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Abstract

A tanglegram T consists of two rooted binary trees with the same number of
leaves, and a perfect matching between the two leaf sets. In a layout, the tanglegram
is drawn with the leaves on two parallel lines, the trees on either side of the strip
created by these lines are drawn as plane trees, and the edges of the perfect matching
are straight line segments inside the strip. The tanglegram crossing number crt(T )
of T is the smallest number of crossings of pairs of matching edges, over all possible
layouts of T . The size of the tanglegram is the number of matching edges, say n. An
earlier paper showed that the maximum of the tanglegram crossing number of size

n tanglegrams is < 1
2

󰀃
n
2

󰀄
; but is at least 1

2

󰀃
n
2

󰀄
− n3/2

2 (and at least 1
2

󰀃
n
2

󰀄
− n3/2−n

2 for
infinitely many n). Here we improve these bounds: the maximum crossing number
of a size n tanglegram is at most 1

2

󰀃
n
2

󰀄
− n

4 , but for infinitely many n, at least
1
2

󰀃
n
2

󰀄
− n log2 n

4 . The problem shows analogy with the Unbalancing Lights Problem
of Gale and Berlekamp.

Mathematics Subject Classifications: 05C10, 05C05, 05C62, 92B10

1 Introduction

A binary tree has a root vertex assumed to be a common ancestor of all other vertices,
and each vertex either has two children or no children. A vertex with no children is a
leaf, and a vertex with two children is an internal vertex. Note that this definition allows
a single-vertex tree that is considered as both root and leaf to be a rooted binary tree. In
an ordered binary tree an order of the two children is specified, for every vertex that has
children.

A plane binary tree is a drawn ordered binary tree, without edge crossings, where the
left-right order of subtrees in the drawing coincides with the order. The edges are drawn
in straight line segments. It is easy to draw a plane binary tree in such a way that all the
leaves are on a line, and all other vertices are in the same open half-plane.
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A tanglegram T = (L,R, σ) is a graph that consists of a left binary tree L, a right
binary tree R with the same number of leaves as L, and a perfect matching σ between
the leaves of L and R. Two tanglegrams are considered identical if there is a graph
isomorphism between them fixing the root r of R and the root ρ of L. The size of a
tanglegram is the number of leaves in L (or R). An abstract tanglegram layout of the
tanglegram (L,R, σ) is given by turning the unordered trees L and R into ordered trees.
Given an abstract tanglegram layout, an actual tanglegram layout consists of a left plane
binary tree isomorphic (keeping order as well) to L with root r drawn in the half-plane
x 󰃑 0, having its leaves on the line x = 0, a right plane binary tree isomorphic (keeping
order as well) to R with root ρ, drawn in the half-plane x 󰃍 1, having its leaves on the
line x = 1, and a perfect matching σ between their leaves drawn in straight line segments.
(Isomorphism of ordered trees (plane trees) keeps the root and the order.)

Our main concern about tanglegram layouts is the number of crossings between the
matching edges. As it is determined by the abstract tanglegram layout, it is sufficient to
focus on the abstract tanglegram layout to count crossings.

A switch on the abstract tanglegram layout (L,R, σ) is the following operation: select
an internal vertex v of one of the two trees L and R and change the order of its two
children.

It is easy to see that two abstract tanglegram layouts represent the same tanglegram if
and only if a sequence of switches moves one abstract layout into the other. (A switch on a
tanglegram layout illustrated in Figure 1.) Hence tanglegrams of a given size partition the
set of all abstract tanglegram layouts of the same size, or equivalently a tanglegram can
be seen as an equivalence class of abstract tanglegram layouts. Note that interchanging
L and R is not allowed, as it may result in a different tanglegram.

a a
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c
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d d

original layout

r ρ

a

b
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d a

d
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c
after switching at ρ

r ρ

Figure 1: Result of a switch operation.

The crossing number of a tanglegram layout is the number of pairs of matching edges
that cross, which is determined by the abstract tanglegram layout.

It is desirable to draw a tanglegram with the least possible number of crossings, which
is known as the Tanglegram Layout Problem [4, 8]. The (tanglegram) crossing number
crt(T ) of a tanglegram T is defined as the minimum number of crossings among its layouts.
The Tanglegram Layout Problem problem is NP-hard [2, 4], but is Fixed Parameter
Tractable [2, 1]. It does not allow constant factor approximation under the Unique Game
Conjecture [2]. Tanglegrams play a major role in phylogenetics, especially in the theory
of cospeciation [6]. For example, the first binary tree is the phylogenetic tree of the hosts,
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the second binary tree is the phylogenetic tree of their parasites (e.g., gopher and louse),
and the matching connects the host with its parasite [5]. The tanglegram crossing number
has been related to the number of times parasites switched hosts [5], or, working with gene
trees instead of phylogenetic trees, to the number of horizontal gene transfers ([3], pp.
204–206). Besides phylogenetics, tanglegrams are also well-studied objects in computer
science.

Let Mn denote maxT crt(T ) among size n tanglegrams. It is easy to see that for
any tanglegram, the expected number of crossings in a random layout of any fixed labeled
tanglegram of size n is 1

2

󰀃
n
2

󰀄
. (For details, see Section 3.) Therefore, Mn 󰃑 1

2

󰀃
n
2

󰀄
. An earlier

paper [10] made a slight improvement showing that equality cannot happen: Mn < 1
2

󰀃
n
2

󰀄
;

and also showed that for every n,

1

2

󰀕
n

2

󰀖
− n3/2

2
󰃑 Mn,

and for n = k2

1

2

󰀕
n

2

󰀖
− n3/2 − n

2
󰃑 Mn.

The goal of this paper is to find more proper separation as Mn 󰃑 1
2

󰀃
n
2

󰀄
− n

4
, and for each

n = 2k,

Mn 󰃍 1

2

󰀕
n

2

󰀖
− n log2 n

4
.

In Section 2 we provide a construction for the lower bound. In Section 3 we relate
the number of crossings in different layouts of the tanglegram. In Section 5 we relate
the largest crossing number problem to the Unbalancing Lights Problem of Gale and
Berlekamp, and show the separation from 1

2

󰀃
n
2

󰀄
. In Section 4 we derive some technical

results that we need for the proof.

2 A construction for tanglegrams with large crossing number

We established a better lower bound on Mn for n = 2k only:

Theorem 1. For every i 󰃍 1, there exists a tanglegram of size 2i, which has tanglegram
crossing number 1

2

󰀃
2i

2

󰀄
− i2i−2 exactly.

Let X = {0, 1} and let X i be the set of binary strings of length i, i.e., words over the
alphabet X, which make the binary representations of the non-negative integers that are
less than 2i. Given a string 󰂓x = x1x2 . . . xi, we will denote by 󰂓x the string obtained by
reversing x, i.e., 󰂓x = xixi−1 . . . x1.

For every i ∈ N we will define a tanglegram Ti = (R(i), L(i), σi) of size 2i by the
following procedure:

Both L(i) and R(i) are the rooted complete binary trees of height i. We label the
vertices of L(i) (resp. of R(i)) as follows: The set of vertices at distance j (which we call
the jth layer) from the root are labeled as u󰂓x (resp. w󰂓x) where 󰂓x is an element of Xj.
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The root of L(i) is labeled as u󰂃, and the root of R(i) is labeled as v󰂃, where 󰂃 is the empty
string. The labels of children of u󰂓x (resp. w󰂓x) are created by suffixes: u󰂓x0 and u󰂓x1 (resp.
w󰂓x0 and w󰂓x1). The matching is σi = {u󰂓xw 󰂓x : 󰂓x ∈ X i}, see Fig. 2.

For t ∈ X, let L
(i)
t (resp. R

(i)
t ) denote the subtree of L(i) (resp. R(i)) rooted at ut

(resp. wt).
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Figure 2: The tanglegrams Ti for i ∈ {0, 1, 2, 3}. The vertices are labeled with their
indices as in the text and the tanglegrams are shown with a crossing-optimal layout.

Lemma 2. For every i 󰃍 2, crt(Ti) 󰃍 2 crt(Ti−1) +
󰀃
2i−1

2

󰀄
.

Proof. Let T = (L,R, σ) be an arbitrary tanglegram, and v be a non-leaf vertex of one
of the trees L,R. Let Z be the set of leaves in the tree where v lives (L or R) that are
descendants of v. Note that in any layout of T , the elements of Z appear consecutively
in the sequence of leaves. Moveover, if both children of v are leaves, and the matching
edges incident upon these children cross in the layout, then switching the order of these
children in the layout eliminates this crossing and decreases the crossing number, so the
original layout was not optimal.

Assume i 󰃍 2, and let D be an optimal layout of Ti. Let A be the number of crossings
in D between edges incident upon leaves u󰂓x and u󰂓y where the first digits of 󰂓x and 󰂓y are the
same and let B be the the number of crossings in D between edges incident upon leaves
u󰂓x and u󰂓y where the first digit of 󰂓x and 󰂓y differ. Obviously, crt(Ti) = A+B. As for each

t ∈ X the matching edges incident upon leaves of L
(i)
t induce a Ti−1 with a sublayout in D

with at least crt(Ti−1) crossings, A 󰃍 2 crt(Ti−1), so it is enough to show that B 󰃍
󰀃
2i−1

2

󰀄
.

Let t, s ∈ X be chosen such that ut lies above us in the layout D. Let 󰂓x, 󰂓y ∈ X i−1 be
different words. Clearly, w󰂓x0, w󰂓x1, w󰂓y0, w󰂓y1 are distinct leaves of R

(i), and u0 󰂓x, u1 󰂓x, u0 󰂓y, u1 󰂓y

are distinct leaves of L(i). Also, the leaves w󰂓x0, w󰂓x1 as well as w󰂓y0, w󰂓y1 are consecutive in
any layout, including D.

We may assume without loss of generality that ut 󰂓x is above ut 󰂓y in D. As ut lies above
us, both us 󰂓x, us 󰂓y lie below ut 󰂓y. If the pair w󰂓x0, w󰂓x1 lies above the pair w󰂓y0, w󰂓y1, then the
matching edges incident upon us 󰂓y and ut 󰂓x cross; otherwise the matching edges incident
upon ut 󰂓y and us 󰂓x cross. This shows that for any 󰂓x, 󰂓y ∈ X i−1, if 󰂓x ∕= 󰂓y, then for some k, ℓ
such that {k, ℓ} = {0, 1} we have that the matching edges incident upon uk󰂓x and uℓ󰂓y cross

in D. Therefore we have B 󰃍
󰀃
2i−1

2

󰀄
.
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Lemma 3. Let D󰂏
i be the layout of Ti in which the leaf labels from top to bottom appear

in the order of the integers corresponding to the binary words, both in L(i) and R(i). (See
Fig. 2 for this layout.) Let cr(D󰂏

i ) denote the number of crossings in this layout. Then,
for all i ∈ N, we have

cr(D󰂏
i ) = crt(Ti) =

1

2

󰀕
2i

2

󰀖
− i2i−2.

Proof. Set ωi = cr(D󰂏
i ). We will show the statement by induction on i, with base cases

i ∈ {0, 1}.
T0 and T1 are the unique planar tanglegrams of size 1 and 2 respectively, 1

2

󰀃
20

2

󰀄
− 0 ·

20−2 = 0 = crt(T0) and
1
2

󰀃
21

2

󰀄
− 1 · 21−2 = 0 = crt(T1). Since for i ∈ {0, 1} we have 󰂓x = 󰂓x

for any 󰂓x ∈ X i, D󰂏
i is a planar layout, so ω0 = ω1 = 0. Thus, the statement is true for

i ∈ {0, 1}.
Assume now i > 1, and consider the layout D󰂏

i . For each t ∈ X, the matching edges
incident upon a leaf of Li

t induce a drawing of a subtanglegram of Ti−1 that is isomorphic
to D󰂏

i−1, contributing exactly 2ωi−1 crossings. We want to count the number of crossings
in D󰂏

i between matching edges whose left-endpoints are u0 󰂓x, u1 󰂓y, where 󰂓x, 󰂓y ∈ X i−1. The
edges cross precisely when 󰂓y1 < 󰂓x0, which is equivalent with 󰂓y < 󰂓x (where we consider
the words as binary representations of numbers). So we have exactly one such crossings
for each unordered pair 󰂓x, 󰂓y from X i−1. By the induction hypothesis and Lemma 2 we
have

crt(Ti) 󰃑 ωi = 2ωi−1 +

󰀕
2i−1

2

󰀖
= 2 crt(Ti−1) +

󰀕
2i−1

2

󰀖
󰃑 crt(Ti),

which gives crt(Ti) = ωi. Also, by the induction hypothesis

ωi = 2ωi−1 +

󰀕
2i−1

2

󰀖
= 2

󰀕
1

2

󰀕
2i−1

2

󰀖
− (i− 1)2i−3

󰀖
+

󰀕
2i−1

2

󰀖

= 2i−1(2i−1 − 1)− (i− 1)2i−2 =
1

2

󰀕
2i

2

󰀖
− i2i−2.

Unfortunately, we know that this construction is not the best possible. For size 8, the
tanglegram on Fig. 3 is shown with an optimal drawing and has one more crossings than
our construction on Fig. 2, and, replacing T3 with this tanglegram in our construction, it
is easy to see that crt(Ti) < M2i for each i > 2, but we have not managed to improve on
our lower bound by a term that is not of order o(n log(n)).

3 Crossings in different layouts of the same tanglegram

In this section we consider a fixed layout D0 of the tanglegram, the state (crossing and
noncrossing) of pairs of matching edges in this layout, and compute the crossing number
of any layout using these states plus switches on internal vertices of the left-and right-
tree of the tanglegram. We will use this expression to establist an upper bound on the
maximum tanglegram crossing number.
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Figure 3: A tanglegram of size 8 with tanglegram crossing number 9. This is the maximum
tanglegram crossing number for size 8, found by brute force search.

Let us be given a tanglegram T = (L,R, σ) of size n. Vertices of R form a partially
ordered set, for the following order: if r is the root of R, then x 󰃑 y if y is a vertex of
the unique rx path in T . This partial order is a semilattice, in which the least upper
bound of vertices u and v is denoted by lcaR(u, v) (lca stands for least common ancestor
in phylogenetics). Similar arguments apply for the tree L, where the notation will be
lcaL. For matching edhes e, f , lcaR(e, f) (resp. lcaL(e, f)) will denote the lca of the two
leaves of R adjacent to the edges e and f (resp. the lca of the two leaves of L adjacent to
the edges e and f).

Consider a fixed layout D0 of T . Assume that a layout D is obtained from D0 by
making a switch in certain internal (non-leaf) vertices of R and certain internal (non-leaf)
vertices of L. Note that changing the order of switches has no effect on D. Also note that
each of R, L has exactly n− 1 internal vertices. We denote the set of internal vertices by
int(R) and int(L).

Define α (β) on int(R) (int(L)) as 1 if no switch takes place in the vertex, and −1 if
a switch takes place in the vertex. Fixing D0, the combinatorially different layouts D are
in one-to-one correspondence with the pairs (α, β) of ±1 valued functions.

Consider now two matching edges, e, f of T . Let x = lcaR(e, f) and u = lcaL(e, f).
Define the crossing status of matching edges e, f in layout D as

χD(e, f) =

󰀫
−1 if e crosses f in D;

1 otherwise.

Observe that χD(e, f) = χD0(e, f) if and only if α(x)β(u) = 1. Therefore,

χD(e, f) = α(lcaR(e, f))β(lcaL(e, f))χD0(e, f).

Counting the number of crossings in a layout D, we have

cr(D) =
󰁛

{e,f}

1 + χD(e, f)

2
.

the electronic journal of combinatorics 31(1) (2024), #P1.57 6



We have

cr(D) =
󰁛

{e,f}

1 + α(lcaR(e, f))β(lcaL(e, f))χD0(e, f)

2
(1)

=
1

2

󰀕
n

2

󰀖
+

1

2

󰁛

x∈int(R)

󰁛

u∈int(L)

α(x)β(u)
󰁛

{e,f}:x=lcaR(e,f)

u=lcaL(e,f)

χD0(e, f). (2)

To justify the claim in Section 1 on the expected number of crossings in a random layout of
a labeled tanglegram, select randomly and independently the α and β values to transform
the fixed drawing D0 into the random drawing D. The displayed formula above implies
E[cr(D)] = 1

2

󰀃
n
2

󰀄
.

4 Tools

We will establish a technical lemma in this section. For a rooted binary tree T , let L(T )
denote the set of its leaves. and let A(T ) be the set of internal vertices that have a leaf
neighbor. For set ψ(x) = 1 if x ∈ A(T ) and the number of leaves that are descendants
of x is even, 0 otherwise, and let ψT =

󰁓
x∈V (T ) ψ(x). Set h(1) = 0 and for n 󰃍 2 let

h(n) = minT :|L(T )|=n ψT . A tree T with n leaves is called a realizer, if ψT = h(n).

Lemma 4. For any n 󰃍 2, h(n) = ⌊n
4
⌋ + 1. In words, in any rooted binary tree with n

leaves, at least ⌊n
4
⌋+1 vertices have a leaf neighbor and an even number of leaf descendants.

Proof. Note that h(1) = 0 = ⌊1
4
⌋. Let n 󰃍 2 and write n = 4q + r where q = ⌊n

4
⌋ and

0 󰃑 r < q. We will show that h(n) = q + 1 by induction on n.
For n ∈ {2, 3}, there is only one rooted binary tree on n vertices. Clearly, h(2) = 1

and h(3) = 1, so the claim is true.
Let n 󰃍 4 (i.e. q 󰃍 1) and assume that the statement is true for all trees with n′

leaves, where 2 󰃑 n′ < n.
Take a tree T on n vertices, and let T1, T2 be the subtrees rooted at the two neighbors

of the root. Without loss of generality 1 󰃑 k = |L(T1)| 󰃑 |L(T2)| = n − k 󰃑 n − 1. Set
q′ = ⌊k

4
⌋, r′ = k − 4q′, q′′ = ⌊n−k

4
⌋ and r′′ = (n− k)− 4q′′.

When 0 󰃑 r′ 󰃑 r we get r′′ = r−r′, q = q′+q′′: ψT 󰃍 ψT1+ψT2 󰃍 q′+(q−q′)+1 = q+1.
The first inequality is an equality iff (n is odd or (n is even and k ∕= 1)), and the second
inequality is an equality iff k = 1 and T2 is a realizer. Thus, for an odd n, h(n) 󰃑 q + 1
is obtained by choosing a tree T such that T1 is a single vertex and T2 is a realizer with
n− 1 leaves.

When r < r′ 󰃑 3 we get r′′ = 4 + r − r′, q′′ = q − q′ − 1, ψT 󰃍 ψT1 + ψT2 󰃍
q′ + (q − q′ − 1) + 1 = q, the first inequality is an equality iff (n is odd or (n is even and
k ∕= 1)), the second inequality is an equality iff k = 1 and T2 is a realizer. From r < r′ 󰃑 3
we get that if n is odd, then r = 1 and consequently k 󰃍 r′ > 1; so for odd n this gives
that h(n) 󰃍 q + 1, and by the remark at the end of the previous paragraph, h(n) = q + 1
for odd n. If n is even then r ∈ {0, 2}. When r = 0 then equality cannot hold in both
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places, so h(4q) 󰃍 q + 1. Chosing T with 4q leaves such that T1 is a single vertex and
T2 is a realizer with 4q − 1 leaves, we get ψ(T ) = q + 1, so h(4q) = q + 1. When r = 2,
r′ = 3, consequently k > 1. This gives h(4q + 2) 󰃍 q + 1. Let T1 be the tree on 3 leaves
and T2 be a realizer on 4q − 1 leaves, then ψ(T ) = q + 1, so h(4q + 2) = q + 1.

5 Unbalancing lights

We will establish our claimed upper bound on the maximum tanglegram crossing number
here. Equation (2) gives an expression for the difference cr(D)− 1

2

󰀃
n
2

󰀄
between the crossing

number cr(D) of a layout D of a tanglegram and 1
2

󰀃
n
2

󰀄
that is similar to the following

theorem found in Alon and Spencer’s paper [9]:

Theorem 5. Let aij = ±1 for 1 󰃑 i, j 󰃑 n. Then there exists xi, yj = ±1, 1 󰃑 i, j 󰃑 n,
so that

n󰁛

i=1

n󰁛

j=1

aijxiyj 󰃍
󰀓󰁵 2

π
+ o(1)

󰀔
n3/2. (3)

Alon and Spencer [9] contains an amusing interpretation of Theorem 5, which explains
the title of this section: “Let an n× n array of lights be given, each either on (aij = +1)
or off (aij = −1). Suppose for each row and each column there is a switch so that if the
switch is pulled (xi = −1 for row i and yj = −1 for column j) all of the lights in that line
are ‘switched’: on to off and off to on. Then for any initial configuration it is possible to
perform switches so that the number of lights on minus the number of lights off is at least󰀓󰁴

2
π
+ o(1)

󰀔
n3/2.”

Clearly, redefining all yj to their negative, one obtains from (3)

n󰁛

i=1

n󰁛

j=1

aijxiyj 󰃑 −
󰀓󰁵 2

π
+ o(1)

󰀔
n3/2. (4)

If we want to find a drawing D of the tanglegram T , where the number of crossings cr(D)
in D is way below 1

2

󰀃
n
2

󰀄
in (1)–(2), then the formulation (4) of Theorem 5 is absolutely

relevant—except that instead of aij = ±1, we have to deal with the following values

axu =
󰁛

{e,f}:x=lcaR(e,f)

u=lcaL(e,f)

χD0(e, f),

that are computed from the fixed layout D0 and give cr(D)− 1
2

󰀃
n
2

󰀄
as

󰁛

x∈int(R)

󰁛

u∈int(L)

α(x)β(u)
󰁛

{e,f}:x=lcaR(e,f)

u=lcaL(e,f)

χD0(e, f). (5)

The difficulty is that now axu may take other values than ±1, in fact, it is difficult to find
many non-zero axu terms. Therefore we were unable to utilize the probabilistic method.
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We will call internal vertices of R that satisfies the property in Lemma 4, i.e., that
have a leaf neighbor and an even number of leaf descendant special vertices. We have the
following:

Lemma 6. If x is a special vertex of the tanglegram T , then
󰁛

u∈int(L)

axu ∕= 0

Proof. Let e be the matching edge incident upon the leaf neighbor of the special vertex
x and let f1, f2, . . . , f2k+1 be the matching edges at further leaf descendants of x. As we
add up an odd number of ±1 values,

󰁛

u∈int(L)

axu =
2k+1󰁛

i=1

χD0(e, fi) ∕≡ 0 mod 2.

Now we are ready to prove

Theorem 7. For any tanglegram T of size n,

crt(T ) 󰃑 1

2

󰀕
n

2

󰀖
− n

4

Proof. Let us be given an arbitrary tanglegram T of size n. Without loss of generality,
we can assume that the fixed layout D0 chosen realizes the crossing number of T . Then
for every x ∈ S,

󰁓
u∈int(L) axu < 0, as by Lemma 6 this sum is non-zero, and if it was

positive, a switch in x would yield a layout with strictly smaller number of crossings.
Consider now the following layout D1: switch in all u ∈ int(L). It is easy to see that

cr(D1) =

󰀕
n

2

󰀖
− cr(D0).

Now switch in layout D1 at every vertex x ∈ S to obtain the layout D2:

cr(D2) = cr(D1) + 2
󰁛

x∈S

󰁛

u∈int(L)

axu

=

󰀕
n

2

󰀖
− cr(D0) + 2

󰁛

x∈S

󰁛

u∈int(L)

axu

󰃑
󰀕
n

2

󰀖
− cr(D0)− 2|S|.

Hence

crt(T ) = cr(D0) 󰃑
1

2
(cr(D0) + cr(D2)) 󰃑

1

2

󰀕
n

2

󰀖
− |S| 󰃑 1

2

󰀕
n

2

󰀖
− n

4

by Lemma 4.
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