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Abstract

Cylindric diagrams admit structures of infinite d-complete posets with natural
ordering. The purpose of this paper is to provide a realization of a cylindric diagram
as a subset of an affine root system of type A via colored hook lengths, and to present
several characterizations of its poset structure. Furthermore, the set of order ideals
of a cylindric diagram is described as a weak Bruhat interval of the affine Weyl
group.

Mathematics Subject Classifications: 05E10, 06A11, 17B22, 20F55

Introduction

A periodic (Young) diagram is a Young diagram consisting of infinitely many cells in Z>
which is invariant under parallel translations generated by a certain vector w € Z? called
the period (see Figure 1). The image of a periodic diagram under the natural projection
onto the cylinder Z?/Zw is called a cylindric diagram. Diagrams given as a set-difference
of two cylindric diagrams are called cylindric skew diagrams.

We note that cylindric skew diagrams have been known to parameterize a certain
class of irreducible modules over the Cherednik algebras (double affine Hecke algebras)
([12, 13]) and the (degenerate) affine Hecke algebras ([1, 6]) of type A, where standard
tableaux on those diagrams also appear.

Let w = (m, —{) € Z>; x Z<_; and let 6 be a cylindric diagram in Z?/Zw. The lattice
72 admits a partial order < defined by

(a,b) < (¢,d) <= a=cand b2d,

which induces a poset structure on Z?/Zw and also on 6. Together with the content map
c: 0 — Z/KkZ, where c(a,b) = b—a mod k and k = ¢ + m, the cylindric digram 0 is a
locally finite Z/rZ-colored d-complete poset in the sense of [9, 10].
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Figure 1: A periodic diagram of period w = (4, —5).

The purpose of the present paper is to investigate the poset (6, <) as well as the poset
(J(0),C), where J(0) denotes the set of cylindric skew diagrams (or proper order ideals)
included in 6.

We briefly review a description in the classical case. Let A\ C Z? be a finite Young
diagram. The associated Grassmannian permutation w) is an element of the Weyl group
of the root system R of type A, where n = t{c(x) | x € A}. It is known that the poset
(A, <) is dually isomorphic to the poset (R(w; '), <), where R(w; ') := R, Nw; 'R_ and
<°" is the ordinary order (or the standard order) defined by

al”"f <= f—-—ac€ Z Lz

1€[1,n]

for o, B € R(wy) with II being the set of simple roots (]7]).

Let 6 be a cylindric diagram in Z?/Zw. We would like to describe the poset (0, <) in
terms of the root system of type A,gl_)l with Kk = ¢+ m.

A key ingredient in our approach is the colored hook length ([2, 4]), given by

h(z)= ) acy (z€6),
)

yEH (z

where H(z) denotes the hook at z and «a; are simple roots. (See Section 2.1 for precise
definitions.) We will show that the map h embeds the cylindric diagram € into the set
R, of positive (real) roots, and that the image h(f) is given by the inversion set R(wy)
associated with a semi-infinite word wy, which can be thought as an analogue of the
Grassmannian permutation. Moreover, we show that the image h(0) is also characterized
as the subset of R, consisting of those elements satisfying

(G, a”) = —1,
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where (p is a predominant integral weight determined by 6 (see Section 2.2 and 2.3 for
details).

Unlike the classical case, the ordinary order in R(wy) does not lead a poset isomor-
phism, and we need to introduce a modified order < in R(wy) by

al”f <= f-ac Z Lzy,

~€lly

to obtain a poset isomorphism (0, <) = (R(wp), <), where Il is a certain subset of the
affine root system (see Section 3.1).

Another description of the poset  is given by a linear extension or (reverse) standard
tableau t on 0, which is by definition a bijective order preserving map ¢ — Z>;. A linear
extension t : § — Z>; brings a poset structure to Z>; and the resulting poset is an infinite
analogue of the heap, which is originally introduced by Stembridge [7]. In summary, we
have the following:

Theorem (Theorem 47 and Proposition 50). The followings are poset isomorphisms:
(Zo1, <P) € (0,<) = (R(wy), ).

Another goal of this paper is to describe the poset structure J(6). For a finite Young
diagram A, it is known that the set J(\) of order ideals of A is isomorphic to the interval
le,wy] = {ueW | e<u=wy} with weak right Bruhat order ([4, Proposition I]). For a
cylindric diagram 6, we define a “semi-infinite Bruhat interval” [e, wy), and we have the
following;:

Theorem (Theorem 58). The map
D (j(@), C) - ([67w9>7 j)

giwen by ®(&) = we is a poset isomorphism.

1 Cylindric diagrams

1.1 Cylindric diagrams as posets

Let (P, <) be a poset. For z,y € P, define an interval [z,y] by
[z,y ={z€ P|lx<z<y}

We say that y covers x if [z,y] = {x,y}.

Definition 1. Let (P, <) be a poset. A subset J of P is called an order filter (resp. order
ideal) if the following condition holds:

redJ, x<y = yeJ (resp. z € J, x 2y — y € J).

An order filter (resp. order ideal) J is said to be proper if J # P, and it is said to be
non-trivial if J # P nor J # ().
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For w € Z>y X Z<_;, we let Zw denote the subgroup of (the additive group) Z*
generated by w, and define the cylinder C, by

C, =7%|Tw.

Let 7 : Z% — C,, be the natural projection. The cylinder C, inherits a Z?-module structure
via .
Define a poset structure on Z? by

(a,b) < (d',V) <= a=da and b = V' as integers.

For z,y € C,, write x < y if there exists 7,y € Z* such that 7(%) = z, 7(y) = y and
Z < g. It is not difficult to see the following:

Lemma 2. Let w € Z>1 X Z<_y1. Then the relation < on C, is a partial order, and the
projection m is order preserving.

In the rest of this section, we fix w € Z>; X Z<_;.

Definition 3. (1) A non-trivial order filter of C, is called a cylindric diagram.
(2) A non-trivial order filter © of Z? is called a periodic diagram of period w if © +w = ©.

Lemma 4. (1) For a cylindric diagram 0 in C,, the inverse image 7 () is a periodic
diagram of period w.
(2) For a periodic diagram © of period w, the image 7(0) is a cylindric diagram in C,.

Figure 1 indicates a periodic diagram of period w = (4, —5). The set consisting of
colored cells is a fundamental domain with respect to the action of Zw, and it is in one
to one correspondence with the associated cylindric diagram.

Definition 5. Let m,{ € Z>;. A non-increasing sequence A = (Aq,...,Ay) of (possibly
negative) integers is called a generalized partition of length m. For w = (m,—{) € Z>; X
Z<_1, we denote by P, the set of generalized partitions of length m satisfying

A — A\ S0
For A = (A1, ..., \n) € P, we define
={(a,b)€Z*|1Za<m, b< A},

~

(A).

Note that A = AN ([1,m] x Z) and X is a fundamental domain of A with respect to the
action of Z(m, —/).

If A\ € P, then ) is a periodic diagram of period w and \is a cylindric diagram.
Moreover, any periodic (resp. cylindric) diagram of period w is of the form A (resp. \)
for some A € P,,.

For a poset P and its order filter J, we denote the set-difference P\ J also by P/.J.
It is easy to see the following:

S
A
A A+ Zw,
A=
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Proposition 6. For a subset & of C,,, the following conditions are equivalent :
(i) € is a proper order ideal of a cylindric diagram in C,,.

(ii) & is a set-difference 0/n of two cylindric diagrams 6,7 in C,, with 6 D n.
(iii) & is an intersection of a proper order ideal and a proper order filter of C,,.
(iv) € is a finite subset of C,, and satisfies the following condition:

ryes = [rylCE
(v) & is a finite subset of C,, and satisfies the following condition:
r,x+(1,1) € = 2+ (0,1),z+ (1,0) € & (the skew property)

Definition 7. A subset £ of C, is called a cylindric skew diagram if it satisfies one of the
conditions (i)—(v) in Proposition 6.

Figure 2: A cylindric skew diagram.

We denote the set of proper order ideals of § by J(#) and regard it as a poset with
the inclusion relation. Note that any & € J(6) is a finite set and thus J(0) = | |7~ , J.(6),
where we put

Tn(0) ={§ € T0) | [§| =n}.
1.2 Standard tableaux

In the rest of present section, fix a cylindric diagram 6 in C,,.

Definition 8. (1) For a cylindric diagram 0, a standard tableau (or linear extension) of
¢ is a bijection t : 0 — Z>; satisfying

r<y = t(z) < t(y).

We denote by ST(6) the set of standard tableaux of 6.
(2) For a finite poset P with |P| = n, a standard tableau of P is a bijection t: P — [1,n]
satisfying

r<y = t(z) < t(y).

We denote by ST(P) the set of standard tableaux of P.

ot
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6[4]1] 6[5]4]
5132 31211
641 6|54
51312 3121
6141 654
[5[3]2 32]1
Standard tableau NOT standard tableau
Figure 3:

Remark 9. Our standard tableaux are usually referred to as reverse standard tableaux.

Let t € ST(). It is easy to see that the subset t!([1,n]) of # is a proper order ideal,
and moreover the restriction t|i-1(q ) is a standard tableau on t!([1,n]). Conversely, for
¢ € Ju(0), any standard tableau on & can be extended to a standard tableau on 6. In
summary, we have the following:

Lemma 10. Let n € Zxq. The correspondence t — t~*([1,n]) gives a surjective map
ST(0) — T.(0).
Moreover, for each t € ST(0), the restriction t — t|¢-1(nn)) gives a surjective map

ST(6) — ST('([1,n))).

1.3 Content map and bottom set

Let © be a periodic diagram of period w. Define the content map
c:0—-7%Z

by c(a,b) = b—a. Put k = |c(w)|. Let § = w(O). Since c(z + w) = c(x) — K, the content
map c induces the map
0 — Z/KZ,
which we denote by the same symbol c. It is easy to show the following:
Proposition 11. For x,y € 0, the followings hold:

(1) If c(x) — c(y) = 0,4£1 mod &, then x and y are comparable.
(2) If x is covered by y, then c(x) — c(y) = £1 mod k.

Remark 12. By Proposition 6 and Proposition 11, cylindric diagrams are infinite (locally
finite) “Z/kZ-colored d-complete posets” in the sense of [9, 10].

Let ¢ € Z/kZ. By Proposition 11 (1), the inverse image ¢~ *(4) is non-empty totally
ordered subset of 6. Let b; denote the minimum element in ¢=1(3).

Definition 13. Define the bottom set I' of 6 by
T ={b;|i€Z/kZ}).
Figure 4 indicates the periodic diagram A with A = (5,4,4,2) € Pr,—5). The number

in each cell is the content with modulo 9. Yellowed cells forms the bottom set of A = W(S\)
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glol1]2]3]4]5]6|7]8]0o]1]2[3]4]

7[8]0l1[2]3[4]5]6][7[8]0]1

6[7[8]0[1[2]3[4]5]6]7[8
----------- 5678012345

415]6]7]8]0]1]2]3]4

3[4]5]6][7[8]0]1

213]4[5]6]7]8

112][3]4][5

Figure 4:

1.4 Root systems and affine Weyl groups of type A,g_)l

Let k € Zzs. In the rest, we often identify Z/xZ with {0,1,...,x — 1}. Let h be a
(k + 1)-dimensional vector space and choose elements o (i € Z/kZ) and d of § so that

{ag,af ... ), d}

forms a basis for h. Let h* be the dual space of h. Define elements «; (j € Z/kZ) and wy
of b* by

<aj7042/> = Qyy, <w0aaz\'/> = 040 (ly.] GZ/KJZ%
<Oéj,d> = 050, <w07d> = 07
where (-,-) : b* X h — Z is the natural pairing and the integer a;; is defined by
2 ifi=j
a;; =4 —1 ifi—j==1

0 otherwise

2 ifi=j
Qij = e .
-2 ifi#j
for k = 2. Then {ap,a1,...,a, 1,0} forms a basis for h*. Define w; € bh* (i =
1,2,...,k—1) by

for k =2 3 and

<wi,a/;~/> = 5ija (wz,d> = 0 (] € Z//{Z)

The weights wg, @1, ..., w._1 are called fundamental weights. Put 6 = ag+ai+---+a,._1
(resp. 0¥ =af + o) + -+ «’_,), which is called the null root (resp. the null coroot).
For i € Z/KZ, define the simple reflection s; € GL(H*) by

s5i(Q) =C— (o) (C€b).
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Define the affine Weyl group W of type A,gl_)l as the subgroup of GL(h*) generated by
simple reflections:
W = {(s;|i € Z/KZ).

The following is well-known:

Proposition 14. The group W has the following fundamental relations:
57 =1, (1.1)
SiSj = 5555 (Z —] 7é O, :l:l), (12)
$iSi+15i = Si+15iSi+1-

For w € W, we define the length ¢(w) of w as the smallest r for which an expression

(or a word)
w=5;8, -8, €W (i; € Z/KL)

exists. An expression w = s;,8;, - - - 5;, is said to be reduced if {(w) = r.
Define the action of W on h by

si(h) = h — {a;, h)a] (h €h).

)

We put

IT = {QOaala"'va/ﬂ—l}7 HV:{a(\)/7aY7"'7a>f/—l}’

Q= Zciai €Ly, Q= ZCiOéz‘ ¢; € Zxo

1€EL/KL 1€EL/RZ

The set II (resp. IIV) is called the set of simple roots (resp. the set of simple coroots),
and @ is called the root lattice. Put

R=WIICh*, R'=WIcCH.

Then R (resp. RY) is the set of real roots (resp. coroots) and R U Z0 is the affine root
system. Define the set R, of positive (real) roots and the set R_ of negative (real) roots
by

K—1 k=1
R.=RNQ, = {Zciozi €ER|c¢ ezzo}, R_= {Zciozi €ER|¢ ezgo}.
=0

=0

For 8 = Z;:OI k;a; € R, define 8Y = z;:ol k;ay € RY. Then the correspondence (3 +— Y
gives a bijection R — R". Define the set of positive (resp. negative) coroots RY (resp.
RY) as the image of R, (resp. R_) by this bijection.

For i, 5 € Z with i < j, we define

Qi = E Ak,

iSk<j—1
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where k = k mod xZ € Z/kZ. The followings are well-known:
Ry ={oy; |i<j, j—i¢ KL} :
={o;+ké|1Zi<jS<k, k20U{—a;+kd|1Zi<j<k, k21}, (1.5)
R_ - —R+, R - R+ L R_.

From the description of R above, the following two lemmas follow easily and they will be
used later:

Lemma 15. Ifa € R, then a + kd € R for all k € Z.
Lemma 16. Let « € RUZS and € R. Then (o, 8Y) =2 if and only if « = mod 0.

2 Hooks in cylindric diagrams

2.1 Colored hook length

In this section, we will introduce colored hook length, which is a key ingredient in this

paper.
Fix k,m,{ € Z>, with Kk = m + £ and let 6 be a cylindric diagram in C,, —p).
In the rest of this paper, we use the following notations:

a(z) = Qew), s(x) = Se(z) for z € 0.
Definition 17. For x € 0, put

Arm(z) ={x + (0,k) € 0 | k € Z>1},
Leg(z) ={z + (k,0) € 0 | k € Z>:},

and define
h(z) =a(z)+ > a)+ Y. a).

yEArm(zx) yELeg(x)
We call h(x) the colored hook length at x.

For & € Cn—p) \ 0, we set h(z) = 0 for convenience. It is easy to see that for x € 6
h(z —(0,)) = h(z — (m,0)) = h(z) + 6
and
h(x) = a;; for some integers ¢ < j. (2.1)
Example 18. (See Figure 5.) Let w = (4,—-5). Then A = (5,3,3,1) € P,. For a cell
x=m(2,—4) € \, we have c(z) = 3+ 9Z € Z/97Z. The colored hook length at z is
h(l’) = 0_g+ (Oé_5 +a_ 4+t _3+a_o+ 01+ 0+ Oél)
+ (0677 +o_gt+a_g+a_jg+a_11+ @,12)
:a3+(a4+a5+a6+a7+a8—|—ao—l—a1)+(a2+a1+a0+a8+a7+a6)
:5+OKQ+061+066+O(7+C¥8,

which can be expressed as h(z) = a_j25.
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(z)8o1

Figure 5: The sets Arm(x) and Leg(z) for x in the cylindric diagram.

Remark 19. (1) For z € 0, the “multiset” H(z) := {z} U Arm(x) U Leg(z) is a cylindric
analogue of the hook at x.
(2) A conjectural hook formula concerning the number of standard tableaux on cylindric

skew diagrams is proposed in [11], where the hook length at « € 6 is given by |H(x)| =
[Arm ()| + [Leg(z)| + 1.
For o € ., define
N(a)=max{k € Z|a—kd € Q.}.
Lemma 20. For x € 60, it holds that
N(h(z)) =max{k € Z | x + k(0,¢) € 0}.

Proof. We put N(z) = max{k € Z | x + k(0,¢) € 8} and will show N(h(z)) = N(z).
Let k € Zxq. Suppose that x + k(0,¢) € 6. Then, h(z) — kd = h(z + k(0,0)) € Q4+
and thus N(h(x)) = N(z).
Suppose that x — k(0,¢) ¢ 0. Noting that x — k(0,¢) = x + k(m,0), we have
[Arm(z)| = k€ — 1, |Leg(x)| < km — 1.
Thus we have [{z} U Arm(z) U Leg(z)| < k(¢ +m) — 1 and hence h(z) — ké ¢ ;. This
means N (h(z)) < N(z). O

Let I' = {b; | i € Z/KZ} be the bottom set of 0, where b; is the minimum element of
c (i) as before.
For a = ZiEZ/EZ ciay € QQ, define its support by

Supp(a) ={b; | ¢;, >0 (i € Z/KZ)} C T

For example, we have Supp(é) = I'. Let z € § with N(h(z)) = 0. Then Supp(h(z)) is a
non-empty, proper and connected subset of I'.
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Lemma 21. Let x € 0. Then h(z) € R..

Proof. By (1.4) and (2.1), it is enough to show that h(x) ¢ ZJ.
Put k£ = N(h(x)) and o = 2+ k(0,¢). Then zy € 6 by Lemma 20 and N (h(zy)) = 0.
Since () # Supp(h(zo)) S T', we have h(zo) ¢ Z6 and thus h(z) = h(xo) + k0 ¢ Zo. O

Let Iyax (resp. Inin) denote the set of maximal (resp. minimal) elements in I'. Note
that |T'max| = |Tmin|- One can easily see the following lemma. (See the figure below.)

Lemma 22. Let « € R, with N(a) = 0. Then a = h(x) for some x € 6 if and only if
|Supp(a) N Tax| + 1 = [Supp(a@) N Cyyin -

d Supp(h(x))

2.2 Predominant weights and hooks
Definition 23. We define () € h* by
k—1
Go = Z ;Wi (2.2)
i=0
1 if b; € T'ax
where a; = < —1 if b; € T

0 otherwise.

Note that maximal and minimal elements are lined up alternatively in I'. This implies
that the weight (y is predominant, namely, ({5, ") = —1 for all ¥ € RY. Define

D(Go) ={a € Ry | (Go, ) = —1}.

Theorem 24. The correspondence x — h(x) gives a bijection

Proof. First we will show that h(f) = D({y). Let « € Ry and put @ = a — N(a)d. It
follows from Lemma 20,
ae€h(f) & aeh().
On the other hand, as ((y, ") = 0, it holds that
a € D((y) < ae D(().

Now we have h(f) = D({y) by Lemma 22.

We will show the injectivity. Suppose that h(z) = h(y). Then N(h(z)) = N(h(y)).
Put 29 = 2+ N (h(2))(0,¢), yo = y+N(h(y))(0,¢). Then we have N(h(zy)) = N(h(yy)) =
0 and thus h(zg) = h(yp). Now we have Supp(h(z)) = Supp(h(yy)) and this imples
ro = 1Yo and hence x = y. Il
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2.3 Weyl group elements and their inversion sets
The following proposition gives an alternative expression for h(z).
Proposition 25. For any x € 6 and t € ST(6), it holds that
h(z) = s(t7'(1))s(t71(2)) - s(t7} (n = 1)a(t™ (n)), (2.3)
where n = t(z).

The proof of Proposition 25 will be given in the next section. In the rest of this section,
we will see some consequences of the proposition.
Let t € ST(6). For n € Z>;, we define an element wy[n] of W by

wa[n] = s(E7(1))s(t71(2)) -+ s(t7(n)), (2.4)

and we set wy,[0] = e.

o

Example 26. Let A = (5,4) and w = (2, —3). For t € ST()) displayed in figure 6, we
have w;\#[ﬁ} = 545951535053.

211917 [15[13[11]9 |

14112110 8

Ut
w

Figure 6:

Proposition 27. The expression (2.4) is reduced.
Proof. Put pr = t71(k) for k =2 1. By Proposition 25 and Theorem 24, we have
h(pe) = s(p1)s(p2) -+~ s(pe-1)a(p) = woulk — a(pr) € Ry
for all k& € [1,n]. This implies that
Uwe [k — 1)s(pr)) > Lweulk —1]) (k € [1,n]).
Therefore we have £(wg[n]) = n and thus the expression (2.4) is reduced. O

For w € W the set
R(w) =R NwR_

is called the inversion set of w. It is known for any reduced expression w = s;,5;, - -+ S;

that ¢(w) = |R(w)| and

4

R(w) = { vy, Siy Qiyy Siy SigQigy - -+ Siy Sig ** * Sip_, Oy }-

By (2.3), (2.4) and Proposition 27, we obtain the following proposition:
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Proposition 28. Let t € ST(0) and n € Z>,. Then it holds that
R(wyy[n]) = {h(z) |z € € ([L,n])}.
In particular, it holds that R(wa[n]) C D((p).

Define
R(wyy) = | J R(wayln]).

n=1

Then
R(wgy) = {h(z) | z € 8} = D((p).

In particular, R(wg,) is independent of t and we will denote it just by R(wy) in the rest.

Remark 29. The set R(wp) can be thought as the “inversion set” associated with the
semi-infinite word

wy = s(t7H(1))s(t7H(2)) - - .

Definition 30. Let ( € P be an integral weight.
(1) An element w of W is said to be (-pluscule if

(¢,a")y = —1 for all @ € R(w).
(2) An element w of W is said to be (-minuscule if
(¢,a) =1 forall « € R(w™).

Definition 31. An element w € W is said to be fully commutative if any reduced ex-
pression of w can be obtained from any other by using only the relations (1.2).

Remark 32. (1) An element w € W is (-pluscule if and only if w is (w™!¢)-minuscule.
(2) It is known that if w is (-minuscule for some integral weight ¢ then w is fully commu-
tative ([8]).

By Proposition 28, we have the following:

Proposition 33. Let t € ST(0) and n € Zx>1. Then wyyn] is (p-pluscule and fully
commutative.

2.4 Proof of Proposition 25
For t € ST(0) and = € 0, we put

n(r) = s(tH(1)s(t71(2)) - s(t (n = 1)a(t™ (n), (2.5)

where n = t(x).
For z € 0, put 25 = 2 + (1,0), 2f =2+ (0,1), 2°F = 2 + (1,1) € C,. We will use
the following lemma later:
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Lemma 34. Let x € 0.
(1) If z ¢ T, then 2%, 2%, 25F € 0 and

(@) = (@) + (@) = n(2™"). (2.6)
(2) Ifx €T, then 25 ¢ 0 and

afx) + y(z%) 4+ v(2F) if o5, 2% € 0 (2.7)
(z) = afx) + y(z) if ¥ € 0,2% ¢ 0 (2.8)
a(z) + v (z") if ¥ € 0,2° ¢ 0 (2.9)
a(x) if 5, 2% ¢ 0. (2.10)

Proof. We put py, = t (k) (k € Zx).
(1) Let = p;, 2% = p;, ¥ = py, and 2° = py,. Then j > ky, ky > i and we may assume
that ky < ky. Put c(z) = r. Then c(z?) =r — 1, c¢(z°) = r + 1. We have

%(96) = w18(pz’)w25(pkl)w35(pk2)w4a(pj) = W18rW2Sr41W3Sr 1 W40y,

where w1 = s(p1)---s(pi-1), we = s(pit1) - s(pri—1), w3 = S(Pr+1) -+~ $(Pr,-1) and
Wy = $(Proyr1) -+ $(Pj-1)-
Note that c(pg)—r # 0, £1 for all d € [i+1, j—1]\{k1, k2}. Actually, if c(pg)—r = 0,1

then p, is comparable with p; and p;, and hence p; > p; > p;. But such d must be k; or
ks. Now we have

%(ﬁ) = W1S8rW2Sr41W3Sr—1WaQy = WS W2Syr41W3Sr—100

= w18, Wa S, 11w (1 + ) = W(T%) + w18, Wwes, 11 w3,

= 1(27) + wis,was, 100 = (@) + wis,wa(ar + arga)

= (2% + () + wis,waeen. = Y (2°) + p(2F) + wis,a

= (@) + (@) = (=),
(2) Suppose that 2%, 2 ¢ 0, or equivalently, suppose that z is minimal element in I'. Let
x =p;. Then p; (d € [1,j — 1]) is not comparable with p;. Hence

(@) = s(p1) - - s(pj—1)e(p;) = a(p;)

The other cases are reduced to the case where z is minimal in I', via a similar argument

as in the proof of the statement (1),
[l

Proposition 25. Let x € 0. Put 2% = 2 + (1,0), 2% = 2+ (0,1), 25 = + (1,1). It is
easy to see the following:

h(z%) + h(z?) — h(z°F) ifz ¢T
a(z) + h(z%) + h(2F) if v €T and 25 2 € 0
h(z) = ¢ a(z) + h(z¥) ifzeland 25 €6, 2F ¢ 0 (2.11)
a(z) + h(z?) ifreland 2¥ €6, 25¢ 0
a(z) if v € and 25 27 ¢ 0
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On the other hand, we have shown that 7(z) satisfies the same recurrence relations in
Lemma 34. 0

3 Poset structure of cylindric diagrams

3.1 Partial orders on the inversion set

Recall that () denote the root lattice: @ = @,,, InZ Ly,

Definition 35. Define the partial order <° on @) by

a<"B = f-a€Qr = (P Lz

1€EL/RL
The order <°" is called the ordinary order.

The restriction of the ordinary order defines a poset structure on R(wy).

Let 6 be a cylindric diagram in C,, with |w| = k. We have introduced a poset structure
on # and also have seen that the map h gives a bijection between 6 and R(wy). Remark
that this is not a poset isomorphism as seen in the following example:

Example 36. Let A = (4,2), w = (2,—-2) and consider the cylindric diagram A in C,.
Then z = 7(1,2) and y = 7(2, 1) are incomparable in A\. On the other hand, h(z) = d+a3
and h(y) = ap + as + a3, and hence h(x) — h(y) = a; + a3. This implies h(y)<°"h(z).

~Y

We will introduce a modified ordinary order <, for which we will have (0,<) =
(R(wp), ).

Let I' = {b; | i € Z/KkZ} be the bottom set of §, where b; is the element such that
c(b;) = i. Let I'yax (resp. T'nin) denote the set of maximal (resp. minimal) elements in T'.

Definition 37. Define
Iy = T19 LI TI5™ LI T,

Here,

) = {a(x) | 2 € T\ (Tmax U Twin) 1,

5™ = ¢ a(z) + Z a(y) | € Dnax ¢
yEArm(x)

% =S a(@)+ Y a(y) |z € T

yELeg(x)

Note that 1l C R, U Zgg(s.
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Example 38. For the cylindric diagram described in Fig. 4, we have

0 __
HQ - {0537045,067},
ngm = {CEG + oy + ag, 0o + 3 + Oy, 0 + al},

H;eg = {au + a5 + as, a1 + az, a9 + ag}.

Example 39. Let A = (n) and w = (1,—n + 1). Then, for the corresponding cylindric
diagram A, we have

Hg - {a17 Qg, ... 7an—2}7
H;%\rm _ {(5},
Hlfg ={ay+ an_1}

Definition 40. Define the partial order < on R(wy) by

adff < f—-—ac ZZEOVZ{Zk“ﬁ

~€lly v€lly

ky € Z>y (Vy € Hg)} : (3.1)

Proposition 41. Let x,y € 6. Then

x <y = h(z) Ih(y).
In other words, the bijection

h: (0, <) = (R(ws), D)
1S order preserving.

Proof. We assume that y covers x, and will show that h(y) — h(z) € IIy by induction on
y concerning the poset structure on 6.

Put y° =y + (1,0), y¥ =y +(0,1), ¥°F =y + (1,1). Then z = 3° or z = y*.

When y € T, it follows from (2.11) that h(y) — h(z) € .

Suppose that y ¢ I'. Note that y°F € 6. Since y¥ covers y°F and y > y¥, we have
h(y®) — h(y5F) € Il by induction hypothesis. By the recursion relation (2.11), we have

h(y) —h(y”) = h(y”) — h(y°*) € I,.

Similar argument implies h(y) — h(y¥) € IIy. In both cases, we have h(y) — h(z) € Il,.
Therefore, the statement is proved. O]

It is easy to see that
adpf = a<”p

for any «, 5 € R(wy). Thus we have the following:
Corollary 42. Let x,y € 0. Then

r <y = h(z)<"h(y).
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3.2 Poset isomorphism
Our next goal is to prove that the order preserving map
h: (07 g) - (R(U)g), S])

is actually a poset isomorphism. We start with some preparations.
As before, we denote by Supp(«) the support of a € (). The following lemma is almost
obvious from Definition 37.

Lemma 43. Let o € Ily. Then

0 (aell)

3.2
1 (aeTg™ulrs®). (32)

|Supp(a) N Fmax| - |Supp(a) N Fmin| - {

It is easy to see the next lemma:

Lemma 44. (1) Let « € Ry. Then N(a) =max{N € Z |a — N6 € R, }.
(2) Let x,y € 0. If v <y then N(h(x)) = N(h(y)).

Proof. (1) Follows from Lemma 15.
(2) Suppose x < y. By Corollary 42, we have N (h(x))d<h(z)<"h(y).

As h(y) — N(h(z))d is in R by Lemma 15, it must be a positive root. This means
N(h(z)) = N(h(y)). O

Lemma 45. Let z,y € 0 such that N(h(x)) = N(h(y)) = 0. Then
r <y <= h(x)<"h(y).

In particular, if x and y are incomparable, then h(x) and h(y) are also incomparable with
respect to <.

Proof. By Corollary 42, we have
r <y = h(z)<"h(y).

We shall prove the opposite implication. Suppose h(x)<°"h(y). Then noting that
0<°h(x), h(y)<d, we have Supp(h(z)) C Supp(h(y)) € I'. This implies z < y. O

Lemma 46. Let x,y € . Suppose that x and y are incomparable in 8. Then N(h(y)) —
N(h((z)) = 1,0 or —1. Moreover the followings hold:
(1) If N(h(y)) = N(h(z)) = 1, then

h(y) — 0<”h(z)<"h(y).
(2) If N(h(y)) — N(h(z)) = —1, then
h(z) — 6<”h(y)<"h(z).
(3) If N(h(y)) — N(h(x)) = 0, then h(z) and h(y) are incomparable with respect to <°.
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Proof. In this proof, we denote N(h(z)) by N(z) for x € §. Put
zp =+ (N(z) —k)(0,0), ye =y+ (N(y) —k£)(0,0)
for k € Z>o. Then N(x)) = N(yx) = k. Putting n = N(z), one can see that
O\({z€b|zz2z}u{z€b|z=Zx})=[rp1— (1,1),xh1 + (1,1)].
As x and y are incomparable, y belongs to this interval and hence
Tpo1 <Y < Tyt (3.3)

and n — 1 < N(y) £ n+ 1 by Lemma 44. Namely, we have N(y) — N(z) = —1,0 or 1.

Figure 7: The cells in the shadow are incomparable with z = x,,.

(1) Suppose that N(y) — N(z) = 1. In this case,
h(y) —h(z) = h(yo) + 6 — h(zo).

By definition, h(z() and h(y) are positive roots. By Lemma 15, h(zy) — § is also a root
and it is not positive. Therefore § —h(zo) € R, and h(y) —h(z) is a sum of two positive
roots. This implies h(x)<°"h(y). Combining with (3.3), we have z — <" y<"x.

(2) Follows from (1).

(3) Suppose that N(y) — N(z) = 0. Note that xy and yy are incomparable this case, and
it follows from Lemma 45 that h(yy) and h(zg) are also incomparable with respect to <.
Now we have

h(y) —h(z) = h(ye) + N(y)d — h(zo) — N(x)d = h(yo) — h(wo).
and hence h(z) and h(y) are incomparable with respect to <°". O

Theorem 47. The map

18 a poset isomorphism.
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Proof. By Proposition 41, we have
z <y = h(z) Ih(y),
y <x — h(y) <h(x).
Thus the statement follows if we prove that

x and y are incomparable = h(z) and h(y) are incomparable with respect to <.

Suppose that z and y are incomparable. Then, putting n = N(h(z)), we have N(h(y)) =
n+ 1,n or n — 1 by Lemma 46.

First we assume that N(y) = n. Then Lemma 46 implies that h(z) and h(y) must be
incomparable.

Next, assume that N(y) =n + 1. Then

h(y) — h(z) = h(y) + 6 — h(zo),
where zo = 2 +n(0,¢) and yo = y + (n + 1)(0,¢). By Lemma 22, we have

|Supp(h(y0)) N Tax| + 1 = [Supp(h(yo)) N Twial,
|Supp(5 - h(.l?o)) N Fmax’ = |Supp(5 - h(Io)) N 1—‘min’ + 1.

They are not compatible with Lemma 43 and thus we have

h(yo) & Zzollp, 6 —h(zg) & Zzolly (3.4)

Figure 8:

We need to show that h(yg) + (6 — h(zo)) ¢ Z>olly. It follows from Lemma 46 that

0<"h(yo) <™ h(w0) <5
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and thus we have
0<”h(yo) + (6 — h(z0))<9,

and
Supp (h(yo) + (6 — h(zo))) = Supp(h(yo)) U Supp(é — h(xo)).

By (3.3), it holds that y = y,41 < n41. Thus yo < o and moreover zy and yo are not
located in the same row or column. Hence

5™, 5® ¢ Supp (h(yo) + (8 — h(xo))), (3.5)

where 22™ (resp. x(®) is the minimal element in {zo} U Arm(z,) (vesp. {zo} U Leg(z)).
Suppose that

h(yo) + (6 — h(zo)) Z@

with f1,..., 58, € lly. Then 0<”5;<0 (i =1, ... ,r), 0< >0 3i<?0 and

Supp (Z @) =|_|Supp(8:).
i=1 i=1
Note that each Supp(f;) is an interval in . Combining with (3.5), this implies that

Supp(8;) C Supp (h(yo)) or Supp(S:) C Supp (6 — h(zp))).

Thus there exist iy, ..., i, for which we have h(yg) = ;, + -+ + ., but this contradics
(3.4). Therefore h(y) — h(z) = h(yy) + (0 — h(xg)) cannot be a sum of elements in Iy,
and thus h(z) and h(y) are incomparable with respect to <.

The same argument implies that h(z) and h(y) are incomparable also in the case
where N(h(y)) =n — 1. O

Proposition 48. Let a, f € R(wy) with o < B. Then there exists a sequence

a:’YIa’Y?v"'a’yk:ﬁ

in R(wg) such that viyn —v; €1l (i =1,...,k—1).
In other words, the partial order < on R(wy) coincides with the transitive closure of
the relations
a < 8 whenever § — a € Ty. (3.6)

Proof. Let <% denote the transitive closure of the relations above. It follows from the
same argument in the proof of Proposition 41 that

r <y = h(z)<"h(y)
for any z,y € 0. It is clear that
h(z)<9*h(y) = h(z) Jh(y).
Combining with Theorem 47, the statement follows. m
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3.3 Heaps

Let 6 be a cylindric diagram. Recall that standard tableaux on # have been defined as
order preserving bijection from (0, <) to (Zx1,<). Through the bijection t, the set Z>;

inherits a partial order from 6, which we will investigate in this section.

Definition 49. Let t € ST(6). Define a partial order <; on Z>; as the transitive closure
of the relations

a =<¢ b whenever a < b and either s;,s;, = $;,5;, O iq = ip.
where i, = c(t71(k)) for k € Z. The poset (Zz1, =) is called the heap of wp;.

Proposition 50. Let 6 be a cylindric diagram and t a standard tableau on 6. Then, the
map t: 0 — Z>; gives a poset isomorphism

(0, <) = (Zz1, =)

Proof. Let x,y € 0. Suppose that x < y is a covering relation in 6. Then y = x — (1,0)
ory =x — (0,1) and it is easy to see that t(z) < t(y) and s(z)s(y) # s(y)s(x). Hence
t(z) 2 t(y).

Conversely, suppose that t(z) < t(y) is a covering relation in Z>;. Then s(x)s(y) #
s(y)s(x) or c¢(x) = c(y), and hence c(x) — c(y) # 0,£1. By Proposition 11 (1), x and y
are comparable. Since t is order preserving, we must have x < y, and hence h is a poset
isomorphism. Il

The posets (Z>1, =) are thought as semi-infinite analogue of heaps introduced by
Stembridge [8]. Stembridge also introduced the heap order on the inversion sets. We
treat a slightly modified version of heap order by Nakada [2].

Definition 51. Define a partial order <" on R(wjy) as the transitive closure of the
relations

a <" B whenever a< 3 and (o, 3Y) # 0.
Proposition 52. The map h : 0 — R(wy) gives a poset isomorphism
(0, <) = (R(wp), <™).
In other words, the partial order <™ and < on R(ws) coincide.

Proof. Let x,y € 6. Suppose that © < y is a covering relation in . Then h(z)<°"h(y)
and h(y) — h(x) € Il € RUZJ. We have

(h(y) = h(z),h(y)") =2 — (h(z),h(y)").

If (h(y),h(x)") = 0 then h(y) —h(z) = h(y) mod Zé by Lemma 16, and thus h(z) = ko
for some k € Z. This is a contradiction. Therefore (h(x),h(y)") # 0, from which it
follows that h(x) <" h(y).
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Next, suppose that h(z) <" h(y) is a covering relation. Put zo = = + N(h(z))(0, {)
and yo = & + N(h(3))(0,0). Then h(zp) = h(z) — N(h(x))3, h(yo) = h(y) ~ N(h(y))5
and

(h(zo), h(yo)") = (h(z), h(y)*) #0 (3.7)

by assumption.
We assume that x and y are incomparable. Then as h(z)<°"h(y), we have N(h(y)) =
N(h(z)) + 1 and
(o) <*"h(20) <5 (3.5)

by Lemma 46. Moreover, by (3.5) in the proof of Theorem 47, we have

Yo ¢ Arm(zo) U Leg(zo). (3.9)

(See also Figure 8.)

Recall that positive roots h(xzg) and h(y) can be expressed as h(zg) = «;; and h(yp) =
ay for some 4, 5, k,l € Z with i < j, k < 1. By (3.8) and (3.9), the indices i, j, k and [ can
be chosen in such a way that they satisfy j —i < x — 1 and i < k < < j. Thus we have

(h(zo), h(yo)") = (uj, gy) = (k1141 %))

-1

= (oh-1, ) + (o, o) + Y (aa, ) + (11, 03) + {ou, )
d=k+1

= —14140+1-1=0

This contradicts (3.7). Therefore x and y are comparable, and thus x < y as h(z) <
h(y). O

4  Poset structure of the set of order ideals

4.1 Standard tableaux on cylindric skew diagrams

For a poset P, let J(P) denote the set of proper order ideals and regard [J(P) as a poset
with the inclusion relation.

Let w € Z> X Z<_; and fix a cylindric diagram ¢ in C,. In this section, we will
investigate the poset structure of the set 7 () of order ideals of 6, in other words, cylindric
skew diagrams included in 6.

Recall that any cylindric skew diagram ¢ € J(0) is a finite set and J(0) = ||~ . (0),
where

Tn(0) =1 € T0) | [§] = n}.
For £ € J,(0) and t € ST(), define a word we; by

we, = s(1(1))s(71(2)) -+ s(t7H (n)). (4.1)

We sometimes regard we ¢ as a Weyl group element.

THE ELECTRONIC JOURNAL OF COMBINATORICS 31(1) (2024), #P1.56 22



Proposition 53. The word wey is reduced. As an element of Weyl group, wey is fully
commutative and independent of t.

Proof. 1t follows from Lemma 10 that the standard tableau t on £ can be extended to
a standard tableau t on 6, for which we have wyi[n] = wey. By Proposition 27 and
Proposition 33, the right hand side of (4.1) is a reduced expression and we; is a fully
commutative element of W. It follows from Proposition 28 that

R(wey) = {h(z) |z € £},
Hence the set R(wg ) is independent of t and so is we . O

We denote by we the Weyl group element determined by the word wg, for a/any
standard tableau t € ST(¢).

Lemma 54 (See [8, Theorem 3.2]). The map
o wee = s(t71(1))s(t71(2) - s(t7(n))
gwes a bijection from ST(E) to the set of reduced expressions for we.

Proof. First, we prove that the correspondence is injective. For t;,ts € ST(&), consider
two words wey, = s(p1)s(p2) -+ s(pn) and wey, = s(q1)s(q) - - - 5(qn), where py = t; (k)
and g, = t;'(k). Assume that we,, = wey, as words. Then c(p;) = c(q) and it holds
that p; and ¢; are minimal elements of £&. Hence we have p; = ¢;. Inductively, we have
pr = g for any k € [1,n] by similar argument.

Next, we prove that the map is surjective. Take t € ST(£) and put p; = t7(j)
(7 € [1,n]). Then we = s(p1)s(pz2) - - - s(pn), which is a reduced expression of w.

Suppose that s(px)s(pe+1) = s(Pe+1)s(px). Then c(pr) — c(prs+1) # £1, and thus py
is not covered by pri1. This means that py and pi.; are incomparable. Define the map
k) - ¢ — [1,n] by

E+1 ifj=k,
tP(p) =<k if j =k+1,
J otherwise.

Then t* € ST() and we ) = s(p1)s(p2) - - $(Prr1)s(pk) - - $(pn). Now full commuta-
tivity of we implies the surjectivity. O]
4.2 Bruhat intervals

For v,w € W, we write v < w if {(w) = ¢(v) + 1 and w = vs; for some simple reflection
s;. Write v < w if there is a sequence v = wy < wy; < - -+ < w, = w. It is clear that the
relation < is a partial order of W, and it is called the weak right Bruhat order.

For w € W, we define

e,w]={zeW |e=xz<w}
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Note that when ¢(w) = n, we have

e, w] = {Sz‘l% sy €W ' 0 < k < n and there exist 44,1, ...,1, such that }

Siy "t 8iySip,, S, 18 a reduced expression for w

(4.2)
Let 0 be a cylindric diagram. For t € ST(), we define

o

e, woe) = | le, waln]].

n=1

We will see that the “semi-infinite Bruhat interval” [e,wyy) is actually independent of
t e ST(0).

Lemma 55. Let t; and ty be two standard tableaux on 6. Then for each n = 1, there
exist v 2 n and s € ST(0) for which it holds that wys[r] = wey, [r] as elements of W and
Wy.s[n] = we,[n| as words.

Proof. Choose r > n such that t;'[1,n] C t;'[1,7]. Put & = '[1,7] and & = '[1,7n].
Note that & \ & is an order ideal of the cylindric diagram 6\ &. Take t € ST(0\ &) such
that t '[1,r —n] = & \ & (Lemma 10). Define a map s : § — Z>; by

tlp) +n co
t(p) (p € &)
Then we have s € ST(0), which satisfies the desired conditions by Proposition 53. O]

Proposition 56. Let t; and ty be two standard tableaux of 6. Then
le,wapy,) = [e,wpy,) as subsets of W.

Proof. Let n 2 1. By Lemma 55, there exist r = n and s € ST() such that wys[r] =
wo, [] and wp ¢[n] = wy,[n]. Now we have

e, wo 0, [n]] = e, wos[n]] C le, wys[r]] C [e, wour]].

Hence we obtain

le, w9,t2) = U e, Wo,t, [n]] C [e, we,tl)‘

n=1

Similarly, we obtain [e, wgy, ) C [e, wyy,), and hence [e, wpy, ) = [e, woy,)- O

We denote [e, wy) just by [e,ws) in the rest. We have

e, wy) = U [e’wﬁ]

£cJ(9)
by the following lemma:
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Lemma 57. Let v € W. Then v € [e,wy) if and only if v = w¢ for some & € J(0).

Proof. Let v € [e,wy). Then v € [e,wy[n]] for some t € ST(A) and n. By Lemma 54,
there exist ¢ € ST(0) and k such that v = wy ¢ [k]. Putting & = ¢ '[1, k], we have v = w.

Let £ € J(0). Then there exist t € ST(#) and n such that we = wgy[n]. Therefore
we € [e, wy). O

The following theorem can be seen as a semi-infinite version of the results established

in [8] (see also [3, 5]).
Theorem 58. Let 0 be a cylindric Young diagram in C,,.
(1) The map

®:(7(0),C) = (le;ws), X)
given by ®(&) = we is a poset isomorphism.
(2) The map

U (le, wg), =) = (T (R(wp)), ©)

given by ¥(w) = R(w) is a poset isomorphism.

Proof. We will show (1) and (2) togather. Note that the poset isomorphism h : § — R(wy)
induces a poset isomorphism J(6) — J(R(wy)), under which £ € J(0) corresponds to

{h(z) [z € &} = R(we) = ¥ o &(E).

Hence ¥ o @ is bijective and thus @ is injective. As ® is surjective by Lemma 57, ® is
bijective. Thus W is also bijective.

We will show that ® and ¥ are order preserving.

Suppose that &' covers &, or equivalently that ¢ = £ U {z} for a maximal element z of
¢'. Then there exists t € ST(¢') satisfying t!(n) = z, for which we have

we = s(t7(1)s(t71(2)) - st (n = 1))s(t7 (n) = wes(),
This implies that wg covers we. Hence ® is order preserving.
It is easy to see that v < w implies R(v) C R(w). Hence U is order preserving.
As we know that (¥ o ®)~! is order preserving, it holds that ®~! and U~ are also
order preserving. O

Proposition 59. Let 6 be a cylindric diagram. Then
le,wp) = {w € W | w is (p-pluscule}

Proof. Tt follows from Proposition 33 that any element of [e, wy) is (p-pluscule.

Let w € W be (p-pluscule and w = s;,s;, - - - 5, its reduced expression. We will show
that w € [e,wy) by induction on n = ¢(w). By induction hypothesis, v := s;,8;, - si,_,
belongs to [e, wy), and thus v = w for some & € J(6).

Let z be the minimum element of ¢=*(4,) N (0\ &) and put & = £U{x}. Take t € ST(¢')
such that t(n) = z. Then w = s(t71(1))s(t71(2))-- - s(t "' (n)). Since w is (p-pluscule, if
in = i) then there exist j,,j_ € [k,n]| such that j, = i, + 1 and j_ =i, — 1 by [7,
Proposition 2.3]. This implies that the subset &’ satisfies the condition (v) in Proposition
6. Therefore ¢ is a cylindric skew diagram in 6 and w = weg53. Therefore w € [e,wy). O
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4.3 Skew diagrams and classical case

Let @ be a cylindric diagram in C,. Let £ € J,(0) and take t € ST(#) such that £ =
t~1[1,n]. Then we have wy[n] = we and h(¢) = R(w¢). Thus the next theorem follows
easily from Theorem 47:

Theorem 60. Let £ € T,(0).

(1) The map h: (£, <) = (R(we), <) is a poset isomorphism.

(2) For t € ST(€), the map t: (€,<) = ([1,n], <{®) is a poset isomorphism.
Note that J(&§) = {n € J(0) | n C £}. Theorem 58 implies the following:

Theorem 61. Let £ € J(0).

(1) The map @ : (T (&), C) — ([e,we], X) given by ®(n) = w,, is a poset isomorphism.

(2) The map ¥ : (le,we], 2) = (T (R(we)), C) given by ¥(w) = R(w) is a poset isomor-
phism.

In the rest, we will see that description for non-cylindric diagrams can be deduced
from the results above. Let m € Zzy and let A = (A,...,\n), = (fay--., ) be
partitions such that A\; = pg; = 0 (i € [1,m]). Under the notation in Section 1.1, the
associated classical skew Young diagram is represented as the subset A/u of Z?%:

Ap={(a,b) € Z’|ac[l,m], b€ [u,+1,A]}.

Note that the classical normal Young diagram associated with \ is a special skew diagram

A/ with ¢ = (0,0,...,0).

To connect classical diagrams and cylindric diagrams, we take ¢ € Z~; such that
02N —

Then the partitions A, p are (-restricted, and moreover it is easy to see that the skew
diagram A/p is isomorphic to the cylindric skew diagram )\/ ji = m(A/p) as a poset.
Under this identification A/p = A /ft, Theorem 60 and Lemma 45 for the order ideal A /1
of the cylindric diagram A imply the followings:

(1], <*) 2= (A1, <) 2 (R(wagu), ) = (R(way), <7)
for each t € ST(A/p) = ST(A/f), and it follows from Theorem 61 that
(T, ©) 2 (e wasul. %) = (T (Rlws). )
Remark that by redefining the content as
c(a,b) =b—a+m— pn,
we have c(A/p) C [1,k — 1], and

Wx/p € W, R(U))\/u) C R,
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where W and R denote the Weyl group and the root system of type A,_; respectively.
We will see the relation between the results above and preceding works. Let n € Z>;
and A be a partition of n. Fix t € ST(A/¢) and put

wy = wxe = s(t7H(n))s(t T (n—1))---s(t7(1)).

The element w, is independent of t and it is called the Grassmannian permutation asso-
ciated with .
It has been shown in [7, 3] that the map

coh : A/¢p — R(wy!)

given by
coh(z) = s(t™*(n))s(t 1(n — 1)) ---s(t 1 (k+ 1))a(t(k)), (4.3)

where k = t7!(x), leads an dual isomorphism of posets:
coh : (A\/¢, <) = (R(wy"),<™), (4.4)

where < is the ordinary order as before.
On the other hand, as a classical version of Theorem 60, we have a poset isomorphism

h: (A/¢, <) = (R(wy), D). (4.5)

Now define the map ¢ : R — R by t(a) = —w) 'a. Then it follows immediately from the
expression (2.3) and (4.3) that ¢ o h(z) = coh(x) for all x € A/¢p. Therefore we have the
following:

Proposition 62. The restriction of v gives a dual poset isomorphism
v (R(wy), Q) = (R(wy '), <)

and moreover L o h = coh. In other words, the following diagram of poset isomorphisms
commutes :

(Ao, <) —— (R(wy), <) (4.6)

(R(wy), <)

where (R(wy '), <) denotes the poset obtained from (R(wy'), <) by reversing the
order.
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