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Abstract

An arithmetical structure on a finite, connected graph without loops is an assign-
ment of positive integers to the vertices that satisfies certain conditions. Associated
to each of these is a finite abelian group known as its critical group. We show
how to determine the critical group of an arithmetical structure on a star graph or
complete graph in terms of the entries of the arithmetical structure. We use this to
investigate which finite abelian groups can occur as critical groups of arithmetical
structures on these graphs.

Mathematics Subject Classifications: 05C25, 05C50, 11C20, 11D68

1 Introduction

An arithmetical structure on a finite, connected, loopless graph G with vertex set V (G)
is a labeling of the vertices with positive integers r = (rv)v∈V (G) and nonnegative integers
d = (dv)v∈V (G) such that, for all vertices v, we have rvdv =

󰁓
ru, where the sum is taken

over all u adjacent to v, with multiplicity in the case of non-simple graphs, and where the
entries of r have no common factor. The critical group of an arithmetical structure is the
torsion part of the cokernel of L(G,d) := diag(d) − A(G), where A(G) is the adjacency
matrix of G and diag(d) is the diagonal matrix with the vector d on the diagonal, so that r
generates the kernel of L(G,d). In this paper, we describe how to compute critical groups
of arithmetical structures on star graphs and complete graphs and partially characterize
the abelian groups that occur as critical groups of arithmetical structures on these graphs.
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Figure 1: An arithmetical structure on the star graph S6. The left side is the r-labeling
and the right side is the d-labeling. The associated solution of (1) is 1
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Arithmetical structures were introduced by Dino Lorenzini [18] to study intersections
of degenerating curves in algebraic geometry. A number of papers in recent years (for
example, [3, 4, 7, 12]) have studied arithmetical structures and their critical groups on
various families of graphs, including path graphs, cycle graphs, bidents, and paths with
a doubled edge. In particular, it has been shown that the critical groups associated
to path graphs are trivial [4] and those associated to cycle graphs [4] or bidents [3] are
cyclic. In [16], Lorenzini showed that every finite, connected graph admits an arithmetical
structure with trivial critical group.

Let Sn denote the star graph with n leaves labeled v1, v2, . . . , vn connected to one
central vertex labeled v0. For simplicity, we use di as a shorthand for dvi and ri as a
shorthand for rvi . An example of an arithmetical structure on S6 is shown in Figure 1.
As noted by Corrales and Valencia [7], arithmetical structures on Sn are in bijection with
solutions in the positive integers of the equation

n󰁛

i=1

1

di
= d0. (1)

To see this, observe that, given an arithmetical structure (d, r) on Sn, we have diri = r0
for all i ∈ [n] and d0r0 =

󰁓n
i=1 ri. Hence,

n󰁛

i=1

1

di
=

n󰁛

i=1

ri
diri

=
n󰁛

i=1

ri
r0

= d0.

In the reverse direction, given a solution of (1), setting r0 = lcm(d1, d2, . . . , dn) and
ri = r0/di for all i ∈ [n] gives an arithmetical structure on Sn. Solutions of (1) have
been much studied, sometimes under the name Egyptian fractions with the assumption
that the di’s are distinct, but many open questions about them remain. See, for example,
[10, 13, 14] and the references therein.

Since a star graph is a tree, a formula of Lorenzini [18, Corollary 2.5] gives the order
of the critical group of an arithmetical structure on Sn in terms of its r-labeling as

rn−2
0󰁔n
i=1 ri

.
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However, critical groups of arithmetical structures on star graphs are often noncyclic,
so the order does not determine the critical group. Section 3 proves our main result,
which finds the critical group of an arithmetical structure on a star graph in terms of its
d-labeling.

Theorem 1. If (d, r) is an arithmetical structure on Sn for n 󰃍 1 and K(Sn;d, r) is its
critical group, then

K(Sn;d, r)⊕ (Z/r0Z)2 ∼=
n󰁐

i=1

Z/diZ,

where r0 = lcm(d1, d2, . . . , dn).

As an immediate corollary of this theorem together with the clique-star operation (see
Section 2.2), we can also compute critical groups of arithmetical structures on complete
graphs in terms of d.

In Section 4, we use Theorem 1 to investigate which groups occur as critical groups of
arithmetical structures on star graphs and complete graphs. In particular, we:

• construct trivial critical groups associated to Sn and Kn (Section 4.1);

• construct infinitely many cyclic critical groups associated to star graphs and com-
plete graphs (Section 4.2);

• construct critical groups associated to Sn and Kn with anywhere between 0 and
n− 2 invariant factors, and show that a conjecture of Erdős would imply that every
finite abelian group is realized as a critical group associated to a star graph and
complete graph (Section 4.3);

• construct products of critical groups associated to star graphs by identifying center
vertices of smaller star graphs (Section 4.4);

• show that every finite abelian group occurs as a subgroup of a critical group asso-
ciated to Sn and Kn for some n (Section 4.5);

• bound the maximal order of a critical group associated to Sn or Kn for a given n
(Section 4.6); and

• investigate how many distinct groups appear as critical groups associated to Sn

(Section 4.7).

2 Preliminaries

2.1 Smith normal forms and invariant factors

The critical group K(G;d, r) of a given arithmetical structure (d, r) on a graph G is
defined to be the torsion part of the cokernel of the matrix L(G,d) = diag(d) − A(G).
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To compute this group, we recall the following facts about the Smith normal form of a
matrix. For more details, we refer the reader to [11, 17, 20].

Given an n× n matrix M with integer entries, there exist invertible n× n matrices S
and T , both with integer entries, such that the product SMT is of the form

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

α1 0 · · · · · · · · · · · · 0

0 α2

. . .
..
.

.

..
. . .

. . .
. . .

.

..
...

. . . αt

. . .
...

..

.
. . . 0

. . .
..
.

.

..
. . .

. . . 0
0 · · · · · · · · · · · · 0 0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

,

where t = rank(M), each αk is a positive integer, and αk divides αk+1 for all k ∈ [t− 1].
This diagonal matrix is the Smith normal form of M , and the entries αk are the invariant
factors of M . Thinking of M as a linear map Zn → Zn, the cokernel Zn/ im(M) is
isomorphic to

Zn−t ⊕
󰀣

t󰁐

k=1

Z/αkZ

󰀤
.

Letting Dk(M) be the greatest common divisor of all k × k minors of M and defining
D0(M) = 1, one has that αk = Dk(M)/Dk−1(M) for all k ∈ [t].

In the case of L(G,d), the matrix (diag(d) − A(G)) associated to an arithmetical
structure (d, r) on a graph G with n vertices and adjacency matrix A(G), Lorenzini [18,
Proposition 1.1] showed that rank(L(G,d)) = n − 1. Since the nontorsion part of the
cokernel is always Z, to find the cokernel we only need to compute the torsion part. The
critical group of (d, r) is defined to be this torsion part, namely

K(G;d, r) ∼=
n−1󰁐

k=1

Z/αkZ.

2.2 Clique-star operation

Corrales and Valencia [7] defined a clique-star operation on graphs with arithmetical
structures that preserves the critical group and is a special case of the blowup operation
described by Lorenzini [18]. This operation replaces a clique subgraph of a graph with an
arithmetical structure by a star subgraph to produce an arithmetical structure on a graph
with one more vertex. Keyes and Reiter [15] later defined an operation that generalizes
the inverse of this clique-star operation, and [9] studied how this generalized star-clique
operation transforms critical groups.

We describe the clique-star operation in the special case of the complete graph Kn

with vertices v1, v2, . . . , vn and the star graph Sn with leaves v1, v2, . . . , vn connected to a
central vertex v0. Suppose d = (d1, d2, . . . , dn) and r = (r1, r2, . . . , rn) give an arithmetical
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Figure 2: An example of the clique-star operation, where the d-values are given in the
upper half of the figure and the r-values are given in the lower half.

structure on Kn. Then there is a corresponding arithmetical structure on Sn given by

d′ = (d′1, d
′
2 . . . , d

′
n, d

′
0) = (d1 + 1, d2 + 1, . . . , dn + 1, 1)

r′ = (r′1, r
′
2 . . . , r

′
n, r

′
0) =

󰀓
r1, r2, . . . , rn,

󰁛
ri

󰀔
.

An example of this operation is shown in Figure 2.
It is straightforward to check that (d′, r′) is an arithmetical structure on Sn, and the

clique-star operation gives a bijection between arithmetical structures on Sn with d0 = 1
and arithmetical structures on Kn [7, Theorem 5.1]. Moreover, the critical group of (d, r)
on Kn is isomorphic to the critical group of (d′, r′) on Sn [7, Theorem 5.3]. Therefore the
groups that occur as critical groups of arithmetical structures on the complete graph Kn

are precisely those that occur as critical groups of arithmetical structures on the star
graph Sn with d0 = 1.

3 Computing critical groups

The primary purpose of this section is to prove our main theorem about computing critical
groups of arithmetical structures on star graphs in terms of their d-values.
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Theorem 1. If (d, r) is an arithmetical structure on Sn for n 󰃍 1 and K(Sn;d, r) is its
critical group, then

K(Sn;d, r)⊕ (Z/r0Z)2 ∼=
n󰁐

i=1

Z/diZ,

where r0 = lcm(d1, d2, . . . , dn).

In order to prove this theorem, we will show that the matrix

B(d) := L(Sn,d)⊕
󰀗
r0 0
0 r0

󰀘

and the diagonal matrix C(d) := diag(d1, d2, . . . , dn, 1, 1, 0) have the same Smith normal
form. It is enough to show that the greatest common divisors of all k × k minors of
each, which, following Section 2.1, we denote Dk(B(d)) and Dk(C(d)), respectively, are
equal to each other. We in fact show that Dk(B(d)) and Dk(C(d)) are both equal to the
greatest common divisor of all products of k − 2 entries of (d1, d2, . . . , dn). To this end,
we first state a few lemmas.

Lemma 2. Let n 󰃍 2. Suppose d1, d2 . . . , dn, d0 are positive integers with
󰁓n

i=1
1
di

= d0.
If p is a prime and a is the largest integer for which pa divides lcm(d1, d2, . . . , dn), then
there exists {i, j} ⊆ [n] such that pa divides both di and dj.

Proof. If a = 0 the result is trivially true, so suppose a 󰃍 1. Since the largest power of p
that divides lcm(d1, d2, . . . , dn) is the maximum of the largest powers of p that divide the
di’s, there is some i ∈ [n] for which pa divides di. Let c := lcm(d1, d2, . . . , dn). Multiplying
the equation

󰁓n
i=1

1
di

= d0 through by c and separating out the i-th term, we obtain

c

di
+

n󰁛

j=1
j ∕=i

c

dj
= c · d0. (2)

Since pa divides c, it also divides the right side of (2). Analyzing the left side, since the
highest powers of p that divide c and di are the same, we have that p does not divide
c/di. Therefore there must be some j ∈ [n] \ {i} such that c/dj is not divisible by p. This
exactly implies that pa divides dj.

Lemma 3. For any integers d1, d2 . . . , dn, d0, we have that

󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏

d1 0 · · · 0 −1

0 d2
. . .

..

. −1
.
..

. . .
. . . 0

.

..
0 · · · 0 dn −1
−1 −1 · · · −1 d0

󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏

=
n󰁜

i=0

di −
n󰁛

i=1

󰁜

j∈[n]
j ∕=i

dj.
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Proof. We proceed by induction on n. In the base case n = 0, both sides equal d0. For
the inductive step, we expand along row n to get that

󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏

d1 0 · · · 0 −1

0 d2
. . .

.

.. −1
..
.

. . .
. . . 0

..

.
0 · · · 0 dn −1
−1 −1 · · · −1 d0

󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏

= dn

󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏

d1 0 · · · 0 −1

0 d2
. . .

.

.. −1
..
.

. . .
. . . 0

..

.
0 · · · 0 dn−1 −1
−1 −1 · · · −1 d0

󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏

+

󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏

d1 0 0 · · · 0

0 d2
. . .

. . .
.
..

..

.
. . .

. . .
. . . 0

0 · · · 0 dn−1 0
−1 −1 −1 · · · −1

󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏

= dn

󰀳

󰁃
n−1󰁜

i=0

di −
n−1󰁛

i=1

󰁜

j∈[n−1]
j ∕=i

dj

󰀴

󰁄−

󰀏󰀏󰀏󰀏󰀏󰀏󰀏

d1 0 · · · 0

0 d2
. . .

.

.

.
...

. . .
. . . 0

0 · · · 0 dn−1

󰀏󰀏󰀏󰀏󰀏󰀏󰀏

=
n󰁜

i=0

di −
n󰁛

i=1

󰁜

j∈[n]
j ∕=i

dj.

Given a vector d = (d1, d2 . . . , dn, d0) such that
󰁓n

i=1
1
di

= d0, we create the vector

󰁥d := (d1, d2, . . . , dn), obtained by removing the d0 entry from d. Let Gk

󰀃󰁥d
󰀄
be the

greatest common divisor of all products of k − 2 entries of 󰁥d, i.e. those products of the
form

󰁔k−2
j=1 dij where {i1, i2, . . . , ik−2} ⊆ [n]. The next two lemmas compute Dk(B(d)),

the greatest common divisor of all k × k minors of the matrix

B(d) =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

d1 0 · · · 0 −1 0 0

0 d2
. . .

.

.. −1
.
..

.

..
.
..

. . .
. . . 0

.

..
.
..

.

..

0 · · · 0 dn −1
..
.

..

.

−1 −1 · · · −1 d0 0
.
..

0 · · · · · · · · · 0 r0 0
0 · · · · · · · · · · · · 0 r0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

,

where r0 = lcm(d1, d2, . . . , dn). We find that Dk(B(d)) is exactly Gk

󰀃󰁥d
󰀄
by showing first

that Dk(B(d)) divides Gk

󰀃󰁥d
󰀄
and then that Gk

󰀃󰁥d
󰀄
divides Dk(B(d)).

Lemma 4. Let n 󰃍 2. Suppose d1, d2, . . . , dn, d0 are positive integers with
󰁓n

i=1
1
di

= d0.

For all k ∈ {2, 3, . . . , n+ 2}, we have that Dk(B(d)) divides Gk

󰀃󰁥d
󰀄
.

Proof. We will show, for any subset I = {i1, i2, . . . , ik−2} ⊆ [n], that Dk(B(d)) divides
the product

󰁔
i∈I di. Using Bézout’s identity, this would imply that Dk(B(d)) divides

Gk

󰀃󰁥d
󰀄
, the greatest common divisor of all such products.

First, let k ∈ {2, 3, . . . , n} and consider a subset I ⊆ [n] of cardinality k − 2. Let
{ℓ,m} ⊆ [n] \ I, and consider the k × k submatrix of B(d) determined by rows indexed
by I ∪ {ℓ, n+ 1} and columns indexed by I ∪ {m,n+ 1}. Computing the determinant of
this submatrix by expanding along the row originally indexed by ℓ and then the column
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originally indexed by m, we get that the corresponding minor equals ±
󰁔

i∈I di. Therefore,
Dk(B(d)) divides

󰁔
i∈I di.

For the cases k ∈ {n + 1, n + 2}, we will show that, for any prime p and any subset
I ⊆ [n] of cardinality k−2, the largest power of p that divides Dk(B(d)) must also divide󰁔

i∈I di.
In the case k = n + 1, a subset of [n] of cardinality k − 2 must be of the form

I = [n] \ {m} for some m ∈ [n]. Let p be prime, let a be the largest integer for which pa

divides r0, and let ai be the largest integer for which pai divides di. By Lemma 2, there is
some s ∈ I for which as = a. Consider the (n+1)×(n+1) submatrix of B(d) determined
by the rows in I ∪ {n+1, n+2} and the columns in [n]∪ {n+1, n+2} \ {s}. Computing
the determinant of this submatrix by expanding along the row originally indexed by s
and then the column originally indexed by m, we get that the corresponding minor is
±r0

󰁔
i∈I\{s} di. Since Dn+1(B(d)) divides this minor, we have that the largest power of p

that divides Dn+1(B(d)) is at most

a+
󰁛

i∈I
i ∕=s

ai =
󰁛

i∈I

ai,

which is exactly the largest power of p that divides the product
󰁔

i∈I di. Since this
argument holds for any prime, we conclude that Dn+1(B(d)) divides

󰁔
i∈I di.

The case k = n+2 is similar. In this case, the only subset of [n] with cardinality k−2
is [n] itself. For a prime p, define a and ai as above. By Lemma 2, there is {s, t} ⊆ [n]
such that as = at = a. Consider the (n + 2)× (n + 2) submatrix of B(d) determined by
the rows indexed by [n + 3] \ {s} and the columns indexed by [n + 3] \ {t}. Computing
the determinant of this submatrix by expanding along the row originally indexed by t and
then the column originally indexed by s, we find the determinant to be

±r20
󰁜

i∈[n]
i ∕=s,t

di.

Since Dn+2(B(d)) divides this minor, the largest power of p dividing Dn+2(B(d)) is at
most

2a+
󰁛

i∈[n]
i ∕=s,t

ai =
n󰁛

i=1

ai,

which is the largest power of p dividing
󰁔n

i=1 di. Since this argument works for any prime,
we conclude that Dn+2(B(d)) divides

󰁔n
i=1 di.

Lemma 5. Suppose d1, d2 . . . , dn, d0 are positive integers with
󰁓n

i=1
1
di

= d0. For all

k ∈ {2, 3, . . . , n+ 2}, we have that Gk

󰀃󰁥d
󰀄
divides Dk(B(d)).

Proof. It is enough to show that all k × k minors of B(d) are divisible by Gk

󰀃󰁥d
󰀄
, the

greatest common divisor of all products of k − 2 entries of 󰁥d, as the result then follows
by using Bézout’s identity.
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First, consider principal minors of B(d). If a principal submatrix does not include
row and column n + 1, the corresponding minor is the determinant of a diagonal matrix
with k diagonal entries. At least k − 2 of these diagonal entries must be entries of 󰁥d, say
di1 , di2 , . . . , dik−2

, so we have that the minor is divisible by
󰁔k−2

j=1 dij and thus by Gk

󰀃󰁥d
󰀄
.

If the rows and columns of a principal submatrix are indexed by I ∪ {n+ 1} for some
subset I ⊆ [n] of cardinality k − 1, then by Lemma 3 the associated minor is

d0
󰁜

i∈I

di −
󰁛

i∈I

󰁜

j∈I
j ∕=i

dj.

Since each term of the above sum has a product of at least k − 2 entries of 󰁥d, each term
is divisible by Gk

󰀃󰁥d
󰀄
and hence the minor is divisible by Gk

󰀃󰁥d
󰀄
.

If the rows and columns of a principal submatrix are indexed by I ∪ {n + 1, n + 2}
or I ∪ {n + 1, n + 3} for a subset I ⊆ [n] of cardinality k − 2, then using Lemma 3 the
associated minor is

d0r0
󰁜

i∈I

di −
󰁛

i∈I

r0
󰁜

j∈I
j ∕=i

dj.

Since each term of the above sum has r0 times a product of at least k − 3 entries of 󰁥d
and r0 is divisible by di for every i ∈ [n], each term is divisible by Gk

󰀃󰁥d
󰀄
and hence the

minor is divisible by Gk

󰀃󰁥d
󰀄
.

If the rows and columns of a principal submatrix are indexed by I∪{n+1, n+2, n+3}
for a subset I ⊆ [n] of cardinality k − 3, then using Lemma 3 the associated minor is

d0r
2
0

󰁜

i∈I

di −
󰁛

i∈I

r20
󰁜

j∈I
j ∕=i

dj.

Since each term of the above sum has r20 times a product of at least k − 4 entries of 󰁥d
and r0 is divisible by di for every i ∈ [n], each term is divisible by Gk

󰀃󰁥d
󰀄
and hence the

minor is divisible by Gk

󰀃󰁥d
󰀄
.

Finally, consider non-principal minors. For a non-principal minor of B(d) to be
nonzero, the rows of the corresponding submatrix must be indexed by I ∪ {s} and the
columns by I ∪ {t}, where I is a subset of [n + 3] of cardinality k − 1 and s and t are
distinct elements of [n+ 1] that are not in I, with n+ 1 ∈ I ∪ {s, t}.

If s = n + 1, computing the determinant of the submatrix by expanding along the
column originally labeled by t gives that it is (up to sign) a product of k − 1 entries of

(d1, d2, . . . , dn, r0, r0). If at least k− 2 of these are entries of 󰁥d, then the minor is divisible

by a product of k − 2 such entries and is thus divisible by Gk

󰀃󰁥d
󰀄
. If the minor is of the

form ±r20
󰁔

i∈J di for a subset J ⊆ [n] of cardinality k − 3, then since di divides r0 for all

i ∈ [n] we have that the minor is divisible by some product of k−2 entries of 󰁥d and hence

by Gk

󰀃󰁥d
󰀄
. When t = n + 1, expanding along the row originally indexed by s gives the

same result.
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When n+1 ∈ I, computing the determinant of the submatrix by expanding along the
row originally indexed by s and the column originally indexed by t gives that the minor is
(up to sign) a product of k− 2 entries of (d1, d2, . . . , dn, r0, r0). As before, since di divides

r0 for all i ∈ [n], the minor is divisible by some product of k − 2 entries of 󰁥d and thus by

Gk

󰀃󰁥d
󰀄
.

Together, Lemmas 4 and 5 show that Dk(B(d)) = Gk

󰀃󰁥d
󰀄
for k ∈ {2, 3, . . . , n+ 2}. It

remains to show the same is true for Dk(C(d)).

Lemma 6. Let d1, d2, . . . , dn be integers. Consider the (n+ 3)× (n+ 3) matrix

C(d) = diag(d1, d2 . . . , dn, 1, 1, 0).

If k ∈ {2, 3, . . . , n+ 2}, then Dk(C(d)) = Gk

󰀃󰁥d
󰀄
.

Proof. Any non-principal minor will be zero, so we only need to consider principal mi-
nors. Each nonzero principal minor is a product of k entries of (d1, d2, . . . , dn, 1, 1). It is
straightforward to see that the greatest common divisor of these products is exactly the
greatest common divisor of the products of k − 2 entries of 󰁥d.

We can now prove Theorem 1 using the preceding lemmas.

Proof of Theorem 1. If n = 1 the result is trivially true, so assume n 󰃍 2. Consider the
(n+ 3)× (n+ 3) matrices

B(d) =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

d1 0 · · · 0 −1 0 0

0 d2
. . .

.

.

. −1
.
.
.

.

.

.
..
.

. . .
. . . 0

..

.
..
.

..

.

0 · · · 0 dn −1
.
..

.

..

−1 −1 · · · −1 d0 0
..
.

0 · · · · · · · · · 0 r0 0
0 · · · · · · · · · · · · 0 r0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

,

whose cokernel is isomorphic to Z⊕K(Sn;d, r)⊕ (Z/r0Z)2, and

C(d) = diag(d1, d2, . . . , dn, 1, 1, 0),

whose cokernel is isomorphic to Z⊕ (
󰁏n

i=1 Z/diZ). To prove the result, it suffices to show
that B(d) and C(d) have the same Smith normal form. This in turn follows from showing
that Dk(B(d)) = Dk(C(d)) for all k ∈ {0, 1, . . . , n + 3}. By definition, D0(B(d)) =
D0(C(d)) = 1 and D1(B(d)) = D1(C(d)) = 1 as these matrices both have an entry of
±1. Since the upper left (n+1)×(n+1) submatrix of B(d) is the matrix of an arithmetical
structure, it has determinant 0, and thus Dn+3(B(d)) = Dn+3(C(d)) = 0. We therefore
only need to consider the cases with k ∈ {2, 3, . . . , n + 2}. The result then follows from
Lemmas 4, 5, and 6.
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As a result of Theorem 1, it is a straightforward exercise to obtain the values of αk

from 󰁥d. For example, if 󰁥d = (2, 3, 4, 4, 6, 9, 9, 10, 15, 18, 18), then r0 = 180 and Theorem 1
implies that the critical group K := K(Sn;d, r) satisfies

K⊕(Z/180Z)2 ∼= Z/2Z⊕Z/3Z⊕(Z/4Z)2⊕Z/6Z⊕(Z/9Z)2⊕Z/10Z⊕Z/15Z⊕(Z/18Z)2.

Notice that 180 = 22 · 32 · 5. Rewriting the expression using primary decomposition we
get

K⊕ (Z/4Z)2 ⊕ (Z/9Z)2 ⊕ (Z/5Z)2 ∼= (Z/2Z)5 ⊕ (Z/4Z)2 ⊕ (Z/3Z)3 ⊕ (Z/9Z)4 ⊕ (Z/5Z)2.

It is then clear that

K ∼= (Z/2Z)5 ⊕ (Z/3Z)3 ⊕ (Z/9Z)2 ∼= (Z/6Z)3 ⊕ (Z/18Z)2.

In general, for each prime p and i ∈ [n], let ap,i be the largest integer for which pap,i

divides di, so that di =
󰁔

pap,i . For each p, let {ep,1 󰃑 ep,2 󰃑 · · · 󰃑 ep,n} be equal (as sets)
to {ap,1, ap,2, . . . , ap,n}, reindexed to appear in nondecreasing order. It then follows from

Theorem 1 that Dk(B(d)) =
󰁔

p
󰁓k−2

i=1 ep,i . (When k ∈ {0, 1, 2}, the sum is empty and we
have that D0(B(d)) = D1(B(d)) = D2(B(d)) = 1.) Therefore, we have α1 = α2 = 1 and,
for all k ∈ {3, 4, . . . , n},

αk =
Dk(B(d))

Dk−1(B(d))
=

󰁜
pep,k−2 .

Proposition 7. Let (d, r) be an arithmetical structure on Sn. If ri = rj = 1 for some
i, j ∈ [n] with i ∕= j, then

K(Sn;d, r) ∼=
󰁐

k∈[n]
k ∕=i,j

Z/dkZ.

Proof. Theorem 1 gives that

K(Sn;d, r)⊕ (Z/r0Z)2 ∼=
n󰁐

k=1

Z/dkZ.

Since ri = rj = 1, we have that di = dj = r0. Therefore we have

K(Sn;d, r)⊕ (Z/r0Z)2 ∼=

󰀳

󰁅󰁅󰁃
󰁐

k∈[n]
k ∕=i,j

Z/dkZ

󰀴

󰁆󰁆󰁄⊕ (Z/r0Z)2,

from which the result follows.

An immediate corollary of Section 2.2 and Theorem 1 allows us to determine the
critical groups of arithmetical structures on complete graphs.
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Corollary 8. If (d, r) is an arithmetical structure on the complete graph Kn, then

K(Kn;d, r)⊕ (Z/ℓZ)2 ∼=
n󰁐

i=1

Z/(di + 1)Z,

where ℓ = lcm(d1 + 1, d2 + 1, . . . , dn + 1).

Proof. We perform the clique-star operation on Kn with clique subgraph Kn to get an
arithmetical structure (d′, r′) on Sn with d′ = d+ 1. By [7, Theorem 5.3], we have

K(Kn;d, r) ∼= K(Sn;d
′, r′).

The result follows by applying Theorem 1.

Remark 9. Corollary 8 allows us to recover the well-known result (originally stated in [18,
Example 1.10]) that the critical group of the Laplacian arithmetical structure on Kn is
(Z/nZ)n−2 as d is the vector all of whose entries are n− 1 and r0 = d′i = n for all i ∈ [n].

Remark 10. More generally, given any arithmetical structure (d, r) on Sn, we can apply
the generalized star-clique operation given in [15] to get an arithmetical structure (d′, r′)
on d0Kn, the graph with d0 edges between any two vertices. We have that d′i = d0di for
all i ∈ [n], so Theorem 1 therefore gives that

K(d0Kn;d
′, r′)⊕ (Z/d0r0Z)2 ∼=

n󰁐

i=1

Z/d0diZ.

4 Groups that appear as critical groups

This section is motivated by the following question.

Question 11. Can every finite abelian group (up to isomorphism) be realized as the
critical group of some arithmetical structure on a star graph? On a complete graph?

We obtain a partial answer to this question by considering certain families of groups
in the following subsections.

4.1 The trivial group

Lorenzini [16, Corollary 2.10] has shown that every finite, connected graph admits an
arithmetical structure with trivial critical group. In this subsection, we show how to
explicitly construct such arithmetical structures on star graphs and complete graphs.

It is not difficult to obtain the trivial group as a critical group on Sn for any n since
the arithmetical structure with ri = 1 for all i ∈ {0, 1, . . . , n} has trivial critical group.
One cannot obtain a corresponding arithmetical structure on the complete graph Kn with
n 󰃍 2 vertices via the star-clique operation in this case since d0 = n 󰃍 2. However, we
can construct an arithmetical structure with trivial critical group on Sn that does have
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d0 = 1, and applying the star-clique operation then gives an arithmetical structure with
trivial critical group on Kn.

Notice that if 󰁥d = (d1, . . . , dn−1, dn) determines an arithmetical structure on Sn, that
is, if each di is a positive integer and d0 :=

󰁓n
i=1

1
di

∈ Z, then, using 1
dn

= 1
dn+1

+ 1
dn(dn+1)

,

we get that 󰁥d′ = (d1, . . . , dn−1, dn + 1, dn(dn + 1)) determines an arithmetical structure
on Sn+1 with the same value of d0. Moreover, if r0 = dn, we have that r′0 = dn(dn + 1).
In this case, if K (resp. K′) is the critical group of the arithmetical structure determined

by 󰁥d (resp. 󰁥d′), Theorem 1 implies that

K ⊕ (Z/dnZ)2 ∼=
n󰁐

i=1

Z/diZ

and

K′ ⊕ (Z/dn(dn + 1)Z)2 ∼=

󰀣
n−1󰁐

i=1

Z/diZ

󰀤
⊕ Z/(dn + 1)Z⊕ Z/dn(dn + 1)Z.

Since gcd(dn, dn + 1) = 1, we can then conclude that K′ ∼= K. Note that, while the above
construction itself does not rely on the fact that dn is the least common multiple of the
other di, the conclusion K′ ∼= K does use this.

Example 12. By starting with the arithmetical structure on S2 given by 󰁥d = (2, 2)
and repeatedly applying this construction, we can construct arithmetical structures with
trivial critical groups and with d0 = 1 on Sn for any n 󰃍 2. The first few are listed below.

n d r
2 (2, 2, 1) (1, 1, 2)
3 (2, 3, 6, 1) (3, 2, 1, 6)
4 (2, 3, 7, 42, 1) (21, 14, 6, 1, 42)
5 (2, 3, 7, 43, 1806, 1) (903, 602, 258, 42, 1, 1806)
6 (2, 3, 7, 43, 1807, 3263442, 1) (1631721, 1087814, 466208, 75894, 1806, 1, 3263442)

It follows from Curtiss [8] that, for each n, these examples maximize the largest entry of a
vector d for an arithmetical structure on Sn. Because each of these structures has d0 = 1,
they will translate (via Corollary 8) to arithmetical structures with trivial critical groups
on the complete graph Kn.

We note that the 󰁥d in the above table can also be thought of as being obtained by
letting the first n−1 terms come from the beginning of Sylvester’s sequence [19, A000058]
and then setting dn =

󰁔n−1
i=1 di. This sequence, which grows doubly exponentially, is given

by sn+1 = s2n − sn + 1, or alternatively by sn =
󰁔n−1

i=1 si + 1, with s1 = 2. The first few
terms are

2, 3, 7, 43, 1807, 3263443, 10650056950807, 113423713055421844361000443.

We will reference this sequence again later in this section.
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More generally, we will obtain an arithmetical structure on Sn with trivial critical
group for any set of relatively prime integers {di}n−1

i=1 for which
󰁓n−1

i=1
1
di

+ 1󰁔n−1
i=1 di

= 1.

Sets of these numbers are well studied; see, for example, [1, 2, 5, 6]. However, this is not

the only way to obtain arithmetical structures with trivial critical groups; 󰁥d = (2, 3, 10, 15)
gives another example.

4.2 Cyclic groups

We can generalize the construction given in Section 4.1 to obtain certain cyclic groups as
critical groups. We first introduce the following operation. Suppose 󰁥d = (d1, . . . , dn−1, dn)

determines an arithmetical structure on Sn. For any integer a | dn, the vector Da

󰀃󰁥d
󰀄
=

(d1, . . . , dn−1, dn + a, dn(dn + a)/a) determines an arithmetical structure on Sn+1 with the
same d0 value because 1

dn
= 1

dn+a
+ 1

dn(dn+a)/a
.

We now state the following theorem.

Theorem 13. Suppose 󰁥d = (d1, . . . , dn−1, dn) determines an arithmetical structure on Sn

with critical group K. For any integer a | dn with gcd(r0/dn, dn/a + 1) = 1, the critical

group associated to Da

󰀃󰁥d
󰀄
is given by K′ ∼= K ⊕ Z/aZ.

Proof. By Theorem 1, we know that

K ⊕ (Z/r0Z)2 ∼=
n󰁐

i=1

Z/diZ

and

K′ ⊕ (Z/r′0Z)2 ∼=

󰀣
n−1󰁐

i=1

Z/diZ

󰀤
⊕ Z/(dn + a)Z⊕ Z

󰀑
(dn(dn + a)/a)Z.

This implies that we will have K′ ∼= K ⊕ Z/aZ exactly if

(Z/r0Z)2 ⊕ Z/(dn + a)Z⊕ Z/(dn(dn/a+ 1))Z ∼= (Z/r′0Z)2 ⊕ Z/dnZ⊕ Z/aZ.

Since r0 is equal to lcm(d1, d2, . . . , dn−1) by Lemma 2, we have that

r′0 = lcm(d1, d2, . . . , dn−1, dn + a, dn(dn + a)/a)

= lcm(r0, dn + a, dn(dn + a)/a)

= lcm(r0, dn(dn + a)/a)

= dn lcm(r0/dn, dn/a+ 1)

= r0(dn/a+ 1),

where the last equality holds by the assumption that gcd(r0/dn, dn/a+1) = 1. Therefore
we need to show that

(Z/r0Z)2⊕Z/(dn+a)Z⊕Z/(dn(dn/a+1))Z ∼= (Z/r0(dn/a+1)Z)2⊕Z/dnZ⊕Z/aZ. (3)

the electronic journal of combinatorics 31(1) (2024), #P1.5 14



Let b = gcd(r0, dn/a + 1). Since we have assumed that gcd(r0/dn, dn/a + 1) = 1, we
also have gcd(dn, dn/a + 1) = b, and in particular b | a. We consider the primary factors
associated to both sides of (3) for each prime p | r′0 = r0(dn/a+ 1). Let pα be the largest
power of p dividing r0, p

β be the largest power of p dividing dn, p
γ be the largest power

of p dividing a, and pδ be the largest power of p dividing dn/a + 1. The primary factors
associated to p of the left side of (3) are given by

(Z/pαZ)2 ⊕ Z/pγ+δZ⊕ Z/pβ+δZ,

and those factors of the right side of (3) are given by

(Z/pα+δZ)2 ⊕ Z/pβZ⊕ Z/pγZ.

We now show that the primary factors of the sides of (3) agree by checking cases.

• If p | b, then p also divides r0, dn, a, and dn/a+ 1. Since gcd(r0/dn, dn/a+ 1) = 1,
it must be the case that α = β. Furthermore, since p | (dn/a + 1) and p | dn, we
must have that β = γ. Therefore the primary factors of associated to p of both
sides of (3) are (Z/pαZ)2 ⊕ (Z/pα+δZ)2.

• If p | dn but p ∤ b, then p ∤ (dn/a + 1). Therefore δ = 0 and the primary factors
associated to p of both sides of (3) are (Z/pαZ)2 ⊕ Z/pβZ⊕ Z/pγZ.

• If p | r0 but p ∤ dn, then p | (r0/dn). Since gcd(r0/dn, dn/a + 1) = 1, this means
p ∤ (dn/a + 1). Therefore we have β = γ = δ = 0 and thus get (Z/pαZ)2 as the
primary factors of both sides of (3).

• If p ∤ r0 and p | (dn/a+1), then α = β = γ = 0 and we get (Z/pδZ)2 as the primary
factors of both sides of (3).

Beginning with an arithmetical structure that has a trivial critical group and satisfies
the conditions of the theorem for some a and dn, we can obtain a structure with a cyclic
critical group Z/aZ. For example, the critical group associated to 󰁥d = (2, 3, 11, 15, 110)
is trivial and we can take d5 = 110 and a = 5. Since r0 = 330 for this example,
we can compute that gcd(330/110, 110/5 + 1) = gcd(3, 23) = 1, and thus D5

󰀃󰁥d
󰀄

=
(2, 3, 11, 15, 115, 2530) has critical group Z/5Z.

We state the following immediate corollary of Theorem 13.

Corollary 14. Suppose 󰁥d = (d1, . . . , dn−1, dn) determines an arithmetical structure on Sn

with r0 = dn and critical group K. For any integer a that divides dn, the vector Da

󰀃󰁥d
󰀄

determines an arithmetical structure on Sn+1 with critical group K′ ∼= K ⊕ Z/aZ and

lcm
󰀃
Da

󰀃󰁥d
󰀄󰀄

= dn(dn + a)/a.

Proof. If r0 = dn, then r0/dn = 1, so the hypotheses of Theorem 13 are trivially satisfied.

Therefore the critical group of the structure determined by Da

󰀃󰁥d
󰀄
is K′ ∼= K ⊕ Z/aZ.

Also, lcm
󰀃
Da

󰀃󰁥d
󰀄󰀄

= lcm(dn, dn + a, dn(dn + a)/a) = dn(dn + a)/a.
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Using the construction from Section 4.1, we obtain the following proposition.

Proposition 15. Consider the set of Sylvester primes SP [19, A126263], i.e. those
primes that divide some number in Sylvester’s sequence. For any product c =

󰁔
pi of

distinct primes pi ∈ SP, the cyclic group Z/cZ can be realized as a critical group of an
arithmetical structure on Sn and Kn for some n.

Proof. Suppose pi is a Sylvester prime dividing smi
, themi-th term of Sylvester’s sequence.

Consider the arithmetical structure on Sn from Example 12 with n = max(mi)+1. Since
smi

must divide dn for each i, we have that c =
󰁔

pi also divides dn. Since r0 = dn
for this structure and the critical group is trivial, we can use Corollary 14 to see that
Dc

󰀃󰁥d
󰀄
= (d1, . . . , dn−1, dn + c, dn(dn + c)/c) is an arithmetical structure on Sn+1 with

critical group Z/cZ. We have d0 = 1 from the construction in Example 12, so therefore

we can apply the star-clique operation to Dc

󰀃󰁥d
󰀄
to obtain an arithmetical structure on

Kn+1 with critical group Z/cZ.

For example, 13 is a Sylvester prime dividing s6 = 3263442. Therefore, one way to
attain Z/13Z as a critical group is to start with the arithmetical structure

󰁥d = (2, 3, 7, 43, 1807, 3263443, 10650056950806),

which has trivial critical group, and do the above construction with a = 13 to get

D13

󰀃󰁥d
󰀄
= (2, 3, 7, 43, 1807, 3263443, 10650056950819, 8724901004273049618800778),

which has critical group Z/13Z.
Since the terms of Sylvester’s sequence are coprime to each other, there are infinitely

many Sylvester primes, and thus Proposition 15 shows we can obtain infinitely many
cyclic groups as critical groups of arithmetical structures on star graphs.

4.3 High-rank groups

When looking at which noncyclic groups might appear as critical groups of arithmetical
structures on Sn, we can bound the number of generators of a critical group in the following
way.

Proposition 16. Let n 󰃍 2. Given an arithmetical structure on Sn or Kn, the invariant
factor decomposition of the corresponding critical group can have at most n−2 components.
Moreover, this bound is sharp.

Proof. For star graphs, the proof of Theorem 1 shows that D1(B(d)) = D2(B(d)) = 1.
This implies that α1 = α2 = 1, which means the invariant factor decomposition of the
critical group has at most n − 2 components. Because all arithmetical structures on Kn

correspond to arithmetical structures on Sn with the same critical group, the same result
holds for Kn.

We can show that this bound is sharp by considering the Laplacian arithmetical struc-
ture r = 1 on Kn, which is well known to have critical group (Z/nZ)n−2. The correspond-

ing arithmetical structure on Sn, determined by 󰁥d = (n, n, . . . , n), also has critical group
(Z/nZ)n−2.
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To obtain more examples of higher-rank critical groups, we consider the Da construc-
tion of the previous subsection and note that if a | dn then a | dn(dn+ a)/a. Therefore we
can inductively use this construction to add multiple copies of Z/aZ to a critical group.

As an example, starting with the arithmetical structure on S2 determined by 󰁥d = (2, 2)
and repeatedly applying the construction with a ∈ {1, 2} we can obtain arithmetical
structures with critical group (Z/2Z)m on Sn for each m ∈ {0, 1, . . . , n−2}. Because each
of these structures has d0 = 1, this result also translates to Kn.

For example, if we want to attain (Z/2Z)n−2 on Sn for each n, we would use a = 2
repeatedly to obtain the following sequence of arithmetical structures.

n 󰁥d K
2 (2, 2) trivial group
3 (2, 4, 4) Z/2Z
4 (2, 4, 6, 12) (Z/2Z)2
5 (2, 4, 6, 14, 84) (Z/2Z)3
6 (2, 4, 6, 14, 86, 3612) (Z/2Z)4

This construction generalizes and allows us to construct many more examples of critical
groups associated to star and complete graphs. For example, starting with 󰁥d = (3, 3, 3)
we can obtain the following critical groups on Sn:

• (Z/3Z)m for all m ∈ [n− 2], and

• (Z/3Z)m3 ⊕ (Z/2Z)m2 for all m3 ∈ {2, 3, . . . , n− 2} and m2 ∈ {0, 1, . . . , n− 4}.

From 󰁥d = (2, 5, 5, 10), we can get (Z/2Z)m2 ⊕ (Z/5Z)m5 for all m2 ∈ {0, 1, . . . , n− 4}
and m5 ∈ {1, 2, . . . , n− 3}.

Recall that for a finite abelian group
󰁏t

k=1 Z/mkZ the exponent of the group is defined
to be lcm(m1,m2, . . . ,mt). As a full generalization of the ideas of this section, we obtain
the following result.

Proposition 17. Suppose G is a finite abelian group of exponent e. If there exists a set
{di}ni=1 of pairwise relatively prime integers such that

󰁓n
i=1

1
di
+ 1󰁔n

i=1 di
= 1 and e divides󰁔n

i=1 di, then there is an arithmetical structure on a star graph with critical group G.

Proof. It follows from the hypotheses that 󰁥d = (d1, d2, . . . , dn,
󰁔

di) defines an arithmeti-
cal structure on Sn+1 with trivial critical group.

Let G be a finite abelian group whose exponent is e, so that in particular we can write
G ∼=

󰁏t
k=1 Z/akZ, where at | e and ak | ak+1 for all k ∈ [t−1]. We recall from Corollary 14

that Dat

󰀃󰁥d
󰀄
gives an arithmetical structure on Sn+2 with critical group Z/atZ. Moreover,

Dat

󰀃󰁥d
󰀄
will be a vector whose last entry is the least common multiple of the other entries.

We can use the operation repeatedly and obtain that

Da1

󰀃
Da2

󰀃
· · ·

󰀃
Dat

󰀃󰁥d
󰀄󰀄

· · ·
󰀄󰀄

gives an arithmetical structure on Sn+t+1 with critical group G.
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As an example, consider 󰁥d = (2, 3, 11, 23, 31, 47058). The group

H = (Z/2Z)3 ⊕ (Z/11Z)2 ⊕ Z/31Z

has exponent 2 · 11 · 31 = 682 | 47058, and we can write H = Z/2Z ⊕ Z/22Z ⊕ Z/682Z.
Therefore, we can compute

D2

󰀃
D22

󰀃
D682

󰀃󰁥d
󰀄󰀄󰀄

= D2(D22(D682(2, 3, 11, 23, 31, 47058)))

= D2(D22(2, 3, 11, 23, 31, 47740, 3294060))

= D2(2, 3, 11, 23, 31, 47740, 3294082, 493222897860),

which equals

(2, 3, 11, 23, 31, 47740, 3294082, 493222897862, 121634413487201219187660).

Thus we have constructed an arithmetical structure with critical group H.
It was conjectured in [6] (and was originally stated as a question by Erdős) that for

any set of pairwise relatively prime integers {di}ki=1 with
󰁓k

i=1
1
di

< 1 there exists an
integer m > k and integers {di}mi=k+1 such that the {di}mi=1 are pairwise relatively prime
and

󰁓m
i=1

1
di
+ 1󰁔m

i=1 di
= 1. The k = 1 case of this conjecture combined with Proposition 17

would answer Question 11 in the affirmative.

4.4 Products of groups

Let d′ be an arithmetical structure on Sn with critical group K′ and d′′ an arithmetical
structure on Sm with critical group K′′. Consider the structure obtained by taking 󰁥d to
be the concatenation of 󰁥d′ and 󰁦d′′. It is clear that the sum of the reciprocals of the entries
of 󰁥d will be an integer (and that the value of d0 will be the sum of d′0 and d′′0) and therefore

that 󰁥d defines an arithmetical structure on Sm+n. Moreover, from Theorem 1 we have
that

K ⊕ (Z/r0Z)2 ∼=
n+m󰁐

i=1

Z/diZ

∼=

󰀣
n󰁐

i=1

Z/d′iZ

󰀤
⊕

󰀣
m󰁐

i=1

Z/d′′iZ

󰀤

∼= K′ ⊕ (Z/r′0Z)2 ⊕K′′ ⊕ (Z/r′′0Z)2.

The set of entries of 󰁥d is the union of the sets of entries in 󰁥d′ and 󰁦d′′, so therefore
r0 = lcm(r′0, r

′′
0). Since for any two positive integers a and b we have that Z/aZ⊕Z/bZ ∼=

(Z/ lcm(a, b)Z)⊕ (Z/ gcd(a, b)Z), it follows that

K ∼= K′ ⊕K′′ ⊕ (Z/ gcd(r′0, r′′0)Z)2.

Noting that the least common multiple of the d-values on the leaves is the r-value on the
central vertex, this implies that if we have two arithmetical structures on Sm and Sn whose
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r-values at their respective central vertices are relatively prime then we can obtain a new
arithmetical structure on Sm+n whose critical group is the direct sum of the individual
critical groups. However, this new structure will have a d-value greater than 1 at the
central vertex and therefore these constructions do not translate to complete graphs.

For example, if we take the structure d′ = (3, 3, 7, 7, 21, 1) with r′ = (7, 7, 3, 3, 1, 21)
and the structure d′′ = (2, 5, 5, 10, 1) with r′′ = (5, 2, 2, 1, 10), we have that K′ = Z/21Z
and K′′ = Z/5Z. Consider the structure given by d = (3, 3, 7, 7, 21, 2, 5, 5, 10, 2) with
r = (70, 70, 30, 30, 10, 105, 42, 42, 21, 210). It follows from the above argument that the
critical group of this structure is K ∼= K′ ⊕K′′ ∼= Z/105Z.
Remark 18. Not every arithmetical structure on Sn with d0 󰃍 2 comes from two or
more smaller structures in the manner described above. For example, the structure with
󰁥d = (2, 3, 3, 5, 5, 5, 5, 30) on S8 has d0 = 2, but there is no way to realize this as a

concatenation of two other 󰁥d-structures on smaller star graphs.

4.5 Every group is the subgroup of a critical group

In this subsection, we show that while we cannot yet prove that every finite abelian group
appears as a critical group of an arithmetical structure on a star graph, it is the case that
we can obtain every group as a subgroup.

Proposition 19. Given any finite abelian group G, there is some n and some arithmetical
structure (d, r) on Sn such that G 󰃑 K(Sn;d, r).

Proof. Let G be a finite abelian group, let
󰁏m

i=1 Z/p
ei
i Z be its primary decomposition,

and let r0 = lcm(pe11 , pe22 , . . . , pemm ). Note that there are some nonnegative integers k and ℓ
such that

kr0 = 2 + ℓ+
m󰁛

i=1

r0
peii

.

Indeed, one can take

k =

󰀛󰀕
2 +

m󰁛

i=1

r0
peii

󰀖 󰀱
r0

󰀜
and ℓ = kr0 −

m󰁛

i=1

r0
peii

− 2.

In this case, we can take n = m+ 2+ ℓ and let the arithmetical structure be given by d-
values di = pi

ei for i ∈ [m], di = r0 for i ∈ {m+1,m+2, . . . , n}, and d0 = k, and r-values
r0 = lcm(pe11 , pe22 , . . . , pemm ), ri = r0/p

ei
i for i ∈ [m], and ri = 1 for i ∈ {m+1,m+2, . . . , n}.

In this case, by Proposition 7, the critical group is K(Sn;d, r) ∼= G⊕ (Z/r0Z)ℓ.

The proof of this proposition shows that something stronger is actually true. For any
finite abelian group G, there is some other finite abelian group H such that G⊕H appears
as a critical group of some arithmetical structure on a star graph.

In general, the ℓ from the proof of Proposition 19 can be large. For example, if
we use this approach to find an arithmetical structure on a star graph whose critical
group contains G = (Z/10Z)2 ⊕ Z/25Z ⊕ Z/3Z, we would take n = 68 together with
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r = (15, 15, 6, 50, 1, 1, . . . , 1, 150) and d = (10, 10, 25, 3, 150, 150, . . . , 150, 1). In this case,
the critical group would be

K(S68;d, r) ∼= (Z/10Z)2 ⊕ Z/25Z⊕ Z/3Z⊕ (Z/150Z)62.

Proposition 20. Suppose (d, r) is an arithmetical structure on Sn for n 󰃍 1. Define
(d′, r′) by setting d′i = d0di and r′i = ri for all i ∈ [n], d′0 = 1, and r′0 = d0r0. We have
that (d′, r′) is an arithmetical structure on Sn and K(Sn;d, r) 󰃑 K(Sn;d

′, r′).

Proof. It is straightforward to check that (d′, r′) is an arithmetical structure on Sn.
Let αk be the invariant factors of K(Sn;d, r), and let α′

k be the invariant factors of
K(Sn;d

′, r′). Since d′i = d0di for all i ∈ [n], we have that Dk(B(d′)) = dk−2
0 Dk(B(d)) for

all k ∈ {3, 4, . . . , n} and D1(B(d′)) = D2(B(d′)) = 1. If follows that α′
k = d0αk for all

k ∈ {3, 4, . . . , n} and that α′
1 = α1 = 1 and α′

2 = α2 = 1. Therefore αk divides α′
k for all

k ∈ [n], so K(Sn;d, r) 󰃑 K(Sn;d
′, r′).

For example, suppose d = (1, 2, 2, 3, 3, 6, 6, 3) and r = (6, 3, 3, 2, 2, 1, 1, 6). In this case,
the critical group is

K(S7;d, r) ∼= (Z/1Z)⊕ (Z/2Z)2 ⊕ (Z/3Z)2 ∼= (Z/1Z)3 ⊕ (Z/6Z)2.

If we set r′0 = 3 · 6 = 18, then we get d′ = (3, 6, 6, 9, 9, 18, 18, 1) and

K(S7,d
′, r′) ∼= (Z/3Z)⊕ (Z/6Z)2 ⊕ (Z/9Z)2 ∼= (Z/3Z)3 ⊕ (Z/18Z)2.

Proposition 21. Given any finite abelian group G, there is some n and some arithmetical
structure (d, r) on Kn such that G 󰃑 K(Kn;d, r).

Proof. First apply Proposition 19 to get an arithmetical structure (d, r) on Sn for which
G 󰃑 K(Sn;d, r). Then apply Proposition 20 to get K(Sn;d, r) 󰃑 K(Sn;d

′, r′) for an
arithmetical structure (d′, r′) on Sn with d′0 = 1. Finally use the star-clique operation to
get an arithmetical structure (d′′, r′′) on Kn with K(Kn;d

′′, r′′) ∼= K(Sn;d
′, r′). We then

have that G 󰃑 K(Kn;d
′′, r′′).

4.6 Largest critical group

Let us consider the following question.

Question 22. What is the largest order of a critical group of an arithmetical structure
on Sn (and on Kn)?

For n ∈ {2, 3, 4, 5, 6, 7}, a brute force computation finds the largest order of a critical
group of an arithmetical structure on Sn (and on Kn), shown in the following table.

n 2 3 4 5 6 7
largest order 1 3 16 128 5292 9784908
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Let an be the sequence defined by the recursion an = a2n−1 + an−1 with a1 = 1. This
sequence is described at [19, A007018]. The first few terms are

1, 2, 6, 42, 1806, 3263442, 10650056950806, 113423713055421844361000442, . . . .

Note that this sequence is exactly {sn − 1}, where sn is the n-th term of Sylvester’s
sequence. Equivalently, an =

󰁔n−1
i=1 si.

Theorem 23. If K is a critical group of an arithmetical structure on Sn (or Kn) for
n 󰃍 2, then |K| < n!

2
a2n−2.

Proof. If d0 > 1, then by Proposition 20 there is an arithmetical structure with d0 = 1
that has a larger order critical group. Therefore the largest order critical group associated
to Sn will come from an arithmetical structure with d0 = 1 and will also be the largest
order critical group associated to Kn.

Assuming d1 󰃑 d2 󰃑 · · · 󰃑 dn, we must have di 󰃑 (n − i + 1)ai since the sum of the
first i − 1 unit fractions cannot be closer than 1/ai to the next integer (as shown in [8])

and otherwise we would not be able to reach the next integer. Since |K| =
󰁔n

i=1 di
r20

and

dn 󰃑 r0, we have that

|K| 󰃑
n−2󰁜

i=1

((n− i+ 1)ai) =
n!

2

n−2󰁜

i=1

ai.

Notice that
󰁔n−2

i=1 ai = an−2

󰁔n−3
i=1 ai < a2n−2. Therefore, we have that |K| < n!

2
a2n−2.

The sequence an grows doubly exponentially (much faster than n!), and we see from
the next example that the largest order of a critical group does indeed grow doubly
exponentially with respect to n.

Consider the arithmetical structure on Sn with

󰁥d = (a1 + 1, a2 + 1, . . . , an−3 + 1, 3an−2, 3an−2, 3an−2).

The arithmetical structure given by 󰁥d′ = (a1 + 1, a2 + 1, . . . , an−3 + 1, an−2) is exactly
the structure on Sn−2 from Example 12, which means that

󰁔n−3
i=1 (ai + 1) = an−2. Since

1
an−2

= 1
3an−2

+ 1
3an−2

+ 1
3an−2

, we have that 󰁥d gives a valid structure on Sn. Since r0 = 3an−2,

we know from Theorem 1 that the order of the critical group associated to 󰁥d is

|K| =
󰁔n

i=1 di
r20

=
an−2(3an−2)

3

(3an−2)2
= 3a2n−2.

We conjecture that this is the largest order critical group associated to Sn for sufficiently
large n.

Conjecture 24. For n 󰃍 6, the largest order of a critical group of an arithmetical
structure on Sn (or on Kn) is 3a

2
n−2.
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Consider the arithmetical structure on Sn determined by

󰁥d = (a1 + 1, a2 + 1, . . . , an−2 + 1, 2an−1, 2an−1).

This gives an arithmetical structure since it is obtained from the structure on Sn−1 in
Example 12 by 1

an−1
= 1

2an−1
+ 1

2an−1
. Using Theorem 1 and that an−1 =

󰁔n−2
i=1 (ai + 1)

(with coprime factors), we can see that the critical group is the cyclic group Z/an−1Z.
We conjecture that this is the largest cyclic critical group associated to Sn.

Conjecture 25. For n 󰃍 4, the largest cyclic group that can be realized as a critical
group of an arithmetical structure on Sn (or on Kn) is Z/an−1Z.

4.7 Number of critical groups associated to Sn

Let us now consider the following question.

Question 26. For a given n 󰃍 2, how many distinct abelian groups (up to isomorphism)
appear as critical groups associated to Sn?

Let CG(G) be the set of critical groups associated to the graph G. Using the clique-
star operation, we know that CG(Kn) ⊆ CG(Sn). For n ∈ {2, 3, 4, 5, 6, 7}, brute force
computation tells us that CG(Sn) = CG(Kn) as sets; the cardinality of these sets is given
below.

n 2 3 4 5 6 7
|CG(Sn)| 1 3 10 56 574 20420

Clearly, |CG(Sn)| is bounded above by the number of arithmetical structures on Sn

([19, A156871]) and |CG(Kn)| is bounded above by the number of arithmetical structures
on Kn ([19, A002966]), both of which grow doubly exponentially. We show an exponential
lower bound for |CG(Sn)| below.

Proposition 27. For n 󰃍 2, we have |CG(Sn)| 󰃍 2n−2.

Proof. First note that |CG(S2)| = 1. We will show that, for each n 󰃍 2, we have
|CG(Sn+1)| 󰃍 2|CG(Sn)|.

Notice that each critical group realized on Sn is also realized on Sn+1. Specifically,
if 󰁥d = (d1, d2, . . . , dn) determines an arithmetical structure on Sn with critical group K,

then 󰁥d′ = (1, d1, d2, . . . , dn) determines an arithmetical structure on Sn+1 with the same
critical group K. By Proposition 16, these critical groups have at most n − 2 invariant
factors.

Now, let us see that we can also obtain at least |CG(Sn)| critical groups associated to
Sn+1 with n− 1 invariant factors. Consider any arithmetical structure (d, r) on Sn with
critical group K ∼=

󰁏n
k=3 Z/αkZ. By Theorem 1, it must be the case that

K ⊕ (Z/r0Z)2 ∼=

󰀣
n󰁐

k=3

Z/αkZ

󰀤
⊕ (Z/r0Z)2 ∼=

n󰁐

i=1

Z/diZ.
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We have that 󰁥d′ = (d0 + 1, d1(d0 + 1), d2(d0 + 1), . . . , dn(d0 + 1)) also determines an
arithmetical structure on Sn+1. Note that r′0 = r0(d0 + 1). By Theorem 1, this structure
has critical group K′, where

K′ ⊕ (Z/r0(d0 + 1)Z)2 ∼= Z/(d0 + 1)Z⊕
󰀣

n󰁐

i=1

Z/di(d0 + 1)Z

󰀤
.

As
n󰁐

i=1

Z/di(d0 + 1)Z ∼=

󰀣
n󰁐

k=3

Z/αk(d0 + 1)Z

󰀤
⊕ (Z/r0(d0 + 1)Z)2,

this implies that the invariant factor decomposition of K′ is

Z/(d0 + 1)Z⊕
󰀣

n󰁐

k=3

Z/αk(d0 + 1)Z

󰀤
.

Since groups in the first collection have a different number of invariant factors from
those in the second collection, we have that |CG(Sn+1)| 󰃍 2|CG(Sn)|, as desired.

Acknowledgements

We would like to thank ICERM for their support through the Collaborate@ICERM pro-
gram. Alexander Diaz-Lopez’s research is supported by National Science Foundation
grant DMS-2211379. Joel Louwsma was partially supported by a Niagara University
Summer Research Award.

References

[1] P. Anne, Egyptian fractions and the inheritance problem, College Math. J. 29 (1998),
no. 4, 296–300. doi:10.2307/2687685

[2] R. Arce-Nazario, F. Castro, and R. Figueroa, On the number of solutions of󰁓11
i=1

1
xi

= 1 in distinct odd natural numbers, J. Number Theory 133 (2013), no. 6,
2036–2046. doi:10.1016/j.jnt.2012.11.011

[3] K. Archer, A. C. Bishop, A. Diaz-Lopez, L. D. Garćıa Puente, D. Glass, and
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Appendix A Critical groups associated to small star graphs

Here we list all groups that appear as critical groups on Sn for n ∈ {2, 3, 4, 5, 6}. For each
of these values of n, the same groups that appear as critical groups associated to Sn also
appear as critical groups associated to Kn.

Critical groups associated to S2

The 1 group that occurs is the trivial group.

Critical groups associated to S3

The 3 groups that occur are the trivial group, Z/2Z, and Z/3Z.

Critical groups associated to S4

The 10 groups that occur are:

• Cyclic groups, Z/mZ, for m in the list: 1, 2, 3, 5, 6.

• Groups with two invariant factors,

Z/m1Z⊕ Z/m2Z,

for (m1,m2) in the list:

(2,2), (2,4), (2,6), (3,3), (4,4).

Critical groups associated to S5

The 56 groups that occur are:

• Cyclic groups, Z/mZ, for m in the list:

1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 18, 21, 42.

• Groups with two invariant factors,

Z/m1Z⊕ Z/m2Z,

for (m1,m2) in the list:

(2, 2), (2, 4), (2, 6), (2, 8), (2, 10), (2, 12), (2, 14), (2, 20), (2, 24),
(2, 3), (3, 3), (3, 6), (3, 9), (3, 12), (3, 15), (3, 18), (4, 4), (4, 12),
(5, 5), (5, 10), (6, 6), (6, 12), (6, 18), (7, 7), (10, 10).
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• Groups with three invariant factors,

Z/m1Z⊕ Z/m2Z⊕ Z/m3Z,

for (m1,m2,m3) in the list:

(2, 2, 2), (2, 2, 4), (2, 2, 6), (2, 2, 10), (2, 2, 12), (2, 4, 4), (2, 4, 8), (2, 4, 12),
(2, 6, 6), (2, 8, 8), (3, 3, 3), (3, 3, 6), (3, 3, 9), (3, 6, 6), (4, 4, 4), (5, 5, 5).

Critical groups associated to S6

The 574 groups that occur are:

• Cyclic groups Z/mZ for m in the list:

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14,
15, 17, 18, 20, 21, 22, 23, 24, 25, 26, 28, 30, 31,
33, 34, 35, 38, 39, 41, 42, 43, 45, 46, 50, 51, 54,
55, 57, 58, 59, 60, 65, 66, 70, 75, 77, 78, 82, 84,
85, 86, 87, 90, 93, 94, 95, 98, 102, 105, 106, 110, 111,
114, 120, 129, 130, 133, 138, 141, 150, 154, 156, 161, 203, 210,
231, 238, 255, 258, 301, 329, 399, 462, 525, 546, 602, 903, 1806.

• Groups with two invariant factors,

Z/m1Z⊕ Z/m2Z,

for (m1,m2) in the list:

(2, 2), (2, 4), (2, 6), (2, 8), (2, 10), (2, 12), (2, 14), (2, 16),
(2, 18), (2, 20), (2, 22), (2, 24), (2, 26), (2, 28), (2, 30), (2, 34),
(2, 36), (2, 38), (2, 40), (2, 42), (2, 44), (2, 46), (2, 48), (2, 50),
(2, 52), (2, 54), (2, 56), (2, 60), (2, 62), (2, 64), (2, 66), (2, 68),
(2, 70), (2, 74), (2, 78), (2, 80), (2, 84), (2, 86), (2, 88), (2, 90),
(2, 92), (2, 100), (2, 102), (2, 110), (2, 112), (2, 114), (2, 116), (2, 120),
(2, 124), (2, 132), (2, 138), (2, 140), (2, 150), (2, 154), (2, 156), (2, 168),
(2, 170), (2, 174), (2, 182), (2, 200), (2, 210), (2, 230), (2, 300), (2, 308),
(2, 322), (2, 336), (2, 350), (2, 420), (2, 462), (2, 600), (2, 924), (2, 966),
(3, 3), (3, 6), (3, 9), (3, 12), (3, 15), (3, 18), (3, 21), (3, 24),
(3, 27), (3, 30), (3, 33), (3, 39), (3, 42), (3, 45), (3, 51), (3, 54),
(3, 57), (3, 60), (3, 63), (3, 66), (3, 69), (3, 75), (3, 78), (3, 87),
(3, 90), (3, 99), (3, 102), (3, 105), (3, 114), (3, 117), (3, 120), (3, 126),

the electronic journal of combinatorics 31(1) (2024), #P1.5 26



(3, 156), (3, 165), (3, 171), (3, 210), (3, 231), (3, 315), (3, 342), (3, 357),
(3, 630), (4, 4), (4, 12), (4, 20), (4, 24), (4, 28), (4, 36), (4, 48),
(4, 60), (4, 84), (5, 5), (5, 10), (5, 15), (5, 20), (5, 25), (5, 30),
(5, 35), (5, 45), (5, 50), (5, 55), (5, 60), (5, 65), (5, 75), (5, 90),
(5, 110), (6, 6), (6, 12), (6, 18), (6, 24), (6, 30), (6, 36), (6, 42),
(6, 48), (6, 54), (6, 60), (6, 66), (6, 72), (6, 78), (6, 84), (6, 90),
(6, 108), (6, 126), (6, 132), (6, 156), (6, 168), (6, 180), (6, 198), (6, 210),
(6, 216), (6, 336), (6, 378), (7, 7), (7, 14), (7, 21), (7, 35), (7, 42),
(7, 49), (7, 70), (7, 77), (7, 91), (7, 98), (7, 147), (7, 294), (8, 24),
(9, 9), (9, 18), (10, 10), (10, 20), (10, 30), (10, 40), (10, 50), (10, 60),
(10, 70), (10, 100), (11, 22), (12, 12), (12, 24), (12, 36), (12, 48), (12, 60),
(13, 13), (13, 26), (13, 39), (13, 78), (14, 14), (14, 28), (14, 42), (14, 56),
(14, 70), (14, 84), (14, 98), (14, 168), (14, 210), (15, 15), (15, 30), (15, 45),
(17, 17), (18, 18), (18, 36), (19, 19), (20, 20), (21, 21), (21, 42), (21, 63),
(21, 105), (21, 126), (22, 22), (22, 66), (24, 24), (26, 26), (30, 30), (33, 33),
(42, 42), (42, 84), (42, 126).

• Groups with three invariant factors,

Z/m1Z⊕ Z/m2Z⊕ Z/m3Z,

for (m1,m2,m3) in the list:

(2, 2, 2), (2, 2, 4), (2, 2, 6), (2, 2, 8), (2, 2, 10), (2, 2, 12),
(2, 2, 14), (2, 2, 16), (2, 2, 18), (2, 2, 20), (2, 2, 22), (2, 2, 24),
(2, 2, 26), (2, 2, 28), (2, 2, 30), (2, 2, 34), (2, 2, 36), (2, 2, 38),
(2, 2, 40), (2, 2, 42), (2, 2, 44), (2, 2, 48), (2, 2, 50), (2, 2, 52),
(2, 2, 56), (2, 2, 60), (2, 2, 66), (2, 2, 68), (2, 2, 70), (2, 2, 76),
(2, 2, 78), (2, 2, 80), (2, 2, 84), (2, 2, 90), (2, 2, 102), (2, 2, 104),
(2, 2, 110), (2, 2, 120), (2, 2, 130), (2, 2, 132), (2, 2, 140), (2, 2, 156),
(2, 2, 220), (2, 2, 240), (2, 2, 312), (2, 4, 4), (2, 4, 8), (2, 4, 12),
(2, 4, 20), (2, 4, 24), (2, 4, 28), (2, 4, 32), (2, 4, 36), (2, 4, 40),
(2, 4, 44), (2, 4, 48), (2, 4, 52), (2, 4, 56), (2, 4, 60), (2, 4, 72),
(2, 4, 80), (2, 4, 84), (2, 4, 120), (2, 4, 140), (2, 4, 168), (2, 6, 6),
(2, 6, 12), (2, 6, 18), (2, 6, 24), (2, 6, 30), (2, 6, 36), (2, 6, 42),
(2, 6, 54), (2, 6, 60), (2, 6, 84), (2, 6, 90), (2, 6, 120), (2, 8, 8),
(2, 8, 16), (2, 8, 24), (2, 8, 32), (2, 8, 40), (2, 8, 48), (2, 8, 56),
(2, 8, 96), (2, 8, 120), (2, 10, 10), (2, 10, 20), (2, 10, 30), (2, 10, 50),
(2, 10, 60), (2, 12, 12), (2, 12, 24), (2, 12, 36), (2, 12, 48), (2, 12, 60),
(2, 12, 72), (2, 14, 14), (2, 14, 28), (2, 14, 42), (2, 16, 16), (2, 16, 48),
(2, 18, 18), (2, 20, 20), (2, 20, 40), (2, 20, 60), (2, 24, 24), (2, 24, 48),
(2, 24, 72), (2, 28, 28), (2, 30, 30), (3, 3, 3), (3, 3, 6), (3, 3, 9),
(3, 3, 12), (3, 3, 15), (3, 3, 18), (3, 3, 21), (3, 3, 27), (3, 3, 30),
(3, 3, 33), (3, 3, 39), (3, 3, 42), (3, 3, 45), (3, 3, 54), (3, 3, 60),
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(3, 3, 63), (3, 3, 126), (3, 6, 6), (3, 6, 12), (3, 6, 18), (3, 6, 24),
(3, 6, 30), (3, 6, 36), (3, 6, 42), (3, 6, 60), (3, 6, 72), (3, 6, 90),
(3, 9, 9), (3, 9, 18), (3, 9, 27), (3, 9, 45), (3, 9, 54), (3, 12, 12),
(3, 12, 24), (3, 12, 36), (3, 15, 15), (3, 15, 30), (3, 18, 18), (3, 18, 36),
(3, 18, 54), (3, 21, 21), (3, 30, 30), (4, 4, 4), (4, 4, 8), (4, 4, 12),
(4, 4, 20), (4, 4, 24), (4, 8, 8), (4, 12, 12), (5, 5, 5), (5, 5, 10),
(5, 5, 15), (5, 5, 25), (5, 5, 30), (5, 10, 10), (5, 10, 20), (5, 10, 30),
(6, 6, 6), (6, 6, 12), (6, 6, 18), (6, 6, 30), (6, 6, 36), (6, 12, 12),
(6, 12, 24), (6, 12, 36), (6, 18, 18), (6, 24, 24), (7, 7, 7), (7, 7, 14),
(7, 14, 14), (9, 9, 9), (10, 10, 10).

• Groups with four invariant factors

Z/m1Z⊕ Z/m2Z⊕ Z/m3Z⊕ Z/m4Z,

for (m1,m2,m3,m4) in the list:

(2, 2, 2, 2), (2, 2, 2, 4), (2, 2, 2, 6), (2, 2, 2, 10), (2, 2, 2, 12),
(2, 2, 2, 14), (2, 2, 2, 20), (2, 2, 2, 22), (2, 2, 2, 24), (2, 2, 2, 26),
(2, 2, 2, 28), (2, 2, 2, 30), (2, 2, 2, 36), (2, 2, 2, 42), (2, 2, 2, 84),
(2, 2, 4, 4), (2, 2, 4, 8), (2, 2, 4, 12), (2, 2, 4, 16), (2, 2, 4, 20),
(2, 2, 4, 24), (2, 2, 4, 28), (2, 2, 4, 40), (2, 2, 4, 48), (2, 2, 4, 60),
(2, 2, 6, 6), (2, 2, 6, 12), (2, 2, 6, 18), (2, 2, 6, 24), (2, 2, 6, 30),
(2, 2, 6, 36), (2, 2, 8, 8), (2, 2, 8, 24), (2, 2, 10, 10), (2, 2, 10, 20),
(2, 2, 12, 12), (2, 2, 12, 24), (2, 2, 12, 36), (2, 2, 14, 14), (2, 2, 20, 20),
(2, 4, 4, 4), (2, 4, 4, 8), (2, 4, 4, 12), (2, 4, 4, 20), (2, 4, 4, 24),
(2, 4, 8, 8), (2, 4, 8, 16), (2, 4, 8, 24), (2, 4, 12, 12), (2, 4, 16, 16),
(2, 6, 6, 6), (2, 6, 6, 12), (2, 6, 6, 18), (2, 6, 12, 12), (2, 8, 8, 8),
(2, 10, 10, 10), (3, 3, 3, 3), (3, 3, 3, 6), (3, 3, 3, 9), (3, 3, 3, 15),
(3, 3, 3, 18), (3, 3, 6, 6), (3, 3, 6, 12), (3, 3, 6, 18), (3, 3, 9, 9),
(3, 3, 12, 12), (3, 6, 6, 6), (4, 4, 4, 4), (4, 4, 4, 8), (4, 4, 4, 12),
(4, 4, 8, 8), (5, 5, 5, 5), (6, 6, 6, 6).
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