

Proof. We show in the proof of Theorem 22 that qn(t) is the unique internally monic
polynomial of maximal degree in D−(Xn+1). We also have that qn(t) lies in the dual
central zonotopal space, D(Xn), meaning that qn(t) is annihilated by Di(Di −Di−1), for
i=1,. . . ,n, by definition. Corollary 20 of this note can be rephrased as saying that the
space of translates of qn(t) is D−(Xn+1). We then can see that for a given degree j, we
have that Pn,j ⊂ K[t1, . . . , tn]j, giving

(D−(Xn+1) ∩ Pn,j) ⊆ (D−(Xn+1) ∩K[t1, . . . , tn]j). (4)

In other words, we have that Pn,j ⊂ D−(Xn+1); i.e. we have that Pn,j lies in the span of
the translates of qn(t). Furthermore, we can actually see that our inclusion (4) is actually
an equality, as the dimension of both (D−(Xn+1) ∩ Pn,j) and (D−(Xn+1) ∩K[t1, . . . , tn]j)
is
(
n
j

)
.
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The dimension of (D−(Xn+1) ∩ K[t1, . . . , tn]j) is given to us by corollary 20. The
dimension of (D−(Xn+1) ∩ Pn,j) is gotten by counting the number of internal parking
functions of the broken wheel graph.

The uniqueness of qn(t) can then be quickly seen by the fact that Pn,n ⊂ D−(Xn+1) and
that qn(t) is the unique internally monic polynomial of maximal degree in D−(Xn+1).

Example 25. Let’s consider n = 2. We then have that q2(t) = t22/2 + t1t2. The Theorem
above then tells us that q2(t) is the only polynomial which is annihilated by D2(D2−D1)
and D2

1.

The following result gives another characterization of qn(t). It should be noted that
while the following result resembles the Theorem 2, it is the result of a rather different
observation.

Theorem 26. (Theorem 3) The polynomial qn(t) is the only polynomial q(t) (in n vari-
ables) that satisfies the following two properties:

1. With m the square-free monomial

m : t 7→
n∏

i=1

ti,

the monomial support of (q−m)(t) is disjoint of the monomial support of the poly-
nomial

t 7→
n∏

i=1

(ti + ti−1), t0 := 0.

2. q(t) is annihilated by each of the following differential operators:

(Dj+1 −Dj)(

j∏
k=i

Dk)(Di −Di−1), 1 6 i 6< n

and

(
n∏

k=1

Dk)(Di −Di−1), 1 6 i 6 n.

Proof. For part (1), we can see that the polynomial t 7→
∏n

i=1(ti−1 + ti) is exactly the
polynomial pn,0(t), introduced in Proposition 6. From Proposition 6, we know that
Smax(BWn) = supp pn,0(t). In other words,

supp pn,0(t) = {s ∈ S(BWn) : |s| = n}.

We know from [PS99] that the only maximal parking function in Cn which gives rise to
a term ms/s! of qn(t) is s = (1, . . . , 1). Thus, we have that supp pn,0(t) ∩ supp qn(t) =
{(1, . . . , 1)}. And so, by subtracting the monomial m from qn(t), we can quickly see that

supp pn,0(t) ∩ supp (qn −m)(t) = ∅.
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For part (2), we again know that qn(t) must be eliminated by the differential operators in
question as qn(t) lie in D(Xn). We can see that qn(t) is the only polynomial in n variables
which satisfies both (1) and (2) because, as qn(t) is uniquely the polynomial in D(Xn)
which corresponds to the monomial m in the basis of D(Xn), we have that qn(t) is the
only polynomial satisfying (2) which also satisfies (1).

Example 27. Considering n = 2, we have that (q2−m)(t) = t22/2. We can then see that
supp (q2 − m)(t) = {(0, 2)} and supp t1(t1 + t2) = {(2, 0), (1, 1)} are disjoint, and thus
that condition (1) of the Theorem above is satisfied. For condition (2), we can see that
q2(t) is annihilated by both D2

1(D2 −D1) and D2
1.

Example 28. For n = 3, we have that (q3 −m)(t) = t23/6 + t23(t1 + t2)/2 + t3t
2
2/2. For

condition (1), we can see that supp t1(t1+t2)(t2+t3) = {(2, 1, 0), (2, 0, 1), (1, 2, 0), (1, 1, 1)}
is disjoint from supp (q3 −m)(t) = {(0, 0, 3), (1, 0, 2), (0, 1, 2), (0, 2, 1)}. For condition (2)
we can see that q3(t) is annihilated by the operators

D3(D3 −D2), D3D2(D2 −D1), (D3 −D2)D2(D2 −D1), (D2 −D1)D
2
1.

4.3 A Polyhedral Subdivision Relating to the Associahedron

Pitman and Stanley [PS99] describe a polyhedral subdivision of Qn(t) closely related to
the associahedron. The associahedron An is a polytope whose vertices correspond to the
triangulations of the (n + 3)-gon and whose edges correspond to flips of diagonal edges;
i.e. removing one diagonal edge from a given triangulation and replacing it with another
diagonal edge. This section is included as a review of this polyhedral subdivision of
Qn(t) which Pitman and Stanley [PS99] present and how the volume of each polytope in
their subdivision is captured by the zonotopal algebra of the broken wheel graph. This
connection was the main inspiration for the generalized broken wheel graph appearing in
the coming sections.

Figure 2: The associahedron A3.
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Its dual is a simplicial complex whose vertices are diagonals of a convex (n + 3)-gon,
simplices are the partial triangulations of the (n + 3)-gon, and whose maximal simplices
are triangulations of the (n + 3)-gon. Pitman and Stanley [PS99] construct a fan Fn

whose chambers are indexed by plane binary trees with n internal vertices and prove the
following result:

Proposition 29 (Pitman and Stanley [PS99]). The face poset of the fan Fn, with a top
element adjoined, isomorphic to the dual dec(En+2)

∗ of the face lattice of the associahe-
dron.

A plane binary tree is a plane tree such that each vertex has zero or two substrees. If
a vertex has zero subtrees, then we call it a leaf, and if a vertex has two subtrees, then
we call it an internal vertex. The construction of the fan Fn is as follows. First consider a
binary tree T . Do a depth-first search of T , labelling its internal vertices 1 through n in
the order they are encountered from above. This labelling is referred to by Pitman and
Stanley as the binary search labelling.

1

2

3

4

Figure 3: A plane tree with the binary search labelling.

If an internal vertex of T with label i is covered by j, then associate to the pair (i, j)
the inequality

xi+1 + xi+2 + · · ·+ xj 6 0

if i < j and the inequality
xj+1 + xj+2 + · · ·+ xi > 0

if i > j. We then have a system of n − 1 homogeneous linear equations which define a
simplicial cone in Rn−1. These cones, as they range over all plane binary trees with n
internal vertices, form the chambers of a complete fan, denoted Fn, in Rn−1.

Let T ∈ Tn, where Tn is the set of binary trees with n internal vertices. Pitman and
Stanley [PS99] then construct sets 4T (x) which form the maximal faces of a polyhedral
decomposition Γn of Qn(x) whose set of interior faces, ordered by inclusion, is isomorphic
to the face lattice of the dual associahedron. They also give the volume of these maximal
faces.

Proposition 30 (Pitman and Stanley [PS99]). We have the following:
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1. The sets 4T (x), T ∈ Tn, form the maximal faces of a polyhedral decomposition Γn

of Qn(x).

2. Let k(T ) = (k1, . . . , kn), T ∈ Tn. Then Vol(4T (x))=
x
k1
1

k1!
· · · x

kn
n

kn!
.

3. The set of interior faces of Γn, ordered by inclusion, is isomorphic to the face lattice
of the dual associahedron.

In order to understand this result, we must define the objects mentioned in it; let us do
this. Given a plane tree T and E the set of edges of T , let’s define a function ` : E → R+

sending every edge e of T to a positive real number `(e). We will then call the pair (T, `)
a plane tree with edge lengths. Now fix a real number s > 0 which we would like to be the
sum of the edge lengths of a plane tree. Let x = (x1, . . . , xn) ∈ Rn

+ be such that
∑
xi < s

and y = (y1, . . . , yn) ∈ Rn
+ with

y1 + · · · yi 6 x1 + · · ·xi, 1 6 i 6 n.

For each pair (x, y), we can assign a plane tree with edge lengths ϕ(x, y) = (T , `) as
described in [PS99, p. 32]. We start with a root and traverse the tree in depth-first order:

1. Go up distance xi, then down distance yi, for 1 6 i 6 n.

2. Finish the tree by going up distance xn+1 = s − x1 − · · · − xn and down distance
yn+1 = s− y1 − · · · − yn.

We then have a planted (i.e. the root as one child) plane binary tree with edge lengths.
Let T be the tree obtained by removing the roots and its incident edge from T . Now
let x = (x1, . . . , xn) be a sequence with

∑
xi < s and let T ∈ Tn be a plane binary tree

without edge lengths. We define

4T (x) := {y ∈ Rn
+ : ϕ(x, y) = (T , `) for some `}.

For T ∈ Tn, with the binary search labeling of its internal vertices, let k(T ) = (k1, . . . , kn) ∈
Nn such that:

1. ki = 0 if the left child of vertex i is an internal vertex.

2. If the left child of vertex i is an endpoint, then let ki be the largest integer r such
that there exists a chain i < j1 < · · · jr of internal vertices where jh is a left child of
jh+1 for 1 6 h 6 r − 1.

Proposition 30 tells us that the volume of every polytope in this particular subdivision
of the Stanley-Pitman polytope Qn(t) is a term of qn(t), and that all terms of qn(t) appear
as such volumes. So not only is the zonotopal algebra of the broken wheel graph capturing
the volume of Qn(t), it is also capturing the volumes of the polytopes of a polyhedral
subdivision of Qn(t) whose set of interior faces, ordered by inclusion, is isomorphic to the
face lattice of the dual associahedron. This observation was our motivation for studying
the volumes of polyhedral subdivisions in terms of zonotopal algebras and lead us to the
generalized broken wheel graph.
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5 The Zonotopal Algebra of the Generalized Broken Wheel
Graph

While the zonotopal algebra of the broken wheel graph and its connection to the Stanley-
Pitman polytope are rich in their own right, our study reaches even further. We will
consider the zonotopal algebra of the generalized broken wheel graph GBWn(T ) over a
tree T with n vertices and how it relates to the regular simplex Simn(t1, . . . , tn) with
positive parameters (ti)i∈[n], defined by the inequalities

n∑
i=1

ri 6
n∑

i=1

ti, ri ∈ Rn
+,

where the (ri)i∈[n] are variables. Since our setup is homogeneous, we will assume without
loss of generality that

n∑
i=1

ti = 1.

We will show how to partition Simn(t1, . . . , tn) into 2n−1 polytopes, where each polytope’s
volume is captured by the zonotopal algebra of GBWn(T ). We begin by outlining the
setup necessary to define the generalized broken wheel graph.

5.1 Constructing the Generalized Broken Wheel Graph

Our first step in this process is to enumerate all rooted trees with n vertices. So, for
example, there are two rooted trees with 3 vertices, which we will respectively call the
“line tree” and the “fork tree”, as illustrated in Figure 4. For convenience, let’s generally
label the vertices of any rooted trees we consider 1 through n and always assume that the
root of each tree is 1.

1

2

3

1

2 3

Figure 4: The line tree (to the left) and the fork tree (to the right).

There are 2n−1 different ways to direct the edges of a rooted tree T . For n = 3, we
have four directed trees from the line tree and four from the fork tree, as illustrated in
Figure 5.

We can identify each of the 2n−1 directed trees constructed via directing the edges of
a rooted tree T with an n-tuple k ∈ {±1}n, where k(1) := 1 and, letting p be the parent
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1

2

3

1

2

3

1

2

3

1

2

3

1

2 3

1

2 3

1

2 3

1

2 3

Figure 5: The possible ways of directing the edges of the line and fork trees.

vertex of i,

k(i) :=

{
1 if the edge (p, i) is directed towards i
−1 if the edge (p, i) is directed towards p

.

Let us denote the directed tree constructed via directing the edges of a root tree T
according to k by Tk. Let Tk,j be the subtree of Tk in which j is the root. For each directed
tree Tk we define a corresponding polytope QTk

(t1, . . . , tn), which is the collection of all
points r ∈ Rn

+ that satisfy, for each j ∈ Tk, the set of inequalities,∑
i∈Tk,j

ri (6,>)j
∑
i∈Tk,j

ti, j = 1, . . . , n,

where

(6,>)j :=

{
6 k(j) = 1
> k(j) = −1

.

As k(1) = 1, we have that one of the above inequalities will always be

n∑
i=1

ri 6 1,

which defines our regular simplex Simn(t1, . . . , tn). Thus the systems of inequalities for
each of our 2n−1 directed trees together give a partition of Simn(t1, . . . , tn) into 2n−1

polytopes. For Sim3(t1, t2, t3), the inequalities for the line tree are displayed in Figure 6
and the inequalities for the fork tree are displayed in Figure 7.

Now take a tree T with n vertices. For each directed tree Tk, we will complete it to
a particular directed graph GBWn(Tk), which we will refer to as the generalized broken
wheel graph over Tk. We construct GBWn(Tk) in the following way:

1. Add one more vertex, labelled 0.

2. Add two edges from 0 to the root vertex.
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3. Add one edge from 0 to each of the n− 1 vertices of Tk.

Let GBWn(T ) denote the graph GBWn(Tk) without directed edges; GBWn(T ) is the
same for any k and will be referred to as the generalized broken wheel graph over T . In
Figure 6 we can see the graphs resulting from the line tree and in Figure 7 we can see
the graphs resulting from the fork tree. Once we have completed a directed tree Tk to
GBWn(Tk), we will assign a weight to each of its vertices. The weight wTk

(v) of each
vertex v of GBWn(Tk) will be equal to its indegree minus 1: wTk

(v) := indeg(v) − 1.
For instance, the weights of the n = 3 graphs are displayed in blue above each vertex in
Figures 6 and 7.

It is significant to note that GBWn(T ), where T is the “line” tree on n vertices, is
exactly the broken wheel graph BWn; hence the name generalized broken wheel graph.
In fact, the zonotopal algebra derived from BWn is exactly the same as that which is
derived from GBWn(Tk), where T is a line tree and k = (1, . . . , 1).

5.2 The Zonotopal Spaces of the Generalized Broken Wheel Graph

The weights of the vertices of GBWn(Tk) will guide us in constructing a polynomial
qTk

(t) ∈ K[t1, . . . , tn], where K is a field of characteristic 0, which will turn out to be
the volume of the polytope QTk

(t1, . . . , tn). Each polynomial qTk
(t) has a distinguished

monomial

refTk
: t 7→ twTk :=

n∏
i=1

t
wTk

(i)

i , wTk
:= (wTk

(1), . . . , wTk
(n)),

called the reference monomial of Tk. The polynomial qTk
(t) is constructed in the following

way: the reference monomial refTk
is a term of qTk

(t). To get the exponent vectors of the
other terms of qTk

(t), let’s think of the weight at each vertex i of Tk as a sandpile of wTk
(i)

grains of sand. Each grain of sand can be moved to a sandpile at another vertex j if there
is an edge directed from i towards j.

More formally, a move can be made from i to j if wTk
(i) > 0 and there exists an edge

between i and j which is directed towards j. If a move is made from i to j, then the
weight at i becomes wTk

(i) − 1 and the weight at j becomes wTk
(j) + 1. We then have

that w ∈ supp qTk
(t) if a series of moves can be made to get w from wTk

.

Example 31. Consider the top, leftmost graph in Figure 7 with k = (1, 1, 1). We
know that refTk

= t1t2t3 is a term of qTk
(t). Remembering that we always start at

wTk
= (1, 1, 1), we can see that a move can be made from 1 to 2 to get (0, 2, 1), giving us

the term t22t3. We can also make a move from 1 to 3 to get (0, 1, 2), giving us the term
t2t

2
3. As there are no other tuples which can be reached by a series of moves, we have that

supp qTk
= {(1, 1, 1), (0, 1, 2), (0, 2, 1)} and qTk

(t) = t1t2t3 + t22t3 + t2t
2
3.

We can construct zonotopal spaces from GBWn(T ) in a similar fashion as we did for
BWn. For every edge (i, j) of GBWn(T ) we associate the vector ei− ej if (i, j) is directed
towards i and ej − ei if (i, j) is directed towards j. We take these vectors as columns of a
matrix GXn. From this matrix we can construct the central, internal, and external pairs
of zonotopal spaces, as described in section 3.2.
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k (1,1,1) (1,1,-1)

GBWn(Tk)
0

1

2

3

1

1

1

0

1

2

3

1

2

0

QTk
(t1, t2, t3)

r1 + r2 + r3 6 t1 + t2 + t3
r2 + r3 6 t2 + t3

r3 6 t3

r1 + r2 + r3 6 t1 + t2 + t3
r2 + r3 6 t2 + t3

r3 > t3
refTk

t1t2t3 t1t
2
2

qTk
(t) t1t2t3 + t22t3 + t33 + t1t

2
3 + t2t

2
3 t1t

2
2 + t32

k (1,-1,1) (1,-1,-1)

GBWn(Tk)
0

1

2

3

2

0

1

0

1

2

3

2

1

0

QTk
(t1, t2, t3)

r1 + r2 + r3 6 t1 + t2 + t3
r2 + r3 > t2 + t3

r3 6 t3

r1 + r2 + r3 6 t1 + t2 + t3
r2 + r3 > t2 + t3

r3 > t3
refTk

t21t3 t21t2
qTk

(t) t21t3 t21t2 + t31

Figure 6: Sim3 with the line tree.
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k (1,1,1) (1,-1,1)

GBWn(Tk)
0

1

2 3
1

1 1

0

1

2 3
2

0 1

QTk
(t1, t2, t3)

r1 + r2 + r3 6 t1 + t2 + t3
r2 6 t2
r3 6 t3

r1 + r2 + r3 6 t1 + t2 + t3
r2 > t2
r3 6 t3

refTk
t1t2t3 t21t3

qTk
(t) t1t2t3 + t22t3 + t2t

2
3 t21t3 + t1t

2
3 + t23

k (1,1,-1) (1,-1,-1)

GBWn(Tk)
0

1

2 3
2

1 0

0

1

2 3
3

0 0

QTk
(t1, t2, t3)

r1 + r2 + r3 6 t1 + t2 + t3
r2 6 t2
r3 > t3

r1 + r2 + r3 6 t1 + t2 + t3
r2 > t2
r3 > t3

refTk
t21t2 t31

qTk
(t) t21t2 + t1t

2
2 + t32 t31

Figure 7: Sim3 with the fork tree.
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Let Pn(GXn) be the space of all homogeneous polynomials of degree n that lie in the
P-central space P(GXn), and letDn(GXn) be the space of all homogeneous polynomials of
degree n that lie in the D-central space D(GXn). We will now show that the polynomials
qTk

(t) form a basis for Dn(GXn) and that the reference monomials refTk
form a basis for

Pn(GXn).

Theorem 32. Pn(GXn) is monomial and the monomials refTk
for each k together form

a basis for Pn(GXn).

Proof. Benson, Chakrabarty, and Tetali prove in Theorem 3.1 of [BCT08] that the set of
weights,

{wTk
: k ∈ {±1}n, k(1) = 1},

is exactly the set of maximal parking functions of GBWn(Tk). And it was shown in [PS03]
that the set of parking functions of any graph G is the support of a monomial basis of
the P-central space associated to G. Thus the set of reference monomials, {refTk

: k ∈
{±1}n, k(1) = 1}, is exactly the degree n basis elements of the P-central space P(GXn),
which generate Pn(GXn).

Theorem 33. The polynomials qTk
(t) are contained in and form a basis for Dn(GXn).

Proof. A polynomial is contained in Dn(GXn) if it is homogeneous of degree n and an-
nihilated by all the operators defined by the cocircuits of GBWn(Tk). Let’s consider any
cocircuit C of GBWn(Tk). We know that C is defined by a cycle in the dual graph of
GBWn(Tk); let the set {v1, . . . , vs} be the set of vertices which are dual to C. The oper-
ator DC defined by C is the product of operators of the form (Dx −Dy) where (x, y) is
an edge in GBWn(Tk) dual to an edge of C. We can see that the operator Dv1 · · ·Dvs is
a factor of DC , as all edges (0, vi), 1 6 i 6 s, are dual to an edge of C.

If Dv1 · · ·Dvs does not annihilate qTk
(t), then there must exist a vertex vi in {v1, . . . , vs}

such that all edges from vi to a vertex in {v1, . . . , vs}\{vi} flow out of vi, and such that
all edges from vi to a vertex in {vs+1, . . . , vn} flow into vi. The product of all operators
Dvj such that vj is adjacent to vi and vj ∈ {vs+1, . . . , vn} is a factor of DC and annihilates
qTk

(t) together with Dv1 · · ·Dvs , giving us that qTk
(t) ∈ Dn(GXn). The polynomials

qTk
(t) are then the unique s-monic polynomials, where s is the support of some reference

monomial, which form a basis for Dn(GXn) by Proposition 19.

Theorem 34. The volume of QTk
(t1, . . . , tn) is qTk

(t).

Proof. The truncated power TrnX(t) is a function which records the normalized volume
of QTk

(t1, . . . , tn). As defined in [dBHR93], it can specifically be identified as the function

TrnX(t) := voln−d(X
−1{t} ∩ Rn

+)dt/| detX|, t ∈ ranX,

where ranX is the range of X, d is the dimension of ranX, and X is any matrix in which
0 is an extreme point for the non-negative polytope MX whose closed support is given by

supp MX = {Xa : 0 6 a 6 1}.
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It is piecewise in the D-central space of GBWn(T ), which is spanned by the 2n−1

polynomials qTk
(t). Since no edge of GBWn(Tk) ever lies in the interior of the positive

octant for any k, the volume is one polynomial piece in the positive octant.
The positive octant has n facets. At least one of these facets is a part of the boundary

of the support of the truncated power. The facets on the boundary depend on the k we
choose. The volume polynomial QTk

(t1, . . . , tn) is thus divisible by twi
i whenever ti = 0 is

a boundary facet and wi + 1 edges do not lie in the ti = 0 facet. In our case, i will be a
vertex which is a sink and wi its corresponding weight.

For n = 2, there is one tree T with two possible orientations: k1 = (1, 1) and k2 =
(1,−1). We then know that the polynomials qTk1

= t1t2 + t22 and qTk2
= t21 form a

basis for D(GX2); so the volumes of QTk1
(t1, . . . , tn) and QTk2

(t1, . . . , tn) must be linear

combinations of qTk1
= t1t2 + t2 and qTk2

= t21, respectively. As these polynomials are

divisible by t2 and t21, respectively, we can see from our observations about the truncated
power that the volume of QTk1

(t1, . . . , tn) must be qTk1
= t1t2 + t22 and the volume of

QTk2
(t1, . . . , tn) must be qTk2

= t21.
Let’s assume that the volume of QTk

(t1, . . . , tn) is qTk
(t) n > 2 for any k, and consider

any tree T with n+ 1 vertices, a k, and GBWn+1(Tk). We would like to find the volume
of QTk

(t1, . . . , tn, tn+1). We can pick a leaf l of GBWn+1(Tk) with parent p, and consider
the polytope QTk

(t1, . . . , tl−1, tl+1, . . . , tn+1) corresponding to the directed graph resulting
from removing the edge between l and p and the edge between l and 0. We have two cases
to consider: the case where the edge connecting l and p is oriented from p to l, and the
case where the edge connecting l and p is oriented from l to p. For each case respectively,
we have that:

1. If the edge connecting l and p is oriented from p to l, then

(Dl −Dp)vol(QTk
(t1, . . . , tn, tn+1)) = vol(QTk

(t1, . . . , tl−1, tl+1, . . . , tn+1)).

2. If the edge connecting l and p is oriented from l to p, then

(Dp −Dl)vol(QTk
(t1, . . . , tn, tn+1)) = vol(QTk

(t1, . . . , tl−1, tl+1, . . . , tn+1)).

Let us first begin with the case where the edge connecting l and p is oriented from p
to l, as it is the quickest. In this case, as vol(QTk

(t1, . . . , tn)) has all positive coefficients,
we know that

vol(QTk
(t1, . . . , tn, tn+1)) =

tl · vol(QTk
(t1, . . . , tl−1, tl+1, . . . , tn+1)) + tlDp · vol(QTk

(t1, . . . , tn, tn+1)).

Graphically this is the same as adding 1 to the weight of l, and then adding a monomial
for each time you make a move from p to l. Or in other words, vol(QTk

(t1, . . . , tn, tn+1)) =
qTk

(t).
The second case, where the edge connecting l and p is oriented from l to p, is a bit

more subtle. This is because we need to consider whether or not p is a sink. If p is a
sink, then there is a tp in every monomial of qTk

(t) and never a tl. And so we can see that
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vol(QTk
(t1, . . . , tn, tn+1)) = tpQTk

(t1, . . . , tl−1, tl+1, . . . , tn+1), which is the same as adding
1 to the weight of p, showing us that vol(QTk

(t1, . . . , tn, tn+1)) = qTk
(t).

When p is not a sink, we have to be careful because it is difficult to recover what we have
lost after applying (Dp−Dl) to vol(QTk

(t1, . . . , tn)) from vol(QTk
(t1, . . . , tl−1, tl+1, . . . , tn+1)),

as we can no longer keep track of what moves out of p. So let’s assume that

vol(QTk
(t1, . . . , tn)) = qTk

(t) + qTk′
(t),

where k 6= k′ and qTk′
(t) is divisible by a sink of Tk raised to the power of its weight. When

applying (Dp −Dl) to vol(QTk
(t1, . . . , tn)), we can see that (Dp −Dl)qTk

(t) = DpqTk
(t) =

vol(QTk
(t1, . . . , tl−1, tl+1, . . . , tn+1)), as there are no terms with tl in qTk

(t).
We must then have that (Dp −Dl)qTk′

(t) = 0. This means that either there are is no
tp or tl as a factor of any term in qTk′

(t), which is not possible as the edge connecting
p and l must be oriented towards either p or l, or there exists a pair of terms, tpα
and tlα, of qTk′

(t), where α is a monomial in K[t1, . . . , tn]. This can only be the case
if the edge connecting p and l is oriented towards l in Tk′ , as that is the only way for
there to even exist a term with a factor of tl to begin with. This means, however, that
(Dp−Dl)qTk′

(t) = −vol(QTk′
(t1, . . . , tl−1, tl+1, . . . , tn+1)) by the first case we considered in

this proof. As −vol(QTk′
(t1, . . . , tl−1, tl+1, . . . , tn+1)) is non-zero, this contradicts the fact

that (Dp − Dl)vol(QTk
(t1, . . . , tn, tn+1)) = vol(QTk

(t1, . . . , tl−1, tl+1, ..., tn+1)). We must
then have that vol(QTk

(t1, ..., tn, tn+1)) = qTk
(t), as desired.

With these results we can see that the zonotopal algebra derived from a given rooted
tree T completely describes a polyhedral subdivision of Simn(t1, . . . , tn). As the zonotopal
spaces in our study capture the volumes of these polytopes and the polytopes appearing in
their various subdivisions, it seems fair to suggest that the volumes of polytopes in general
could be studied via their corresponding zonotopal spaces. Given a polytope, one would
need to ask what the appropriate graphical matroid would be to derive the zonotopal
spaces which capture its volume, and then analyze which polyhedral subdivisions come
out of these spaces. This method could be a new and interesting approach towards
studying volumes of polytopes.
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