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Abstract

We study sets of mutually orthogonal Latin rectangles (MOLR), and a natural
variation of the concept of self-orthogonal Latin squares which is applicable on
larger sets of mutually orthogonal Latin squares and MOLR, namely that each
Latin rectangle in a set of MOLR is isotopic to each other rectangle in the set. We
call such a set of MOLR co-isotopic.

In the course of doing this, we perform a complete enumeration of sets of t
mutually orthogonal k × n Latin rectangles for k  n  7, for all t < n up to
isotopism, and up to paratopism. Additionally, for larger n we enumerate co-isotopic
sets of MOLR, as well as sets of MOLR where the autotopism group acts transitively
on the rectangles, and we call such sets of MOLR transitive.

We build the sets of MOLR row by row, and in this process we also keep track of
which of the MOLR are co-isotopic and/or transitive in each step of the construction
process. We use the prefix stepwise to refer to sets of MOLR with this property at
each step of their construction.

Sets of MOLR are connected to other discrete objects, notably finite geometries
and certain regular hypergraphs. Here we observe that all projective planes of order
at most 9 except the Hughes plane can be constructed from a stepwise transitive
MOLR.

Mathematics Subject Classifications: 05A99, 05B15, 05B25, 05B30

1 Introduction

Two Latin squares LA = (aij) and LB = (bij) of order n are said to be orthogonal if
|{(aij, bij) : 1  i, j  n}| = n2, that is, if when superimposing LA and LB, we see
each of the possible n2 ordered pairs of symbols exactly once. Pairs of orthogonal Latin
squares show up in many different areas of combinatorics, both applied and pure. On
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the applied side, Latin squares are well known as the source of statistical designs for
experiments. For more involved experiments one may instead switch to a design based
on a pair of orthogonal Latin squares, or more generally one can use a set of pairwise
orthogonal Latin squares, referred to as mutually orthogonal Latin squares (MOLS). Here
it is also possible to use mutually orthogonal k × n Latin rectangles (MOLR) when that
suits the requirements of the statistical study. A less applied application of orthogonal
Latin squares comes from the study of finite geometries. Here it is well known that a
finite projective or affine plane of order n exists if and only if a set of (n − 1) pairwise
orthogonal n×n Latin squares exists. Motivated by connections like these, the first aim of
this paper is to perform a complete enumeration of distinct, in the suitable sense, sets of t
mutually orthogonal k×n Latin rectangles, for as large values of the different parameters
as possible. Our second aim is to push this enumeration further for a few special classes
of such sets of MOLR. Our computational results regarding MOLR here extend those
by Harvey and Winterer in [18]. Earlier work on MOLS is surveyed in the Handbook of
Combinatorial Designs [12], and more recently, Egan and Wanless [14] enumerated MOLS
of order up to 9.

A particular type of orthogonal Latin squares which has seen use as a design is self-
orthogonal Latin squares. A Latin square L is said to be self-orthogonal if L and its
transpose LT are orthogonal. The existence of self-orthogonal Latin squares (SOLS) of
order n for a number of values of n, not including n = 10, was established through
many different constructions of infinite families of SOLS, e.g. in the seminal work by
Mendelsohn [29]. In [19], Hedayat presented the first example of a self-orthogonal Latin
square of order 10, and in [6], Brayton et al. showed that n × n self-orthogonal Latin
squares exist for each n ∕= 2, 3, 6. Self-orthogonal Latin squares of orders up to and
including n = 9 were completely enumerated by Burger et al. in [11], and by the same
authors for order 10 in [10].

Being self-orthogonal is a special case of the concept of being conjugate orthogonal, a
concept introduced by Stein in [37]. Here a conjugate is defined by a permutation σ ∈ S3

which interchanges the roles of rows, columns, and symbols in the square. The transpose
corresponds to the σ which interchanges the roles of rows and columns. As Stein showed,
for every σ except the identity there are Latin squares which are orthogonal to their
σ-conjugate, and Phelps [33] later investigated the possible orders of σ-conjugate Latin
squares, settling the question with a handful of exceptions. These exceptions were later
settled by Bennett, Wu and Zhu in [3].

Regarding conjugate orthogonality, one may sometimes find Latin squares which have
several pairwise orthogonal conjugates, and it is possible to find examples where all six
conjugates are pairwise orthogonal, as in Belyavskaya and Popovich [1] and Bennett [2].
This construction can of course not produce larger sets than six, and applying it to k×n
Latin rectangles where k < n gives a maximum of four pairwise orthogonal rectangles.
However, if transposition is viewed as one of many possible ‘equivalence transformations’
τ , τ(L) = LT , then replacing τ with some other form of ‘equivalence’ gives rise to a similar
concept, where potentially a set of mutually orthogonal objects can be larger.

The main focus of the current paper is to enumerate sets of mutually orthogonal Latin
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rectangles. For small orders, we enumerate all MOLR up to certain notions of equivalence,
which we define in Section 2. For larger orders, where full enumeration of all MOLR is
not feasible, we have proceeded using several natural subclasses of sets of MOLR. The
first such class consists of those MOLR where each constituent Latin rectangle is isotopic
to every other Latin rectangle in the set. We call such a set of MOLR co-isotopic. The
next class is the transitive sets of MOLR, where we call a set of MOLR transitive if
the autotopism group of the set of MOLR acts transitively on the set of rectangles. So,
every transitive set of MOLR is co-isotopic, but the reverse is not always true. Finally
we consider stepwise transitive and stepwise co-isotopic sets of MOLR, which are even
more restricted classes, where we require that the set of MOLR can be constructed by
adding one row at a time in such way that each set of MOLR along the way is transitive
or co-isotopic, respectively. These conditions are very restrictive, but it turns out that
all but one of the finite projective and affine planes of small orders have a corresponding
stepwise transitive set of (n− 1) MOLS.

We will also discuss how, for the orders we have reached, our results lead to a complete
enumeration of certain finite geometries, in particular, resolvable projective, affine and
hyperbolic planes.

The work in the present paper builds on and extends results from a previous paper of
the current authors [21], where the focus was only on triples of MOLR. One distant goal
is to approach the well-known long-standing open question of how large a maximum set
of MOLS of order 10 is.

The paper is structured as follows. In Section 2 we give basic notation and formal
definitions regarding t-tuples of MOLR. In Section 3 we state the questions guiding our
investigation, describe briefly the algorithm used to find all sets of MOLR and give some
practical information regarding the computer calculations. In Section 4, we give further
background on finite geometries. In Section 5 we introduce a new reshaping transforma-
tion which maps a set of t MOLR of size k×n to a set of (k−1) MOLR of size (t+1)×n
and discuss some of the properties of this transformation.

In Section 6 we present the data our computer search resulted in, which can be down-
loaded from [26], together with further analysis and results. In particular, in Subsec-
tion 6.1 we give the total number of non-isotopic sets of MOLR for orders up to n = 7.
In Subsection 6.2 we discuss our enumeration of subclasses of sets of larger order, n  8.
Then in Subsection 6.3 we discuss the autotopism groups of the sets of MOLR.

Finally, Section 7 concludes the main text with some open problems and observations.
Here we also discuss the long-standing open problem of whether triples of mutually or-
thogonal Latin squares of order 10 exist. In earlier works, Franklin [16] constructed triples
of MOLR, and Wanless [40] constructed 4-tuples of MOLR. We investigate the number
of possible rows in stepwise transitive such examples. This is followed by a number of
appendices containing more detailed data on autotopism group sizes and all non-isotopic
stepwise transitive 8-MOLR with n = 9.
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2 Basic notation and definitions for t-MOLR

A Latin square of order n is an n × n matrix with cells filled by n symbols, such that
each row and each column contains each symbol exactly once. For k  n, a matrix with k
rows and n columns whose cells are filled by n symbols such that each row contains each
symbol exactly once and each column contains each symbol at most once is called a k×n
Latin rectangle, and we shall refer to k × n as its size. In the following we use as symbol
set {0, 1, . . . , n− 1}.

With mutually orthogonal Latin squares defined as above, we can extend the orthog-
onality condition to Latin rectangles. We say that two k × n Latin rectangles A = (ai,j)
and B = (bi,j) are orthogonal if each ordered pair (ai,j, bi,j) appears at most once. Also,
a set of pairwise orthogonal Latin rectangles is called a set of mutually orthogonal Latin
rectangles (MOLR). A set of t pairwise orthogonal Latin rectangles is called a t-MOLR
for short.

We say that a t-MOLR is normalized if it satisfies the following conditions:

(S1) (Ordering among columns) The symbols in the first row of each rectangle appear in
the order 0, 1, . . . , n− 1.

(S2) (Ordering among rectangles) The second row of the i:th rectangle is lexicographically
larger than the second row of the (i+1):th rectangle. In other words, if a1, a2, . . . , at
are symbols in the position (2, 1) in the t-MOLR, seen as an ordered t-tuple, then
it holds that a1 > a2 > · · · > at.

(S3) (Ordering among rows) The second row in the first rectangle is lexicographically
larger than the third row, the third row is larger than the fourth row, and so on.

Note that (S2) relies on the rectangles having the same first row and being mutually
orthogonal, so that all the entries in (2, 1) are in fact distinct.

We use normalization to reduce the search space in our computer runs, but note that
two different normalized t-MOLR may still be isotopic. For some further details, see our
previous paper [21]. As our computations proceed by adding consecutive rows to t-MOLR,
we will have use for the following term: An extension of size k × n is a t-MOLR which
results from a t-MOLR of size (k − 1)× n by adding one more row to each rectangle.

We will use several different notions of equivalence for t-MOLR. We recommend
Section 2 of Egan and Wanless [14] for an in-depth discussion of the different sym-
metry and equivalence concepts for MOLS and we will follow that terminology. Let
(A1, A2, . . . , At) be a t-MOLR of size k × n, and let Sn denote the symmetric group
on n elements. The following group of isotopisms acts on the set of t-MOLR: Gn,k,t =
St × Sk × Sn × [Sn × Sn × . . .× Sn], where the initial St corresponds to permutations of
the rectangles, the Sk corresponds to permutations of the rows, the next Sn corresponds
to permutations of the columns, and each of the last t copies of Sn, in square brackets,
corresponds to permutations of the symbols in the single rectangles. Two t-MOLR A and
A′ of size k × n are said to be isotopic if there exists a g ∈ Gn,k,t such that g(A) = A′.
The autotopism group of a t-MOLR A is defined as Aut(A) := {g ∈ Gn,k,t | g(A) = A}.
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The autotopism group of a t-MOLR of size k× n is also a subgroup of a larger group,
the autoparatopism group, which can be described either using orthogonal arrays or, as
we will do here, via a hypergraph representation of the MOLR, which will also be used
in one of our proofs.

2.1 The standard hypergraph representation

Let A = (L1, L2, . . . , Lt) be a list of k × n MOLR. The standard labelled hypergraph
representation H(A) of A is constructed as follows.

The vertex set V for H(A) consists of t+ 2 vertex classes, V1, V2, . . . Vt+2. V1 has one
labelled vertex per row in the rectangles, and hence has size k. V2 has one labelled vertex
per column in the rectangles, and so has size n. For i  3, Vi has n vertices and for each
symbol from Li−2 there is one vertex labelled with that symbol.

The set of hyperedges of H(A) is as follows: For each i ∈ V1 and j ∈ V2 there is
a hyperedge consisting of (i, j, L1

i,j, L
2
i,j, . . . , L

t
i,j). Thus each hyperedge contains exactly

one vertex from each vertex class, and each hyperedge corresponds to a position in the
rectangles and the tuple of symbols used there by the rectangles.

The hypergraph H(A) is (t + 2)-uniform, and (t + 2)-partite, with at most one class
of vertices, V1, smaller than n. This hypergraph is also linear, i.e. any pair of vertices
belongs to at most one edge, since two edges intersecting in two vertices would either
correspond to having more than one symbol in a given position (i, j) in some rectangle, or
a violation of orthogonality, or a repeated symbol in a row or column of some rectangle.

Conversely, let H be a linear (t + 2)-uniform (t + 2)-partite hypergraph with t + 1
vertex classes V2, . . . Vt+2 of size n and one vertex class V1 of size k  n, and assume that
the vertices in each class Vi are labelled with a set of |Vi| distinct symbols. Given a choice
of an ordered pair of vertex classes, which must include V1 as the first class if k < n, we
can construct a t-MOLR A from H by the same description as above, letting the first
class be the row indices and the second class be the column indices. For that t-MOLR
A we have H = H(A) so we have an equivalence between t-MOLR and certain labelled
hypergraphs. This is in fact just a different way of writing down the equivalence between
t-MOLR and certain orthogonal arrays, with each hyperedge corresponding to a row in
the orthogonal array.

2.2 Isotopism and paratopism

The isotopisms for a k × n t-MOLR A correspond to the transformations which freely
permute the labels of the vertices within each vertex class of H(A), and also permute the
indices of the vertex classes V3, V4, . . . , Vt+2.

An isotopism is a special case of a more general type of transformation known as a
paratopism. Two k × n t-MOLR A and B are paratopic if H(A) can be obtained from
H(B) by permuting labels in the same way as for an isotopism, and freely permuting the
indices of all vertex classes of equal size. The corresponding transformation of the MOLR
is called a paratopism on the set of MOLR. Note that if k < n then a paratopism between
two MOLR cannot interchange the vertex class V1 with any other class, since it is strictly
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smaller than the other classes, but for k = n it may interchange V1 with another class as
well.

For k = n, if the paratopisms are restricted to only interchanging V1 with V2, while
permuting the other classes freely we get the trisotopisms, and two t-MOLS related by a
trisotopism are said to be trisotopic. Interchanging V1 and V2 corresponds to transposing
the squares in the t-MOLS, so if two t-MOLS A and B are trisotopic they are either
isotopic or A is isotopic to the t-MOLS obtained by transposing each square in B.

3 Generation of t-MOLR

The basic method for our generation routine is quite simple. We start with the set of all
1× n t-MOLR and find all possible extensions to 2× n t-MOLR, followed by an isotopy
reduction where only one representative for each isotopy class is kept. As part of the
isotopy reduction, the autotopism group of each representative is also determined and
its size stored. The extension step is then repeated until the desired number of rows is
reached. The algorithms and methods used to generate the t-MOLR are rather straight-
forward extensions of those used in our previous paper [21]. They were implemented in
C++ and run in a parallelized version on the Kebnekaise and Abisko supercomputers at
High Performance Computing Centre North (HPC2N). The total run time for all the data
in the paper was a few hundred core-years.

In order to safeguard the correctness of our computational results, several steps were
taken. We wrote separate implementations in Mathematica of both the main algorithm
and another much simpler method with which we performed an independent generation of
the data for smaller sizes, in order to help verify the correctness of the C++ implementa-
tion. All the data has been compared with the known classifications of MOLS and MOLR
in the literature, primarily McKay, Meynert and Myrvold [27] and Egan and Wanless [14],
and agrees with them.

The method described above was applied directly in order to first generate all t-MOLR
of a given size when this was possible, and after each generation step we also classified
the t-MOLR which belonged to one of the following two classes.

Definition 1. (a) A t-MOLR A = (A1, A2, . . . , At) is co-isotopic if all pairs of rectan-
gles Ai, Aj ∈ A are isotopic.

(b) A t-MOLR A = (A1, A2, . . . , At) is transitive if Aut(A) acts transitively on the set
of rectangles in A. That is, for all pairs Ai, Aj ∈ A there exists φ ∈ Aut(A) which
maps Ai to Aj.

When checking whether a t-MOLR is co-isotopic or transitive, we require the entire
t-MOLR. This becomes a problem when generating t-MOLR by adding rows one by one.
In order to find all co-isotopic t-MOLR we have to first generate all t-MOLR and then
test them for co-isotopism and transitivity. We are therefore also interested in the two
following recursively defined classes of t-MOLR which allow for more efficient generation.
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Definition 2. (a) A k × n t-MOLR A is stepwise co-isotopic if A is co-isotopic and
either k = 1, or k  2 and A is the extension of a stepwise co-isotopic (k − 1) × n
t-MOLR.

(b) A k×n t-MOLR A is stepwise transitive if A is transitive and either k = 1, or k  2
and A is the extension of a stepwise transitive (k − 1)× n t-MOLR.

As we shall demonstrate in Section 6.2, the sets of (n − 1)-MOLS corresponding to
a classical projective plane over a finite field of order n are, in fact, always stepwise
transitive.

For both of the classes in Definition 2 we can generate the k× n t-MOLR by starting
out with the corresponding class of (k − 1) × n t-MOLR, finding all their non-isotopic
extensions and then discarding those that are not co-isotopic or transitive, respectively.
These restrictions typically lead to a far smaller set of t-MOLR to extend to the next
value of k, and thanks to this we were able to perform complete enumeration of these
classes for larger values of n than in the general case.

In addition to producing the objects themselves, we also calculated the size of the
autotopism group of each object. With some exceptions due to size restrictions, all the
data we generated is available for download at [26]. Further details about the organization
of the data are given there. Examples from this paper are also available as text files
labelled “DATA” at https://doi.org/10.37236/9049.

We also include the size of the paratopism classes of MOLR in our tables. In order to
obtain these classes, we used the package Nauty (see McKay and Piperno [28]) to reduce
the set of isotopism classes to paratopism classes. In order to do this, the MOLR were
encoded as graphs, using the method described by Egan and Wanless in [14].

4 Finite geometries

As mentioned in the introduction, sets of n − 1 MOLS of size n have a well known
connection to finite projective and affine planes. Here we will recollect some facts from
finite geometry and demonstrate how a general t-MOLR can be translated into the finite
geometry setting.

4.1 Basic notions for finite geometries

Definition 3. A pair P = (V, L), where V is a finite set of points and L is a set of subsets
of V , which are called lines, is a finite plane if the following conditions are satisfied.

1. Each line has at least 2 points.

2. Any pair of points is contained in exactly one line.

3. There exists a point p and a line ℓ, where ℓ does not contain p.

4. There exists a set of 4 points such that no 3 of them lie on the same line.
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Additionally, the plane may satisfy one of the following parallelity properties:

(P1) Every pair of lines has non-empty intersection.

(P2) Given a point p and a line ℓ, which does not contain p, there exists exactly one line
through p which does not intersect ℓ.

(P3) Given a point p and a line ℓ, which does not contain p, there exist at least two lines
through p which do not intersect ℓ.

A plane which satisfies (P1) is called a finite projective plane, a plane which satisfies (P2)
is called a finite affine plane, and a plane which satisfies (P3) is called a finite hyperbolic
plane.

If each line in a finite projective plane contains exactly n+1 points, the finite projective
plane is said to be of order n, and correspondingly, if each line in a finite affine plane
contains exactly n points, the finite affine plane is said to be of order n.

A collection P of non-intersecting lines from P which form a partition of V is called
a parallel class. A partition of the lines of P into parallel classes is called a resolution of
P , and a geometry which has at least one resolution is called a resolvable geometry.

A set of n − 1 MOLS of order n is equivalent to a finite projective plane of order
n, as pointed out by Bose [4]. The existence of a set of n − 1 MOLS, for n = pr, for
a prime p, was demonstrated in a somewhat forgotten paper from 1896 by Moore [30].
See Ehrhardt [15] for a historical discussion of Moore’s paper and the wider context of
19th-century design theory.

To relate our results on Latin rectangles and squares to the context of finite geometries,
we will first recall the explicit correspondence between finite projective geometries on the
one hand, and complete sets of mutually orthogonal Latin squares on the other hand. We
will begin with noting that a finite projective plane of order n has n2 + n+ 1 points and
n2 + n + 1 lines, each containing n + 1 points, and that each point in a finite projective
plane of order n belongs to n+ 1 lines.

To get the correspondence between a finite projective plane of order n and a set of
n−1 MOLS of order n, we first select a line of the projective plane, which we call the line
at infinity, L∞. Next, we select two points x∞ and y∞ on L∞, and label the remaining
n− 1 points on L∞ by ℓ1, ℓ2, . . . , ℓn−1. The n remaining lines containing x∞ are labelled
by X1, X2, . . . , Xn, and the n remaining lines containing y∞ are labelled Y1, Y2, . . . , Yn.

The points ℓ1, ℓ2, . . . , ℓn−1 will correspond to the n−1 Latin squares L1, L2, . . . Ln−1 in
the set of MOLS, and the point pi,j at the intersection between Xi and Yj will correspond
to the cell (i, j) in the Latin squares. The symbol that goes in cell (i, j) in Lk is given by
fixing a labelling using symbols s1, s2, . . . , sn of the n lines (excluding L∞) that contain
ℓk, and checking which of the symbols was assigned to the unique line passing through
pi,j.

Note that the ample room for choices of labelings gives different sets of MOLS, and
that the construction can be reversed, that is, any (n− 1)-MOLS gives a finite projective
plane.
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When Pn is the classical Galois plane over the finite field GF (n), sometimes denoted
by PG(2, n), one can give a simple explicit form for a set of MOLS derived from that
plane in the following way. Let x ∈ GF (n) be a generator for the multiplicative group of
GF (n) and set a0 = 0 and ai = xi−1 for i = 1, . . . , n− 1. Now, for 1  k  n− 1 define
an n× n Latin square Lk by setting position (i, j) equal to ai + ak × aj. As shown, e.g.,
in Dénes and Keedwell’s Latin squares book [22], this defines an (n− 1)-MOLS, which in
turn also defines the classical Galois plane over GF (n).

When n is a prime power, finite projective planes can always be constructed using
the Galois field GF (n), but there are projective planes that do not arise in this way.
For example, as early as 1907, Veblen and MacLagan-Wedderburn [39] constructed 3
projective planes of order 9, not isomorphic to the standard projective plane of order
9 arising from GF (9). Considerably later, Lam, Kolesova and Thiel [23] showed by an
exhaustive computer search that these 4 projective planes of order 9 are, in fact, the only
ones.

For some other n, notably n = 6 and n = 14, the Bruck-Ryser theorem [9] excludes
the possibility of a projective plane. For n = 6, non-existence was already known, since
Tarry [38] had proven that Euler’s 36 officers problem (which asked for a set of just two
MOLS of order 6) had no solution, leaving n = 10 the smallest open case. A delightful
account of the search for a projective plane of order 10 can be found in Lam [24], and the
non-existence was settled by Lam, Thiel and Swiercz in [25]. Combining this computa-
tional non-existence result with a result of Shrikhande [36], one gets that there does not
exist a set of 7 or more MOLS of order 10. Since there are examples of pairs of orthogonal
Latin squares of order 10, the maximum order of a t-MOLS for n = 10 lies in the interval
2  t  6.

Given a projective plane P of order n we can construct an affine plane of the same
order by deleting a line and all the points on it from P . It is also well known that any
affine plane can be obtained from a projective plane in this way. So, the existence of
an affine or a projective plane of a given order are equivalent, and in turn equivalent to
the existence of a set of n − 1 MOLS of order n. Finite hyperbolic geometries have not
been studied in as great detail as the projective or affine ones. The first axiomatization
for finite hyperbolic planes was given by Graves in [17] and a few early constructions
and structural theorems were given by Di Paola, Henderson, and Ostrom in [13, 20, 32],
respectively. Sandler [35] also noted that one will obtain a finite hyperbolic plane from
a finite projective plane by deleting three lines that do not intersect in a single point,
together with all points on these lines, or equivalently by deleting two non-parallel lines
from a finite affine plane.

Another well studied class of finite geometries are nets. They were introduced by
Bruck [7, 8] who also showed that they, analogous to the situations for projective and
affine planes, are equivalent to t-MOLS. A net P(A) can be constructed in the following
way. Let A = (A1, A2, . . . , At) be a set of mutually orthogonal Latin squares of order
n, and let the set of pairs V = {(i, j) | 1  i  n, 1  j  n} be the point set. For
each square As and symbol r we let the set of points such that As

i,j = r be a line in
L. We also add one line to L for each row of the squares and one for each column, and
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set P(A) = (V, L). We now note that each line in P(A) has n points, each point lies in
t+ 2 lines, two lines defined by different squares intersect in exactly one point (since the
squares are orthogonal), the set of lines defined by a single square are pairwise disjoint,
and any pair of points lies in at most one line (again by orthogonality). Additionally,
the set of lines defined by a single square form a partition of V , i.e., a parallel class, and
the parallel classes defined by the different squares form a partition of L, so P(A) is a
resolvable geometry. The net P(A) is of order n and degree t. Note that if t = n−1, then
the net is an affine plane, and in general, nets are a particular class of partial geometries
as defined by Bose [5].

4.2 Finite geometries from Latin rectangles

The classical finite geometric constructions which we have surveyed here are all connected
to Latin squares. However, many of these constructions can fruitfully be extended to Latin
rectangles and MOLR as well and we will briefly discuss how this can be done.

If we apply the same construction as for nets to a k × n t-MOLR we get a weaker
geometry which we call a partial net. When k < n we lose the property that every pair
of lines from different parallel classes intersect. Of particular interest here are t-MOLR
which are maximal with respect to either t or k, since these give rise to geometries which
cannot be embedded in a larger partial net with the same value of n.

Our more symmetric classes of t-MOLR correspond to geometries with certain sym-
metries. A transitive t-MOLR gives rise to a geometry with the property that the auto-
morphism group of the geometry acts transitively on the set of parallel classes in a specific
resolution of the geometry. A stepwise transitive set in turn gives us a geometry with the
property that the geometry can be built by stepwise adding new points in a way which
preserves the transitivity of the resolution.

5 A reshaping transformation

For the specific case of (n − 1)-MOLS, several authors (see Egan and Wanless [14] for
further details) have studied a notion of equivalence where two such MOLS are equivalent
if they define the same projective plane. Using the relation between MOLS and projective
planes described in Section 4, this means that two such equivalent MOLS are constructed
by selecting different lines at infinity from the projective plane. For t-MOLR there is in
general no extension to a projective plane, but we will define a similar transformation T
which maps a k × n t-MOLR A to a (t+ 1)× n (k − 1)-MOLR T (A).

In preparation for defining this transformation, we will first define a hypergraph
G(A) = (W,E) with labelled vertices and hyperedges, from a k × n t-MOLR A =
{L1, L2, . . . , Lt} where each rectangle uses the symbols 1, 2, . . . , n. The hypergraph G(A)
is similar, but not identical, to the standard hypergraph representation.

Let the vertex set W be the set of ordered pairs (i, j), where 1  i  k and 1  j  n
together with the singletons 0  q  t. A vertex (i, j) is given the label i and a singleton
vertex q is labelled by the corresponding symbol q.
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Next we will define the set E of labelled hyperedges. For each q  1 and symbol s
we add a hyperedge consisting of the singleton q and the pairs (i, j) such that Lq

ij = s,
and label this edge by s. We think of the singletons q as an indexing of the rectangles,
and the edges containing the singleton q keep track of symbol positions in Lq. Permuting
symbols in the Latin rectangles L1, L2, . . . Lt thus only affects the edge labels of G. For
each column index 1  i  n we add a labelled hyperedge which consists of all pairs (i, j)
with i = 1, 2, . . . , k and the singleton q = 0, labelled by j.

Note that for k = n, t = n − 1 the labelled hypergraph G(A), with labels removed
and interpreting edges as lines, is equivalent to the projective plane defined by A with
the point in the line at infinity where the row-lines intersect removed, and the row-lines
deleted.

Lemma 4. The hypergraph G(A) = (W,E) is linear, (k+1)-uniform, and (k+1)-partite,
with k vertex classes W1,W2, . . . ,Wk of size n corresponding to the rows of A, and one
vertex class W0 of size t+ 1 corresponding to the added singletons.

Proof. By construction, Wi, 1  i  k, has size n, and W0 has size t+1. Each hyperedge
contains exactly one vertex from each vertex class, so the hypergraph is (k + 1)-uniform
and (k + 1)-partite.

In G(A), two edges intersecting in a singleton q have no further common vertices
since they either correspond to positions of different symbols in the same rectangle, or
to distinct columns of a rectangle. Edges containing distinct singletons cannot intersect
in two other vertices, since that would either mean that the same symbol appears twice
in a column for the same rectangle, or that a pair of symbols appears twice in a pair of
rectangles, hence violating orthogonality. So the hypergraph is linear.

Lemma 4 says that G(A) satisfies the properties required for being the standard hy-
pergraph representation for some MOLR. Hence we can interpret G(A), with a specified
(k+1)-partition of its vertex set, as the standard hypergraph representation H(T (A)) for
some (k−1)-tuple T (A) of (t+1)×n MOLR, by interpreting the vertex class W0 as corre-
sponding to V1, the row indices for T (A), and taking one of the other Wi, which we take to
beW1, as corresponding to V2, the column indices in T (A). The remainingW2,W3, . . . ,Wk

are interpreted as the indexing of the rectangles, Vi = Wi−1 for i = 3, . . . , k + 1.
This implicitly defines a transformation T from a k × n t-MOLR A to a (t + 1) × n

(k − 1)-MOLR T (A), so if one of the MOLR exists, then so does the other. Note that
T (T (A)) gives a MOLR with the same parameters as A. However, the transformation
does not induce an isomorphism of the paratopism group for the set of k× n t-MOLR to
that for (t+1)× n (k− 1)-MOLR. For most parameters these two paratopism groups do
not have the same size, and so cannot be isomorphic. This in turn means that we do not
necessarily have the same number of paratopism classes for k×n t-MOLR and (t+1)×n
(k − 1)-MOLR. For small n, with t < n− 1, it turns out from our computational results
that the number of paratopism classes coincide, see Tables 2, 4, 6 and 8, but we expect
this to fail for n slightly larger than those we consider here. A full investigation of how
the transformation T interacts with paratopism is beyond the scope of the current article,
but we note some of the properties of T in the following theorem.
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Theorem 5. The mapping T maps the set of k × n t-MOLR to the set of (t + 1) × n
(k − 1)-MOLR, and T (A) has the identity permutation as the first row in each rectangle.

Two MOLR A and B have T (A) = T (B) if and only if B can be obtained from A by
only permuting the symbols of each rectangle.

Proof. It follows directly from the definition that T maps the set of k×n t-MOLR to the
set of (t + 1) × n (k − 1)-MOLR. Since each edge in G(A) incident to the vertex given
by the singleton 0 consists of the pairs (i, j) with a fixed second coordinate, the MOLR
T (A) has the identity permutation as the first row of each rectangle.

Suppose B can be obtained from A by only permuting symbols in the rectangles. Then
G(A) and G(B) with removed edge labels will leave the same unlabelled hypergraph, and
thus represent the same MOLR, up to permutation of symbols in each rectangle. As
we have a fixed choice of index classes W0 = V1, W1 = V2, this in turn means that
T (A) = T (B).

Conversely, suppose T (A) = T (B). Then the standard hypergraph representations of
T (A) and T (B) of course coincide, H(T (A)) = H(T (B)) = H. Removing the edge labels
from G(A) and G(B) leaves the same unlabelled hypergraph H if G(A) and G(B) differed
only in the order of the edge labels, corresponding to permutations of the symbols in some
of the rectangles of A and B.

6 Computational results and analysis

We now turn to the results and analysis of our computational work.

6.1 The number of t-MOLR

In Tables 1–7, we present data on the number of isotopism classes and paratopism classes
of k × n t-MOLR.

2×4 3×4 4×4

t = 1 2 2 2
t = 2 3 2 1
t = 3 2 1 1

Table 1: The number of isotopism classes of t-MOLR for n = 4.

2×4 3×4 4×4

t = 1 2 2 2
t = 2 2 2 1
t = 3 2 1 1

Table 2: The number of paratopism classes of t-MOLR for n = 4.
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2×5 3×5 4×5 5×5

t = 1 2 3 3 2
t = 2 5 14 2 2
t = 3 4 1 1 1
t = 4 3 1 1 1

Table 3: The number of isotopism classes of t-MOLR for n = 5.

2×5 3×5 4×5 5×5

t = 1 2 3 3 2
t = 2 3 9 1 1
t = 3 3 1 1 1
t = 4 2 1 1 1

Table 4: The number of paratopism classes of t-MOLR for n = 5.

2×6 3×6 4×6 5×6 6×6

t = 1 4 16 56 40 22
t = 2 28 1526 2036 85 0
t = 3 103 2572 513 7 0
t = 4 92 118 12 8 0
t = 5 33 0 0 0 0

Table 5: The number of isotopism classes of t-MOLR for n = 6.

2×6 3×6 4×6 5×6 6×6

t = 1 4 14 44 33 12
t = 2 14 575 745 44 0
t = 3 44 745 179 5 0
t = 4 33 44 5 5 0
t = 5 17 0 0 0 0

Table 6: The number of paratopism classes of t-MOLR for n = 6.

the electronic journal of combinatorics 31(1) (2024), #P1.53 13



2×7 3×7 4×7 5×7 6×7 7×7

t = 1 4 56 1398 6941 3479 564
t = 2 100 514 162 49 415 812 21 290 125 11 582 20
t = 3 2858 65 883 453 323 112 477 55 545 16 4
t = 4 17 609 35 469 948 68 659 204 7 3
t = 5 10 626 22 982 19 5 5 1
t = 6 1895 23 2 1 1 1

Table 7: The number of isotopism classes of t-MOLR for n = 7.

2×7 3×7 4×7 5×7 6×7 7×7

t = 1 4 45 808 3712 1895 147
t = 2 45 172 622 16 481 351 7 103 198 4013 7
t = 3 808 16 481 351 80 797 488 14 121 12 1
t = 4 3712 7 103 198 14 121 82 4 1
t = 5 1895 4013 12 4 4 1
t = 6 324 11 2 1 1 1

Table 8: The number of paratopism classes of t-MOLR for n = 7.

In the data for n  7 some patterns can be observed, somewhat interrupted by the
exceptional behavior for n = 6. If we consider fixed values of t and n and increase k we
always see a unimodal sequence, and the peak of the sequence appears at a lower value
of k when t is increased. The patterns conform well with the number of constraints on
the symbols, as a function of t and k. If we instead keep n and k fixed and increase t we
see a similar pattern, though here there is an exception for n = 6, k = 5, where there is
a local minimum at t = 3. These observations motivate the following questions.

Question 6. Is the number of t-MOLR for fixed n and t a unimodal sequence in k?

Question 7. For n  7, is the number of t-MOLR for fixed n and k a unimodal sequence
in t?

Additionally we see in the tables for paratopism classes that there is a symmetry
between the entries below and above the diagonal, with exceptions for the cases with
k = n or t = n − 1. For the case of 6 × 6 Latin squares (that is, t = 1, k = n = 6),
this exception corresponds to a change from paratopism to trisotopism as the equivalence
relation, 17 is the number of trisotopism classes and 12 the number of paratopism classes
(see Egan and Wanless [14]). For n = 7 we have three entries for k = n which do not
match the corresponding ones for t = n − 1. For these small values of n this partial
symmetry is explained by the reshaping transformation described in Section 5, but as
discussed there we expect the symmetry to fail in general for large enough n.
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We have also classified the small sets of MOLR according to some further properties.
In Tables 9–11, for n = 4, 5, 6, we give the number of t-MOLR that are A) co-isotopic,
B) transitive, C) stepwise co-isotopic and D) stepwise transitive. In a sense, these four
classes are gradually more regular, and the data in the tables gives the total numbers from
each such class in the form A, B, C, D in each cell. In Table 12, the data is presented
in the form A, B, and in Table 13, the data is in the form C, D. Comparing the data in
Tables 1-7 with the data in Tables 9-13, it is clear that when k or t is small compared
to n, most t-MOLR have none of these stronger regularity properties, but whenever a
t-MOLR exists, we also have a co-isotopic t-MOLR with the same parameters.

Whenever there exists a t-MOLR, we also find transitive t-MOLR for most parameters.
The exception is n = 7, where there exist t-MOLS (k = 7, that is) with t = 4, 5 but no
corresponding transitive t-MOLR, demonstrating that the autotopism group for the 6-
MOLR does not have orbits of length 4 and 5. As a further example of observations from
the data, for n = 7, k = 4 (see Table 12) there exist co-isotopic 5-MOLR, but no transitive
5-MOLR, and a fortiori, no stepwise transitive 5-MOLR.

2×4 3×4 4×4

t = 2 2, 2, 2, 2 2, 2, 1, 1 1, 1, 1, 1
t = 3 1, 1, 1, 1 1, 1, 1, 1 1, 1, 1, 1

Table 9: The number of non-isotopic t-MOLR for n = 4 sorted by increasing regularity.

2×5 3×5 4×5 5×5

t = 2 4, 3, 4, 3 11, 9, 7, 6 2, 1, 2, 1 2, 1, 2, 1
t = 3 3, 2, 3, 2 1, 0, 0, 0 1, 0, 0, 0 1, 0, 0, 0
t = 4 2, 2, 2, 2 1, 1, 1, 1 1, 1, 1, 1 1, 1, 1, 1

Table 10: The number of non-isotopic t-MOLR for n = 5 sorted by increasing regularity.

2×6 3×6 4×6 5×6

t = 2 12, 11, 12, 11 280, 170, 158, 103 229, 160, 66, 50 43, 36, 13, 12
t = 3 16, 6, 16, 6 115, 29, 32, 4 62, 39, 4, 1 4, 3, 0, 0
t = 4 9, 8, 9, 8 19, 17, 15, 15 4, 3, 0, 0 4, 4, 0, 0
t = 5 2, 2, 2, 2 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0

Table 11: The number of non-isotopic t-MOLR for n = 6 sorted by increasing regularity.
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2×7 3×7 4×7 5×7 6×7 7×7

t = 2 42, 29 14 464, 3549 65 156, 27 299 22 432, 18 836 409, 392 9, 6
t = 3 318, 15 49 370, 647 2985, 1578 111, 36 11, 6 4, 1
t = 4 691, 21 1622, 110 84, 67 67, 53 7, 3 3, 0
t = 5 176, 6 49, 42 2, 0 4, 2 5, 3 1, 0
t = 6 26, 5 7, 7 2, 2 1, 1 1, 1 1, 1

Table 12: The number of non-isotopic co-isotopic and transitive t-MOLR for n = 7.

2×7 3×7 4×7 5×7 6×7 7×7

t = 2 42, 29 7423, 2175 14 960, 10 029 4163, 3923 91, 84 6, 4
t = 3 318, 15 13 975, 185 283, 160 8, 5 4, 1 4, 1
t = 4 691, 21 585, 48 12, 1 3, 0 3, 0 3, 0
t = 5 176, 6 48, 42 2, 0 1, 0 1, 0 1, 0
t = 6 26, 5 6, 4 2, 2 1, 1 1, 1 1, 1

Table 13: The number of non-isotopic stepwise co-isotopic and stepwise transitive t-MOLR
for n = 7.

The numbers of stepwise co-isotopic and stepwise transitive t-MOLR are by definition
smaller than (or equal to) the numbers of co-isotopic and transitive t-MOLR respectively,
but we again find stepwise co-isotopic examples for most parameter values. For n = 7,
k = 4, we have no stepwise transitive sets of MOLR, and additionally, there are no
stepwise transitive 5-MOLR for n = 7, k = 5, 6.

Here we note that for each n  7 all (n − 1)-tuples of MOLS are stepwise transitive,
if they exist. Since in each case the maximum set of MOLS for these n corresponds to
a Galois projective plane (that is, constructed from the corresponding Galois field) this
reflects the high degree of symmetry of these planes. For n = 9 there are several projective
planes, some of which are not Galois projective planes, and we will investigate that case
below.

6.2 Larger orders

For n  8 we have not generated all t-MOLR, even though our programs are in principle
able to do so. The problem here is that the number of t-MOLR becomes so large that
several peta-byte would be required to store them on disc, and any kind of analysis of
the whole set would become impractical. Instead, we have focused on two interesting
subclasses, the stepwise co-isotopic and the stepwise transitive t-MOLR. These classes
are restrictive enough to let us push the generation program a few more steps, and we
have already seen that they contain a number of interesting examples.
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In Table 14 we give the number of stepwise co-isotopic and stepwise transitive t-MOLR
for n = 8 and in Table 15 we give the number of stepwise transitive t-MOLR for n = 9.
For n = 8 it is clear that for small parameters k and t, the stepwise co-isotopic t-MOLR
far outnumber the stepwise transitive ones. We also find stepwise co-isotopic t-MOLR for
all parameters, but not stepwise transitive ones. This motivates the following question.

Question 8. For n  7, is there a stepwise co-isotopic t-MOLR for every pair t, k that
allows a t-MOLR?

For n = 9 we only have data for the stepwise transitive class, since the number of
stepwise co-isotopic t-MOLR is too large. Here it is clear that the possible values of t are
quite restricted. We note two interesting facts. First, there is a unique stepwise transitive
6-MOLS, which in turn has unique stepwise transitive restrictions to 8 and 7 rows. We
present this object in Figure 1. Second, there are 5 stepwise transitive 8-MOLS, which
are presented in Appendix G.

As mentioned earlier, it is known that there are exactly 4 projective planes of order
9. The Galois plane corresponds to the 8-MOLS with autotopism group of order 10 368,
see Table 42 in Appendix F. The other four 8-MOLS can be divided into two pairs, such
that both 8-MOLS in one pair correspond to the Hall plane, and those in the other pair
correspond to the dual of the Hall plane. In Appendix G we include data on this pairing.
This leaves the Hughes plane of order 9 as the smallest projective plane which cannot be
defined by a stepwise transitive MOLS.

With this in mind one may ask about the situation for larger orders as well. Wan-
less [41] has found that 8 of the 22 projective planes of order 16 cannot be constructed via
a co-isotopic MOLS, and hence they cannot be constructed from a stepwise transitive set
of MOLS either. In the online catalogue provided by Royle (currently available via [34]),
these are the planes labelled JOHN, BBS4, BBH2 and their duals, BBH1 (which is self-
dual), and, finally, either MATH or its dual DMATH. In the case of MATH or DMATH,
the test did not give enough information to discern which one of these two planes was
constructible in this fashion.

On the other hand, we can prove the following result, where by ‘the standard way’,
we refer to the construction given in Section 4. Theorem 5.2.5 in [22] shows, in our
terminology, that the tuples coming from the Galois planes are co-isotopic. However, a
closer inspection of their proof leads to this stronger statement.

Theorem 9. The set M of (n− 1) MOLS L1, L2, . . . , Ln−1 corresponding to a projective
plane constructed in the standard way from the finite field GF (n) is stepwise transitive.

Proof. Let a0 = 0 and ai = xi−1 for i = 1, 2, . . . , n− 1, where x is a generating element of
GF (n), and note that by definition column j of Lk has entries

a0 + akaj, a1 + akaj, . . . , an−1 + akaj

in this order. Column 0 therefore coincides among all of the Lk. Now, let π be the
column permutation that leaves column 0 in place, and shifts the sequence of columns
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0 1 2 3 4 5 6 7 8
8 7 6 5 3 2 4 1 0
7 0 8 4 1 6 5 3 2
6 2 0 1 8 7 3 5 4
5 8 4 6 2 3 7 0 1
4 3 5 7 0 1 8 2 6
3 4 1 0 7 8 2 6 5
2 6 7 8 5 0 1 4 3
1 5 3 2 6 4 0 8 7

0 1 2 3 4 5 6 7 8
7 8 5 4 2 6 3 0 1
1 7 6 0 3 8 2 4 5
2 0 3 6 5 4 1 8 7
3 4 8 7 1 0 5 6 2
6 5 1 2 8 7 0 3 4
8 2 4 5 6 3 7 1 0
4 3 0 1 7 2 8 5 6
5 6 7 8 0 1 4 2 3

0 1 2 3 4 5 6 7 8
6 5 8 0 7 3 1 4 2
8 4 7 6 2 1 3 5 0
4 7 5 8 1 2 0 6 3
7 3 0 2 6 8 4 1 5
5 6 4 1 3 0 2 8 7
2 8 6 7 0 4 5 3 1
1 0 3 5 8 6 7 2 4
3 2 1 4 5 7 8 0 6

0 1 2 3 4 5 6 7 8
3 0 7 6 8 1 5 2 4
6 5 4 8 7 2 0 1 3
1 6 8 5 0 3 7 4 2
2 7 1 0 5 4 8 3 6
7 2 3 4 6 8 1 0 5
5 3 0 1 2 6 4 8 7
8 4 5 2 1 7 3 6 0
4 8 6 7 3 0 2 5 1

0 1 2 3 4 5 6 7 8
2 6 4 7 1 8 0 3 5
3 8 0 5 6 7 4 2 1
5 4 7 2 3 0 8 1 6
8 5 3 1 7 6 2 4 0
1 0 6 8 2 4 7 5 3
4 7 8 6 5 1 3 0 2
6 2 1 4 0 3 5 8 7
7 3 5 0 8 2 1 6 4

0 1 2 3 4 5 6 7 8
1 4 0 8 6 7 2 5 3
2 6 5 7 8 3 1 0 4
8 3 1 4 7 6 5 2 0
4 2 6 5 0 1 3 8 7
3 8 7 0 5 2 4 6 1
7 5 3 2 1 0 8 4 6
5 7 8 6 3 4 0 1 2
6 0 4 1 2 8 7 3 5

Figure 1: The unique stepwise transitive 6-MOLS of order 9.

1, 2, . . . , n−1 one step forward, cyclically. Then π maps the square Li to the square Li+1,
for i ∕= n− 1, and maps Ln−1 to L1. So, π is an isotopism of the whole set of MOLS and
M is transitive.

When restricting to the first s rows, the argument works unchanged, so the set M is
also stepwise transitive.

A full characterization of the family of projective planes which correspond to stepwise
transitive sets of MOLS would of course be interesting, but even simpler questions are
left open.

Question 10. For large n, what proportion of the projective planes of order n correspond
to co-isotopic or stepwise transitive sets of MOLS?

Here it seems likely that asymptotically the proportion is 0. It would be of interest to
use the existing catalogues of finite projective planes, the currently most extensive being
that of Moorhouse [31] which now contains several hundred thousand examples, to check
how common these properties are among the known non-Galois examples.

6.3 Autotopism group sizes of t-MOLR

We have computed the order of the autotopism group for all sets of MOLR discussed so
far in the paper. Detailed statistics of these orders are given in Appendices A to F. We
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will here discuss some of the symmetry properties of sets of MOLR in general, and some
additional observations based on our data.

First let us note that the case of 2×n sets of MOLR is somewhat special. If we follow
the construction for a partial net using a 2 × n t-MOLR A, each of the lines which do
not correspond to a row has two points, and no such line connects two vertices in the
same row. This means that if we delete the two lines with n points, we have a bipartite
graph g(A), where the two rows give us the bipartition. Additionally, the edges coming
from each rectangle add a perfect matching, as do the edges coming from the columns,
so we have a (t+ 1)-regular bipartite graph with a natural edge colouring given by these
matchings. The autotopism group of A now corresponds to automorphisms of this edge-
coloured graph which map the matching given by the column-lines to itself. If we assume
that A is normalized, we can also invert this construction and reconstruct the t-MOLR A.
Now, for t = n−1 this defines a proper edge colouring of Kn,n, i.e., a Latin square, so here
we obtain a mapping from 2×n (n−1)-MOLR to a Latin square L(A), and an autotopism
of A defines an autotopism of L(A) which fixes one symbol, again corresponding to the
column lines in the partial net.

Given a regularity property we may also look at how it interplays with restrictions of a
set of MOLR. First let us note that any subset of rectangles from a co-isotopic t-MOLR is
co-isotopic, so this case is trivial, and the same is true for a stepwise co-isotopic t-MOLR.
For transitivity, the group structure comes into play. Given a transitive t-MOLR A with
autotopism group G we get a subgroup G′ which describes the action of G on the set of
rectangles. If G′ has an element g of order r we will obtain a transitive r-MOLR from A
by taking the orbit of a single rectangle from A under g. Whenever we have a transitive
t-MOLR with autotopism group of order t this implies the existence of p-MOLR for the
same size k×n for every prime factor p of t. For general parameters we observe that when
t or k is small, transitive t-MOLR with autotopism group of order exactly t are common.

Following this, we say that a transitive t-MOLR A is G-complete if there does not
exist a t′ > t and a t′-MOLR B, with A ⊊ B, such that A is the orbit of a rectangle in B
under an element g ∈ Aut(B), and otherwise we say that A is G-incomplete. As noted,
there are many examples of t-MOLR with autotopism groups of size t, and hence we will
also have many incomplete r-MOLR of the same size and r a divisor of t.

Observation 11. In our data we found the following:

1. Among the stepwise transitive sets of MOLR for n = 8 there is one 3-MOLS with
autotopism group of order 48, which is G-complete. We display that example in
Figure 2.

2. For n = 9 none of the stepwise transitive 4-MOLR are G-complete. The 4-MOLR
with autotopism groups of orders 5184 and 2592 both correspond to the 8-MOLS
with autotopism group of order 10 368. The two 4-MOLR with autotopism group of
order 64 correspond to the two 8-MOLR with autotopism group of order 384.

3. For n = 9 the 8-MOLS with autotopism group of order 31 104 does not correspond
to any G-incomplete stepwise transitive 4-MOLS.
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0 1 2 3 4 5 6 7
7 6 5 4 3 2 1 0
6 7 4 5 2 3 0 1
5 4 7 6 1 0 3 2
4 5 6 7 0 1 2 3
3 2 1 0 7 6 5 4
2 0 3 1 6 4 7 5
1 3 0 2 5 7 4 6

0 1 2 3 4 5 6 7
6 7 4 5 2 3 0 1
5 4 7 6 1 0 3 2
2 3 0 1 6 7 4 5
1 0 3 2 5 4 7 6
7 6 5 4 3 2 1 0
4 2 1 7 0 6 5 3
3 5 6 0 7 1 2 4

0 1 2 3 4 5 6 7
1 0 3 2 5 4 7 6
3 2 1 0 7 6 5 4
7 6 5 4 3 2 1 0
5 4 7 6 1 0 3 2
4 5 6 7 0 1 2 3
6 3 0 5 2 7 4 1
2 7 4 1 6 3 0 5

Figure 2: The G-complete 3-MOLS with n = 8

4. For n = 9 the stepwise transitive set of 6 MOLS is G-complete.

For stepwise transitive sets of MOLR, restrictions become far less well-behaved. Given
a transitive t-MOLR A and an autotopism g which has order r on the set of rectangles,
we know that we will obtain a transitive r-MOLR A′ from A. However, assuming that A
is stepwise transitive does not necessarily lead to stepwise transitivity for A′. In order for
this to happen it must also be the case that each of the stepwise transitive sets of MOLR
which are used to construct A have autotopisms with the same orbit as g, and this is not
always the case. We see one such example at n = 9, where a stepwise transitive 6-MOLS
exists, but no stepwise transitive triple.

7 Concluding remarks

In this paper we have focused on enumeration of t-MOLR up to n = 9, coming tantalisingly
close to the, in this setting, special value n = 10. As we have mentioned, a significant
theoretical and computational effort led to the result that there is no set of 9 mutually
orthogonal Latin squares of order 10, and hence no projective plane of order 10. However,
an even more basic question remains:

Question 12. Is there a triple of mutually orthogonal Latin squares of order 10?

A large number of pairwise orthogonal Latin squares of order 10 are known, and as
mentioned above, the self-orthogonal Latin squares of order 10 have been completely
enumerated. An exhaustive search by McKay, Meynert, and Myrvold [27] proved that no
square of order 10 with non-trivial autoparatopism group is part of an orthogonal triple.
The total number of Latin squares of order 10 with trivial autoparatopism group was
however too large for a complete search for orthogonal triples.

Note that these results do not immediately exclude the existence of transitive, or even
stepwise transitive, triples of MOLS or MOLR of order 10, since the autotopism group
of a single square or rectangle in such a triple can be trivial. Our data provides several
such examples for rectangles. However, as an anonymous reviewer pointed out, from a
transitive triple of MOLS one can, by translation to an orthogonal array, construct a triple
of MOLS where at least one square has non-trivial autoparatopisms. Thus the result of
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0 1 2 3 4 5 6 7 8 9
9 8 7 6 5 4 3 1 0 2
8 9 3 5 7 1 0 2 6 4
7 6 4 0 3 2 9 8 5 1
6 7 5 4 1 8 2 0 9 3
5 4 6 1 9 0 8 3 2 7
4 5 0 7 2 6 1 9 3 8
3 0 1 2 8 9 4 6 7 5
2 3 8 9 6 7 5 4 1 0

0 1 2 3 4 5 6 7 8 9
8 9 6 5 0 7 2 4 3 1
4 7 0 6 2 3 1 8 9 5
5 3 8 9 1 4 0 2 7 6
2 4 3 1 8 0 9 5 6 7
1 0 4 2 3 6 7 9 5 8
9 2 7 0 6 8 5 1 4 3
6 8 9 7 5 2 3 0 1 4
3 5 1 4 7 9 8 6 0 2

0 1 2 3 4 5 6 7 8 9
4 5 3 2 6 9 1 8 7 0
9 6 7 0 8 4 2 5 1 3
1 9 0 4 5 3 8 6 2 7
3 0 8 6 2 1 7 9 5 4
7 2 5 9 1 8 3 0 4 6
8 4 1 5 9 7 0 3 6 2
2 3 6 8 7 0 5 4 9 1
6 8 4 7 0 2 9 1 3 5

Figure 3: A 3-MOLR of size 9 × 10, whose restriction to the first 8 rows is stepwise
transitive.

McKay, Meynert, and Myrvold [27] does in fact rule out the existence of transitive triples
of MOLS of order 10 as well.

There are other restricted versions of Question 12 which remain.

Question 13. Is there a co-isotopic 3-MOLS of order 10?

Question 14. Is there a stepwise co-isotopic 3-MOLS of order 10?

A negative answer to Question 13 would lead to another extension of McKay, Meynert,
and Myrvold’s result from [27]. For Question 14, a more specialised version of the type
of search we have performed might be able to handle the case t = 3 for n = 10 as well.

In [14] Egan and Wanless tried to find an example of 3 Latin squares of order 10 that
come as close to being mutually orthogonal as possible. They presented an example of 3
Latin squares such that the first is orthogonal to the other two, and the final two produce
91 different symbol pairs when superimposed. There have also been earlier examples
of MOLR and pairwise almost orthogonal Latin squares for n = 10. In [16], Franklin
constructed examples of triples of pairwise orthogonal 9 × 10 rectangles, in order to be
used in the construction of designs, and in [40] Wanless constructed a set of 4 such
rectangles.

Using our program we performed a partial search for stepwise transitive MOLR with
n = 10. We found several examples of stepwise transitive triples of 8 × 10 MOLR,
and some of these could be extended to triples of 9× 10 MOLR, but not while preserving
transitivity. In Figure 3 we give one such example. This example can be uniquely extended
to 3 Latin squares, such that all positions which break orthogonality lie in the last row.
Unfortunately, none of the examples we found could be extended to a triple of MOLS.
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A Sizes of autotopism groups of MOLR for n = 4

2×4 Σ 8 16
non-ISO 3 1 2
co-iso. 2 0 2

transitive 2 0 2
st. co-iso. 2 0 2
st. trans. 2 0 2

3×4 Σ 8 24
non-ISO 2 1 1
co-iso. 2 1 1

transitive 2 1 1
st. co-iso. 1 0 1
st. trans. 1 0 1

4×4 Σ 96
non-ISO 1 1
co-iso. 1 1

transitive 1 1
st. co-iso. 1 1
st. trans. 1 1

Table 16: 2-MOLR for n = 4.

2×4 Σ 16 48
non-ISO 2 1 1
co-iso. 1 0 1

transitive 1 0 1
st. co-iso. 1 0 1
st. trans. 1 0 1

3×4 Σ 72
non-ISO 1 1
co-iso. 1 1

transitive 1 1
st. co-iso. 1 1
st. trans. 1 1

4×4 Σ 288
non-ISO 1 1
co-iso. 1 1

transitive 1 1
st. co-iso. 1 1
st. trans. 1 1

Table 17: 3-MOLR for n = 4.
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B Sizes of autotopism groups of MOLR for n = 5

2×5 Σ 2 4 10 20
non-ISO 5 1 2 1 1
co-iso. 4 0 2 1 1

transitive 3 0 2 0 1
st. co-iso. 4 0 2 1 1
st. trans. 3 0 2 0 1

3×5 Σ 1 2 4 10 20
non-ISO 14 1 7 3 2 1
co-iso. 11 1 4 3 2 1

transitive 9 0 4 3 1 1
st. co-iso. 7 0 1 3 2 1
st. trans. 6 0 1 3 1 1

4×5 Σ 20 40
non-ISO 2 1 1
co-iso. 2 1 1

transitive 1 0 1
st. co-iso. 2 1 1
st. trans. 1 0 1

5×5 Σ 100 200
non-ISO 2 1 1
co-iso. 2 1 1

transitive 1 0 1
st. co-iso. 2 1 1
st. trans. 1 0 1

Table 18: 2-MOLR for n = 5.
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2×5 Σ 2 6 10
non-ISO 4 1 2 1
co-iso. 3 0 2 1

transitive 2 0 2 0
st. co-iso. 3 0 2 1
st. trans. 2 0 2 0

3×5 Σ 10
non-ISO 1 1
co-iso. 1 1

st. co-iso. 1 1

4×5 Σ 20
non-ISO 1 1
co-iso. 1 1

st. co-iso. 1 1

5×5 Σ 100
non-ISO 1 1
co-iso. 1 1

Table 19: 3-MOLR for n = 5.

2×5 Σ 6 24 40
non-ISO 3 1 1 1
co-iso. 2 0 1 1

transitive 2 0 1 1
st. co-iso. 2 0 1 1
st. trans. 2 0 1 1

3×5 Σ 40
non-ISO 1 1
co-iso. 1 1

transitive 1 1
st. co-iso. 1 1
st. trans. 1 1

4×5 Σ 80
non-ISO 1 1
co-iso. 1 1

transitive 1 1
st. co-iso. 1 1
st. trans. 1 1

5×5 Σ 400
non-ISO 1 1
co-iso. 1 1

transitive 1 1
st. co-iso. 1 1
st. trans. 1 1

Table 20: 4-MOLR for n = 5.
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C Sizes of autotopism groups of MOLR for n = 6

2×6 Σ 1 2 4 6 8 12 24 72
non-ISO 28 1 7 7 1 3 6 2 1
co-iso. 12 0 3 2 0 3 1 2 1

transitive 11 0 2 2 0 3 1 2 1
st. co-iso. 12 0 3 2 0 3 1 2 1
st. trans. 11 0 2 2 0 3 1 2 1

3×6 Σ 1 2 3 4 6 8 12 24 216
non-ISO 1526 1155 252 18 59 19 8 11 3 1
co-iso. 280 89 117 1 40 13 8 8 3 1

transitive 170 0 100 0 40 10 8 8 3 1
st. co-iso. 158 43 63 1 26 9 8 4 3 1
st. trans. 103 0 52 0 26 9 8 4 3 1

4×6 Σ 1 2 3 4 6 8 12 16 24 48
non-ISO 2036 1425 425 30 78 35 16 21 1 3 2
co-iso. 229 36 112 5 31 11 16 12 1 3 2

transitive 160 0 92 0 29 9 15 9 1 3 2
st. co-iso. 66 7 27 1 11 3 8 6 0 2 1
st. trans. 50 0 22 0 10 3 6 6 0 2 1

5×6 Σ 1 2 3 4 6 8 12 16 24 48
non-ISO 85 5 25 2 26 4 11 7 2 1 2
co-iso. 43 0 10 0 13 3 6 7 2 0 2

transitive 36 0 6 0 11 2 6 7 2 0 2
st. co-iso. 13 0 2 0 0 1 4 2 2 0 2
st. trans. 12 0 1 0 0 1 4 2 2 0 2

Table 21: 2-MOLR for n = 6.
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2×6 Σ 1 2 4 6 8 12 24 36 72
non-ISO 103 24 25 26 2 7 13 4 1 1
co-iso. 16 3 4 3 0 0 3 1 1 1

transitive 6 0 0 0 0 0 3 1 1 1
st. co-iso. 16 3 4 3 0 0 3 1 1 1
st. trans. 6 0 0 0 0 0 3 1 1 1

3×6 Σ 1 2 3 4 6 12 18 36
non-ISO 2572 1980 442 54 27 55 6 4 4
co-iso. 115 41 32 11 2 18 3 4 4

transitive 29 0 0 6 0 13 2 4 4
st. co-iso. 32 11 11 2 2 2 1 1 2
st. trans. 4 0 0 0 0 0 1 1 2

4×6 Σ 1 2 3 4 6 8 9 12 18 24 36
non-ISO 513 93 194 96 37 64 3 2 11 9 1 3
co-iso. 62 1 8 11 1 23 0 2 3 9 1 3

transitive 39 0 0 3 0 18 0 2 3 9 1 3
st. co-iso. 4 0 0 0 0 3 0 0 0 0 0 1
st. trans. 1 0 0 0 0 0 0 0 0 0 0 1

5×6 Σ 3 6 9 18
non-ISO 7 2 2 1 2
co-iso. 4 0 1 1 2

transitive 3 0 0 1 2

Table 22: 3-MOLR for n = 6.
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2×6 Σ 1 2 3 4 8 12 16 18 24 36 48
non-ISO 92 14 18 1 28 8 10 2 1 4 4 2
co-iso. 9 0 1 0 2 2 0 2 0 0 0 2

transitive 8 0 0 0 2 2 0 2 0 0 0 2
st. co-iso. 9 0 1 0 2 2 0 2 0 0 0 2
st. trans. 8 0 0 0 2 2 0 2 0 0 0 2

3×6 Σ 1 2 3 4 6 8 12 16 18 24 36 48 144
non-ISO 118 16 38 5 22 10 6 9 2 4 1 3 1 1
co-iso. 19 0 0 0 5 1 6 2 2 0 1 0 1 1

transitive 17 0 0 0 5 0 6 1 2 0 1 0 1 1
st. co-iso. 15 0 0 0 3 0 6 1 2 0 1 0 1 1
st. trans. 15 0 0 0 3 0 6 1 2 0 1 0 1 1

4×6 Σ 3 6 9 12 18 24 72
non-ISO 12 2 2 2 1 3 1 1
co-iso. 4 0 0 1 1 0 1 1

transitive 3 0 0 0 1 0 1 1

5×6 Σ 6 9 18 24 36 72
non-ISO 8 1 2 1 1 1 2
co-iso. 4 0 0 0 1 1 2

transitive 4 0 0 0 1 1 2

Table 23: 4-MOLR for n = 6.

2×6 Σ 1 2 4 6 8 12 16 20 24 36 48 72 240
non-ISO 33 1 5 6 1 7 1 2 1 3 2 1 2 1
co-iso. 2 0 0 0 0 0 0 0 1 0 0 0 0 1

transitive 2 0 0 0 0 0 0 0 1 0 0 0 0 1
st. co-iso. 2 0 0 0 0 0 0 0 1 0 0 0 0 1
st. trans. 2 0 0 0 0 0 0 0 1 0 0 0 0 1

Table 24: 5-MOLR for n = 6.
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D Sizes of autotopism groups of MOLR for n = 7

2×7 Σ 1 2 4 14 24 28 48

non-ISO 100 21 55 18 2 1 1 2

co-iso. 42 3 16 18 2 0 1 2

transitive 29 0 8 18 0 0 1 2

st. co-iso. 42 3 16 18 2 0 1 2

st. trans. 29 0 8 18 0 0 1 2

3×7 Σ 1 2 3 4 6 7 14 21 24 28 42 72

non-ISO 514 162 508 132 5880 48 65 23 4 4 2 1 1 1 1

co-iso. 14 464 10 835 3524 6 65 23 1 4 2 1 1 1 1

transitive 3549 0 3455 0 65 23 0 2 0 1 1 1 1

st. co-iso. 7423 5017 2302 6 65 23 1 4 2 0 1 1 1

st. trans. 2175 0 2082 0 65 23 0 2 0 0 1 1 1

4×7 Σ 1 2 3 4 6 7 8 14 21 28 42

non-ISO 49 415 812 49 363 791 51 060 428 444 54 11 14 6 2 1 1

co-iso. 65 156 37 639 27 054 16 365 54 4 14 6 2 1 1

transitive 27 299 0 26 867 0 361 54 0 14 1 0 1 1

st. co-iso. 14 960 4249 10 418 16 205 54 0 11 3 2 1 1

st. trans. 10 029 0 9775 0 187 54 0 11 0 0 1 1

5×7 Σ 1 2 4 5 7 10 14 28

non-ISO 21 290 125 21 243 988 45 872 227 10 6 12 9 1

co-iso. 22 432 3508 18 672 227 1 6 8 9 1

transitive 18 836 0 18 599 227 0 0 5 4 1

st. co-iso. 4163 99 3935 121 0 0 5 2 1

st. trans. 3923 0 3799 118 0 0 5 0 1

6×7 Σ 1 2 3 4 5 6 7 10 12 42 84

non-ISO 11 582 10 912 492 20 24 102 11 1 12 4 3 1

co-iso. 409 2 345 0 24 8 9 1 12 4 3 1

transitive 392 0 342 0 24 0 8 0 12 4 1 1

st. co-iso. 91 0 61 0 4 2 7 0 12 2 2 1

st. trans. 84 0 60 0 3 0 7 0 12 1 0 1

7×7 Σ 2 3 6 12 21 42 294 588

non-ISO 20 5 5 3 1 1 2 2 1

co-iso. 9 1 0 2 1 0 2 2 1

transitive 6 0 0 2 1 0 2 0 1

st. co-iso. 6 0 0 1 1 0 1 2 1

st. trans. 4 0 0 1 1 0 1 0 1

Table 25: 2-MOLR for n = 7.
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2×7 Σ 1 2 3 4 6 12 14 42

non-ISO 2858 2300 512 3 28 9 2 3 1

co-iso. 318 194 100 3 6 9 2 3 1

transitive 15 0 0 3 0 9 2 0 1

st. co-iso. 318 194 100 3 6 9 2 3 1

st. trans. 15 0 0 3 0 9 2 0 1

3×7 Σ 1 2 3 6 7 9 14 18 21 42 63

non-ISO 65 883 453 65 822 447 60 195 635 143 17 3 3 4 4 1 1

co-iso. 49 370 48 126 566 542 116 4 3 3 4 4 1 1

transitive 647 0 0 524 113 0 3 0 4 1 1 1

st. co-iso. 13 975 13 397 305 189 64 4 3 3 4 4 1 1

st. trans. 185 0 0 125 51 0 3 0 4 0 1 1

4×7 Σ 1 2 3 4 6 7 9 12 14 18 21 42 63

non-ISO 323 112 477 323 002 195 107 997 1975 120 116 43 10 3 8 2 6 1 1

co-iso. 2985 1232 147 1474 1 91 9 10 3 8 2 6 1 1

transitive 1578 0 0 1468 0 90 0 10 3 0 2 3 1 1

st. co-iso. 283 59 27 136 1 34 2 10 3 4 2 3 1 1

st. trans. 160 0 0 113 0 30 0 10 3 0 2 0 1 1

5×7 Σ 1 2 3 4 6 7 14 21 42

non-ISO 55 545 52 981 2500 32 5 2 15 8 1 1

co-iso. 111 31 21 32 0 2 15 8 1 1

transitive 36 0 0 32 0 2 0 0 1 1

st. co-iso. 8 0 0 2 0 2 0 3 0 1

st. trans. 5 0 0 2 0 2 0 0 0 1

6×7 Σ 1 2 3 4 6 12 42 126

non-ISO 16 1 4 1 1 3 2 3 1

co-iso. 11 0 1 0 1 3 2 3 1

transitive 6 0 0 0 0 3 2 0 1

st. co-iso. 4 0 0 0 0 0 0 3 1

st. trans. 1 0 0 0 0 0 0 0 1

7×7 Σ 294 882

non-ISO 4 3 1

co-iso. 4 3 1

transitive 1 0 1

st. co-iso. 4 3 1

st. trans. 1 0 1

Table 26: 3-MOLR for n = 7.
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2×7 Σ 1 2 4 8 14 16 28
non-ISO 17 609 15 981 1545 64 12 2 4 1
co-iso. 691 489 164 19 12 2 4 1

transitive 21 0 0 5 12 0 4 0
st. co-iso. 691 489 164 19 12 2 4 1
st. trans. 21 0 0 5 12 0 4 0

3×7 Σ 1 2 3 4 6 7 12 14 21 28 42
non-ISO 35 469 948 35 420 362 48 685 626 226 21 12 1 7 6 1 1
co-iso. 1622 949 539 9 110 4 1 1 4 3 1 1

transitive 110 0 0 0 109 0 0 1 0 0 0 0
st. co-iso. 585 251 243 9 67 4 1 1 4 3 1 1
st. trans. 48 0 0 0 47 0 0 1 0 0 0 0

4×7 Σ 1 2 3 4 6 7 8 14 16 21 28 42 56 84
non-ISO 68 659 67 073 1354 74 110 2 20 12 5 1 3 2 1 1 1
co-iso. 84 3 5 0 52 0 1 12 3 1 2 2 1 1 1

transitive 67 0 0 0 51 0 0 12 0 1 0 1 0 1 1
st. co-iso. 12 0 1 0 2 0 0 2 2 1 2 1 1 0 0
st. trans. 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

5×7 Σ 1 2 4 7 8 14 28 56
non-ISO 204 96 41 32 6 18 6 4 1
co-iso. 67 1 0 31 6 18 6 4 1

transitive 53 0 0 31 0 18 0 3 1
st. co-iso. 3 0 0 0 0 0 2 1 0

6×7 Σ 4 6 24 42 84
non-ISO 7 1 1 2 2 1
co-iso. 7 1 1 2 2 1

transitive 3 1 0 2 0 0
st. co-iso. 3 0 0 0 2 1

7×7 Σ 294 588
non-ISO 3 2 1
co-iso. 3 2 1

st. co-iso. 3 2 1

Table 27: 4-MOLR for n = 7.
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2×7 Σ 1 2 4 5 8 10 14
non-ISO 10 626 9590 957 48 4 24 2 1
co-iso. 176 122 37 4 4 6 2 1

transitive 6 0 0 0 4 0 2 0
st. co-iso. 176 122 37 4 4 6 2 1
st. trans. 6 0 0 0 4 0 2 0

3×7 Σ 1 2 3 5 6 7 10 14 21
non-ISO 22 982 21 848 1039 39 30 7 1 12 1 5
co-iso. 49 3 1 0 30 0 0 12 1 2

transitive 42 0 0 0 30 0 0 12 0 0
st. co-iso. 48 2 1 0 30 0 0 12 1 2
st. trans. 42 0 0 0 30 0 0 12 0 0

4×7 Σ 1 2 4 8 14 21
non-ISO 19 2 4 8 3 1 1
co-iso. 2 0 0 0 0 1 1

st. co-iso. 2 0 0 0 0 1 1

5×7 Σ 4 14 20
non-ISO 5 2 1 2
co-iso. 4 1 1 2

transitive 2 0 0 2
st. co-iso. 1 0 1 0

6×7 Σ 20 24 42 120
non-ISO 5 1 1 1 2
co-iso. 5 1 1 1 2

transitive 3 1 0 0 2
st. co-iso. 1 0 0 1 0

7×7 Σ 294
non-ISO 1 1
co-iso. 1 1

st. co-iso. 1 1

Table 28: 5-MOLR for n = 7.
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2×7 Σ 1 2 3 4 5 6 8 10 12 16 48 84
non-ISO 1895 1505 328 2 29 4 5 14 2 1 2 2 1
co-iso. 26 7 7 1 1 1 2 0 1 1 2 2 1

transitive 5 0 0 0 0 0 1 0 0 1 0 2 1
st. co-iso. 26 7 7 1 1 1 2 0 1 1 2 2 1
st. trans. 5 0 0 0 0 0 1 0 0 1 0 2 1

3×7 Σ 1 2 3 6 12 21 84 126
non-ISO 23 8 4 1 5 1 1 1 2
co-iso. 7 0 0 0 3 1 0 1 2

transitive 7 0 0 0 3 1 0 1 2
st. co-iso. 6 0 0 0 2 1 0 1 2
st. trans. 4 0 0 0 0 1 0 1 2

4×7 Σ 84 126
non-ISO 2 1 1
co-iso. 2 1 1

transitive 2 1 1
st. co-iso. 2 1 1
st. trans. 2 1 1

5×7 Σ 84
non-ISO 1 1
co-iso. 1 1

transitive 1 1
st. co-iso. 1 1
st. trans. 1 1

6×7 Σ 252
non-ISO 1 1
co-iso. 1 1

transitive 1 1
st. co-iso. 1 1
st. trans. 1 1

7×7 Σ 1764
non-ISO 1 1
co-iso. 1 1

transitive 1 1
st. co-iso. 1 1
st. trans. 1 1

Table 29: 6-MOLR for n = 7.
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G The stepwise transitive 8-MOLR for n = 9

0 1 2 3 4 5 6 7 8
8 7 6 2 1 0 3 4 5
7 6 8 0 2 1 5 3 4
6 8 7 1 0 2 4 5 3
5 4 3 6 7 8 2 1 0
4 3 5 8 6 7 0 2 1
3 5 4 7 8 6 1 0 2
2 0 1 4 5 3 7 8 6
1 2 0 5 3 4 8 6 7

0 1 2 3 4 5 6 7 8
7 6 8 0 2 1 5 3 4
5 4 3 6 7 8 2 1 0
2 0 1 4 5 3 7 8 6
3 5 4 7 8 6 1 0 2
1 2 0 5 3 4 8 6 7
8 7 6 2 1 0 3 4 5
4 3 5 8 6 7 0 2 1
6 8 7 1 0 2 4 5 3

0 1 2 3 4 5 6 7 8
6 8 7 1 0 2 4 5 3
2 0 1 4 5 3 7 8 6
3 5 4 7 8 6 1 0 2
4 3 5 8 6 7 0 2 1
7 6 8 0 2 1 5 3 4
1 2 0 5 3 4 8 6 7
8 7 6 2 1 0 3 4 5
5 4 3 6 7 8 2 1 0

0 1 2 3 4 5 6 7 8
5 4 3 6 7 8 2 1 0
3 5 4 7 8 6 1 0 2
4 3 5 8 6 7 0 2 1
8 7 6 2 1 0 3 4 5
6 8 7 1 0 2 4 5 3
7 6 8 0 2 1 5 3 4
1 2 0 5 3 4 8 6 7
2 0 1 4 5 3 7 8 6

0 1 2 3 4 5 6 7 8
4 3 5 8 6 7 0 2 1
1 2 0 5 3 4 8 6 7
7 6 8 0 2 1 5 3 4
6 8 7 1 0 2 4 5 3
3 5 4 7 8 6 1 0 2
2 0 1 4 5 3 7 8 6
5 4 3 6 7 8 2 1 0
8 7 6 2 1 0 3 4 5

0 1 2 3 4 5 6 7 8
3 5 4 7 8 6 1 0 2
8 7 6 2 1 0 3 4 5
1 2 0 5 3 4 8 6 7
7 6 8 0 2 1 5 3 4
2 0 1 4 5 3 7 8 6
5 4 3 6 7 8 2 1 0
6 8 7 1 0 2 4 5 3
4 3 5 8 6 7 0 2 1

0 1 2 3 4 5 6 7 8
2 0 1 4 5 3 7 8 6
4 3 5 8 6 7 0 2 1
8 7 6 2 1 0 3 4 5
1 2 0 5 3 4 8 6 7
5 4 3 6 7 8 2 1 0
6 8 7 1 0 2 4 5 3
7 6 8 0 2 1 5 3 4
3 5 4 7 8 6 1 0 2

0 1 2 3 4 5 6 7 8
1 2 0 5 3 4 8 6 7
6 8 7 1 0 2 4 5 3
5 4 3 6 7 8 2 1 0
2 0 1 4 5 3 7 8 6
8 7 6 2 1 0 3 4 5
4 3 5 8 6 7 0 2 1
3 5 4 7 8 6 1 0 2
7 6 8 0 2 1 5 3 4

Figure 4: The stepwise transitive 8-MOLS of size 9×9 with |Aut| = 10 368, corresponding
to the Galois plane.
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0 1 2 3 4 5 6 7 8
8 7 6 2 1 0 3 4 5
7 6 8 0 2 1 5 3 4
6 8 7 1 0 2 4 5 3
5 4 3 6 7 8 2 1 0
4 3 5 8 6 7 0 2 1
3 5 4 7 8 6 1 0 2
2 0 1 4 5 3 7 8 6
1 2 0 5 3 4 8 6 7

0 1 2 3 4 5 6 7 8
7 6 8 0 2 1 5 3 4
5 4 3 6 7 8 2 1 0
2 0 1 4 5 3 7 8 6
3 5 4 7 8 6 1 0 2
1 2 0 5 3 4 8 6 7
8 7 6 2 1 0 3 4 5
4 3 5 8 6 7 0 2 1
6 8 7 1 0 2 4 5 3

0 1 2 3 4 5 6 7 8
6 8 7 1 0 2 4 5 3
1 2 0 5 3 4 8 6 7
5 4 3 6 7 8 2 1 0
4 3 5 8 6 7 0 2 1
8 7 6 2 1 0 3 4 5
2 0 1 4 5 3 7 8 6
7 6 8 0 2 1 5 3 4
3 5 4 7 8 6 1 0 2

0 1 2 3 4 5 6 7 8
5 4 3 6 7 8 2 1 0
3 5 4 7 8 6 1 0 2
4 3 5 8 6 7 0 2 1
8 7 6 2 1 0 3 4 5
6 8 7 1 0 2 4 5 3
7 6 8 0 2 1 5 3 4
1 2 0 5 3 4 8 6 7
2 0 1 4 5 3 7 8 6

0 1 2 3 4 5 6 7 8
4 3 5 8 6 7 0 2 1
2 0 1 4 5 3 7 8 6
8 7 6 2 1 0 3 4 5
6 8 7 1 0 2 4 5 3
5 4 3 6 7 8 2 1 0
1 2 0 5 3 4 8 6 7
3 5 4 7 8 6 1 0 2
7 6 8 0 2 1 5 3 4

0 1 2 3 4 5 6 7 8
3 5 4 7 8 6 1 0 2
8 7 6 2 1 0 3 4 5
1 2 0 5 3 4 8 6 7
7 6 8 0 2 1 5 3 4
2 0 1 4 5 3 7 8 6
5 4 3 6 7 8 2 1 0
6 8 7 1 0 2 4 5 3
4 3 5 8 6 7 0 2 1

0 1 2 3 4 5 6 7 8
2 0 1 4 5 3 7 8 6
6 8 7 1 0 2 4 5 3
3 5 4 7 8 6 1 0 2
1 2 0 5 3 4 8 6 7
7 6 8 0 2 1 5 3 4
4 3 5 8 6 7 0 2 1
5 4 3 6 7 8 2 1 0
8 7 6 2 1 0 3 4 5

0 1 2 3 4 5 6 7 8
1 2 0 5 3 4 8 6 7
4 3 5 8 6 7 0 2 1
7 6 8 0 2 1 5 3 4
2 0 1 4 5 3 7 8 6
3 5 4 7 8 6 1 0 2
6 8 7 1 0 2 4 5 3
8 7 6 2 1 0 3 4 5
5 4 3 6 7 8 2 1 0

Figure 5: The stepwise transitive 8-MOLS of size 9×9 with |Aut| = 31 104, corresponding
to the dual of the Hall plane.
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0 1 2 3 4 5 6 7 8
8 7 6 5 3 4 2 1 0
7 8 1 6 2 0 3 5 4
6 0 8 7 1 2 4 3 5
5 4 3 2 6 7 8 0 1
4 3 5 1 7 8 0 6 2
3 5 4 0 8 6 1 2 7
2 6 7 8 0 1 5 4 3
1 2 0 4 5 3 7 8 6

0 1 2 3 4 5 6 7 8
7 6 8 4 5 3 1 0 2
3 5 4 0 6 7 2 8 1
5 4 3 2 7 8 0 1 6
1 8 6 7 2 0 4 3 5
6 7 0 8 1 2 5 4 3
8 2 7 6 0 1 3 5 4
4 3 5 1 8 6 7 2 0
2 0 1 5 3 4 8 6 7

0 1 2 3 4 5 6 7 8
6 5 4 0 2 1 3 8 7
4 7 6 5 8 3 1 2 0
1 2 0 8 5 6 7 4 3
8 3 7 1 0 2 5 6 4
2 0 1 7 6 4 8 3 5
5 6 8 4 3 7 2 0 1
7 8 3 2 1 0 4 5 6
3 4 5 6 7 8 0 1 2

0 1 2 3 4 5 6 7 8
5 4 7 2 1 0 8 3 6
6 3 8 1 0 2 7 4 5
8 7 4 5 6 3 2 0 1
7 6 5 4 3 8 0 1 2
3 8 6 0 2 1 4 5 7
2 0 1 8 7 4 5 6 3
1 2 0 6 5 7 3 8 4
4 5 3 7 8 6 1 2 0

0 1 2 3 4 5 6 7 8
4 8 5 1 0 2 7 6 3
1 2 0 7 5 8 4 3 6
3 6 7 0 2 1 5 8 4
2 0 1 6 8 4 3 5 7
7 5 8 4 3 6 1 2 0
6 7 3 2 1 0 8 4 5
8 4 6 5 7 3 0 1 2
5 3 4 8 6 7 2 0 1

0 1 2 3 4 5 6 7 8
3 2 1 6 8 7 0 5 4
8 6 7 4 3 1 5 0 2
2 3 5 1 0 4 8 6 7
4 5 0 8 7 6 1 2 3
1 4 3 2 5 0 7 8 6
7 8 6 5 2 3 4 1 0
5 0 4 7 6 8 2 3 1
6 7 8 0 1 2 3 4 5

0 1 2 3 4 5 6 7 8
2 3 0 8 7 6 5 4 1
5 0 3 2 1 4 8 6 7
4 5 1 6 8 7 3 2 0
3 2 4 0 5 1 7 8 6
8 6 7 5 0 3 2 1 4
1 4 5 7 6 8 0 3 2
6 7 8 4 3 2 1 0 5
7 8 6 1 2 0 4 5 3

0 1 2 3 4 5 6 7 8
1 0 3 7 6 8 4 2 5
2 4 5 8 7 6 0 1 3
7 8 6 4 3 0 1 5 2
6 7 8 5 1 3 2 4 0
5 2 4 6 8 7 3 0 1
4 3 0 1 5 2 7 8 6
3 5 1 0 2 4 8 6 7
8 6 7 2 0 1 5 3 4

Figure 6: The stepwise transitive 8-MOLS of size 9× 9 with |Aut| = 384, corresponding
to the Hall plane.
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0 1 2 3 4 5 6 7 8
8 7 6 5 3 2 4 1 0
7 8 4 6 5 3 2 0 1
6 4 8 1 0 7 3 5 2
5 0 1 8 2 4 7 6 3
4 2 5 7 1 0 8 3 6
3 5 0 2 8 6 1 4 7
2 6 3 0 7 1 5 8 4
1 3 7 4 6 8 0 2 5

0 1 2 3 4 5 6 7 8
7 8 5 6 2 1 3 0 4
6 5 1 7 8 4 0 3 2
2 7 3 4 5 0 8 1 6
3 2 8 1 7 6 5 4 0
8 3 0 2 6 7 4 5 1
1 4 6 5 0 8 7 2 3
4 0 7 8 1 3 2 6 5
5 6 4 0 3 2 1 8 7

0 1 2 3 4 5 6 7 8
6 0 8 7 5 4 2 3 1
1 2 6 4 3 7 8 5 0
7 3 1 8 6 2 4 0 5
8 4 7 5 1 0 3 2 6
5 7 4 6 2 8 0 1 3
2 6 3 0 7 1 5 8 4
3 5 0 2 8 6 1 4 7
4 8 5 1 0 3 7 6 2

0 1 2 3 4 5 6 7 8
5 6 0 8 7 3 1 4 2
3 4 8 2 1 0 7 6 5
1 0 7 6 3 8 5 2 4
4 8 3 0 6 7 2 5 1
2 5 6 4 0 1 3 8 7
6 7 5 1 2 4 8 3 0
8 3 4 7 5 2 0 1 6
7 2 1 5 8 6 4 0 3

0 1 2 3 4 5 6 7 8
4 5 7 1 0 6 8 2 3
2 3 0 5 7 8 1 4 6
3 6 5 0 1 4 2 8 7
6 7 4 2 8 3 0 1 5
1 0 3 8 5 2 7 6 4
7 2 8 4 6 0 3 5 1
5 8 1 6 3 7 4 0 2
8 4 6 7 2 1 5 3 0

0 1 2 3 4 5 6 7 8
3 2 1 4 8 7 0 5 6
8 7 5 0 6 2 3 1 4
5 8 4 7 2 6 1 3 0
2 3 0 6 5 1 4 8 7
7 6 8 1 3 4 5 0 2
4 0 7 8 1 3 2 6 5
1 4 6 5 0 8 7 2 3
6 5 3 2 7 0 8 4 1

0 1 2 3 4 5 6 7 8
2 3 4 0 1 8 7 6 5
4 0 3 1 2 6 5 8 7
8 5 6 2 7 1 0 4 3
1 6 5 7 0 2 8 3 4
6 4 7 5 8 3 1 2 0
5 8 1 6 3 7 4 0 2
7 2 8 4 6 0 3 5 1
3 7 0 8 5 4 2 1 6

0 1 2 3 4 5 6 7 8
1 4 3 2 6 0 5 8 7
5 6 7 8 0 1 4 2 3
4 2 0 5 8 3 7 6 1
7 5 6 4 3 8 1 0 2
3 8 1 0 7 6 2 4 5
8 3 4 7 5 2 0 1 6
6 7 5 1 2 4 8 3 0
2 0 8 6 1 7 3 5 4

Figure 7: The stepwise transitive 8-MOLS of size 9× 9 with |Aut| = 384, corresponding
to the dual of the Hall plane.
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0 1 2 3 4 5 6 7 8
8 7 6 2 1 0 3 4 5
7 6 8 0 2 1 5 3 4
6 8 7 1 0 2 4 5 3
5 4 3 6 7 8 2 1 0
4 3 5 8 6 7 0 2 1
3 5 4 7 8 6 1 0 2
2 0 1 4 5 3 7 8 6
1 2 0 5 3 4 8 6 7

0 1 2 3 4 5 6 7 8
7 8 5 1 2 4 0 6 3
2 0 1 6 3 8 4 5 7
3 4 6 5 7 0 8 1 2
6 3 4 8 5 2 7 0 1
5 7 8 0 1 3 2 4 6
1 2 0 4 6 7 3 8 5
8 5 7 2 0 6 1 3 4
4 6 3 7 8 1 5 2 0

0 1 2 3 4 5 6 7 8
6 3 4 8 5 2 7 0 1
1 2 0 4 6 7 3 8 5
5 7 8 0 1 3 2 4 6
7 8 5 1 2 4 0 6 3
3 4 6 5 7 0 8 1 2
2 0 1 6 3 8 4 5 7
4 6 3 7 8 1 5 2 0
8 5 7 2 0 6 1 3 4

0 1 2 3 4 5 6 7 8
5 4 3 6 7 8 2 1 0
3 5 4 7 8 6 1 0 2
4 3 5 8 6 7 0 2 1
8 7 6 2 1 0 3 4 5
6 8 7 1 0 2 4 5 3
7 6 8 0 2 1 5 3 4
1 2 0 5 3 4 8 6 7
2 0 1 4 5 3 7 8 6

0 1 2 3 4 5 6 7 8
4 5 8 0 3 6 1 2 7
6 7 3 5 1 2 8 4 0
2 0 1 7 8 4 3 6 5
3 6 7 4 0 1 5 8 2
1 2 0 6 5 8 7 3 4
8 4 5 2 7 3 0 1 6
7 3 6 8 2 0 4 5 1
5 8 4 1 6 7 2 0 3

0 1 2 3 4 5 6 7 8
3 6 7 4 0 1 5 8 2
8 4 5 2 7 3 0 1 6
1 2 0 6 5 8 7 3 4
4 5 8 0 3 6 1 2 7
2 0 1 7 8 4 3 6 5
6 7 3 5 1 2 8 4 0
5 8 4 1 6 7 2 0 3
7 3 6 8 2 0 4 5 1

0 1 2 3 4 5 6 7 8
2 0 1 5 6 7 8 3 4
5 3 7 8 0 4 2 6 1
8 6 4 2 3 1 5 0 7
1 2 0 7 8 3 4 5 6
7 5 3 4 2 6 1 8 0
4 8 6 1 5 0 7 2 3
6 4 8 0 7 2 3 1 5
3 7 5 6 1 8 0 4 2

0 1 2 3 4 5 6 7 8
1 2 0 7 8 3 4 5 6
4 8 6 1 5 0 7 2 3
7 5 3 4 2 6 1 8 0
2 0 1 5 6 7 8 3 4
8 6 4 2 3 1 5 0 7
5 3 7 8 0 4 2 6 1
3 7 5 6 1 8 0 4 2
6 4 8 0 7 2 3 1 5

Figure 8: The stepwise transitive 8-MOLS of size 9× 9 with |Aut| = 3456, corresponding
to the Hall plane.
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