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Abstract

Zaslavsky (1991) introduced a graphical structure called a biased graph and used
it to characterize all single-element coextensions and elementary lifts of graphic
matroids. We introduce a new, dual graphical structure that we call a cobiased
graph and use it to characterize single-element extensions and elementary quotients
of graphic matroids.

Mathematics Subject Classifications: 05B35, 05C22

1 Introduction

An elementary lift of a matroid M is a matroid of the form N\e0 in which N/e0 = M
and e0 is neither a loop nor coloop of N . Single-element coextensions and elementary
lifts of graphic matroids were characterized in terms of graphic structures by Zaslavsky
[10, 11]. Aside from the work in [10, 11], single-element coextensions and elementary lifts
of graphic matroids have been objects of consistent interest in matroid theory and related
fields. Guenin’s investigation [2] into integral polyhedra related to binary elementary lifts
of graphic matroids is notable.

An elementary quotient of a matroidM is a matroid of the form N/e0 in which N\e0 =
M and e0 is neither a loop nor coloop of N . Elementary quotients of graphic matroids
have also been of consistent interest, in particular binary elementary quotients. Guenin’s
result in [2] applies not only to binary elementary lifts of graphic matroids but also binary
elementary quotients. Guenin, Pivotto, and Wollan [3] explored the relationships between
binary elementary lifts and quotients of graphic matroids. Seymour’s original proof of the
decomposition theorem for regular matroids [9] uses binary single-element extensions and
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elementary quotients of graphic matroids. In the field of error-correcting codes, Hakimi
and Bredeson [4] constructed binary codes using circuit spaces of binary single-element and
multiple-element extensions and quotients of graphic matroids. Jungnickel and Vanstone
[5] do the same with q-ary codes.

Despite all of the interest in single-element extensions and elementary quotients of
graphic matroids, there has been no general description of them. Recski characterized
connected single-element extensions and elementary quotients of graphic matroids [7, 8]
that are representable over a given field and made some generalizations. In this paper we
will fully characterize all single-element extensions and elementary quotients of graphic
matroids in terms of graphical structures.

2 Cobiased Graphs

Let G be a graph and X ⊂ V (G) or X ⊂ G. The coboundary of X is denoted by δ(X) and
is the set of links (i.e., non-loop edges) of G with exactly one endpoint in X. Consider a
tripartition {X1, X2, X3} of the vertices of one connected component of G into nonempty
subsets such that each induced subgraph G[Xi] is connected and there is at least one edge
of G connecting each pair of these three subgraphs. The union of the three bonds (i.e.,
minimal edge cuts) B1 = δ(X1), B2 = δ(X2), and B3 = δ(X3) is called a tribond (see
Figure 1).

X1 X2

X3

Figure 1: A tribond.

A linear class of bonds of G is a subset L of the set of all bonds in G satisfying the
property that every tribond contains zero, one, or three bonds from L; that is, a tribond
cannot contain exactly two bonds from L. We call the pair (G,L) in which G is a graph
and L a linear class of bonds a cobiased graph. Bonds in L are called cobalanced and
bonds not in L are called un-cobalanced. (The name comes from the fact that cobalance
of bonds is dual to balance of cycles in [10] et seq.) A linear class of bonds L is trivial
when all bonds are cobalanced; that is, L is the set of all bonds of G.

3 Join and Complete Join Matroids of Cobiased Graphs

In this section we will describe two matroids associated with a cobiased graph (G,L).
These matroids are denoted by J0(G,L) and J(G,L) and are called respectively the com-
plete join and join matroids of (G,L). The term “join” is used to echo the considerable
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amount of literature on T -joins of graphs that are dependent sets of binary elementary
quotients of graphic matroids. The matroids J0(G,L) and J(G,L) are defined in Section
3.1 in terms of their cocircuits using Crapo’s Theorem [1, p. 62] on single-element exten-
sions of matroids. Crapo’s Theorem also immediately implies that J0(G,L) and J(G,L)
characterize respectively single-element extensions and elementary quotients of graphic
matroids. From there we will determine the bases, independent sets, rank functions, and
circuits of these two matroids. We will also provide a graphical description of deletions
and contractions.

3.1 Cocircuits

A pair of bonds B1, B2 in a graph G is a modular pair when the number of connected
components of G − (B1 ∪ B2) is two more than the number of connected components of
G. Thus B1, B2 form a modular pair of bonds when: B1 ∪ B2 forms a tribond, B1 ∪ B2

form the configuration in Figure 1 but with no edges between X1 and X2 (see Figure 2,
left), or B1 and B2 are in two distinct connected components of G (see Figure 2, right).
When B1, B2 is a modular pair of bonds but B1 ∪B2 is not a tribond (i.e., B1 ∪B2 is one
of the structures from Figure 2) we will call B1 ∪B2 a dibond. Note that a modular pair
of bonds share an edge if and only if their union is a tribond.

X1 X2

X3

Component 1
Connected

Component 2
Connected

Figure 2: Every dibond is of exactly one of two possible types.

The matroid of Theorem 1 is J0(G,L), the complete join matroid of (G,L). If L is
trivial, then the single-element extension associated with L is just M(G) along with a
new element that is either a loop or coloop.

Theorem 1. If L is a non-trivial linear class of bonds of G, then there is a matroid with
element set E(G) ∪ e0 in which e0 is neither a loop nor a coloop and whose cocircuits
consist of the following:

(1) bonds in L,

(2) sets of the form B ∪ e0 in which B is a bond not in L, and

(3) tribonds and dibonds which do not contain a bond from L.
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Conversely, if N is a single-element extension of the graphic matroid M(G) with new
element e0 which is neither a loop nor a coloop of N , then there is a non-trivial linear
class of bonds L of G such that the cocircuits of N consist of the sets above.

Proof. This follows the cocircuit version of Crapo’s Theorem [1, p.62] on single-element
extensions of matroids as long as modularity of bonds as we have defined them graphically
is exactly how modular pairs of cocircuits behave in the graphic matroidM(G). This will
complete our proof.

Let B1 and B2 be distinct bonds in G and let H1 = E − B1 and H2 = E − B2. Now
B1, B2 is a modular pair of cocircuits M(G) if and only if H1, H2 is a modular pair of
hyperplanes in M(G), if and only if r(H1) + r(H2) = r(H1 ∪ H2) + r(H1 ∩ H2), if and
only if r(H1 ∩H2) = r(M(G))− 2, if and only if the flat H1 ∩H2 has 2 more connected
components than does G, which is how we defined a modular pair of bonds.

The join matroid of a cobiased graph (G,L) is defined as J(G,L) = J0(G,L)/e0. If
L is trivial, then J(G,L) =M(G). Theorem 2 is an immediate corollary of Theorem 1.

Theorem 2. If L is a non-trivial linear class of bonds in G, then the cocircuits of J(G,L)
consist of the following:

(1) bonds in L and

(2) tribonds and dibonds which do not contain a bond from L.

Furthermore, if N is an elementary quotient of a graphic matroid M(G), then N =
J(G,L) for some non-trivial linear class L.

3.2 Bases and independent sets

Consider a partition π = {X1, . . . , Xk} of V (G) into nonempty parts such that each in-
duced subgraph G[Xi] is connected. Denote the set of such partitions for G by Lattice(G).
The partial ordering is the usual refinement partial ordering; that is, given two such par-
titions π1 = {X1, . . . , Xk} and π2 = {Y1, . . . , Yl} in Lattice(G), we have π2 ⩽ π1 when
for each part Yi ∈ π2 there is a part Xj ∈ π1 such that Yi ⊆ Xj. It is well known that
with this partial ordering Lattice(G) is indeed a lattice. If H is a subgraph of G or subset
of E(G), then H naturally induces a partition πH ∈ Lattice(G) corresponding to the
connected components of H ∪ V (G). If H ⊆ G with V (H) = V (G), then Lattice(H)
is a join subsemilattice of Lattice(G). (For the proof, let π ∈ Lattice(G). Think of the
edges of ∪G[Xi] as a relation on V (G) and extend it to an equivalence relation ≡π. If
τ ∈ Lattice(G), extend ≡π ∪ ≡τ to an equivalence relation ≡; then the join π ∨ τ is
the partition that corresponds to ≡. Supposing that π, τ ∈ Lattice(H), this formula for
the join is the same whether viewed in H or in G.) In particular Lattice(G) is a join
subsemilattice of Lattice(Kn), which is the usual partition lattice of the set V (Kn).

Given π = {X1, . . . , Xk} ∈ Lattice(G), denote the set of edges in G[X1]∪· · ·∪G[Xk] by
Interior(π), or InteriorG(π) when necessary. The collection of such edge sets is of course
exactly the set of flats of the graphic matroid M(G). The set of edges of G which are
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not in Interior(π) is denoted by Exterior(π) or ExteriorG(π). Note that Exterior(π) is a
union of bonds.

Given a cobiased graph (G,L), we call π ∈ Lattice(G) cobalanced with respect to L
when every bond in Exterior(π) is cobalanced; otherwise the partition is un-cobalanced.
The maximal element of Lattice(G) is πG, that is, the partition of V (G) given by the
connected components of G itself. The coatoms of Lattice(G), that is, the elements of
Lattice(G) which are covered by πG, are those partitions π for which Exterior(π) is a
bond.

Theorem 3. If L is a non-trivial linear class of bonds of G, then the bases of J0(G,L)
consist of the following:

(1) edge sets of maximal forests of G and

(2) sets of the form F ∪ e0 in which F is a maximal forest with one edge deleted such
that the bond Exterior(πF ) is un-cobalanced.

When one edge is deleted from a maximal forest, one component tree is broken into
two trees. The bond between those two trees is Exterior(πF ).

Proof. For a general matroid M , B is a basis if and only if B is a minimal set which
intersects every cocircuit (see, for example, [6, p.77]). Now since edge sets of cycles are
dependent in M(G), they are also dependent in its single-element extension J0(G,L). So
if B is a base of J0(G,L), then B\e0 is the edge set of a forest in G. Theorem 1 now
implies the following: e0 /∈ B if and only if B is a maximal forest and e0 ∈ B if and only if
B\e0 is obtained from a maximal forest by the deletion of one edge e such that the bond
Exterior(πF ) is un-cobalanced.

Theorem 4. If L is a non-trivial linear class of bonds of G, then the bases of J(G,L)
consist of the forests F for which Exterior(πF ) is an un-cobalanced bond.

Proof. Because L is non-trivial, e0 is not a loop or coloop of J0(G,L). Thus the bases
of J(G,L) are obtained from the bases of J0(G,L) that contain e0 by removing e0. The
result now follows from Theorem 3.

Theorem 5. If L is a non-trivial linear class of bonds of G, then the independent sets of
J0(G,L) consist of the following:

(1) Edge sets of forests.

(2) Edge sets of the form F ∪ e0 in which F is a forest and πF is un-cobalanced.

Proof. This follows from Theorem 3 because (1) and (2) describe exactly the subsets of
the bases of J0(G,L).

Theorem 6. If L is a non-trivial linear class of bonds of G, then the independent sets of
J(G,L) consist of the edge sets of forests F such that πF is un-cobalanced.

Proof. This follows from Theorem 4 because these are exactly the subsets of the bases of
J(G,L).
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3.3 Rank

If H is a subgraph of G or subset of E(G), then |πH | is the number of connected compo-
nents of H ∪ V (G). Thus if X ⊆ E(G), then rM(G)(X) = |V (G)| − |πX |.

Theorem 7. If L is a non-trivial linear class of bonds of G and X ⊆ E(G), then

(1) rJ0(G,L)(X) = |V (G)| − |πX |,

(2) rJ0(G,L)(X ∪ e0) = |V (G)| − |πX | when πX is cobalanced, and

(3) rJ0(G,L)(X ∪ e0) = |V (G)| − |πX |+ 1 when πX is un-cobalanced.

Proof. Part (1) follows from the fact that the rank of X in M(G) and its single-element
extension J0(G,L) must be the same. Theorem 5 implies that there is a circuit containing
e0 in the set X ∪ e0 if and only if πX is cobalanced. This implies Parts (2) and (3).

Theorem 8. If L is a non-trivial linear class of bonds of G and X ⊆ E(G), then

(1) rJ(G,L)(X) = |V (G)| − |πX | − 1 when πX is cobalanced,

(2) rJ(G,L)(X) = |V (G)| − |πX | when πX is un-cobalanced.

Proof. This follows from Theorem 7 and the fact that J(G,L) = J0(G,L)/e0.

3.4 Circuits

If J is a forest in (G,L) for which πJ is cobalanced and J is minimal with respect to this
property, then J is called an L-join of the cobiased graph (G,L). Being an L-join means
that deleting any edge of J creates a bond that is not in L.

Theorem 9. If L is a non-trivial linear class of bonds of G, then the circuits of J0(G,L)
consist of the following:

(1) edges sets of the form J ∪ e0 in which J is an L-join and

(2) edges sets of cycles.

Proof. Edge sets of cycles are circuits of M(G) and therefore are also circuits in J0(G,L).
Hence, any other circuit consists of the edge set of some forest along with e0. Suppose
that F is the edge set of a forest for which F ∪ e0 is a circuit. Theorem 5 implies that
F ∪ e0 is independent when πF is un-cobalanced and dependent when πF is cobalanced.
Thus F ∪ e0 is a circuit when πF is cobalanced and F is minimal with respect to this
property. Thus F is an L-join.

Theorem 10. If L is a non-trivial linear class of bonds of G, then the circuits of J(G,L)
consist of the following:

(1) edge sets of L-joins and

(2) edge sets of cycles that do not contain L-joins.

Proof. This follows from Theorem 9 and the fact that J(G,L) = J0(G,L)/e0.
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3.5 Deletions and contractions

Let G be a graph and e a link in G. The bonds of G/e are the bonds of G which do not
contain e. Define (G,L)/e = (G/e,L/e) in which L/e is the set of all bonds B ∈ L which
do not contain e. Now (G/e,L/e) is a cobiased graph because any tribond of G/e is a
tribond of G.

The situation for deletions is only slightly more complicated. If B is a bond in G\e,
then either B or B ∪ e is a bond in G. We define (G,L)\e = (G\e,L\e) in which L\e
is the set of all bonds B in G\e for which either B or B ∪ e ∈ L. Now (G\e,L\e) is a
cobiased graph because if T is a tribond of G\e, then either T or T ∪ e is a tribond of G.

Theorem 11. If (G,L) is a cobiased graph and e is a link in G, then

(1) [J0(G,L)]\e = J0(G\e,L\e),

(2) [J(G,L)]\e = J(G\e,L\e),

(3) [J0(G,L)]/e = J0(G/e,L/e), and

(4) [J(G,L)]/e = J(G/e,L/e).

Proof. (2) We compare dependent sets. Let D ⊆ E(G). If D is a dependent set of
[J(G,L)]\e, then e /∈ D and either D contains a cycle or D is a forest such that πD ∈
Lattice(G) is a cobalanced partition. If D contains a cycle, then it is a dependent set in
J(G\e,L\e). If D is a forest, then because e /∈ D, the partition of V (G) associated with
D is the same for G and G\e. Thus πD is still a cobalanced partition in Lattice(G\e), so
D is a dependent set of J(G\e,L\e). Conversely, if D is a dependent set of J(G\e,L\e),
then either D contains a cycle, in which case it is dependent in [J(G,L)]\e, or D is a
forest of G\e such that πD ∈ Lattice(G\e) is cobalanced. Again, the partition of V (G)
associated with D is the same in G as in G\e, so πD ∈ Lattice(G) is cobalanced, from
which it follows that D is dependent in [J(G,L)]\e.
(1) The proof is similar to that of Part (2) with only the added detail of noting the
presence of e0 in dependent sets without cycles.

(3 and 4) These follow a similar strategy to the proofs of (1) and (2) but by comparing
cocircuits. The details are left to the reader.

3.6 Vertex union

An operation that preserves graphic matroids is the union of two graphs at a single vertex.
This operation has the same property for cobiased graphs and join matroids, as we see in
Theorem 12. That fact is hinted at within discussions in [8] but is not fully developed.

Theorem 12. If G1 = H ∪ K in which H ∩ K is a single vertex and G2 = H ∪ K in
which H ∩K is empty, then

(1) L is a linear class of bonds in G1 if and only if L is a linear class of bonds in G2

and
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(2) J0(G1,L) = J0(G2,L) and J(G1,L) = J(G2,L).

Proof. The set of bonds in G1 is exactly the set of bonds in G2; furthermore, the tribonds
of G1 are the same as the tribonds of G2 because no tribond can have edges in more
than one block of a graph. This proves (1). Part (2) follows from these same facts and
comparing cocircuits.

3.7 Two simple examples

Example 13. Pick vertices a, b in G. Define a bond as cobalanced when it does not
separate a and b. Let La,b denote this set of cobalanced bonds.

Proposition 14. (G,La,b) is a cobiased graph.

Proof. Consider a tribond corresponding to a tripartition {X, Y, Z} of V (G). If a, b are
in the same part, all three bonds are cobalanced. If a ∈ X and b ∈ Y , then the bond δ(Z)
is cobalanced and the other two bonds are not. That is, an even number of the three are
un-cobalanced. It follows that La,b is a linear class of bonds.

The linear class La,b has a special property: In every tribond the number of un-
cobalanced bonds is even. This looks like a dual of the characteristic property of biased
graphs derived from edge signs (gains in the 2-element group), that in every theta graph
the number of unbalanced cycles is even (called “additive bias” in [10]). By analogy, let
us call such a linear class of bonds additive. Signed graphs are especially simple (and
important) gain graphs. That raises the following two questions: Is there similar impor-
tance for additive cobias? Is there a simple general construction of additively cobiased
graphs, dual in some sense to the construction of additively biased graphs from signed
graphs? Example 24 shows that Z2 does in fact relate to the class La,b, which is a step in
the direction of answers.

Example 15. More generally let W ⊆ V (G) have even cardinality, define a bond to be
cobalanced if it separates W into two even subsets, and let L+

W be the linear class of all
such bonds. Then L+

W is also additive.

Both examples are forms of quotient labeled cobias; see Example 24.

4 Gain graphs and linear classes of bonds

An oriented edge in a graph is an edge e along with a chosen direction along that edge. If
e is an oriented edge, then the reverse orientation is denoted by −e when using additive
notation and by e−1 when using multiplicative notation. (We will be using additive
notation except in Sections 4.2 and 4.3.) The set of all possible oriented edges in G

is denoted by E⃗(G). An oriented bond B⃗ is a bond B = δ(X) along with a choice of
orientation for the edges of B, either all away from X or all towards X. The reverse
orientation of B⃗ is denoted by −B⃗ when using additive notation and B⃗−1 when using
multiplicative notation.
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Let Γ be a group. A Γ-gain graph is a pair (G,φ) in which G is a graph and φ : E(G) →
Γ is a mapping such that φ(−e) = −φ(e) for an additive group and φ(e−1) = φ(e)−1 for
a multiplicative group. (All our additive groups are abelian. Our multiplicative groups
are not assumed to be abelian.) The function φ is called a Γ-gain function. Gain graphs
give rise to biased graphs (see [10]). Similarly, they give rise to cobiased graphs, though
not always.

4.1 Cobiased graphs from additive gain graphs

If Γ is an additive group and (G,φ) is a Γ-gain graph, then for each oriented bond B⃗,

define φ(B⃗) =
∑

e∈B⃗ φ(e). Say that the bond B is cobalanced when φ(B⃗) = −φ(−B⃗) = 0.
Let Lφ be the set of cobalanced bonds of (G,φ).

Proposition 16. If Γ is an additive group and (G,φ) is a Γ-gain graph, then (G,Lφ) is
a cobiased graph.

Proof. Consider a tribond containing the three bonds δ(X1), δ(X2), δ(X3) and assume

without loss of generality that δ(X1), δ(X2) ∈ Lφ. Let B⃗1 and B⃗2 be the oriented bonds

obtained from δ(X1) and δ(X2) by orienting all edges away from X1 and X2. Let B⃗3 be
the oriented bond obtained from δ(X3) by orienting all of its edges towards X3. Now

φ(B⃗3) = φ(B⃗1)+φ(B⃗2) = 0, which implies that a tribond cannot have exactly two bonds
in Lφ, which is our result.

4.2 Cobiased planar graphs using gains over arbitrary groups

Let Γ be a multiplicative group (not necessarily abelian), let G be a connected graph

embedded in the plane, and let (G,φ) be a Γ-gain graph. Consider an oriented bond B⃗ in

G. The oriented edges of B⃗ correspond to a closed walk in the topological dual graph G∗.
Thus there is a well-defined cyclic ordering of the edges of B⃗ up to a choice of a starting
edge and clockwise or counterclockwise direction. So, given such an oriented bond B⃗, let
e1, . . . , ek be a cyclic ordering with e1 as the starting edge. Define φ(B⃗) = φ(e1) · · ·φ(ek).
Note that any other choice of starting edge yields a product φ(ei) · · ·φ(ek)φ(e1) · · ·φ(ei−1),
which is conjugate to φ(e1) · · ·φ(ek) in the group Γ. Furthermore, a different choice of

direction yields a product that is the inverse of the original. Therefore, φ(B⃗) = 1 for any

one choice of starting edge and direction if and only if φ(B⃗) = 1 for all possible choices

of starting edge and direction. Say that a bond B is cobalanced when φ(B⃗) = 1 for some
choice of starting edge and direction and let Lφ be the set of cobalanced bonds given by
φ.

Proposition 17. If G is a graph embedded in the plane, Γ is a multiplicative group, and
(G,φ) is a Γ-gain graph, then (G,Lφ) is a cobiased graph.

Proof. This proof is similar to the one for Proposition 16, but with the added concern
of picking starting edges and directions for each bond in a tribond to match with the
others.
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4.3 An example not realizable by gains

The example here is essentially the topological dual of [10, Example 5.8]. Consider the
labeled graph G ∼= K2,4 shown on the left in Figure 3 with all edges oriented in the
downward direction. Let L = {a1a2a3a4, a1a2b3b4, b1b2a3a4}. Up to reembedding of G, a
tribond in G is of one of the two types shown on the right of Figure 3. Note that any
such tribond contains at most one bond from L. Thus (G,L) is a cobiased graph.

a1 a2 a3 a4

b1 b2 b3 b4

v1

v2

Figure 3: All edges are oriented in the downward direction. Every tribond is of one of the
two types shown.

By way of contradiction, assume that there is a multiplicative gain function φ for
which L = Lφ. For simplicity, let us denote φ(ai) and φ(bi) by ai and bi. Therefore
a1a2a3a4 = 1, a1a2b3b4 = 1, and b1b2a3a4 = 1. Thus

1 = (a1a2b3b4)
−1a1a2a3a4(b1b2a3a4)

−1 = (b1b2b3b4)
−1,

which implies that b1b2b3b4 ∈ L, a contradiction.

4.4 Cycle shifting

Let (G,φ) be a Γ-gain graph in which Γ is an additive group. Let C be a cycle in G
with oriented edges e1, . . . , ek in cyclic order in one direction around C. For any a ∈ Γ,
let ψC,a be the Γ-gain function on G for which φ(ei) = a and φ(e) = 0 for all e such

that ±e /∈ {e1, . . . , ek}. Now for any oriented bond B⃗, φ(B⃗) = (φ + ψC,a)(B⃗). Thus
Lφ = Lφ+ψC,a

. We call this operation shifting. We say that two Γ-gain functions φ1 and
φ2 (or two Γ-gain graphs (G,φ1) and (G,φ2)) are shifting equivalent when φ1 is obtained
from φ2 via a sequence of shifts. Note that this relation is an equivalence relation.

Theorem 18. If Γ is an additive group and (G,φ) and (G,ψ) are Γ-gain graphs, then

(G,φ) and (G,ψ) are shifting equivalent if and only if φ(B⃗) = ψ(B⃗) for all oriented bonds

B⃗ in G.

In order to prove Theorem 18, we need a concept of normalizing gains. So if (G,φ) is
a Γ-gain graph and T is a maximal forest in G, then we say that φ is T -normalized when
φ is zero on each edge of G not in T .
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Proposition 19. Let Γ be an additive group, (G,φ) a Γ-gain graph, and T a maximal
forest of G. Then there is a unique T -normalized Γ-gain function φT that is shifting
equivalent to φ.

Proof. If e is an edge outside T , let C(e) be the fundamental cycle in T ∪ e. Now
φT = φ−

∑
e/∈T ψC(e),φ(e) is a Γ-gain function that is shifting equivalent to φ and is zero

outside T .
We prove that φT is uniquely determined. Let ψ be any T -normalized Γ-gain function

that, like φT , is shifting equivalent to φ. If e is in the tree T1 of T , then T1 − e consists
of two trees connected by a bond B in which e is the only edge of T , thus the only edge
in B for which ψ may be nonzero. Orienting e and B compatibly, we have

ψ(e) = ψ(B⃗) = φ(B⃗). (1)

In particular, φT (e) = φ(B⃗) = ψ(e) for e in T . Thus, ψ = φT .

Proof of Theorem 18. If φ and ψ are shifting equivalent, then φ(B⃗) = ψ(B⃗) for all ori-

ented bonds B⃗ in G from the definition of shifting. Conversely, assume that φ(B⃗) = ψ(B⃗)

for all oriented bonds B⃗ in G. Let T be a maximal forest in G. Then ψT = ψ = φ = φT
on bonds, which implies ψT (e) = φT (e) for all edges by equation (1). It follows that ψ is
shifting equivalent to φ.

4.5 Cobiased graphs from vertex labelings

Let G be a graph and let Γ be an additive group. Consider a vertex labeling π : V (G) → Γ.
If H is a subgraph of G, we write π(H) =

∑
v∈V (H) π(v). Call π a Γ-quotient labeling when

for each connected component H of G, π(H) = 0. Now if B = δ(X) is a bond of G and B⃗

is an orientation of B towards X, then define π(B⃗) = π(X) and say that B is cobalanced

when π(B⃗) = 0. Let Lπ be the set of cobalanced bonds relative to π.
Such Γ-quotient labelings were used by Recski [7, 8], for Γ equal to the additive group of

a field, to characterize vector representations of single-element extensions and elementary
quotients of graphic matroids over fields as well as defining some more general extension
and elementary-quotient constructions for graphic matroids.

Proposition 20. Let Γ be an additive group and π a Γ-quotient labeling of a graph G.
Then (G,Lπ) is a cobiased graph.

Proof. Consider a tribond containing the three bonds δ(X1), δ(X2), δ(X3) and assume

without loss of generality that δ(X1), δ(X2) ∈ Lπ. Let B⃗1 and B⃗2 be the oriented bonds

obtained from δ(X1) and δ(X2) by orienting all edges away from X1 and X2. Let B⃗3 be
the oriented bond obtained from δ(X3) by orienting all of its edges towards X3. Now

π(B⃗3) = π(X3) = −π(X1 ∪X2) = −π(X1)− π(X2) = π(B⃗1) + π(B⃗2) = 0,

which implies that a tribond cannot have exactly two bonds in Lπ, which implies our
result.
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It might seem that quotient labelings are different than gains; however, they are
actually equivalent constructions. Theorem 21 describes how to get gains from a quotient
labeling and Theorem 23 describes how to get a quotient labeling from gains.

Given a Γ-quotient labeling π of G and a maximal forest T in G, define a T -normalized
Γ-gain function φπ,T as follows. For each oriented edge e not in T , let φπ,T (e) = 0. For an

edge e in T , let B = δ(X) be the bond Exterior(πT\e) and say that B⃗ is the orientation
of B directed towards X. Orient e towards X as well. Now set φπ,T (e) = π(X).

Theorem 21. Let Γ be an additive group and π a Γ-quotient labeling of graph G. If T is
a maximal forest of G, then for every oriented bond B⃗ in G, φπ,T (B⃗) = π(B⃗).

Proposition 22 is necessary for the proof of Theorem 21.

Proposition 22. Let Γ be an additive group and π a Γ-quotient labeling of graph G. If
T and T ′ are maximal forests in G, then φπ,T and φπ,T ′ are shifting equivalent.

Proof. One shift operation can be performed in each connected component of G. Thus
the result is true if and only if it is true for connected graphs, so we may assume that G
is connected. Consider the following well-known operation on spanning trees, which we
will call edge exchange in this proof. If T is a spanning tree of G and e /∈ T , then for
any edge f ̸= e on the unique cycle in T ∪ e, (T\f) ∪ e is a spanning tree of G. It is well
known that if G is a connected graph and T and T ′ are spanning trees of G, then there is
a sequence of spanning trees T1, . . . , Tk ⊆ (T ∪ T ′) such that T = T1, T

′ = Tk, and Ti+1 is
obtained from Ti by an edge exchange. So to complete the proof it suffices to show that
φπ,Ti+1

is obtained from φπ,Ti by a single shift operation.
Say that Ti+1 = (Ti\f) ∪ e and let g /∈ {e, f} be any other edge in Ti. Thus Ti\{f, g}

has exactly three connected components S1, S2, S3 as shown in Figure 4. Orient edges f
and g as indicated. There are two cases for the placement of e relative to f and g as
shown in the figure.

S1

S2

S3

e

g

f

S1

S2

S3

e

g

f

Ti Ti

Figure 4: Figure for the proof of Proposition 22.

Let C be the unique cycle in Ti∪ e oriented in the opposite direction to e and f . Note
that g is in C in the right configuration of Figure 4 but not in the left configuration. Now
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let a = φπ,Ti(f). We prove that φπ,Ti +ψC,a = φπ,Ti+1
, which will satisfy our requirement.

First, by definition, (φπ,Ti + ψC,a)(f) = 0 = φπ,Ti+1
(f) and (φπ,Ti + ψC,a)(e) = −a =

φπ,Ti+1
(e). Second, for the configuration on the left of Figure 4,

φπ,Ti(g) = (φπ,Ti + ψC,a)(g) = −π(S3) = φπ,Ti+1
(g).

Finally, for the configuration on the right,

(φπ,Ti + ψC,a)(g) = φπ,Ti(g)− a = −π(S1)− π(S3) = −π(S1 ∪ S3) = φπ,Ti+1
(g).

Since g was chosen arbitrarily we have proven that φπ,Ti + ψC,a = φπ,Ti+1
.

Proof of Theorem 21. Let B be a bond of G. If B intersects T in one edge (i.e., B =

Exterior(πT\e)) then π(B⃗) = φπ,T (B⃗) by the definition of φπ,T . If |B ∩ T | ⩾ 2, then let
T ′ be any maximal forest for which |B ∩ T ′| = 1. By Proposition 22 φπ,T ′ and φπ,T are

shifting equivalent, so π(B⃗) = φπ,T ′(B⃗) = φπ,T (B⃗), as required.

Conversely, assume that (G,φ) is a Γ-gain graph. Assume that G is completely split
apart along cut vertices so that each connected component of G is a block. This operation,
of course, does not change the join matroids (Theorem 12). To simplify the discussion,
assume that G is loopless and has no isolated vertices. (Loops in G are always loops in
the join matroids and isolated vertices have no effect on the matroids.) Therefore, for

each vertex v, δ(v) is a bond of G. Let B⃗v be the bond δ(v) oriented towards v. Define

πφ(v) = φ(B⃗v).

Theorem 23. If (G,φ) is a Γ-gain graph in which each connected component is a block,

then πφ is a quotient labeling and for each oriented bond B⃗ in G, φ(B⃗) = Lπφ(B⃗).

Proof. For each connected component H of G,∑
v∈V (H)

πφ(v) =
∑

v∈V (H)

φ(B⃗v) =
∑

e∈E⃗(H)

φ(e) = 0.

Thus πφ is a quotient labeling. In a similar fashion, if B⃗ is the orientation of bond δ(X)
directed towards v, then∑

v∈X

πφ(v) =
∑
v∈X

φ(B⃗v) =
∑
e∈B⃗

φ(e) = φ(B⃗),

as required.

Example 24 (Nonseparating bonds). We generalize the examples of Section 3.7 to an
arbitrary subsetW of V (G) by defining LW as the set of bonds δ(X) that do not separate
W ; i.e., W ⊆ X or W ⊆ V (G)\X. It is easy to verify that this set is a linear class, but
it is not additive (in the sense of Section 3.7) if |W | > 2 since it is possible for every part
of the tripartition of a tribond to contain a vertex of W .

This linear class exemplifies Γ-quotient labeling with the group Γ = Z|W |. The label
of a vertex is 0 is π(v) = 0 if v /∈ W and π(v) = 1 if v ∈ W . Since π(δ(X)) ≡ |W ∩X|
mod |W | for any X ⊆ V (G), only nonseparating bonds are cobalanced relative to π.

We interpret Example 15 in a similar way. Using the same group Z2, assign vertex
values as in the previous example.
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4.6 Deletions and contractions for gains

Let φ be a Γ-gain function. The set Lφ/e is defined in Section 3.5 as the set of bonds
in Lφ that do not contain e and it is shown that Lφ/e is a linear class of bonds of G/e.
Let φ/e be the Γ-gain function defined on G/e by restriction of φ to E(G/e) = E(G)\e.
Proposition 25 is immediate.

Proposition 25. If φ is a Γ-gain function and e is an edge of G, then Lφ/e = Lφ/e.

The set Lφ\e is defined in Section 3.5 as the set of bonds B in G\e for which either B
or B ∪ e is a bond in Lφ. As long as e is not an isthmus of G, there is a Γ-gain function ψ
on G that is shifting equivalent to φ and for which ψ(e) = 0. (See Proposition 19.) Define
ψ\e to be the Γ-gain function on G\e defined by restriction of ψ to E(G\e) = E(G)\e.

Proposition 26. If φ is a Γ-gain function and e is a non-isthmus edge of G, then there
is ψ that is shifting equivalent to φ such that ψ(e) = 0 and Lφ\e = Lψ\e = Lψ\e.

Proof. The existence of ψ is implied by Proposition 19. Now, if B ∈ Lψ\e, then

(ψ\e)(B⃗) = 0. Since B is a bond of G\e, there is a bond Be ∈ {B,B ∪ e} of G. Since

ψ(e) = 0, we get φ(B⃗e) = ψ(B⃗e) = 0. This implies that Be ∈ Lφ, which implies that
B ∈ Lφ\e. Conversely, if B ∈ Lφ\e, there is a bond Be ∈ {B,B ∪ e} of Lφ for which

ψ(B⃗e) = φ(B⃗e) = 0. This implies that (ψ\e)(B⃗) = 0, which makes B ∈ Lψ\e.

4.7 Deletions and contractions for quotient labelings

Let π be a Γ-quotient labeling of G and let e be a link in G with endpoints u and v. Let
w be the vertex obtained by the contraction of e in G. Define π/e to be the labeling on
V (G/e) given by (π/e)(x) = π(x) when x ∈ V (G)∩ V (G/e) and (π/e)(w) = π(u) + π(v).

Proposition 27. If π is a Γ-quotient labeling of G and e is a link in G, then π/e is a
Γ-quotient labeling of G/e and Lπ/e = Lπ/e.

Proof. A bond B of G/e is in Lπ/e if and only if B is a bond of G not containing e and
B ∈ Lπ if and only if both endpoints of e are in X or both endpoints of e are not in X
where B = δ(X) if and only if B is a bond of G/e in Lπ/e.

For Proposition 28, we define the vertex labeling π\e on G\e by π\e = π.

Proposition 28. If π is a Γ-quotient labeling of G and e is a link in G, then π\e is a
Γ-quotient labeling of G\e if and only if e is not an un-cobalanced isthmus of (G,Lπ).
Furthermore, if e is not an un-cobalanced isthmus of (G,Lπ), then Lπ\e = Lπ\e.

Proof. The first statement is obvious. Now if e is not an un-cobalanced isthmus, consider
a bond B in G\e and let Be ∈ {B,B∪e} be the corresponding bond in G. Now B ∈ Lπ\e
if and only Be ∈ Lπ if and only if B ∈ Lπ\e.
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4.8 Gains and quotient labelings using fields

Let F be any field. Denote the additive group of F by F+. Scalar multiplication of F+-gain
functions and quotient labelings using a nonzero element of F does not affect the resulting
linear class of bonds. The proof of Proposition 29 is evident. Readers who are familiar
with partial fields will note that this operation generalizes immediately to partial fields.

Proposition 29. If (G,φ) is an F+-gain graph, π is an F+-quotient labeling, and a is a
nonzero element of F, then

(1) Lφ = Laφ and

(2) aπ is a quotient labeling of G with Laπ = Lπ.

References

[1] Henry H. Crapo, Single-element extensions of matroids, J. Res. Nat. Bur. Standards
Sect. B 69B (1965), 55–65.

[2] Bertrand Guenin, Integral polyhedra related to even-cycle and even-cut matroids,
Math. Oper. Res. 27 (2002), no. 4, 693–710. MR 1939172

[3] Bertrand Guenin, Irene Pivotto, and Paul Wollan, Relationships between pairs of
representations of signed binary matroids, SIAM J. Discrete Math. 27 (2013), no. 1,
329–341. MR 3032922

[4] Seifollah Louis Hakimi and Jon G. Bredeson, Graph theoretic error-correcting codes,
IEEE Trans. Inform. Theory IT-14 (1968), 584–591. MR 241166

[5] Dieter Jungnickel and Scott A. Vanstone, q-ary graphical codes, Discrete Math.
208/209 (1999), 375–386. MR 1725544

[6] James Oxley, Matroid Theory, second ed., Oxford Graduate Texts in Mathematics,
vol. 21, Oxford University Press, Oxford, 2011.

[7] András Recski, Elementary strong maps of graphic matroids, Graphs Combin. 3
(1987), no. 4, 379–382.

[8] —— , Elementary strong maps of graphic matroids. II, Graphs Combin. 10 (1994),
no. 2, 205–206.

[9] P. D. Seymour, Decomposition of regular matroids, J. Combin. Theory Ser. B 28
(1980), no. 3, 305–359.

[10] Thomas Zaslavsky, Biased graphs. I. Bias, balance, and gains, J. Combin. Theory
Ser. B 47 (1989), no. 1, 32–52. MR 1007712

[11] Thomas Zaslavsky, Biased graphs. II. The three matroids. J. Combin. Theory Ser. B
51 (1991), 46–72. MR 91m:05056

the electronic journal of combinatorics 31(1) (2024), #P1.54 15


	Introduction
	Cobiased Graphs
	Join and Complete Join Matroids of Cobiased Graphs
	Cocircuits
	Bases and independent sets
	Rank
	Circuits
	Deletions and contractions
	Vertex union
	Two simple examples

	Gain graphs and linear classes of bonds
	Cobiased graphs from additive gain graphs
	Cobiased planar graphs using gains over arbitrary groups
	An example not realizable by gains
	Cycle shifting
	Cobiased graphs from vertex labelings
	Deletions and contractions for gains
	Deletions and contractions for quotient labelings
	Gains and quotient labelings using fields


