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Abstract

Combinatorial Game Theory is a branch of mathematics and theoretical com-
puter science that studies sequential 2-player games with perfect information. Nor-
mal play is the convention where a player who cannot move loses. Here, we generalize
the classical alternating normal play to infinitely many game families, by means of
discrete Richman auctions (Develin et al. 2010, Larsson et al. 2021, Lazarus et
al. 1996). We generalize the notion of a perfect play outcome and find an exact
characterization of outcome feasibility. As a main result, we prove the existence of
a game form for each such outcome class; then we describe their lattice structures.
By imposing restrictions to the general families, such as impartial and symmetric
termination, we find surprising analogies with alternating play.

Mathematics Subject Classifications: 91A46, 91A05

1 Introduction

Normal play combinatorial games are sequential games, usually played under the alter-
nating move convention, and where “a player who cannot move loses” [1, 2, 7]. Sometimes
this is expressed as “last move wins”. Of course, in alternating play, these statements are
equivalent when playing from a non-terminal position. The former is more intuitive from
a recreational play perspective, but the latter is the correct one from a recursive point
of view; the neutral element, the 0-game, has no move options for either player, so the
current player loses. Moreover, if 0 is the starting position, there is no “last player”. The
recursive point of view is fundamental to the theory in computing perfect play outcomes
via backward induction.

We generalize alternating play Combinatorial Game Theory (CGT) into an infinite
class of game families under the normal play convention, by combining the standard game
forms with a certain bidding convention, the so-called Richman auction [6]. As usual, the
players are called Left (female) and Right (male). If a game G is played by the discrete
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bidding convention [3, 5], then there is a total budget TB € Ny = {0, 1, ...} partitioned
between the players as (p, ¢), with p + ¢ = TB, and where Left’s part of the budget is p.
The player who bids more moves next, and if bids are equal, then a tie-breaker determines
the current player (as in standard CGT we identify ‘next’ with ‘current’).

At each stage of play, exactly one of the players holds a tie-breaker, a tie-breaking
marker, and this is denoted by (G,p) (Left holds the marker in the game G) or (G,p)
(if Right holds the marker). If a player wins a bid strictly, then this player hands over
the bidding amount to the other player and plays their move. If bids are equal, then the
player with the marker wins the bid, they play their move, and the marker together with
the bid, shifts over to the other player.

The marker holder can also choose to explicitly announce the marker with the bid.
In this case, if the marker holder wins the bid, they play their move, and the marker
together with the bid shifts to their opponent. This additional rule will be important
in restoring some familiar normal play properties. To illustrate this, consider the game
« = {0]0}. In this game, both Left and Right have only one option, which is to end the
game.! This game should be favourable to the currently ‘stronger’ player (first player in
alternating play). Without this rule, since no player wants the tie-breaker if they have
no move, the marker holder would benefit from a tie, and the other player would benefit
from a strict win or loss of the bid. This situation is a normal form (matrix) game with
no pure equilibrium. Thus, we cannot use any familiar tool from normal play theory. We
will also see that this additional rule establishes that “last move wins” is the same as
saying “cannot move loses”. Examples 2 and 3 in Section 3 elaborate on this theme.

The main results of this paper state that, given any total budget, a perfect play
outcome must satisfy a defined feasibility (Section 6). Moreover, each feasible outcome
class appears as the outcome of a bidding game (Section 7).

2 The basic set up

Given a total budget TB, let us define B = {0, ... ,TB,0,... ,TE}, the set of all feasible
player budgets. Here, the word “budget” includes the information of the marker holder.
A game is a triple (TB, G, p), where we take a note of Left’s part of the budget, p € B. If
TB is understood, we write (G, p). If we do not wish to specify p, we may write (TB, G)
or just G. Game forms are recursively defined, with G = {GE | GR}, where G* is the set
of all Left options and G* is the set of all Right options. If G* = @ or G® = & then
G is Left terminal or Right terminal, respectively, i.e., the current player, Left or Right,
cannot move. In the case when G* = G® = @, then G = 0 is terminal irrespective of
move order. A typical Left (Right) option of a game form G is written G* (G¥). In a
play situation, we include Left’s part of the budget in the notion of an option. Games
are finite and contain no cycles. That is, each game has finitely many options, and the
birthday (rank of game tree) is finite, implying that each play sequence is finite; this is

'Tn this paper, we use some of the well-known symbols from alternating normal play, such as *,1 and
so on [7]. Here, they refer to literal form games and never ‘game values’.
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also known as ‘short games’ [7]. The game H is a subgame/follower of a game G if there
exists a path of moves, perhaps empty, (in any order of play) from G to H.

A player obviously does not want to win a bid if they cannot move. Furthermore, if
they do not hold the marker, they must pass in any such situation; that is, they must bid
Zero.

Consider a non-terminal position (G, p) (Left holds the marker). There are four cases
to establish the next position:

e (G,p) — (GL,p/—\é); a Left move after bidding more, i.e. £ > r.

o (G,D) — (GL,p—0); a Left move after bidding more, i.e. £ > r, and including the
marker.

e (G,p) — (G*,p—(); a Left move after winning a tie, i.e. £ =r.
e (G,p) — (G%,p+7); a Right move after bidding more, i.e. £ < r.

Observe that in case of a tie, the marker is transferred. This automatic rule is at the
core of our generalization of alternating play. Namely, TB = 0 corresponds to alternating
normal play rules.

Theorem 1. Consider TB = 0. Then bidding play is identical to alternating play. The
current player is the player who holds the marker.

Proof. By the rules of bidding play, the marker holder shifts if the players tie a bid. Since
TB = 0, every bid is a tie, and the marker holder is the current player. O

In the classical continuous Richman auctions [6], the tie-breaker has infinitesimal value
with respect to any bid, and so the theory is not sensitive to variations on tie-breaker
transfer. We adopt a discrete bidding convention, which is more natural from a recre-
ational play point of view, but where the analysis of the tie-breaker becomes non-trivial.
In fact, the normal play winning implication in the first paragraph of this paper does not
hold a priori, and moreover ambiguity on a winning strategy may appear, so traditional
requirements for combinatorial games such as pure strategy subgame perfect equilibria
may break. With some care in picking a sound tie-breaking convention, this issue will
be remedied, so that standard backward induction techniques (Section 4) will produce
optimal outcomes that generalize normal play outcomes with new lattice structures (Sec-
tion 8).

3 Games in pure subgame perfect equilibria

Let us review why the tie-breaking rule used in [5] would require mixed strategies in
equilibrium in this study. A basic observation is that, independently of the specifics of
the rule, the O-game is losing for the player who holds the tie-breaking marker. Namely,
the player without the marker will bid 0 in a successful attempt to lose that bid. Indeed,
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this resembles alternating normal play, where the set of 0-games is the unique equivalence
class of zugzwang positions, where no player has an incentive to move.

Let us dwell a bit more on the choice of tie-breaker. Two motivating examples will
guide us further up the road.

Example 2. Consider TB = 2 and the game * = {0|0} under the Richman bidding
convention where the tie-breaker marker shifts player when used to resolve a tie, but not
otherwise. Suppose Left has budget $1 together with the marker. Both players have the
terminal game as their only option, and so both players prefer not to own the marker
at the next position. This means that Left wants a tie, but Right wants either player
to win the bid strictly. There are two possibilities for Left to reach her goal, and there
are two ways for Right. Namely Left prefers the bidding pair (1,1) or (0,0), whereas
Right initially wants (1,0) or (0,1). See Table 1. This situation violates the normal play
assertion: “last move wins” in case Left wins the bid by the bidding pair (1,0). She gets
the last move but loses the game.

Table 1: Consider the bidding convention in Example 2. The table displays the winner of
the game * = {0]0} on a total budget TB = 2, where the players own $1 each, and where
Left holds the tie-breaking marker. Rows and columns correspond to the initial bids of
Left and Right, respectively.

| Bids [0 [ 1]
0 |[L|R
1 |[R|L

Moreover, this bidding rule gives too much emphasis on the marker; both players’ goal
of the game would be to not hold the marker when the game ends, rather than focusing
on “who moves last”. But the marker was introduced merely as a device to resolve ties.
Hence, in this paper we will adapt the bidding convention in Example 3, where Left can
assure a win of the game * by going all in at the second last bid; the last move wins.

Example 3. We alter the bidding convention in Example 2, so that the marker holder,
here Left, may include the marker in her bid, and hand it over in case of winning the bid
strictly. In case of a tie, of course, the marker swap is still mandatory. With total budget
TB = 2, Left has four bidding alternatives to start with, as displayed in Table 2. The
final winner is displayed in each case, and depending on Right bidding $0 or $1. Note
that row 4 is better for Left than all other rows, regardless of Right’s choice of move, so
Left will start by bidding 1. She gets the last move and wins the game.

4 The first fundamental theorem of bidding play

Let us mention a couple of possibilities for discrete bidding and its tie-breaking marker:

(a) a player who wins the bid decides who is the current player;
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Table 2: The table displays the winner using the bidding convention in Example 3, and
otherwise the game configuration as in Table 1.

| Bids | 0| 1]
0 [L|R
1 |R|L
0 |L|R
1 [L|L

(b) a player who wins the bid is the current player;
(i) the marker alternates between the players;

(ii) the marker holder may include it in the bid,

)

)
(iii) the marker stays with one of the players;
(iv) the marker holder shifts if and only if it has been used to resolve a tie;
)

(v) if the marker holder wins the bid, the marker gets transferred.

In [3], they study the variation (a), and in [5], (b) is combined with (iv).
Let us begin by proving that, for every game G, our variation (b) together with (ii)
has pure strategy subgame perfect bidding equilibria.

Theorem 4 (First Fundamental Theorem). Consider the bidding convention where the
tie-breaking marker may be included in a bid. For any game (TB, G, p), there is a pure
strateqy subgame perfect equilibrium (PSPE), computed by standard backward induction.

Proof. A terminal game G = {@|@} has a pure strategy equilibrium; a player who holds
the marker but does not have any option loses when the other player bids 0.

Suppose that (G, p) is non-terminal. By induction, we may assume that each option
is in a pure strategy subgame perfect equilibrium.

There are four possibilities, playing from this position (G, p).

i) Left wins the bid and reaches an option from where she wins the game using induction.

iii) Left loses the bid but from each Right option, she wins the game using induction.

)
ii) Left is forced to win the bid and from all her options, she loses the game by induction.
)
iv)

Left is forced to lose the bid and Right plays to an option from where Left loses the
game by induction.

These four possibilities can be analyzed by considering the following two cases:
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Case a): Suppose that the winner of the bid loses the game. Note that this case will arise
only when a player is forced to win the bid because they hold the marker. In
this case, the other player has no incentive to change their bid (which is 0), and

the one who is winning the bid cannot avoid winning the bid by changing their
bid.

Case b): Suppose that the winner of the bid wins the game. Without loss of generality,
say Left wins (G,p), by bidding /. Clearly, Left does not have any incentive
to change her bid. By the assumption of this case, Right does not win the
game if he outbids Left or ties in case of holding the marker. So, the remaining
possibilities of a Right deviation is that he could lower his bid or tie in case of
Left holding the marker.

Case bl: Left holds the marker. Right’s assumed bid is » < £. If Right ties
Left’s bid, i.e. » = ¢, then Left wins the bid by marker holdership. Right can
deviate by lowering his bid. But this would not change the outcome, since, if
it would, Left would have included the marker in a strict winning bid. In case
r < {, Left remains the winner of the bid.

Case b2: Left does not hold the marker. Then the winning of the bid is strict.
If Right lowers his bid then this will not change the winner of the bid, and he
will keep the marker.

It follows that no player has any incentive to change their bid. Thus, we have proved that
(G,p) has a PSPE. The correctness of the backward induction approach follows by the
method of proof. O

From now on, we will study the variation (b) together with (ii).

By this result, henceforth we will refer to perfect play with the meaning perfect pure
bids and a perfect move by the player who wins the bid.

Bids are typically simultaneous, but in view of perfect play and Theorem 4, the order
of bidding is irrelevant.

Consider a given stage of play. A player who has the larger part of the budget, or
half the budget together with the marker, is called the (currently) dominating player. A
player is strictly dominating if they have a strictly larger budget than their opponent.

Now we establish that “last move wins” is the same as “cannot move loses”.

Lemma 5 (Last Move Wins). If a dominating player has an option from which the other
player cannot mowve, then the dominating player will win the game.

Proof. Suppose first that the dominating player, say Left, does not hold the marker.
Then she goes all in, and moves such that Right cannot move. Since Right still holds the
marker, he will lose the game. Namely, at her final bid, Left bids 0, and hence Right wins
this final bid.

Suppose next that the dominating player, say Left, holds the marker. She goes all in,
and includes the marker in her bid. She wins the bid and moves such that Right cannot
move. Again, the game ends as in the previous paragraph. O
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By this lemma, we may use the term last move wins with the same meaning as in alter-
nating normal play. Henceforth, we adopt the following wording convention: alternating
play means the classical normal play games [1], and bidding play is our generalization of
those games. All our games will be normal play; we vary the move order convention, but
not the winning condition.

5 A motivating result and a generalization of the impartial game
tree

Standard outcome classes in alternating combinatorial game theory are
LN PR

Left wins, the Next player wins, the Previous player wins, and Right wins, respectively
[7].

Let G be an impartial game. That is, for all followers H of G, H* = H®. For
impartial games, in alternating play, only the outcomes .4 and & apply. The following
result about impartial bidding games encouraged us to take a closer look at the full class
of partizan bidding games. We will prove a more general result in Theorem 8, and thus
we omit the proof of Theorem 6.

Theorem 6. Consider TB € Ny and an impartial game form G. If 2p = TB, then Left
wins (G, p) if and only if alternating normal play G is an A -position. If 2p > TB, i.e.
Left is strictly dominating, then Left wins (G,p), unless G = 0, in which case the player
who holds the marker loses.

© o O @ @ ©

Figure 1: The literal form games 0, %, 1/2, T, %o = {*|*} and Tyym= {*a|*}.
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Example 7. Figure 1 displays six game trees, of which the naming of the first four should
be familiar to the reader. The two game trees on the bottom row, *, and fsm, have non-
standard names due to their special interest to this study (note %o # %2 = {0, %0, x}).
Let us review some behavior of each of these six games with respect to differences and
similarities between alternating play and bidding play. In 0, which is a &-position in
alternating play, the player without the marker wins. In %, which is an .4 -position in
alternating play, the dominating player wins. It is easy to verify that 1/2 is a Left win
in both alternating play and bidding play (independently of who holds the marker). We
know that the game 1 is a Left win in alternating play; however, in bidding play, Right
can win T, if he holds a sufficient budget (even with TB = 1). Observe that, in the game
%o a player needs to win 2 consecutive bids in order to win the game, which is the index
of #5. This can only happen if TB > 0; in alternating play, of course o, = 0, and does
not deserve a special name. The game 1y, is discussed below using the definition of a
symmetric ending game.

Consider the following generalization of impartial games, to symmetric ending games.
If one of the players has a terminal move, then so has the other player, and if one of the
players cannot move then neither can the other player. That is, G is a symmetric ending
game if for all followers H, 0 € H* if and only if 0 € H®, and H* = @ if and only if
H®R =g,

The family of symmetric ending games is larger than the impartial games in that it
admits the alternating play outcomes £ and Z#. For example, the literal form fgym=
{{x|*}|*} has outcome .Z. Note that the alternating play equivalent form {0|x} = 7
does not have a symmetric ending.

Recall that the dicot game forms are defined recursively by: if one of the players has a
move, then so does the other, and each option is a dicot. The family of dicots contributes a
major step from impartial games towards the full family of partizan games. In alternating
play, the symmetric ending games are equivalent to the dicots. To see this, note that each
Left move to 0, where Right does not have a move to 0 (and vice versa) may be replaced
with a move to the game {x|*} (this does not hold any longer in generic bidding play).
We have the following inclusion diagram:

impartial C symmetric ending C dicot C partizan.

Theorem 8. Consider a symmetric ending game G, and let TB € Ny. If G is terminal,
then the marker holder loses. Otherwise, the dominating player wins, unless TB s even
and the players have an equal share of the budget. In this case, Left wins (G,m) if
and only if alternating play G is an £ or A -position, and Right wins (G, TB/2) if and
only if alternating play G is an % or N -position.

Proof. In each case, we must present a strategy for the proposed winner. If GG is terminal,
the non-marker holder bids 0 and loses the bid, but wins the game.

Next, consider a non-terminal (G, p), with p > TB/2. The strictly dominating player,
here Left, bids 0, until there is a move to a terminal position. By the symmetric ending
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condition, if one of the players can terminate the game, so can the other. Left goes all in
and wins the last move, independently of whether she holds the marker.

For the remainder of the proof, we consider an even total budget TB and a non-
terminal game (G, m) Suppose this non-terminal G has a terminal move. Since G is
a symmetric ending game, both Left and Right will have a move to a terminal position.
Thus G is an .4 -position in alternating play. In bidding play, Left, who holds the marker,
bids m, and wins the last move.

Suppose next that G is a non-terminal Z or Z-position in alternating play; note that
GG does not have a terminal move. We must show that Left will lose the bidding variation.
Right, who does not have the marker, bids 0. If Left bids 0, then Left wins the move
and, by definition of #Z and H-positions, has to move to an % or .#-position, and Right
gets the marker. That is losing for Left, by induction. If Left bids ¢ > 0, Right becomes
the dominating player, and wins (by the second paragraph in the proof), because G is
non-terminal.

Suppose next that G is an £ or .4 -position in alternating play. If G has a terminal
move then Left wins by the second paragraph of the proof. Now let us assume G does
not have a terminal move. We must prove that Left, who holds the marker, wins. Left
bids 0. If Right also bids 0, then he gets the marker, and Left can move to an alternating
play .Z or &-position, and wins by induction. If Right bids » > 0, then he will win the
bid but Left becomes a dominating player, and so wins by using the second paragraph of
the proof, since by assumption no option of GG is terminal.

In the game (G, TB/2) Right holds the marker. Hence by symmetry he wins (G, TB/2)
if and only if alternating play G is an Z or .4 -position. O

6 Outcomes in bidding games

The alternating play outcomes generalize in a word notation, where . = LL, 4 =
LR, Z = RL,Z = RR. For example “LR” means that Left wins when Left starts and
Right wins when Right starts. This can also be visualized as an outcome (as defined
below) for bidding play when TB = 0, as discussed in Theorem 1. In general, given a
game (TB,G,p), the winner is either L (Left) or R (Right), with the usual total order
L > R. This induces a partial order of outcomes that generalizes alternating play; see
Definition 10.

For example, with TB = 1, one might envision 16 partially ordered candidate outcome
classes, in word notation, with the largest (smallest) outcome LLLL (RRRR), and so on.
Here the leftmost letter symbolizes the outcome in perfect play when Left has budget 1
and the marker; the second letter corresponds to the result in perfect play when Left has
the marker but no budget, and symmetrically for the last two letters. An example of an
incomparable pair of outcomes would be LRLR and RLRL.

Our notion of outcome is a 2(TB + 1) tuple of pure subgame perfect equilibria, repre-
senting, given any budget partition, who is the winner in perfect play. The pure subgame
perfect equilibrium of a game (TB, G, p) is denoted by o(G,p) = ors(G,p). Sometimes
we refer to this as a ‘partial outcome’.
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Definition 9 (Outcome). The outcome, o(G) = org(G), of the game (TB, G) is
o(G) = (0(G, TB), ..., 0(G,0),0(G,TB),...,o(G,0)).

Here the first half of the outcome corresponds to when Left holds the marker and the rest
corresponds to when Right holds the marker. The length of the outcome is 2(TB + 1).

Since this notation can be quite lengthy, we instead adopt word notation. For example,
instead of (R, R, L, L) we simply write RRLL.

Definition 10 (Outcome Relation). Consider a fixed TB and the set of all budgets B.
Then for any games G and H, o(G) > o(H) if, V p € B,o(G,p) = o(H, p).

It is easy to check that the outcome relation is reflexive, antisymmetric and transitive.
Hence the set of all outcomes together with this relation is a poset.

In alternating play, each zugzwang (a game where no player has an incentive to move)
belongs to the outcome class &?. Here, we define a zugzwang as: no player wants to
win the bid. Therefore, it is not the monetary strength, but the marker ownership, that
defines the zugzwang concept; obviously both players will bid 0, whenever they do not
want to move, and the marker will decide who is the current player (i.e. in perfect play,
the losing player). Therefore, with TB = 1, the only zugzwang is the outcome RRLL,
because this corresponds to “Right wins when Left has the marker” and “Left wins when
Right has the marker”. An outcome such as RLRL would be rare, if it appears at all,
since Right wins without either money or marker, but loses if he is given a dollar. Next,
we prove that such outcomes are impossible; outcomes are monotone.

Theorem 11 (Outcome Monotonicity). Consider a fived p € B, with p < TB. Then, for
all games G, o(G,p) < o(G,p+1).

Proof. 1f o(G,p) = R there is nothing to prove, so suppose o(G,p) = L. We must prove
that o(G,p + 1) = L. First, assume that p = p, i.e. Right holds the marker.

Case 1: Suppose that Left wins (G, p) by bidding 0 < ¢ < p. Then, she knows that:
A) If £ > 0, there is a Left option, G¥, such that o(G*,p — () = L;
B) For all Right options, G®, o(Gf,p+r) =L, if r > ¢;

C) For all Right options, G, o(G®, p+71) = L, if r > £. This case is a tie, or Right
includes the marker in the bid.

We must present a Left strategy that beats every Right strategy in the game (G,p + 1).
Left bids the same ¢ in the game (G, p+ 1) as she was bidding in the game (G, p). Then,
by induction on the birthday of the game tree:

Al) If >0, o(GL,p+1 — () = L, where G* is the same as in A above;
B1) For all r > ¢, for all GE, o(GE,p+1+71) =L;
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C1) For all 7 > ¢, for all GE, o(GE,p+ 1 +r) = L (in case of a tie or Right included the
marker in the bid).

Note that in case there is no G, then B, B1, C and C1 are vacuously true. This proves
that o(G,p+ 1) = L, in case o(G, p) = L.

Case 2: Suppose that Left wins (G, p) by bidding (eB, 0Kl p. Then:

A) If £ < g = TB — p, there is a Left option, G, such that o(GL,p — ) = L. That is,
Right can tie this bid, in which case Left loses the marker;

B) If ¢ > 0, there is a Left option, GZ, such that o(G*,p — ¢) = L or such that o(G~,p—
¢) = L. Left can choose to include the marker or not to include the marker;

C) If £ < g, then for all Right options, G¥, and all ¢ < r < ¢, o(GE,p+7) =L, if r > £.

—

In the game (G,p+ 1), Left bids the same ?, as she was bidding in the game (G, D),
and plays the same in case of winning a bid. Right now has the smaller budget ¢ — 1.
The results follow by induction on the birthday of the game tree; in detail:

A1) if £ < g — 1, then if Right ties the bid, Left may play G* as in A above to get
oGEp+1—1) =1;

B1) if £ > ¢, then Left wins the bid, and with G* is as in B above, O(GL,m) =L
or o(GL,p+ 1 — () = L, where the latter case includes the marker in the bid;

Cl) if ¢ <g—1,thenforall ¢ <r<q—1, O(GR,m) = L.

This proves that o(G,p) < O(G,p/ﬁ), which together with Case 1, conclude the proof.
Ul

If these monotone properties hold, then the outcome is monotone.

Observe that in our bidding convention, a player is never forced to become the current
player via monetary advantage, since the 0-bid is always available. However, if a player
with a nonzero budget is not allowed to bid 0, then monotonicity may break. To see this
consider the total budget TB = 1, and Right cannot bid 0, unless his budget is 0. Then
we will have 0(0,0) = L, but 0(0,1) = R. Thus, here we study games where if Left’s
budget is p, then all bids 0, ..., p are available to her, and analogously for Right.

Next, to find the number of monotone outcomes, fix a TB € Ny. Consider the case
when Left holds the marker. The only possible monotone sequences of TB + 1 partial
outcomes are LL---L, LL---LR, ..., RR- - -R. The number of such monotone sequences of
partial outcomes is TB + 2.

Similarly, when Right holds the marker, we will have TB + 2 possible monotone se-
quences of TB + 1 partial outcomes. Thus, from the definition of an outcome, by the
independence of such half outcomes, there are (TB + 2)? possible monotone outcomes.

For example, with TB = 1, the monotone outcomes are LLLL, LLLR, LLRR, LRLL,
LRLR, LRRR, RRLL, RRLR and RRRR.
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Table 3: Some game forms born by day 2 and their outcomes, for all total budgets < 3.
G 00(G) | 01(G) 02(Q) 03(G)

0={o|o} RL | RRLL | RRRLLL | RRRRLLLL
« = {0]0} LR | LRLR | LLRLRR | LLRRLLRR
1={0]|o} LL | LLLL | LLLLLL | LLLLLLLL
1= {0} LL | LLLR | LLLLLR | LLLRLLLR
{x]*} RL | LRLR | LRRLLR | LLRRLLRR
{x| o} RL | LRLL | LRRLLL | LLRR LLLL
1/2={0]1} LL | LLLL | LLLLLL | LLLLLLLL
+1={1|-1} | LR | LRLR | LLRLRR | LLRRLLRR

Observation 12. For TB € Ny we have (TB + 2)? monotone outcomes.

Now the question is, do all monotone outcomes appear? Can we find a game form for
each TB and each monotone outcome? For TB = 0 all outcomes are trivially monotone,
and indeed, all appear by day 1, namely 0(0) = £, o(1) = £, o(—1) = Z and o(x) = A
(see Table 3). For TB = 1 all monotone outcomes, except LLRR, appear for games born
by day 2, which can be seen in Table 3 by also using symmetry. Observe that for this
outcome, in particular a player loses with a dollar budget, but wins with the marker alone.
The immediate question is: Can the marker be worth more than a dollar? The answer is
no.

Theorem 13 (Marker Worth). Consider TB € Ny. Then, for all games G, o(G,p) <
o(Gyp+1).

Proof. Assume that Left wins (G, p) by bidding ‘ (otherwise we are done). We claim that
Left wins (G,p + 1) by bidding ¢ + 1, unless £ > TB — p, in which case she bids ¢. To
prove this, we observe the cases for Right’s bidding amount.

A)r>0+1
B)r=(+1
C)r<i+1.

In case of A, Right might bid r or 7. The case of Right bidding 7 will be treated by using
case B instead.

In case A, Right bids r and plays to (G, p + 1 + r), if there exists a Right option
GE € G® (otherwise we are done). But, by assumption, Left wins (GR,p/—i—\r), if r > ¢,
so by induction she wins (Gf,p+1+7).

In case B, Right wins the bid and plays to (GR,p+/1\+ r), if G exists (otherwise
done). By monotonicity, Left wins this game. Namely, since r > ¢ + 1, then r > ¢, and
by assumption, Left wins (G, p+ r).

In case C, Left wins the bid and plays to some (G*,p — f). There is a Left option
G, since by assumption Left wins playing first in (G, p) by bidding ¢; even in the case of
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¢ = 0 she might win the bid (if Right bids 0), so she has a defence, by playing some G*~.
Indeed, if Right can tie r = ¢, then by assumption, she wins (G, p) by moving to some
(GL,p — 0). If Right cannot tie, because £ > TB — p, then bidding ¢ or ¢ wins the game

(G, D) by assumption. In the first case, this results in some game (GT, p/—\ﬁ), which Left
wins. Left bids £ in the game (G,p + 1) and moves to (G¥,p — ¢ + 1), which she wins
by induction (here we used that ¢ > TB — p implies ¢ > TB — (p + 1)). In the second
case, Left wins the game (GL,p — £) by assumption, and so by monotonicity, she wins
(GE,p—L+1).

Altogether, Left wins (G, p + 1) given that Left wins (G, p). O

We can view an outcome as a string of L's and R’s. From Outcome Monotonicity and
Marker Worth, Theorems 11 and 13, we see that not all such strings can appear as an
outcome of a game. Thus, let us define the notion of a feasible outcome.

Definition 14 (Feasible Outcome). An outcome is feasible if it satisfies Outcome Mono-
tonicity (Theorem 11) and Marker Worth (Theorem 13). For a given TB, the set of all
feasible outcomes is O = Orp.

It can be convenient to think of an outcome, without the mention of an underlying
game. Thus, the relevance of the set O.

Let us count the number of feasible outcomes for a given TB. Let a be the lowest
Left budget for which o(G,@) = L and a = TB + 1 if no such a € {0,...,TB} exists.
When Left holds the marker, by Outcome Monotonicity, corresponding to each a there
is only one half-outcome. Next, when Right holds the marker, by Marker Worth, for
any a, max(TB — a,0) number of half-outcomes are not possible. Thus if we denote the
triangular numbers by A(n) = 1+ --- + n, then for a given total budget TB, there are
(TB + 2)? — A(TB) feasible outcomes.

Observation 15. For a given total budget TB, there are (TB + 2)?> — A(TB) feasible
outcomes.

A challenge will be to demonstrate that all feasible outcomes appear for some game
form. We resolve this in Theorem 21.

7 Do all feasible outcomes appear?

Now we see that, for TB = 1, all feasible outcomes appear by day 2, namely take the rows
1,2, 3, 4 and 6 in Table 3 and include the conjugates of rows 3, 4 and 6.2 What about
the outcomes for TB = 27 There are 13 feasible outcome classes. But, will games born by
day 2 suffice? For example, what about the feasible outcome LLRLLL? The ‘nearest’” in
Table 3 is 05({*|@}) = LRRLLL. It turns out that a solution is a game of day 3; namely
{1| 2} has the desired outcome o0o({1|@}) = LLRLLL. Here Right wins if and only if
he has budget $2 and no marker. Clearly, if Right has the marker he loses. If he does

2 An outcome-conjugate is obtained when the Ls and Rs are reversed and swapped symmetrically.
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not have the marker, he will pass, and so Left will play to 1 = {0|*} and hand over the
marker. Now, he wins if and only if he wins two consecutive bids, which is possible if and
only if he has budget 2.

Another feasible outcome that does not appear in Table 3 is LRRLRR. Again, a game
of day 3 has this outcome, namely 0o({*|]}) = LRRLRR. That is, Left wins if and only
if she has budget p = 2, with or without the marker. With budget 2, she starts by bidding
0, and wins the marker. Right has to move to down. Now Left has §, and wins the next
two bids to win the game. If Left starts with budget §, then she wins two bids, moving
to * and then 0. Right wins any other game. When Right has budget 1, he begins by
bidding 0 and gets either the marker or another dollar. Thus he wins after Left’s move
to . If he starts with 1, then he begins by bidding 0. If Left bids 0, he plays to (J ,/1\)
Now Right will again bid 0 and take the game to either (x,1) or (%,0) or (*,6), where he
is the dominating player and wins using Theorem 8. Thus Left cannot afford to lose the
first move, and so she bids 1. Right gets all budget and wins from (x,0). The other cases
follow by monotonicity.

Together with the games in Table 3 and conjugate forms, we have now found games for
all outcomes with TB = 2. Below, in Table 4, we will find game forms for all budget par-
titions with TB = 3. Greater total budgets offer more challenges; however, in Theorem 21
we will provide a general construction. But before that we will define two key tools of
our game construction: short form feasible outcome (Definition 16) and terminating Left
budget pair (Definition 19).

Table 4: Game forms for all feasible outcomes, up to conjugation, with TB = 3. See
Example 17.

Feasible outcome | Short form Game
LLLLLLLL (0,0) 1
LLLLLLLR (0,1) {01}
LLLRLLLL (1,0) {{0[1} @}
LLLRLLLR (1,1) )
LLLRLLRR (1,2) {01{}]0}}
LLRRLLLL (2,0) {x|2}
LLRRLLLR (2,1) {1}
LLRRLLRR (2,2) *
LRRRLLLL (3,0) {112}
LRRRLLLR (3,1) {411}
RRRR LLLL (4,0) 0

Definition 16 (Short Form Feasible Outcome). The short form of a feasible outcome is
(a,b) € O3 Here 0 <a < TB+1and 0 < b < TB + 1 is the smallest Left budget for
which she wins, when Left has the marker and does not have the marker respectively.

3Technically, the short form is a function from words to pairs of nonnegative integers. In practice,
henceforth we will only use the short form of a feasible outcome.
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Consider a short form (a,b) € O. Then, by Theorem 13,
b<a-+1. (1)

Recall, an outcome-conjugate is obtained when the Lss and Rs are reversed and swapped
symmetrically. Hence, a conjugate short form of (a,b) is (TB+1—5b,TB+ 1 —a). Note
that outcome-conjugation preserves feasibility.

Example 17. In Table 4, the conjugate short forms of the outcomes
(0,0),(0,1),(1,0),(1,1),(1,2),(2,0),(2,1),(3,0)

are

(4,4),(3,4),(4,3),(3,3),(2,3),(4,2),(3,2), (4,1)
respectively. Further, the three outcomes (2,2),(3,1), (4,0) are their own conjugates.

Now that we have a short form of every feasible outcome, we introduce, first via an
example and then in a definition, the related concept of terminating Left budget pair.

Example 18. Consider a sufficient combinatorial game G with TB = 50. Let us explore
two distinct scenarios: one where Left begins with a budget of 1 along with the marker, and
the other where she starts with a budget of 2 also with the marker. Let us say po = 1 and
v = 2. Assume that at each bidding stage, the dominating player must outbid the other
player. Since Right is the dominant player in both scenarios, he consistently outbids Left
in both situations until she becomes dominant in at least one of the scenarios. We get the
sequences of Left budgets (p1, p2, p3, ps) = (3,7,15,31) and (vy, va,v3,v4) = (5, 11,23,47)
respectively. By combining these two sequences, we get the sequence of Left budget pairs
as (p1,v1) = (3,5), (p2,v2) = (7,11), (p3,v3) = (15,23), (ps,vs) = (31,47). Observe
that for the 5" round of bidding, Left is the dominating player with the marker in both
sequences. Now, Left will start outbidding Right. We get (ps,vs) = (12,44) with Right
holding the marker in both sequences. Here, observe that Right became the dominating
player in the sequence starting from py = 1; however, Left remains the dominating player
in the sequence starting from vy = 2. The dominating player shifts in exactly one of the
sequences at this 5" round of bidding. We will terminate this sequence here, and we will
say that this sequence of Left budget pairs terminates at the 5" round of bidding.

Definition 19 (Terminating Left Budget Pair). Consider a total budget TB and a suffi-
ciently large combinatorial game form G. Consider two Left budgets py, v € B such that
po < vg. Here, the marker holder is same in both games (G, pg) and (G, v), either Left or
Right. Moreover, assume that one of the players dominates in both games. Assume the
following bidding process:

i) at each bidding stage, the dominating player outbids the other player;

ii) if the dominating player holds the marker, they bid the opponent’s budget together
with the marker, and otherwise, they bid the minimum amount to outbid the oppo-
nent, i.e. the opponent’s budget +1.
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For the games (G,pg) and (G, 1), this bidding process generates base sequences of Left
budgets (p;)ier and (v;);er, respectively, where I is a set of indices starting from 0. By
combining these two sequences, we obtain a sequence of pairs of Left budgets ((pi, v:))ier-
This sequence terminates if there is a smallest index, say 7, such that at the 7" round of
bidding, the dominating player shifts in exactly one of the base sequences.

Next, we establish the finiteness of 7 for any given total budget. Furthermore, upon
termination, Left becomes the dominant player in the base sequence that started with her
larger budget, while Right is dominating in the other sequence.

Lemma 20. For any sufficiently large combinatorial game form, consider a total budget
TB and a pair of Left budgets, py,vg € B such that py < vy, where the marker holder is
same in both games.

(i) There exists a smallest index T such that at the 7" round of bidding, the sequence
of pairs of Left budgets ((pi, v;))ier terminates.

(i1) At termination, Left is the dominating player with v, and Right is the dominating
player with TB — p,.

Proof. To prove (i), suppose first that Left holds the marker and Right is the dominating
player in both sequences. The first sequence, which starts with Left budget py, will
flip dominating player at some point, say after ¢ > 0 bids. Then the corresponding
Left budget will be p; = 2p;_; + 1 = 2ipy + 2° — 1. If the second sequence shifts its
dominating player before this stage, we are done. Also note that in the second sequence
the dominating player must already have shifted at this stage. Hence suppose that the
second sequence flipped dominating player at the same stage i, with Left having the
budget v; = 2%y + 2¢ — 1. It will be sufficient to compare the budgets of non-dominating
player between the shifts. At this point, Left has become the dominating player in both
sequences. The non-dominating player, Right, has a budget pair with the difference of
(TB — pi) — (TB — v;)| = 2%|vg — po| > |vo — pol;4 = 1. Thus, the absolute difference of
budgets of non-dominating player is strictly increasing at each stage when the dominating
player is shifting. Therefore this will not happen forever, since TB is fixed.

In the case where Right is the dominating player but Left does not hold the marker
in both sequences, Right can tie Left’s budget at the first stage. If the dominating player
shifts in exactly one of the sequences, then we are done. However, if it did not, then the
proof follows as in the previous paragraph. The other case is when Left is the dominating
player, which is symmetric to the cases when Right is the dominating player. Thus the
sequence of Left budget pairs terminates after a finite number of bidding rounds, say 7.

For (ii), we begin by proving that, for all possible pairs of Left budgets (p;,v;) such
that p; < v;, we will have p;;; < v;11. There are four cases. In both sequences,

Case 1) Right is the dominating player but the marker is with Left. In this case after
the first round of bidding, Left will have the marker in both sequences and
(Pit1,viq1) = (2pi + 1,20; 4+ 1). Clearly p;y1 < vi41, since p; < v;.
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Case 2) Right is the dominating player and the marker is with Right. In this case after
the first round of bidding, Left will have the marker in both sequences and
(Pix1,viv1) = (2pi, 2v;). In this case also pjy1 < vi41, since p; < ;.

Case 3) Left is the dominating player and the marker is with Left. In this case after
the first round of bidding, Left will not have the marker in both sequences but
(pi—i-h Ui+1> = (2271 — TB, 2v; — TB) In this case also Pit1 < Vi1, since pi < ;.

Case 4) Left is the dominating player but the marker is with Right. In this case after
the first round of bidding, Left will not have the marker in both sequences but
(Pix1,viv1) = (2p; — TB — 1,2v; — TB — 1). In this case also p;y1 < vi41, since
pi < ;.

By (i), the sequence of Left budget pairs terminates at the 7*" round of bidding, and using
the four cases, recursively, we get p, < v,. Since termination means that there is a shift
of dominating player in exactly one of the base sequences, Left must be dominating with
v,, and Right must be dominating with TB — p.. O

From the proof of Lemma 20, it is clear that, given TB, 7 is uniquely defined by the
pair (pg, vg), and the marker holder, but it is independent of the given game form.

Now we are equipped with sufficient tools to find a game for any given feasible outcome.
Every game has a feasible outcome since it satisfies Outcome Monotonicity and Marker
Worth. Let us proceed to prove the converse.

Theorem 21 (Main Theorem). Consider any total budget TB € Ny. For any w € O, the
set of all feasible outcomes, there is a game form G such that o(G) = w.

Proof. Given any total budget TB € Ny, consider an w € O. Consider the short form
(a,b) of w (Definition 16). Recall org(G,p) = L if and only if p > a, and org(G,p) = L
if and only if p > b. We will build a game form G such that org(G) = (a,b). Thus, by
Outcome Monotonicity, it suffices to construct a game form G such that

o(G,a—1) =R, o(G,d) =L, and

o(G,b—1) =R, o(G,b) = L. (2)

The construction of the game form G will rely on both players beginning with 0 bids
(see Claim 1). Then, by Outcome Monotonicity, the construction of G according to (2)
reduces to constructing G* and G with the properties:

o(G*,a—1) =R, o(G*,a) = L, and 3)
o(G®,b—1) =R, o(G",b) = L.

Claim 1: If G satisfies (3), then the player without the marker in (2) cannot benefit
by instead outbidding the opponent.
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Proof of Claim 1: Suppose our constructed game G satisfies (3). Consider the case when
Left has the marker. From (2) we should have o(G,a) = L. Now suppose, in the game

(G,a), that Right instead outbids Left by bidding 1 dollar. The game becomes (G%, a/—i-\l)
By (1), we know that a + 1 > b and from (3) we have O(GR,A) = L. This implies
o(G, a/—i-\l) =L.

Thus, when Left has the marker, Right would not benefit by instead outbidding Left.
Similarly when Right has the marker Left will not benefit by instead outbidding Right.

This proves the claim.

Now we can go ahead with the construction of the game forms G* and G¥, satisfying
(3), instead of G satisfying (2). The intuition of the construction is as follows: We may
assume that a dominating player outbids the other player whenever they face a threat of
an imminent loss. We will design terminal threats, i.e. options to the game 0, for those
instances, where a currently non-dominating player must win the game. Such threats will
eventually flip the dominating player, and at this point we wish to let the player who
must win, terminate the game. However, it may happen that the dominating player flips
simultaneously in both game sequences, say those initiated by the respective Left starting
budgets v > a and p < a — 1. In this case, we cannot yet let the currently dominating
player, say Left, have a terminating option, but we will rely on Lemma 20. The game
will proceed with Left, who is now dominating, facing terminal threats. She must outbid
Right, until at least one of the bidding sequences flips the dominating player. If exactly
one sequence flips, then we terminate the game, and otherwise, repeat. Indeed Lemma 20
assures that this process will finish in a finite number of steps. Moreover it also assures
that, after termination, Left will be the dominating player in the sequence starting with
Left budget v > a and Right will be the dominating player in the sequence starting with
Left budget p < a — 1. See Figure 2 for an example of such a constructed game tree.

Let us now detail the construction of G = Gy (say). We use a pair of sequences (p;)
and (v;) of monetary Left-budgets, starting with py = a—1 and vy = a, as required in (3),
while we define a sequence of followers, (G;), of G, depending on the threshold a alone.
We study different cases of the Left budget a.

Case 1: Consider a = |TB/2] + 1. Left starts as the dominating player in precisely one
of the games, namely in (G¥,a). We let Gy = G* = . Then, using Theorem 8,
the dominating player will get the last move and win, and thus L = o(G¥,a) >
o(G'a—1)=R.

Case 2: Consider a > |TB/2] + 1. Left starts as the dominating player in both game
sequences. But we must satisfy L = o(G¥,a) > o(G¥,a — 1) = R. To get this,
we can use the setting of Lemma 20. Let’s assume pg = a — 1 and vy = a.
We now create threats to the dominating player by giving the opponent a move
to 0, so that the dominating player is forced to outbid the opponent. Here we
start by creating a threat to Left by giving Right a move to 0, i.e. set G = 0.
Hence Left must strictly outbid Right’s budget (Right holds the marker). This
creates the necessary condition to apply Lemma 20. Thus, to use Lemma 20, we
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Figure 2: Given a feasible outcome (a,b) on total budget TB, a Left option GL = G,
has been constructed such that o(G) = (a,b). We study the partial outcomes on the Left
budgets p = a — 1 and p’ = a. Right begins by a pass, and then he outbids Left three
times. At this point the dominating player shift. Eventually the game will end by one of
the players getting the last move in .

will keep creating these threats until the sequence of pairs of Left budgets gets
terminated. Lemma 20 ensures that this will take only finitely many rounds of
bidding, say 7. Let G, be the game form reached after 7 such rounds of bidding.
The Left budgets starting from (po, v9) will become (p;,v;) respectively, where
Left will be dominating with v, but Right will be dominating with TB — p,. We
will now let G, = * to ensure L = o(G,,v,;) > o(G.,p.) = R. Thus, we will get
L=0(G* a) > o(GF,a—1)=R

Case 3: Consider a < |TB/2] + 1. Right starts as the dominating player in both se-
quences. But we must satisfy L = o(G,a) > o(G,a — 1) = R. We will use the
same strategy as in Case 2, to get the desired result.

The construction of G® to satisfy (3) when Left holds the marker is symmetric. This
completes the construction of the game form according to (3) and hence according to
(2). O

Given a feasible outcome, what is the minimum possible birthday of a game form
with this outcome? Consider a given total budget TB and a short form feasible out-
come (a,b). Suppose that at the end of the 7" and 7 rounds of bidding, the Left
budgets terminate corresponding to when Left has the marker and does not have the
marker, respectively. Then for the feasible outcome (a,b), our constructed game form
will have birthday max(7, + 2,7, + 2). Hence, by birthdays of game trees no more than
MaX(q p)eors (Max(7, + 2,7, + 2)), we can find game forms for all outcomes in Orp.
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8 QOutcome lattices

At this point, one might wonder: given a TB, what exactly are the structures of the
feasible outcomes? Definition 10 of Outcome Relation gives rise to a partial order among
the set of all outcomes. Proceeding with this idea, by Definitions 14 and 10, for any TB
the set of all feasible outcomes together with the outcome relation, (Org, =), forms a
poset. Observe that the greatest element in this poset is L--- L (with short form (0,0))
and the least element is R---R (with short form (TB + 1, TB + 1)). In Theorem 23, we
prove that (Org,>) is a lattice.

Let us now provide a recursive construction of its Hasse diagram. Recall the outcome
diamond for normal play, i.e. TB = 0: LL > LR > RR and LL > RL > RR, with
LR # RL and RL # LR. This is displayed to the left in Figure 3 by using the short form
notation; the Hasse diagram for TB = 1 is displayed to the right.

Figure 3: The left picture displays the alternating play outcome diamond, and the right
picture is the Hasse diagram of outcomes for TB = 1. The notation is in the short
form of a game: the smallest Left budget for which she wins, with and without marker
respectively.

Let us now construct Hasse diagrams for larger total budgets. Consider a set V' of
pairs of integers (a, b) with a,b € Ny where b < a+ 1. Consider a digraph I" on the set V,
with an upward directed edge from (a’,b’) to (a,b) if a+b+1=a + b and where a < o
and b < b'. This is displayed in Figure 4. These directed edges produce the partial order
in the set V. Now for any TB € Ny, we construct a digraph I'rg by including the nodes
(a,b) for which a + b < TB + 1, together with the nodes (TB+ 1 —a, TB + 1 — b) where
a+ b < TB. Note that ['rg inherits the directed edges from I'. For an example, see I'; in
the picture to the right in Figure 3.
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Figure 4: The Hasse diagram for I'.

Theorem 22. For all TB € Ny, the digraph I'rg is the Hasse diagram of poset (Org, =),
where a pair of feasible outcomes o1 and oy satisfies 01 = o9 if and only if there is a
directed path in I'tg from oo to o7.

Proof. This is direct by construction and the definition of short form feasible outcome. [J
Next, we prove that given a TB € Ny, (Org, >) is a lattice.

Theorem 23. For any TB € Ny, consider any short forms (a,b),(a’,0') € Orp with
a < a'. Then the poset (Org, =) is a lattice with join “V 7 and meet “A” given by

(a,0) ifb<V

(a,b') otherwise
(@, b)) ifb<tV
(

a',b)  otherwise.

(a,b) v (a',b) = {

(a,b) A (a',b") = {

Proof. Consider the case when a < o’ and b < V. In this case (a,b) and (a/,0') are
comparable. Thus (a,b) V (¢/,V') = (a,b) and (a,b) A (a',0') = (d', V).

Now we look into the other case. By Marker worth and the assumption a < a’, observe
that b > b’ implies b/ <b < a+1<d + 1. Hence (a,b), (d,b) € Orp.

In the case when a = a’ and b > V', the short forms (a,b) and (a’,’) are comparable.
Thus (a,b) V (a/, V) = (¢/,0') = (a,V') and (a,b) A (¢',V') = (a,b) = (d', b).

Next assume that a < a’ and b > ¥/. In this case the short forms (a,b) and (d’, ')
are incomparable. Let (a”,0”) € Org be the upper bound for both short forms. Thus,
a>a' b=V and d > a’, 0 > b". By the assumption a < @’ we have o’ < a < o’ and
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b>1 >0 Hence (a,b) V (a/,0') = (a,V/). By similar analysis we get (a,b) A (a’, V")
(a',b).

oo

9 Future directions

This work has produced a complete solution for the structure of the outcome classes of
bidding combinatorial games that generalize alternating normal play. The most natural
application of these outcomes is to play a disjunctive sum of games. Given a finite number
of game components, a current player moves in precisely one of the game components.
A sum of two games G and H is written G + H. The outcome alone does not suffice to
understand such compositions of games, but one can define a more comprehensive partial
order by letting G > H if, for all games X, o(G+ X) > o(H + X). This inequality defines
equivalence classes of games. In our follow up paper [4], we find a constructive solution
for game comparison given a certain proviso. We refer the reader to that paper for further
open problems and future directions.
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