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Abstract

Cylindric diagrams admit structures of infinite d-complete posets with natural
ordering. The purpose of this paper is to provide a realization of a cylindric diagram
as a subset of an affine root system of type A via colored hook lengths, and to present
several characterizations of its poset structure. Furthermore, the set of order ideals
of a cylindric diagram is described as a weak Bruhat interval of the affine Weyl
group.

Mathematics Subject Classifications: 05E10, 06A11, 17B22, 20F55

Introduction

A periodic (Young) diagram is a Young diagram consisting of infinitely many cells in Z2

which is invariant under parallel translations generated by a certain vector ω ∈ Z2 called
the period (see Figure 1). The image of a periodic diagram under the natural projection
onto the cylinder Z2/Zω is called a cylindric diagram. Diagrams given as a set-difference
of two cylindric diagrams are called cylindric skew diagrams.

We note that cylindric skew diagrams have been known to parameterize a certain
class of irreducible modules over the Cherednik algebras (double affine Hecke algebras)
([12, 13]) and the (degenerate) affine Hecke algebras ([1, 6]) of type A, where standard
tableaux on those diagrams also appear.

Let ω = (m,−ℓ) ∈ Z≧1×Z≦−1 and let θ be a cylindric diagram in Z2/Zω. The lattice
Z2 admits a partial order ⩽ defined by

(a, b) ⩽ (c, d) ⇐⇒ a ≧ c and b ≧ d,

which induces a poset structure on Z2/Zω and also on θ. Together with the content map
c : θ → Z/κZ, where c(a, b) = b − a mod κ and κ = ℓ +m, the cylindric digram θ is a
locally finite Z/κZ-colored d-complete poset in the sense of [9, 10].
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Figure 1: A periodic diagram of period ω = (4,−5).

The purpose of the present paper is to investigate the poset (θ,⩽) as well as the poset
(J (θ),⊂), where J (θ) denotes the set of cylindric skew diagrams (or proper order ideals)
included in θ.

We briefly review a description in the classical case. Let λ ⊂ Z2 be a finite Young
diagram. The associated Grassmannian permutation wλ is an element of the Weyl group
of the root system R of type An where n = ♯{c(x) | x ∈ λ}. It is known that the poset
(λ,⩽) is dually isomorphic to the poset (R(w−1

λ ),⩽or), where R(w−1
λ ) := R+∩w−1

λ R− and
⩽or is the ordinary order (or the standard order) defined by

α⩽orβ ⇐⇒ β − α ∈
∑
i∈[1,n]

Z≧0αi

for α, β ∈ R(wλ) with Π being the set of simple roots ([7]).
Let θ be a cylindric diagram in Z2/Zω. We would like to describe the poset (θ,⩽) in

terms of the root system of type A
(1)
κ−1 with κ = ℓ+m.

A key ingredient in our approach is the colored hook length ([2, 4]), given by

h(x) =
∑

y∈H(x)

αc(y) (x ∈ θ),

where H(x) denotes the hook at x and αi are simple roots. (See Section 2.1 for precise
definitions.) We will show that the map h embeds the cylindric diagram θ into the set
R+ of positive (real) roots, and that the image h(θ) is given by the inversion set R(wθ)
associated with a semi-infinite word wθ, which can be thought as an analogue of the
Grassmannian permutation. Moreover, we show that the image h(θ) is also characterized
as the subset of R+ consisting of those elements satisfying

〈ζθ, α∨〉 = −1,
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where ζθ is a predominant integral weight determined by θ (see Section 2.2 and 2.3 for
details).

Unlike the classical case, the ordinary order in R(wθ) does not lead a poset isomor-
phism, and we need to introduce a modified order ⊴ in R(wθ) by

α⩽orβ ⇐⇒ β − α ∈
∑
γ∈Πθ

Z≧0γ,

to obtain a poset isomorphism (θ,⩽) ∼= (R(wθ),⊴), where Πθ is a certain subset of the
affine root system (see Section 3.1).

Another description of the poset θ is given by a linear extension or (reverse) standard
tableau t on θ, which is by definition a bijective order preserving map θ → Z≧1. A linear
extension t : θ → Z≧1 brings a poset structure to Z≧1 and the resulting poset is an infinite
analogue of the heap, which is originally introduced by Stembridge [7]. In summary, we
have the following:

Theorem (Theorem 47 and Proposition 50). The followings are poset isomorphisms:

(Z≧1,⩽hp
t )

t← (θ,⩽)
h→ (R(wθ),⊴).

Another goal of this paper is to describe the poset structure J (θ). For a finite Young
diagram λ, it is known that the set J (λ) of order ideals of λ is isomorphic to the interval
[e, wλ] = {u ∈ W | e � u � wλ} with weak right Bruhat order ([4, Proposition I]). For a
cylindric diagram θ, we define a “semi-infinite Bruhat interval” [e, wθ), and we have the
following:

Theorem (Theorem 58). The map

Φ : (J (θ),⊂)→ ([e, wθ),�)

given by Φ(ξ) = wξ is a poset isomorphism.

1 Cylindric diagrams

1.1 Cylindric diagrams as posets

Let (P,⩽) be a poset. For x, y ∈ P , define an interval [x, y] by

[x, y] = {z ∈ P | x ⩽ z ⩽ y}.

We say that y covers x if [x, y] = {x, y}.

Definition 1. Let (P,⩽) be a poset. A subset J of P is called an order filter (resp. order
ideal) if the following condition holds:

x ∈ J, x ⩽ y =⇒ y ∈ J (resp. x ∈ J, x ⩾ y =⇒ y ∈ J).

An order filter (resp. order ideal) J is said to be proper if J 6= P , and it is said to be
non-trivial if J 6= P nor J 6= ∅.
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For ω ∈ Z≧1 × Z≦−1, we let Zω denote the subgroup of (the additive group) Z2

generated by ω, and define the cylinder Cω by

Cω = Z2/Zω.

Let π : Z2 → Cω be the natural projection. The cylinder Cω inherits a Z2-module structure
via π.

Define a poset structure on Z2 by

(a, b) ⩽ (a′, b′) ⇐⇒ a ≧ a′ and b ≧ b′ as integers.

For x, y ∈ Cω, write x ⩽ y if there exists x̃, ỹ ∈ Z2 such that π(x̃) = x, π(ỹ) = y and
x̃ ⩽ ỹ. It is not difficult to see the following:

Lemma 2. Let ω ∈ Z≧1 × Z≦−1. Then the relation ⩽ on Cω is a partial order, and the
projection π is order preserving.

In the rest of this section, we fix ω ∈ Z≧1 × Z≦−1.

Definition 3. (1) A non-trivial order filter of Cω is called a cylindric diagram.
(2) A non-trivial order filter Θ of Z2 is called a periodic diagram of period ω if Θ+ω = Θ.

Lemma 4. (1) For a cylindric diagram θ in Cω, the inverse image π−1(θ) is a periodic
diagram of period ω.
(2) For a periodic diagram Θ of period ω, the image π(Θ) is a cylindric diagram in Cω.

Figure 1 indicates a periodic diagram of period ω = (4,−5). The set consisting of
colored cells is a fundamental domain with respect to the action of Zω, and it is in one
to one correspondence with the associated cylindric diagram.

Definition 5. Let m, ℓ ∈ Z≧1. A non-increasing sequence λ = (λ1, . . . , λm) of (possibly
negative) integers is called a generalized partition of length m. For ω = (m,−ℓ) ∈ Z≧1 ×
Z≦−1, we denote by Pω the set of generalized partitions of length m satisfying

λ1 − λm ≦ ℓ.

For λ = (λ1, . . . , λm) ∈ Pω, we define

λ = {(a, b) ∈ Z2 | 1 ≦ a ≦ m, b ≦ λa},
λ̂ = λ+ Zω,
λ̊ = π(λ̂).

Note that λ = λ̂ ∩ ([1,m] × Z) and λ is a fundamental domain of λ̂ with respect to the
action of Z(m,−ℓ).

If λ ∈ Pω then λ̂ is a periodic diagram of period ω and λ̊ is a cylindric diagram.
Moreover, any periodic (resp. cylindric) diagram of period ω is of the form λ̂ (resp. λ̊)
for some λ ∈ Pω.

For a poset P and its order filter J , we denote the set-difference P \ J also by P/J .
It is easy to see the following:
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Proposition 6. For a subset ξ of Cω, the following conditions are equivalent :
(i) ξ is a proper order ideal of a cylindric diagram in Cω.
(ii) ξ is a set-difference θ/η of two cylindric diagrams θ, η in Cω with θ ⊃ η.
(iii) ξ is an intersection of a proper order ideal and a proper order filter of Cω.
(iv) ξ is a finite subset of Cω and satisfies the following condition:

x, y ∈ ξ =⇒ [x, y] ⊂ ξ.

(v) ξ is a finite subset of Cω and satisfies the following condition:

x, x+ (1, 1) ∈ ξ =⇒ x+ (0, 1), x+ (1, 0) ∈ ξ (the skew property)

Definition 7. A subset ξ of Cω is called a cylindric skew diagram if it satisfies one of the
conditions (i)–(v) in Proposition 6.

Figure 2: A cylindric skew diagram.

We denote the set of proper order ideals of θ by J (θ) and regard it as a poset with
the inclusion relation. Note that any ξ ∈ J (θ) is a finite set and thus J (θ) =

⊔∞
n=0 Jn(θ),

where we put
Jn(θ) = {ξ ∈ J (θ) | |ξ| = n}.

1.2 Standard tableaux

In the rest of present section, fix a cylindric diagram θ in Cω.

Definition 8. (1) For a cylindric diagram θ, a standard tableau (or linear extension) of
θ is a bijection t : θ → Z≧1 satisfying

x < y =⇒ t(x) < t(y).

We denote by ST(θ) the set of standard tableaux of θ.
(2) For a finite poset P with |P | = n, a standard tableau of P is a bijection t : P → [1, n]
satisfying

x < y =⇒ t(x) < t(y).

We denote by ST(P ) the set of standard tableaux of P .
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Figure 3:

Remark 9. Our standard tableaux are usually referred to as reverse standard tableaux.

Let t ∈ ST(θ). It is easy to see that the subset t−1([1, n]) of θ is a proper order ideal,
and moreover the restriction t|t−1([1,n]) is a standard tableau on t−1([1, n]). Conversely, for
ξ ∈ Jn(θ), any standard tableau on ξ can be extended to a standard tableau on θ. In
summary, we have the following:

Lemma 10. Let n ∈ Z≧0. The correspondence t 7→ t−1([1, n]) gives a surjective map

ST(θ)→ Jn(θ).

Moreover, for each t ∈ ST(θ), the restriction t 7→ t|t−1([1,n]) gives a surjective map

ST(θ)→ ST(t−1([1, n])).

1.3 Content map and bottom set

Let Θ be a periodic diagram of period ω. Define the content map

c : Θ→ Z
by c(a, b) = b− a. Put κ = |c(ω)|. Let θ = π(Θ). Since c(x+ ω) = c(x)− κ, the content
map c induces the map

θ → Z/κZ,
which we denote by the same symbol c. It is easy to show the following:

Proposition 11. For x, y ∈ θ, the followings hold:
(1) If c(x)− c(y) ≡ 0,±1 mod κ, then x and y are comparable.
(2) If x is covered by y, then c(x)− c(y) ≡ ±1 mod κ.

Remark 12. By Proposition 6 and Proposition 11, cylindric diagrams are infinite (locally
finite) “Z/κZ-colored d-complete posets” in the sense of [9, 10].

Let i ∈ Z/κZ. By Proposition 11 (1), the inverse image c−1(i) is non-empty totally
ordered subset of θ. Let bi denote the minimum element in c−1(i).

Definition 13. Define the bottom set Γ of θ by

Γ = {bi | i ∈ Z/κZ}.
Figure 4 indicates the periodic diagram λ̂ with λ = (5, 4, 4, 2) ∈ P(4,−5). The number

in each cell is the content with modulo 9. Yellowed cells forms the bottom set of λ̊ = π(λ̂).
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3 4 5 6 7 8 0 1
2 3 4 5 6 7 8
1 2 3 4 5

Figure 4:

1.4 Root systems and affine Weyl groups of type A
(1)
κ−1

Let κ ∈ Z≧2. In the rest, we often identify Z/κZ with {0, 1, . . . , κ − 1}. Let h be a
(κ+ 1)-dimensional vector space and choose elements α∨

i (i ∈ Z/κZ) and d of h so that

{α∨
0 , α

∨
1 , . . . , α

∨
κ−1, d}

forms a basis for h. Let h∗ be the dual space of h. Define elements αj (j ∈ Z/κZ) and ϖ0

of h∗ by

〈αj, α
∨
i 〉 = aij, 〈ϖ0, α

∨
i 〉 = δi0 (i, j ∈ Z/κZ),

〈αj, d〉 = δj0, 〈ϖ0, d〉 = 0,

where 〈·, ·〉 : h∗ × h→ Z is the natural pairing and the integer aij is defined by

aij =


2 if i = j

−1 if i− j = ±1
0 otherwise

for κ ≧ 3 and

aij =

{
2 if i = j

−2 if i 6= j

for κ = 2. Then {α0, α1, . . . , ακ−1, ϖ0} forms a basis for h∗. Define ϖi ∈ h∗ (i =
1, 2, . . . , κ− 1) by

〈ϖi, α
∨
j 〉 = δij, 〈ϖi, d〉 = 0 (j ∈ Z/κZ).

The weights ϖ0, ϖ1, . . . , ϖκ−1 are called fundamental weights. Put δ = α0+α1+· · ·+ακ−1

(resp. δ∨ = α∨
0 + α∨

1 + · · ·+ α∨
κ−1), which is called the null root (resp. the null coroot).

For i ∈ Z/κZ, define the simple reflection si ∈ GL(h∗) by

si(ζ) = ζ − 〈ζ, α∨
i 〉αi (ζ ∈ h∗).
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Define the affine Weyl group W of type A
(1)
κ−1 as the subgroup of GL(h∗) generated by

simple reflections:
W = 〈si | i ∈ Z/κZ〉.

The following is well-known:

Proposition 14. The group W has the following fundamental relations:

s2i = 1, (1.1)

sisj = sjsi (i− j 6= 0,±1), (1.2)

sisi+1si = si+1sisi+1. (1.3)

For w ∈ W , we define the length ℓ(w) of w as the smallest r for which an expression
(or a word)

w = si1si2 · · · sir ∈ W (ij ∈ Z/κZ)

exists. An expression w = si1si2 · · · sir is said to be reduced if ℓ(w) = r.
Define the action of W on h by

si(h) = h− 〈αi, h〉α∨
i (h ∈ h).

We put

Π = {α0, α1, . . . , ακ−1}, Π∨ = {α∨
0 , α

∨
1 , . . . , α

∨
κ−1},

Q =

 ∑
i∈Z/κZ

ciαi

∣∣∣∣∣∣ ci ∈ Z

 , Q+ =

 ∑
i∈Z/κZ

ciαi

∣∣∣∣∣∣ ci ∈ Z≧0

 .

The set Π (resp. Π∨) is called the set of simple roots (resp. the set of simple coroots),
and Q is called the root lattice. Put

R = WΠ ⊂ h∗, R∨ = WΠ∨ ⊂ h.

Then R (resp. R∨) is the set of real roots (resp. coroots) and R t Zδ is the affine root
system. Define the set R+ of positive (real) roots and the set R− of negative (real) roots
by

R+ = R ∩Q+ =

{
κ−1∑
i=0

ciαi ∈ R | ci ∈ Z≧0

}
, R− =

{
κ−1∑
i=0

ciαi ∈ R | ci ∈ Z≦0

}
.

For β =
∑κ−1

i=0 kiαi ∈ R, define β∨ =
∑κ−1

i=0 kiα
∨
i ∈ R∨. Then the correspondence β 7→ β∨

gives a bijection R → R∨. Define the set of positive (resp. negative) coroots R∨
+ (resp.

R∨
−) as the image of R+ (resp. R−) by this bijection.
For i, j ∈ Z with i < j, we define

αij =
∑

i≦k≦j−1

αk̄,

the electronic journal of combinatorics 31(1) (2024), #P1.56 8



where k̄ = k mod κZ ∈ Z/κZ. The followings are well-known:

R+ = {αij | i < j, j − i /∈ κZ} (1.4)

= {αij + kδ | 1 ≦ i < j ≦ κ, k ≧ 0} t {−αij + kδ | 1 ≦ i < j ≦ κ, k ≧ 1}, (1.5)

R− = −R+, R = R+ tR−.

From the description of R above, the following two lemmas follow easily and they will be
used later:

Lemma 15. If α ∈ R, then α + kδ ∈ R for all k ∈ Z.

Lemma 16. Let α ∈ R t Zδ and β ∈ R. Then 〈α, β∨〉 = 2 if and only if α ≡ β mod δ.

2 Hooks in cylindric diagrams

2.1 Colored hook length

In this section, we will introduce colored hook length, which is a key ingredient in this
paper.

Fix κ,m, ℓ ∈ Z≧1 with κ = m+ ℓ and let θ be a cylindric diagram in C(m,−ℓ).
In the rest of this paper, we use the following notations:

α(x) = αc(x), s(x) = sc(x) for x ∈ θ.

Definition 17. For x ∈ θ, put

Arm(x) = {x+ (0, k) ∈ θ | k ∈ Z≧1},
Leg(x) = {x+ (k, 0) ∈ θ | k ∈ Z≧1},

and define
h(x) = α(x) +

∑
y∈Arm(x)

α(y) +
∑

y∈Leg(x)

α(y).

We call h(x) the colored hook length at x.

For x ∈ C(m,−ℓ) \ θ, we set h(x) = 0 for convenience. It is easy to see that for x ∈ θ

h(x− (0, ℓ)) = h(x− (m, 0)) = h(x) + δ

and
h(x) = αij for some integers i < j. (2.1)

Example 18. (See Figure 5.) Let ω = (4,−5). Then λ = (5, 3, 3, 1) ∈ Pω. For a cell
x = π(2,−4) ∈ λ̊, we have c(x) = 3 + 9Z ∈ Z/9Z. The colored hook length at x is

h(x) = α−6 + (α−5 + α−4 + α−3 + α−2 + α−1 + α0 + α1)

+ (α−7 + α−8 + α−9 + α−10 + α−11 + α−12)

= α3 + (α4 + α5 + α6 + α7 + α8 + α0 + α1) + (α2 + α1 + α0 + α8 + α7 + α6)

= δ + α0 + α1 + α6 + α7 + α8,

which can be expressed as h(x) = α−12,2.
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x Arm(x)

L
eg
(x
)

Figure 5: The sets Arm(x) and Leg(x) for x in the cylindric diagram.

Remark 19. (1) For x ∈ θ, the “multiset” H(x) := {x} t Arm(x) t Leg(x) is a cylindric
analogue of the hook at x.

(2) A conjectural hook formula concerning the number of standard tableaux on cylindric
skew diagrams is proposed in [11], where the hook length at x ∈ θ is given by |H(x)| =
|Arm(x)|+ |Leg(x)|+ 1.

For α ∈ Q+, define

N(α) = max{k ∈ Z | α− kδ ∈ Q+}.

Lemma 20. For x ∈ θ, it holds that

N(h(x)) = max{k ∈ Z | x+ k(0, ℓ) ∈ θ}.

Proof. We put N(x) = max{k ∈ Z | x+ k(0, ℓ) ∈ θ} and will show N(h(x)) = N(x).
Let k ∈ Z≧0. Suppose that x + k(0, ℓ) ∈ θ. Then, h(x) − kδ = h(x + k(0, ℓ)) ∈ Q+

and thus N(h(x)) ≧ N(x).
Suppose that x− k(0, ℓ) /∈ θ. Noting that x− k(0, ℓ) = x+ k(m, 0), we have

|Arm(x)| ≦ kℓ− 1, |Leg(x)| ≦ km− 1.

Thus we have |{x} ∪ Arm(x) ∪ Leg(x)| ≦ k(ℓ+m)− 1 and hence h(x)− kδ /∈ Q+. This
means N(h(x)) ≦ N(x).

Let Γ = {bi | i ∈ Z/κZ} be the bottom set of θ, where bi is the minimum element of
c−1(i) as before.

For α =
∑

i∈Z/κZ ciαi ∈ Q+, define its support by

Supp(α) = {bi | ci > 0 (i ∈ Z/κZ)} ⊂ Γ.

For example, we have Supp(δ) = Γ. Let x ∈ θ with N(h(x)) = 0. Then Supp(h(x)) is a
non-empty, proper and connected subset of Γ.
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Lemma 21. Let x ∈ θ. Then h(x) ∈ R+.

Proof. By (1.4) and (2.1), it is enough to show that h(x) /∈ Zδ.
Put k = N(h(x)) and x0 = x+ k(0, ℓ). Then x0 ∈ θ by Lemma 20 and N(h(x0)) = 0.

Since ∅ 6= Supp(h(x0)) ⫋ Γ, we have h(x0) /∈ Zδ and thus h(x) = h(x0) + kδ /∈ Zδ.

Let Γmax (resp. Γmin) denote the set of maximal (resp. minimal) elements in Γ. Note
that |Γmax| = |Γmin|. One can easily see the following lemma. (See the figure below.)

Lemma 22. Let α ∈ R+ with N(α) = 0. Then α = h(x) for some x ∈ θ if and only if

|Supp(α) ∩ Γmax|+ 1 = |Supp(α) ∩ Γmin|.

x

Supp(h(x))

2.2 Predominant weights and hooks

Definition 23. We define ζθ ∈ h∗ by

ζθ =
κ−1∑
i=0

aiϖi, (2.2)

where ai =


1 if bi ∈ Γmax

−1 if bi ∈ Γmin

0 otherwise.

Note that maximal and minimal elements are lined up alternatively in Γ. This implies
that the weight ζθ is predominant, namely, 〈ζθ, α∨〉 ≧ −1 for all α∨ ∈ R∨

+. Define

D(ζθ) = {α ∈ R+ | 〈ζθ, α∨〉 = −1}.
Theorem 24. The correspondence x 7→ h(x) gives a bijection

h : θ → D(ζθ).

Proof. First we will show that h(θ) = D(ζθ). Let α ∈ R+ and put ᾱ = α − N(α)δ. It
follows from Lemma 20,

α ∈ h(θ)⇔ ᾱ ∈ h(θ).

On the other hand, as 〈ζθ, δ∨〉 = 0, it holds that

α ∈ D(ζθ)⇔ ᾱ ∈ D(ζθ).

Now we have h(θ) = D(ζθ) by Lemma 22.
We will show the injectivity. Suppose that h(x) = h(y). Then N(h(x)) = N(h(y)).

Put x0 = x+N(h(x))(0, ℓ), y0 = y+N(h(y))(0, ℓ). Then we have N(h(x0)) = N(h(y0)) =
0 and thus h(x0) = h(y0). Now we have Supp(h(x0)) = Supp(h(y0)) and this imples
x0 = y0 and hence x = y.
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2.3 Weyl group elements and their inversion sets

The following proposition gives an alternative expression for h(x).

Proposition 25. For any x ∈ θ and t ∈ ST(θ), it holds that

h(x) = s(t−1(1))s(t−1(2)) · · · s(t−1(n− 1))α(t−1(n)), (2.3)

where n = t(x).

The proof of Proposition 25 will be given in the next section. In the rest of this section,
we will see some consequences of the proposition.

Let t ∈ ST(θ). For n ∈ Z≧1, we define an element wθ,t[n] of W by

wθ,t[n] = s(t−1(1))s(t−1(2)) · · · s(t−1(n)), (2.4)

and we set wθ,t[0] = e.

Example 26. Let λ = (5, 4) and ω = (2,−3). For t ∈ ST(̊λ) displayed in figure 6, we
have wλ̊,t[6] = s4s2s1s3s0s2.
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Figure 6:

Proposition 27. The expression (2.4) is reduced.

Proof. Put pk = t−1(k) for k ≧ 1. By Proposition 25 and Theorem 24, we have

h(pk) = s(p1)s(p2) · · · s(pk−1)α(pk) = wθ,t[k − 1]α(pk) ∈ R+

for all k ∈ [1, n]. This implies that

ℓ(wθ,t[k − 1]s(pk)) > ℓ(wθ,t[k − 1]) (k ∈ [1, n]).

Therefore we have ℓ(wθ,t[n]) = n and thus the expression (2.4) is reduced.

For w ∈ W , the set
R(w) = R+ ∩ wR−

is called the inversion set of w. It is known for any reduced expression w = si1si2 · · · siℓ
that ℓ(w) = |R(w)| and

R(w) = {αi1 , si1αi2 , si1si2αi3 , . . . , si1si2 · · · siℓ−1
αiℓ}.

By (2.3), (2.4) and Proposition 27, we obtain the following proposition:
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Proposition 28. Let t ∈ ST(θ) and n ∈ Z≧1. Then it holds that

R(wθ,t[n]) = {h(x) | x ∈ t−1([1, n])}.

In particular, it holds that R(wθ,t[n]) ⊂ D(ζθ).

Define
R(wθ,t) =

⋃
n≧1

R(wθ,t[n]).

Then
R(wθ,t) = {h(x) | x ∈ θ} = D(ζθ).

In particular, R(wθ,t) is independent of t and we will denote it just by R(wθ) in the rest.

Remark 29. The set R(wθ) can be thought as the “inversion set” associated with the
semi-infinite word

wθ,t := s(t−1(1))s(t−1(2)) · · · · · · .

Definition 30. Let ζ ∈ P be an integral weight.

(1) An element w of W is said to be ζ-pluscule if

〈ζ, α∨〉 = −1 for all α ∈ R(w).

(2) An element w of W is said to be ζ-minuscule if

〈ζ, α∨〉 = 1 for all α ∈ R(w−1).

Definition 31. An element w ∈ W is said to be fully commutative if any reduced ex-
pression of w can be obtained from any other by using only the relations (1.2).

Remark 32. (1) An element w ∈ W is ζ-pluscule if and only if w is (w−1ζ)-minuscule.
(2) It is known that if w is ζ-minuscule for some integral weight ζ then w is fully commu-
tative ([8]).

By Proposition 28, we have the following:

Proposition 33. Let t ∈ ST(θ) and n ∈ Z≧1. Then wθ,t[n] is ζθ-pluscule and fully
commutative.

2.4 Proof of Proposition 25

For t ∈ ST(θ) and x ∈ θ, we put

γt(x) = s(t−1(1))s(t−1(2)) · · · s(t−1(n− 1))α(t−1(n)), (2.5)

where n = t(x).
For x ∈ θ, put xS = x + (1, 0), xE = x + (0, 1), xSE = x + (1, 1) ∈ Cω. We will use

the following lemma later:
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Lemma 34. Let x ∈ θ.

(1) If x /∈ Γ, then xS, xE, xSE ∈ θ and

γt(x) = γt(x
S) + γt(x

E)− γt(x
SE). (2.6)

(2) If x ∈ Γ, then xSE /∈ θ and

γt(x) =


α(x) + γt(x

S) + γt(x
E) if xS, xE ∈ θ

α(x) + γt(x
S) if xS ∈ θ, xE /∈ θ

α(x) + γt(x
E) if xE ∈ θ, xS /∈ θ

α(x) if xS, xE /∈ θ.

(2.7)

(2.8)

(2.9)

(2.10)

Proof. We put pk = t−1(k) (k ∈ Z≧1).

(1) Let x = pj, x
SE = pi, x

E = pk1 and xS = pk2 . Then j > k1, k2 > i and we may assume
that k2 < k1. Put c(x) = r. Then c(xE) = r − 1, c(xS) = r + 1. We have

γt(x) = w1s(pi)w2s(pk1)w3s(pk2)w4α(pj) = w1srw2sr+1w3sr−1w4αr,

where w1 = s(p1) · · · s(pi−1), w2 = s(pi+1) · · · s(pk1−1), w3 = s(pk1+1) · · · s(pk2−1) and
w4 = s(pk2+1) · · · s(pj−1).

Note that c(pd)−r 6= 0,±1 for all d ∈ [i+1, j−1]\{k1, k2}. Actually, if c(pd)−r = 0,±1
then pd is comparable with pj and pi, and hence pj > pd > pi. But such d must be k1 or
k2. Now we have

γt(x) = w1srw2sr+1w3sr−1w4αr = w1srw2sr+1w3sr−1αr

= w1srw2sr+1w3(αr−1 + αr) = γt(x
S) + w1srw2sr+1w3αr

= γt(x
E) + w1srw2sr+1αr = γt(x

E) + w1srw2(αr + αr+1)

= γt(x
S) + γt(x

E) + w1srw2αr = γt(x
S) + γt(x

E) + w1srαr

= γt(x
S) + γt(x

E)− γt(x
SE).

(2) Suppose that xS, xE /∈ θ, or equivalently, suppose that x is minimal element in Γ. Let
x = pj. Then pd (d ∈ [1, j − 1]) is not comparable with pj. Hence

γt(x) = s(p1) · · · s(pj−1)α(pj) = α(pj)

The other cases are reduced to the case where x is minimal in Γ, via a similar argument
as in the proof of the statement (1),

Proposition 25. Let x ∈ θ. Put xS = x + (1, 0), xE = x + (0, 1), xSE = x + (1, 1). It is
easy to see the following:

h(x) =



h(xS) + h(xE)− h(xSE) if x /∈ Γ

α(x) + h(xS) + h(xE) if x ∈ Γ and xS, xE ∈ θ

α(x) + h(xS) if x ∈ Γ and xS ∈ θ, xE /∈ θ

α(x) + h(xE) if x ∈ Γ and xE ∈ θ, xS /∈ θ

α(x) if x ∈ Γ and xS, xE /∈ θ

(2.11)
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On the other hand, we have shown that γt(x) satisfies the same recurrence relations in
Lemma 34.

3 Poset structure of cylindric diagrams

3.1 Partial orders on the inversion set

Recall that Q denote the root lattice: Q =
⊕

i∈Z/κZ Zαi.

Definition 35. Define the partial order ⩽or on Q by

α⩽orβ ⇐⇒ β − α ∈ Q+ =
⊕

i∈Z/κZ

Z≧0αi

The order ⩽or is called the ordinary order.

The restriction of the ordinary order defines a poset structure on R(wθ).
Let θ be a cylindric diagram in Cω with |ω| = κ. We have introduced a poset structure

on θ and also have seen that the map h gives a bijection between θ and R(wθ). Remark
that this is not a poset isomorphism as seen in the following example:

Example 36. Let λ = (4, 2), ω = (2,−2) and consider the cylindric diagram λ̊ in Cω.
Then x = π(1, 2) and y = π(2, 1) are incomparable in λ̊. On the other hand, h(x) = δ+α3

and h(y) = α0 + α2 + α3, and hence h(x)− h(y) = α1 + α3. This implies h(y)⩽orh(x).

We will introduce a modified ordinary order ⊴, for which we will have (θ,⩽) ∼=
(R(wθ),⊴).

Let Γ = {bi | i ∈ Z/κZ} be the bottom set of θ, where bi is the element such that
c(bi) = i. Let Γmax (resp. Γmin) denote the set of maximal (resp. minimal) elements in Γ.

Definition 37. Define
Πθ = Π0

θ t Πarm
θ t Πleg

θ .

Here,

Π0
θ = {α(x) | x ∈ Γ \ (Γmax t Γmin)},

Πarm
θ =

α(x) +
∑

y∈Arm(x)

α(y)

∣∣∣∣∣∣ x ∈ Γmax

 ,

Πleg
θ =

α(x) +
∑

y∈Leg(x)

α(y)

∣∣∣∣∣∣ x ∈ Γmax

 .

Note that Πθ ⊂ R+ t Z≧0δ.
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Example 38. For the cylindric diagram described in Fig. 4, we have

Π0
θ = {α3, α5, α7},

Πarm
θ = {α6 + α7 + α8, α2 + α3 + α4, α0 + α1},

Πleg
θ = {α4 + α5 + α6, α1 + α2, α0 + α8}.

Example 39. Let λ = (n) and ω = (1,−n + 1). Then, for the corresponding cylindric
diagram λ̊, we have

Π0
λ̊
= {α1, α2, . . . , αn−2},

Πarm
λ̊

= {δ},
Πleg

λ̊
= {α0 + αn−1}.

Definition 40. Define the partial order ⊴ on R(wθ) by

α⊴ β ⇐⇒ β − α ∈
∑
γ∈Πθ

Z≧0γ =

{∑
γ∈Πθ

kγγ

∣∣∣∣∣ kγ ∈ Z≧0 (∀γ ∈ Πθ)

}
. (3.1)

Proposition 41. Let x, y ∈ θ. Then

x ⩽ y =⇒ h(x)⊴ h(y).

In other words, the bijection

h : (θ,⩽)→ (R(wθ),⊴)

is order preserving.

Proof. We assume that y covers x, and will show that h(y)− h(x) ∈ Πθ by induction on
y concerning the poset structure on θ.

Put yS = y + (1, 0), yE = y + (0, 1), ySE = y + (1, 1). Then x = yS or x = yE.
When y ∈ Γ, it follows from (2.11) that h(y)− h(x) ∈ Πθ.
Suppose that y /∈ Γ. Note that ySE ∈ θ. Since yE covers ySE and y > yE, we have

h(yE)− h(ySE) ∈ Πθ by induction hypothesis. By the recursion relation (2.11), we have

h(y)− h(yS) = h(yE)− h(ySE) ∈ Πθ.

Similar argument implies h(y) − h(yE) ∈ Πθ. In both cases, we have h(y) − h(x) ∈ Πθ.
Therefore, the statement is proved.

It is easy to see that
α⊴ β =⇒ α⩽orβ

for any α, β ∈ R(wθ). Thus we have the following:

Corollary 42. Let x, y ∈ θ. Then

x < y =⇒ h(x)⩽orh(y).
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3.2 Poset isomorphism

Our next goal is to prove that the order preserving map

h : (θ,⩽)→ (R(wθ),⊴)

is actually a poset isomorphism. We start with some preparations.
As before, we denote by Supp(α) the support of α ∈ Q. The following lemma is almost

obvious from Definition 37.

Lemma 43. Let α ∈ Πθ. Then

|Supp(α) ∩ Γmax| = |Supp(α) ∩ Γmin| =

{
0 (α ∈ Π0

θ)

1 (α ∈ Πarm
θ t Πleg

θ ).
(3.2)

It is easy to see the next lemma:

Lemma 44. (1) Let α ∈ R+. Then N(α) = max{N ∈ Z | α−Nδ ∈ R+}.
(2) Let x, y ∈ θ. If x < y then N(h(x)) ≦ N(h(y)).

Proof. (1) Follows from Lemma 15.
(2) Suppose x < y. By Corollary 42, we have N(h(x))δ⩽orh(x)⩽orh(y).

As h(y) − N(h(x))δ is in R by Lemma 15, it must be a positive root. This means
N(h(x)) ≦ N(h(y)).

Lemma 45. Let x, y ∈ θ such that N(h(x)) = N(h(y)) = 0. Then

x < y ⇐⇒ h(x)⩽orh(y).

In particular, if x and y are incomparable, then h(x) and h(y) are also incomparable with
respect to ⩽or.

Proof. By Corollary 42, we have

x < y =⇒ h(x)⩽orh(y).

We shall prove the opposite implication. Suppose h(x)⩽orh(y). Then noting that
0<orh(x),h(y)<orδ, we have Supp(h(x)) ⊂ Supp(h(y)) ⊊ Γ. This implies x < y.

Lemma 46. Let x, y ∈ θ. Suppose that x and y are incomparable in θ. Then N(h(y))−
N(h((x)) = 1, 0 or −1. Moreover the followings hold:
(1) If N(h(y))−N(h(x)) = 1, then

h(y)− δ⩽orh(x)⩽orh(y).

(2) If N(h(y))−N(h(x)) = −1, then

h(x)− δ⩽orh(y)⩽orh(x).

(3) If N(h(y))−N(h(x)) = 0, then h(x) and h(y) are incomparable with respect to ⩽or.
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Proof. In this proof, we denote N(h(x)) by N(x) for x ∈ θ. Put

xk = x+ (N(x)− k)(0, ℓ), yk = y + (N(y)− k)(0, ℓ)

for k ∈ Z≧0. Then N(xk) = N(yk) = k. Putting n = N(x), one can see that

θ \ ({z ∈ θ | z ≧ x} t {z ∈ θ | z ≦ x}) = [xn−1 − (1, 1), xn+1 + (1, 1)].

As x and y are incomparable, y belongs to this interval and hence

xn−1 < y < xn+1 (3.3)

and n− 1 ≦ N(y) ≦ n+ 1 by Lemma 44. Namely, we have N(y)−N(x) = −1, 0 or 1.

x n

x n

xn+
1

xn−
1

xn−
1

Figure 7: The cells in the shadow are incomparable with x = xn.

(1) Suppose that N(y)−N(x) = 1. In this case,

h(y)− h(x) = h(y0) + δ − h(x0).

By definition, h(x0) and h(y0) are positive roots. By Lemma 15, h(x0)− δ is also a root
and it is not positive. Therefore δ−h(x0) ∈ R+ and h(y)−h(x) is a sum of two positive
roots. This implies h(x)⩽orh(y). Combining with (3.3), we have x− δ⩽ory⩽orx.
(2) Follows from (1).
(3) Suppose that N(y)−N(x) = 0. Note that x0 and y0 are incomparable this case, and
it follows from Lemma 45 that h(y0) and h(x0) are also incomparable with respect to ⩽or.
Now we have

h(y)− h(x) = h(y0) +N(y)δ − h(x0)−N(x)δ = h(y0)− h(x0).

and hence h(x) and h(y) are incomparable with respect to ⩽or.

Theorem 47. The map
h : (θ,⩽)→ (R(wθ),⊴)

is a poset isomorphism.
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Proof. By Proposition 41, we have

x ⩽ y =⇒ h(x)⊴ h(y),

y ⩽ x =⇒ h(y)⊴ h(x).

Thus the statement follows if we prove that

x and y are incomparable =⇒ h(x) and h(y) are incomparable with respect to ⊴ .

Suppose that x and y are incomparable. Then, putting n = N(h(x)), we have N(h(y)) =
n+ 1, n or n− 1 by Lemma 46.

First we assume that N(y) = n. Then Lemma 46 implies that h(x) and h(y) must be
incomparable.

Next, assume that N(y) = n+ 1. Then

h(y)− h(x) = h(y0) + δ − h(x0),

where x0 = x+ n(0, ℓ) and y0 = y + (n+ 1)(0, ℓ). By Lemma 22, we have

|Supp(h(y0)) ∩ Γmax|+ 1 = |Supp(h(y0)) ∩ Γmin|,
|Supp(δ − h(x0)) ∩ Γmax| = |Supp(δ − h(x0)) ∩ Γmin|+ 1.

They are not compatible with Lemma 43 and thus we have

h(y0) /∈ Z≧0Πθ, δ − h(x0) /∈ Z≧0Πθ (3.4)

x0

y0

h(y0)

x0 δ − h(x0)

Figure 8:

We need to show that h(y0) + (δ − h(x0)) /∈ Z≧0Πθ. It follows from Lemma 46 that

0⩽orh(y0)⩽orh(x0)⩽orδ
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and thus we have

0⩽orh(y0) + (δ − h(x0))⩽orδ,

and
Supp (h(y0) + (δ − h(x0))) = Supp(h(y0)) t Supp(δ − h(x0)).

By (3.3), it holds that y = yn+1 < xn+1. Thus y0 < x0 and moreover x0 and y0 are not
located in the same row or column. Hence

xarm
0 , xleg

0 /∈ Supp (h(y0) + (δ − h(x0))) , (3.5)

where xarm
0 (resp. xleg

0 ) is the minimal element in {x0} ∪Arm(x0) (resp. {x0} ∪ Leg(x0)).
Suppose that

h(y0) + (δ − h(x0)) =
r∑

i=1

βi

with β1, . . . , βr ∈ Πθ. Then 0⩽orβi⩽orδ (i = 1, . . . , r), 0⩽or
∑r

i=1 βi⩽orδ and

Supp

(
r∑

i=1

βi

)
=

r⊔
i=1

Supp(βi).

Note that each Supp(βi) is an interval in θ. Combining with (3.5), this implies that

Supp(βi) ⊂ Supp (h(y0)) or Supp(βi) ⊂ Supp (δ − h(x0))) .

Thus there exist i1, . . . , is for which we have h(y0) = βi1 + · · · + βis , but this contradics
(3.4). Therefore h(y) − h(x) = h(y0) + (δ − h(x0)) cannot be a sum of elements in Πθ,
and thus h(x) and h(y) are incomparable with respect to ⊴.

The same argument implies that h(x) and h(y) are incomparable also in the case
where N(h(y)) = n− 1.

Proposition 48. Let α, β ∈ R(wθ) with α⊴ β. Then there exists a sequence

α = γ1, γ2, . . . , γk = β

in R(wθ) such that γi+1 − γi ∈ Πθ (i = 1, . . . , k − 1).
In other words, the partial order ⊴ on R(wθ) coincides with the transitive closure of

the relations
α⊴· β whenever β − α ∈ Πθ. (3.6)

Proof. Let ⊴tc denote the transitive closure of the relations above. It follows from the
same argument in the proof of Proposition 41 that

x ⩽ y =⇒ h(x)⊴tch(y)

for any x, y ∈ θ. It is clear that

h(x)⊴tch(y) =⇒ h(x)⊴ h(y).

Combining with Theorem 47, the statement follows.
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3.3 Heaps

Let θ be a cylindric diagram. Recall that standard tableaux on θ have been defined as
order preserving bijection from (θ,⩽) to (Z≧1,≦). Through the bijection t, the set Z≧1

inherits a partial order from θ, which we will investigate in this section.

Definition 49. Let t ∈ ST(θ). Define a partial order �t on Z≧1 as the transitive closure
of the relations

a �t b whenever a ≦ b and either siasib = sibsia or ia = ib.

where ik = c(t−1(k)) for k ∈ Z. The poset (Z≧1,�t) is called the heap of wθ,t.

Proposition 50. Let θ be a cylindric diagram and t a standard tableau on θ. Then, the
map t : θ → Z≧1 gives a poset isomorphism

(θ,⩽) ∼= (Z≧1,�t).

Proof. Let x, y ∈ θ. Suppose that x < y is a covering relation in θ. Then y = x − (1, 0)
or y = x − (0, 1) and it is easy to see that t(x) < t(y) and s(x)s(y) 6= s(y)s(x). Hence
t(x) �t t(y).

Conversely, suppose that t(x) ≺t t(y) is a covering relation in Z≧1. Then s(x)s(y) 6=
s(y)s(x) or c(x) = c(y), and hence c(x) − c(y) 6= 0,±1. By Proposition 11 (1), x and y
are comparable. Since t is order preserving, we must have x < y, and hence h is a poset
isomorphism.

The posets (Z≧1,�t) are thought as semi-infinite analogue of heaps introduced by
Stembridge [8]. Stembridge also introduced the heap order on the inversion sets. We
treat a slightly modified version of heap order by Nakada [2].

Definition 51. Define a partial order ⩽hp on R(wθ) as the transitive closure of the
relations

α ⩽hp β whenever α⩽orβ and 〈α, β∨〉 6= 0.

Proposition 52. The map h : θ → R(wθ) gives a poset isomorphism

(θ,⩽) ∼= (R(wθ),⩽hp).

In other words, the partial order ⩽hp and ⊴ on R(wθ) coincide.

Proof. Let x, y ∈ θ. Suppose that x < y is a covering relation in θ. Then h(x)⩽orh(y)
and h(y)− h(x) ∈ Πθ ⊂ R t Zδ. We have

〈h(y)− h(x),h(y)∨〉 = 2− 〈h(x),h(y)∨〉.

If 〈h(y),h(x)∨〉 = 0 then h(y)−h(x) ≡ h(y) mod Zδ by Lemma 16, and thus h(x) = kδ
for some k ∈ Z. This is a contradiction. Therefore 〈h(x),h(y)∨〉 6= 0, from which it
follows that h(x) ⩽hp h(y).
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Next, suppose that h(x) ⩽hp h(y) is a covering relation. Put x0 = x + N(h(x))(0, ℓ)
and y0 = x + N(h(y))(0, ℓ). Then h(x0) = h(x) − N(h(x))δ, h(y0) = h(y) − N(h(y))δ
and

〈h(x0),h(y0)
∨〉 = 〈h(x),h(y)∨〉 6= 0 (3.7)

by assumption.
We assume that x and y are incomparable. Then as h(x)⩽orh(y), we have N(h(y)) =

N(h(x)) + 1 and
h(y0)⩽orh(x0)⩽orδ (3.8)

by Lemma 46. Moreover, by (3.5) in the proof of Theorem 47, we have

y0 /∈ Arm(x0) ∪ Leg(x0). (3.9)

(See also Figure 8.)
Recall that positive roots h(x0) and h(y0) can be expressed as h(x0) = αij and h(y0) =

αkl for some i, j, k, l ∈ Z with i < j, k < l. By (3.8) and (3.9), the indices i, j, k and l can
be chosen in such a way that they satisfy j − i ≦ κ− 1 and i < k < l < j. Thus we have

〈h(x0),h(y0)
∨〉 = 〈αij, α

∨
kl〉 = 〈αk−1 l+1, α

∨
kl〉

= 〈αk−1, α
∨
kl〉+ 〈αk, α

∨
kl〉+

l−1∑
d=k+1

〈αd, α
∨
kl〉+ 〈αl−1, α

∨
kl〉+ 〈αl, α

∨
kl〉

= −1 + 1 + 0 + 1− 1 = 0

This contradicts (3.7). Therefore x and y are comparable, and thus x < y as h(x) <
h(y).

4 Poset structure of the set of order ideals

4.1 Standard tableaux on cylindric skew diagrams

For a poset P , let J (P ) denote the set of proper order ideals and regard J (P ) as a poset
with the inclusion relation.

Let ω ∈ Z≧1 × Z≦−1 and fix a cylindric diagram θ in Cω. In this section, we will
investigate the poset structure of the set J (θ) of order ideals of θ, in other words, cylindric
skew diagrams included in θ.

Recall that any cylindric skew diagram ξ ∈ J (θ) is a finite set and J (θ) =
⊔∞

n=0 Jn(θ),
where

Jn(θ) = {ξ ∈ J (θ) | |ξ| = n}.

For ξ ∈ Jn(θ) and t ∈ ST(ξ), define a word wξ,t by

wξ,t = s(t−1(1))s(t−1(2)) · · · s(t−1(n)). (4.1)

We sometimes regard wξ,t as a Weyl group element.
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Proposition 53. The word wξ,t is reduced. As an element of Weyl group, wξ,t is fully
commutative and independent of t.

Proof. It follows from Lemma 10 that the standard tableau t on ξ can be extended to
a standard tableau t̃ on θ, for which we have wθ,̃t[n] = wξ,t. By Proposition 27 and
Proposition 33, the right hand side of (4.1) is a reduced expression and wξ,t is a fully
commutative element of W . It follows from Proposition 28 that

R(wξ,t) = {h(x) | x ∈ ξ}.

Hence the set R(wξ,t) is independent of t and so is wξ,t.

We denote by wξ the Weyl group element determined by the word wξ,t for a/any
standard tableau t ∈ ST(ξ).

Lemma 54 (See [8, Theorem 3.2]). The map

t 7→ wξ,t = s(t−1(1))s(t−1(2)) · · · s(t−1(n))

gives a bijection from ST(ξ) to the set of reduced expressions for wξ.

Proof. First, we prove that the correspondence is injective. For t1, t2 ∈ ST(ξ), consider
two words wξ,t1 = s(p1)s(p2) · · · s(pn) and wξ,t2 = s(q1)s(q2) · · · s(qn), where pk = t−1

1 (k)
and qk = t−1

2 (k). Assume that wξ,t1 = wξ,t2 as words. Then c(p1) = c(q1) and it holds
that p1 and q1 are minimal elements of ξ. Hence we have p1 = q1. Inductively, we have
pk = qk for any k ∈ [1, n] by similar argument.

Next, we prove that the map is surjective. Take t ∈ ST(ξ) and put pj = t−1(j)
(j ∈ [1, n]). Then wξ,t = s(p1)s(p2) · · · s(pn), which is a reduced expression of wξ.

Suppose that s(pk)s(pk+1) = s(pk+1)s(pk). Then c(pk) − c(pk+1) 6= ±1, and thus pk
is not covered by pk+1. This means that pk and pk+1 are incomparable. Define the map
t(k) : ξ → [1, n] by

t(k)(pj) =


k + 1 if j = k,

k if j = k + 1,

j otherwise.

Then t(k) ∈ ST(ξ) and wξ,t(k) = s(p1)s(p2) · · · s(pk+1)s(pk) · · · s(pn). Now full commuta-
tivity of wξ implies the surjectivity.

4.2 Bruhat intervals

For v, w ∈ W , we write v ≺· w if ℓ(w) = ℓ(v) + 1 and w = vsi for some simple reflection
si. Write v ≺ w if there is a sequence v = w0 ≺· w1 ≺· · · · ≺· wn = w. It is clear that the
relation � is a partial order of W , and it is called the weak right Bruhat order.

For w ∈ W , we define

[e, w] = {x ∈ W | e � x � w}.

the electronic journal of combinatorics 31(1) (2024), #P1.56 23



Note that when ℓ(w) = n, we have

[e, w] =

{
si1si2 · · · sik ∈ W

∣∣∣∣ 0 ≦ k ≦ n and there exist ik+1, . . . , in such that
si1 · · · siksik+1

· · · sin is a reduced expression for w

}
.

(4.2)
Let θ be a cylindric diagram. For t ∈ ST(θ), we define

[e, wθ,t) =
∞⋃
n=1

[e, wθ,t[n]].

We will see that the “semi-infinite Bruhat interval” [e, wθ,t) is actually independent of
t ∈ ST(θ).

Lemma 55. Let t1 and t2 be two standard tableaux on θ. Then for each n ≧ 1, there
exist r ≧ n and s ∈ ST(θ) for which it holds that wθ,s[r] = wθ,t1 [r] as elements of W and
wθ,s[n] = wθ,t2 [n] as words.

Proof. Choose r ≧ n such that t−1
2 [1, n] ⊂ t−1

1 [1, r]. Put ξ1 = t−1
1 [1, r] and ξ2 = t−1

2 [1, n].
Note that ξ1 \ ξ2 is an order ideal of the cylindric diagram θ \ ξ2. Take t ∈ ST(θ \ ξ2) such
that t−1[1, r − n] = ξ1 \ ξ2 (Lemma 10). Define a map s : θ → Z≧1 by

s(p) =

{
t(p) + n (p ∈ θ \ ξ2)
t2(p) (p ∈ ξ2)

Then we have s ∈ ST(θ), which satisfies the desired conditions by Proposition 53.

Proposition 56. Let t1 and t2 be two standard tableaux of θ. Then

[e, wθ,t1) = [e, wθ,t2) as subsets of W.

Proof. Let n ≧ 1. By Lemma 55, there exist r ≧ n and s ∈ ST(θ) such that wθ,s[r] =
wθ,t1 [r] and wθ,s[n] = wθ,t2 [n]. Now we have

[e, wθ,t2 [n]] = [e, wθ,s[n]] ⊂ [e, wθ,s[r]] ⊂ [e, wθ,t1 [r]].

Hence we obtain

[e, wθ,t2) =
∞⋃
n=1

[e, wθ,t2 [n]] ⊂ [e, wθ,t1).

Similarly, we obtain [e, wθ,t1) ⊂ [e, wθ,t2), and hence [e, wθ,t1) = [e, wθ,t2).

We denote [e, wθ,t) just by [e, wθ) in the rest. We have

[e, wθ) =
⋃

ξ∈J (θ)

[e, wξ]

by the following lemma:
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Lemma 57. Let v ∈ W . Then v ∈ [e, wθ) if and only if v = wξ for some ξ ∈ J (θ).
Proof. Let v ∈ [e, wθ). Then v ∈ [e, wθ,t[n]] for some t ∈ ST(θ) and n. By Lemma 54,
there exist t′ ∈ ST(θ) and k such that v = wθ,t′ [k]. Putting ξ = t′−1[1, k], we have v = wξ.

Let ξ ∈ J (θ). Then there exist t ∈ ST(θ) and n such that wξ = wθ,t[n]. Therefore
wξ ∈ [e, wθ).

The following theorem can be seen as a semi-infinite version of the results established
in [8] (see also [3, 5]).

Theorem 58. Let θ be a cylindric Young diagram in Cω.
(1) The map

Φ : (J (θ),⊂)→ ([e, wθ),�)
given by Φ(ξ) = wξ is a poset isomorphism.

(2) The map
Ψ : ([e, wθ),�)→ (J (R(wθ)),⊂)

given by Ψ(w) = R(w) is a poset isomorphism.

Proof. We will show (1) and (2) togather. Note that the poset isomorphism h : θ → R(wθ)
induces a poset isomorphism J (θ)→ J (R(wθ)), under which ξ ∈ J (θ) corresponds to

{h(x) | x ∈ ξ} = R(wξ) = Ψ ◦ Φ(ξ).

Hence Ψ ◦ Φ is bijective and thus Φ is injective. As Φ is surjective by Lemma 57, Φ is
bijective. Thus Ψ is also bijective.

We will show that Φ and Ψ are order preserving.
Suppose that ξ′ covers ξ, or equivalently that ξ′ = ξ t {x} for a maximal element x of

ξ′. Then there exists t ∈ ST(ξ′) satisfying t−1(n) = x, for which we have

wξ′ = s(t−1(1))s(t−1(2)) · · · s(t−1(n− 1))s(t−1(n)) = wξs(x),

This implies that wξ′ covers wξ. Hence Φ is order preserving.
It is easy to see that v � w implies R(v) ⊂ R(w). Hence Ψ is order preserving.
As we know that (Ψ ◦ Φ)−1 is order preserving, it holds that Φ−1 and Ψ−1 are also

order preserving.

Proposition 59. Let θ be a cylindric diagram. Then

[e, wθ) = {w ∈ W | w is ζθ-pluscule}

Proof. It follows from Proposition 33 that any element of [e, wθ) is ζθ-pluscule.
Let w ∈ W be ζθ-pluscule and w = si1si2 · · · sin its reduced expression. We will show

that w ∈ [e, wθ) by induction on n = ℓ(w). By induction hypothesis, v := si1si2 · · · sin−1

belongs to [e, wθ), and thus v = wξ for some ξ ∈ J (θ).
Let x be the minimum element of c−1(in)∩(θ\ξ) and put ξ′ = ξt{x}. Take t ∈ ST(ξ′)

such that t(n) = x. Then w = s(t−1(1))s(t−1(2)) · · · s(t−1(n)). Since w is ζθ-pluscule, if
in = ik then there exist j+, j− ∈ [k, n] such that j+ = in + 1 and j− = in − 1 by [7,
Proposition 2.3]. This implies that the subset ξ′ satisfies the condition (v) in Proposition
6. Therefore ξ′ is a cylindric skew diagram in θ and w = wξ⊔{x}. Therefore w ∈ [e, wθ).
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4.3 Skew diagrams and classical case

Let θ be a cylindric diagram in Cω. Let ξ ∈ Jn(θ) and take t ∈ ST(θ) such that ξ =
t−1[1, n]. Then we have wθ,t[n] = wξ and h(ξ) = R(wξ). Thus the next theorem follows
easily from Theorem 47:

Theorem 60. Let ξ ∈ Jn(θ).

(1) The map h : (ξ,⩽)→ (R(wξ),⊴) is a poset isomorphism.

(2) For t ∈ ST(ξ), the map t : (ξ,⩽)→ ([1, n],⩽hp
t ) is a poset isomorphism.

Note that J (ξ) = {η ∈ J (θ) | η ⊂ ξ}. Theorem 58 implies the following:

Theorem 61. Let ξ ∈ J (θ).
(1) The map Φ : (J (ξ),⊂)→ ([e, wξ],�) given by Φ(η) = wη is a poset isomorphism.

(2) The map Ψ : ([e, wξ],�) → (J (R(wξ)),⊂) given by Ψ(w) = R(w) is a poset isomor-
phism.

In the rest, we will see that description for non-cylindric diagrams can be deduced
from the results above. Let m ∈ Z≧1 and let λ = (λ1, . . . , λm), µ = (µ1, . . . , µm) be
partitions such that λi ≧ µi ≧ 0 (i ∈ [1,m]). Under the notation in Section 1.1, the
associated classical skew Young diagram is represented as the subset λ/µ of Z2:

λ/µ =
{
(a, b) ∈ Z2 | a ∈ [1,m], b ∈ [µa + 1, λa]

}
.

Note that the classical normal Young diagram associated with λ is a special skew diagram
λ/ϕ with ϕ = (0, 0, . . . , 0).

To connect classical diagrams and cylindric diagrams, we take ℓ ∈ Z⩾1 such that

ℓ ≧ λ1 − µm.

Then the partitions λ, µ are ℓ-restricted, and moreover it is easy to see that the skew
diagram λ/µ is isomorphic to the cylindric skew diagram λ̊/µ̊ = π(λ/µ) as a poset.
Under this identification λ/µ = λ̊/µ̊, Theorem 60 and Lemma 45 for the order ideal λ̊/µ̊
of the cylindric diagram λ̊ imply the followings:

([1, n],⩽hp
t ) ∼= (λ/µ,⩽) ∼= (R(wλ/µ),⊴) = (R(wλ/µ),⩽or)

for each t ∈ ST(λ/µ) = ST(̊λ/µ̊), and it follows from Theorem 61 that

(J (λ/µ),⊂) ∼= ([e, wλ/µ],�) ∼= (J (R(wλ/µ),⊂).

Remark that by redefining the content as

c(a, b) = b− a+m− µm,

we have c(λ/µ) ⊂ [1, κ− 1], and

wλ/µ ∈ W̄ , R(wλ/µ) ⊂ R̄,
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where W̄ and R̄ denote the Weyl group and the root system of type Aκ−1 respectively.
We will see the relation between the results above and preceding works. Let n ∈ Z≧1

and λ be a partition of n. Fix t ∈ ST(λ/ϕ) and put

wλ := wλ/ϕ = s(t−1(n))s(t−1(n− 1)) · · · s(t−1(1)).

The element wλ is independent of t and it is called the Grassmannian permutation asso-
ciated with λ.

It has been shown in [7, 3] that the map

coh : λ/ϕ→ R(w−1
λ )

given by
coh(x) = s(t−1(n))s(t−1(n− 1)) · · · s(t−1(k + 1))α(t−1(k)), (4.3)

where k = t−1(x), leads an dual isomorphism of posets:

coh : (λ/ϕ,⩽)→ (R(w−1
λ ),⩽or), (4.4)

where ⩽or is the ordinary order as before.
On the other hand, as a classical version of Theorem 60, we have a poset isomorphism

h : (λ/ϕ,⩽)→ (R(wλ),⊴). (4.5)

Now define the map ι : R → R by ι(α) = −w−1
λ α. Then it follows immediately from the

expression (2.3) and (4.3) that ι ◦ h(x) = coh(x) for all x ∈ λ/ϕ. Therefore we have the
following:

Proposition 62. The restriction of ι gives a dual poset isomorphism

ι : (R(wλ),⊴)→ (R(w−1
λ ),⩽or)

and moreover ι ◦ h = coh. In other words, the following diagram of poset isomorphisms
commutes :

(λ/ϕ,⩽) h //

coh
��

(R(wλ),⊴)

ιvv
(R(w−1

λ ),⩽or)op

(4.6)

where (R(w−1
λ ),⩽or)op denotes the poset obtained from (R(w−1

λ ),⩽or) by reversing the
order.
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