
Schnyder woods and

Alon-Tarsi number of planar graphs

Jakub Kozik Bartosz Podkanowicz

Submitted: Feb 20, 2023; Accepted: Jan 10, 2024; Published: Mar 8, 2024

c©The authors. Released under the CC BY license (International 4.0).

Abstract

Thomassen in 1994 published a famous proof of the fact that the choosability
of a planar graph is at most 5. Zhu in 2019 generalized this result by showing
that the same bound holds for Alon-Tarsi numbers of planar graphs. We present
an alternative proof of that fact, derived from the results on decompositions of
planar graphs into trees known as Schnyder woods. It turns out that Thomassen’s
technique and our proof based on Schnyder woods have a lot in common. We discuss
and explain the prominent role that counterclockwise 3-orientations play in proofs
based on both these approaches.

Mathematics Subject Classifications: 05C10, 05C15, 05C31, 68R10

1 Introduction

Thomassen proved in [12] that the choice number of a planar graph is at most 5. This
result is best possible as there exist planar graphs with choice number 5. The first
such examples have been constructed by Voigt [13]. The proof technique introduced
by Thomassen in [12] has been used in a number of follow-up papers. In particular, it
has been generalised to derive analogous results for more restrictive variants of graph
colorings. E.g. Schauz in [10] proved that online choice number (or paintability) of a
planar graph is at most 5 as well. We are going to discuss yet another generalization by
Zhu [14].

Theorem 1 (Zhu [14]). The Alon-Tarsi number of a planar graph is at most 5.

The main contribution of the current paper is a derivation of the above theorem from
the results on the decompositions of planar graphs into trees. Such decompositions, called
realizers, have been designed by Schnyder in [11] for the purpose of constructing succinct
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straight-line drawings of planar graphs. Our proof of Theorem 1 is conceptually (and
technically) simpler than the one by Zhu. However, it turns out that both arguments are
related. We show that in some sense the structure that is central in our derivation is also
implicitly used in the works of Thomassen and Zhu.

In Section 2 we prepare the tools to be used in the proof of Theorem 1. We recall
(and extend) basic results on the Alon-Tarsi polynomial method and on Schnyder decom-
positions. Then, in Section 3 we present our proof. Finally, in Section 4 we discuss its
relation to the original proof of Thomassen for the choice number.

2 Preliminaries

2.1 Alon-Tarsi method

For a polynomial Q, let α(Q) be the minimum k such that there is a monomial m that
occurs in Q with a nonzero coefficient, for which deg(Q) = deg(m) and the maximum
degree of any single variable in m is at most k. Note that, for a nonzero polynomials P
and R, we have α(P ) 󰃑 α(P · R). For graph G = (V,E) with V = {v1, v2, . . . , vn}, graph
polynomial fG is defined as

fG(x1, x2, . . . , xn) =
󰁜

i<j∧{vi,vj}∈E

(xi − xj).

This polynomial has been discovered by a number of researchers. Most likely it was first
used in 1891 by Petersen [9]. It appeared independently in the works of Matiyasevich [8].
A great deal of its todays popularity is owed to the paper of Alon and Tarsi [1].

For a vertex coloring c of graph G, we can see that fG(c(v1), c(v2), . . . , c(vn)) ∕= 0 if
and only if the coloring is proper (where the colors are interpreted as elements of some
ring, say Z). Numerous applications of the Alon and Tarsi method inspired Jensen and
Toft [6] to define the Alon-Tarsi number of a graph.

Definition 2 (Jensen and Toft [6]). The Alon-Tarsi number of a graph G, denoted by
AT (G), is defined as

AT (G) = α(fG) + 1.

The authors of both seminal papers [1, 8] observed that for any graph G

ch(G) 󰃑 AT (G).

Alon and Tarsi proved the above proposition by applying Combinatorial Nullstelensatz to
the graph polynomial fG. Schauz [10] observed that this line of argument can be extended
to the case of on-line choosability obtaining

chOL(G) 󰃑 AT (G).

The following simple observation allows us to use triangular graphs when proving
upper bounds for the Alon-Tarsi number for planar graphs.
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Fact 3. If G is a subgraph of H, then

AT (G) 󰃑 AT (H).

Proof. Graph polynomial fG divides graph polynomial fH . Therefore α(fG) 󰃑 α(fH),
and AT (G) 󰃑 AT (H).

The next lemma is also from the work of Alon and Tarsi [1]. A graph is called even
(odd), depending on the parity of the number of its edges. Recall that a directed graph
F is an Eulerian subgraph of an orientation D of graph G if F is a subgraph of D and
for every vertex in F , the in-degree in F is equal to the out-degree in F .

Lemma 4 (Alon and Tarsi [1]). Consider a graph G and its orientation D. Let k be the
maximum out-degree in this orientation. If the number of even Eulerian subgraphs of D
is different from the number of odd Eulerian subgraphs of D then

AT (G)− 1 󰃑 k.

A generalized version of the above lemma is proved in the next section.
The coloring number of a graph G, denoted by col(G) is the minimum number k such

that there exists an acyclic orientation of the edges of G for which out-degree of every
vertex is at most k − 1. Since the empty graph is always an (even) Eulerian subgraph of
any oriented graph, by Lemma 4 we have

AT (G) 󰃑 col(G).

2.2 Extension to augmented graphs

We define an extended version of the graph polynomial for graphs with augmented edges.

Definition 5. An Augmented orientation is a tuple (G,w,D) where G is a graph, D is
an orientation of G, and w : E → N assigns positive strengths to the edges of G. An
edge with strength k will be called a k-edge. An edge with strength 2 will be called a
double edge. Augmented in-degree (resp. augmented out-degree) is defined as the sum of
strengths of the ingoing (resp. outgoing) edges.

Let (G,w,D) be an augmented orientation. We define a graph polynomial for an
augmented graph as follows.

WG,w(x1, . . . , xn) =
󰁜

i<j∧e={vi,vj}∈E

(x
w(e)
i − x

w(e)
j ).

Remark 6. Observe that, in general, WG,w is different from the polynomial fG′ of a multi-
graph G′, constructed by replacing every k-edge of (G,w,D) with k parallel edges. Note
also that WG,w = fG if every edge has strength 1.
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Using identity

(xw(e)
a − x

w(e)
b ) = (xa − xb)

󰀳

󰁃
w(e)−1󰁛

i=0

xw(e)−1−i
a xi

b

󰀴

󰁄 ,

polynomial WG,w can be rewritten into

WG,w(x1, . . . , xn) =

󰀳

󰁃
󰁜

i<j∧e={vi,vj}∈E

(xi − xj)

󰀴

󰁄 · P (x1, . . . , xn)

= fG(x1, . . . , xn) · P (x1, . . . , xn),

where P is a nonzero polynomial. From this we conclude the following fact

AT (G)− 1 = α(fG) 󰃑 α(WG,w).

Definition 7 (Eulerian structure). A graph F without isolated vertices is an Eulerian
structure in augmented orientation (G,w,D) if F is a subgraph of G and for every vertex
v its augmented in-degree is equal to its augmented out-degree in augmented orientation
(F,wF , DF ), where DF is D restricted to F and wF is w restricted to F .

The proof of the next lemma is a straightforward extension of the proof of Alon and
Tarsi [1] to the case of graphs with augmented edges.

Lemma 8. Consider augmented orientation (G,w,D). Let k be the maximum augmented
out-degree in this augmented orientation. If the number of even Eulerian structures in
(G,w,D) is different than the number of odd Eulerian structures in (G,w,D) then

AT (G)− 1 = α(fG) 󰃑 α(WG,w) 󰃑 k.

Proof. We define function S from the set of orientations of G to the set of monomials that
can potentially occur in WG,w. Given an orientation, from every term (x

w(e)
i −x

w(e)
j ) of the

product defining WG,w, we choose x
w(e)
i if the orientation directs edge e = vivj away from

vi; otherwise, we choose −x
w(e)
j . Then, the value of S on the orientation is the product of

the chosen terms.
We can see that

WG,w =
󰁛

R - orientation of G

S(R).

The degree of xi in S(R) is exactly the augmented out-degree of vi in (augmented) orien-
tation (G,w,R). Consider two orientations R1, R2 such that |S(R1)| = |S(R2)| (i.e. the
monomials produced from R1 and R2 differ at most by sign). Let A be the set of edges
that are oriented differently in R1 than in R2. We can notice that A induces Eulerian
structure in both (G,w,R1) and (G,w,R2) (because augmented out-degree of every ver-
tex is the same in R1 and R2). Moreover, the sign of S(R1) is equal to the sign of S(R2)
if and only if the number of edges in A is even. Therefore, for every Eulerian structure
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B in (G,w,R1), when we change the orientation of the edges belonging to B, we get
an orientation R3 for which |S(R1)| = |S(R3)|. Let CO(R), CE(R) be respectively, the
number of Eulerian structures in (G,w,R) with odd and even number of edges.

The above discussion allows us to conclude that, whenever CO(D) ∕= CE(D), we have

󰁛

R:|S(R)|=|S(D)|

S(R) ∕= 0.

Since the maximum augmented out-degree of (G,w,D) is at most k, we obtain that
α(S(R)) 󰃑 k. That implies

AT (G)− 1 = α(fG) 󰃑 α(WG,w) 󰃑 k.

2.3 Schnyder woods

In this section, we recall the definitions and basic properties of Schnyder labellings. We
are going to use them in the main proof. Considered theorems are trivial for graphs
with fewer than 3 vertices. In this section, we always assume that plane graphs under
consideration have at least 3 vertices.

Definition 9. A triangular graph is a plane graph whose faces are triangles.

Clearly, every planar graph (with at least 3 vertices) is a subgraph of some triangular
graph on the same vertex set. By monotonicity of the Alon-Tarsi number (Fact 3) it
is enough to prove the upper bound for triangular graphs. Observe also that triangular
graphs are 2-connected.

2.3.1 3-orientations and realizers

Definition 10 (Schnyder [11]). A realizer of a triangular graph G is a tuple of three sets
of oriented edges (Tr, Tg, Tb) such that, after ignoring edge orientations, these three sets
form a partition of the interior edges of G and such that for each interior vertex v of G it
holds:

1. v has out-degree one in each of Tr, Tg, Tb.

2. The counterclockwise order of the edges incident to v is the following: outgoing edge
of Tr, incoming edges of Tb, outgoing edge of Tg, incoming edges of Tr, outgoing edge
of Tb, incoming edges of Tg.

Note that in the above definition, for any interior vertex v there might be no incoming
edges in any of the sets.

Schnyder proved in [11] that every triangular graph has a realizer. In addition to
partitioning the interior edges into three sets, the realizer also orients the interior edges
of G. In this orientation, every interior vertex has out-degree exactly 3. Such orientations
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of the interior edges of a triangular graph are called internal 3-orientations. It is easy to
check that, by Euler’s formula, in every such orientation, no interior edge that is adjacent
to an exterior vertex can be directed away from the exterior vertex. De Fraysseix and
Ossona de Mendez observed in [3] that an internal 3-orientation uniquely determines a
realizer. Therefore, there is a bijection between the set of realizers and the set of internal
3-orientations of a graph G. Both of these perspectives are going to be useful for our
needs. (Note that we are ignoring edges of the outer triangle.) We use the following
observation from [11].

Proposition 11 (Theorem 4.5 in [11]). Let G be a triangular graph with realizer
(Tr, Tg, Tb). Then Tr, Tg, Tb are trees and each of Tr, Tg, Tb spans all interior vertices of
G.

Every large enough triangular graph admits a number of different realizers. Natural
operation of inverting the edges of a directed triangle in an internal 3-orientation allows
to transform one internal 3-orientation into another. Starting from this notion, Brehm
[2] studied the graph of orientations and discovered that it is naturally organized into a
structure of a distributive lattice. The top and the bottom elements of that lattice are
the unique orientations without respectively clockwise and counter-clockwise cycles. The
counterclockwise orientation described in the next proposition plays a central role in our
proof.

Proposition 12 (Theorem 1.3.3 and Lemma 1.7.7 in [2]). For every triangular graph,
there exists exactly one internal 3-orientation in which all directed cycles are oriented
counterclockwise.

Proof. Theorem 1.3.3 and Lemma 1.7.7 in [2] imply the proposition for 4-connected trian-
gular graphs. It can be extended to all triangular graphs in a standard way. We describe
it below.

Suppose that a triangular graph is not 4-connected. Then it contains a separating
triangle. Consider a subgraph enclosed by such a triangle, together with the triangle. Let
us call it inner graph. After removing internal vertices and edges of the inner graph we
obtain the outer graph. Observe that both these graphs are triangular. It is easy to check
that every internal 3-orientation of the inner graph can be combined with every internal
3-orientation of the outer graph to construct an internal 3-orientation of the whole graph.
As we already noted, the edges adjacent to external vertices of a 3-orientation have to be
directed towards these vertices. That implies that, for every 3-orientation of the whole
graph, every directed cycle is either contained completely in the inner graph or does not
use any of its internal edges.

With this property in mind, we can construct a counterclockwise orientation of a
triangular graph by a series of the following steps. Pick a maximal 4-connected subgraph
of the graph, fix the unique counterclockwise internal 3-orientation for this subgraph and
then remove all its internal vertices and edges from the graph. Note that in the fixed
orientation of the subgraph no edge was directed away from the external vertex of this
subgraph. The remaining graph is still triangular and the procedure can be repeated as
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long as the graph is not a triangle. By the property discussed above, the orientation of
the whole graph constructed in this way is indeed counterclockwise. Theorem 1.3.3 in [2]
asserts that it is unique (it can be also deduced from the above argument).

2.3.2 Warm-up example

We illustrate how the basic results on the realizers of planar graphs can be used to derive
an alternative proof of the following strengthening of one of the results from [7]. (The
actual bound from [7] was for the Alon-Tarsi number.)

Theorem 13 (Kim, Kim and Zhu [7]). For every planar graph G there exists a forest F
such that

col(G− F ) 󰃑 3.

We are going to use the following version of Theorem 4.6 from [11].

Proposition 14. Consider a triangular graph G = (V,E) with realizer (Tr, Tg, Tb). Then,
the oriented graph (V, Tr ∪ Tb) is acyclic.

Proof of Theorem 13. By the monotonicity of the coloring number, it is enough to prove
the theorem for triangulations. Let G = (V,E) be a triangulation and let (Tr, Tg, Tb) be a
realizer of G (note that realizers exist by the results of Schnyder [11]). By Proposition 14,
oriented graph H = (V, Tr ∪Tg) is acyclic. Moreover, by the definition of a realizer, every
interior vertex has out-degree 2 in H and every exterior vertex has in-degree 0. Therefore,
we can add to H the edges of the outercycle of G and orient them in such a way that the
resulting graph H ′ is still acyclic. Then, the out-degrees of all vertices H ′ are still at most
2. This implies that col(H ′) is at most 3. Note that after dropping the orientation, the
edges of H ′ are precisely the edges of G− Tb. Let F be the set of edges Tb with dropped
orientations. The orientation of H ′ proves that

col(G− F ) 󰃑 3.

3 Counterclockwise orientations and Alon-Tarsi numbers of pla-
nar graphs

We recall a few more definitions and a few results from [11]. For a realizer (Tr, Tg, Tb) of
a triangular graph G, a colored path is a path from an interior vertex of G to an exterior
vertex of G that has only edges from one of the sets Tr, Tg, Tb. Every tree induced by sets
Tr, Tg, Tb contains only one exterior vertex of G (consequence of Theorem 4.5 in [11]). We
call these vertices roots and denote them by vr, vg, vb. For every vertex, there are 3 unique
colored paths that start at that vertex [11].

The colored paths in Tr, Tg, Tb are correspondingly called the red path, green path, and
blue path. Colored paths that contain an interior vertex v of G as one of the ends are
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correspondingly denoted by Pr(v), Pg(v), Pb(v). The path Pi(v) ends in vi for i ∈ {r, g, b}.
Under the orientation given by the realizer, path Pr(v) is a directed path from v to vr. For
an interior vertex v of G we see that Pr(v), vrvb, Pb(v) forms a simple (i.e., not directed)
cycle C. The subgraph of G bounded by C is called the green region of v and is denoted
by Rg(v). Regions of other colors are defined in an analogous way.

For interior vertices u, v of G, Lemma 5.2 in [11] implies that

u ∈ Rg(v) =⇒ Rg(u) is a subgraph of Rg(v). (1)

In other words, green regions are partially ordered by the relation of being a subgraph.
We are ready to prove the main ingredient of our argument.

Proposition 15. For every triangular graph G there exists an augmented orientation
(G,w,D) without nonempty Eulerian structures and with the maximum augmented out-
degree at most 4.

Proof. From Proposition 12 we know that there exists an internal 3-orientation LG of G
in which all cycles are oriented counterclockwise. Such an orientation can be extended
to external edges in such a way that all directed cycles are oriented counterclockwise and
the outer face is not a cycle. Let D be such an extension. We have that the orientation
LG corresponds to some realizer (Tr, Tg, Tb). Let w be the assignment of strengths to the
edges of G in which the edges of Tr have strength 2 and all the other edges have strength
1. Then (G,w,D) is an augmented orientation.

Suppose for a contradiction that there exists a nonempty Eulerian structure H in
(G,w,D). Consider a vertex v of H with a minimal green region R. We know that H
does not contain any other vertex or edge of R.

First, we consider the case where v is an interior vertex of G. There are three edges
directed away from v colored red, green, and blue, respectively (colors are given by the
Schynder labelling). We know that blue and red edges oriented away from v cannot be in
H, because v is a vertex with a minimal green region (see property (1)). Then, only the
green edge can leave v in H. As H does not have isolated vertices, that edge belongs to
H. Then, the augmented out-degree of v in H is equal to 1, so the augmented in-degree of
v in H is also equal to 1. Red edges contribute 2 to augmented in-degrees so there cannot
be any red edges incoming to v in H. There cannot also be any green edges incoming
to v in H, due to the minimality of the green region of v. Then, the only edge of H
that is oriented towards v must be blue. Since H is an Eulerian structure, it contains
a simple directed cycle C that contains v. We see that cycle C must contain one green
edge directed away from v in D and one blue edge directed towards v in D. Furthermore,
C does not contain vertices from the green region of v. Therefore, C must be oriented
clockwise. But in orientation D all directed cycles are oriented counterclockwise. This is
a contradiction.

The other case, where v is an outer-vertex, is simpler. The vertices on the outer face
do not have edges outgoing to the interior vertices, so the only cycle containing them
could be the outer face, but the outer face is not a cycle. Therefore, v cannot belong
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to a directed cycle, which contradicts the fact that every Eulerian structure contains a
directed cycle.

Proposition 15 enables an alternative way of proving the main result of Zhu from [14].

Theorem 16. The Alon-Tarsi number of a planar graph is at most 5.

Proof. Let G be a triangulation of a plane graph F . From Proposition 12 there exists an
internal 3-orientation D in which all directed cycles are oriented counterclockwise. Then,
by Proposition 15, there exists an augmented orientation (G,w,D) without nonempty
Eulerian structures. The maximal out-degree of a vertex in (G,w,D) is at most 4. From
Lemma 8 we obtain

4 󰃍 α(WG,w) 󰃍 α(fG) = AT (G)− 1.

Therefore, AT (F ) is at most 5 as well.

4 Counterclockwise orientation in Thomassen’s proof

The original proof of Theorem 16 from [14] followed the ideas of the famous proof of
Thomassen of the fact that the choice number of a planar graph is at most 5 [12]. It is
interesting that the list coloring algorithm that is implicitly given in Thomassen’s work
can be easily modified to construct a useful augmented orientation. We describe below
the modified procedure.

4.1 Algorithm description

The input of the procedure is a 2-connected near triangulation with two distinguished
vertices v1, v2 that are counter-clockwise consecutive on the outer cycle. The edge between
the distinguished vertices is already oriented; the other edges are not. The procedure
constructs an orientation of all the edges of the given graph. Its behaviour depends on
whether the outercycle has a chord. The cases are described in the following paragraphs.

The outer cycle has a chord – recursive step. Let vavb be a chord of the
outercycle. It divides the outer cycle into two cycles C1 and C2, where C1 contains both
v1, v2. Cycles C1 and C2 together with their interiors, determine two subgraphs of the
current graph denoted by H1, H2. The only common vertices of H1 and H2 are va and
vb. The procedure is run recursively first in subgraph H1 with vertices v1, v2, and then in
subgraph H2 with distinguished vertices vb, va (note that edge vavb is oriented in the run
of the procedure on H1).

There is no chord on the outer cycle – orienting step. If there is no chord on
the outer cycle, we focus on the vertex that immediately follows v2 in counter-clockwise
order of the outercycle. We denote that vertex by v3 and call it the central vertex of this
step. In this step, the procedure orients and assigns strengths to the edges of the current
graph adjacent to v3 according to the following rules:
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• edges of the outer cycle are oriented away from v3 and are given strength 1,

• all the other edges are oriented towards v3 and are given strength 2.

Finally, vertex v3 is removed from the graph. If there are still some vertices beside v1, v2
left, the procedure is recursively called on the remaining graph with the same distinguished
vertices v1, v2.

4.2 Constructed orientation

The procedure being recursive has to be defined on near triangulations. We are interesting
however in running it on triangular graphs. To start the procedure, we choose two vertices
of the outer triangle as distinguished vertices. Then, the first step of the procedure is the
orienting step in which the central vertex is the third vertex of the outer triangle. Then,
in the run of the procedure, the following invariants are kept. Note that in some sense
they mimic Thomassen’s conditions on the lengths of lists.

(I1) At the beginning of each step, no inner edge of the current near triangulation is
oriented.

(I2) At the beginning of each but the first step, every not-distinguished vertex of the
current outer cycle has exactly one outgoing edge. Moreover, that edge does not lie
on the current outer cycle and is doubled.

(I3) For every vertex v, once v is removed in an orienting step, all the edges adjacent to
v oriented in the later steps are oriented towards v.

We make a few observations about the orientation constructed by the procedure.

Proposition 17. The procedure run on a triangular graph constructs an internal 3-
orientation.

Proof. Consider an internal vertex v. Invariant (I2) guarantees that at the beginning
of the (orienting) step in which vertex v is removed from the graph, it has exactly one
outgoing double edge. During that step, exactly two edges are oriented away from v.
Altogether, its out-degree becomes 3. By (I3), if an edge adjacent to v is oriented in one
of the later steps, it is always oriented towards v. Therefore, the out-degree of v stays 3
until the end of the procedure.

Proposition 18. The orientation constructed by the procedure does not contain a clock-
wise oriented triangle.

Proof. Suppose for a contradiction, that a clockwise oriented triangle has been con-
structed. Consider the first orienting step of the procedure in which a vertex of the
triangle has been removed. We call it the current step. Denote the vertex removed in this
step by v. In the final orientation there are precisely 3 edges oriented away from v. At the
beginning of the current step, exactly one of these edges is already oriented. Moreover it

the electronic journal of combinatorics 31(1) (2024), #P1.59 10



is oriented towards a vertex that was removed earlier. By the choice of v, this edge cannot
belong to the triangle. By the same token, no edge from v to a distinguished vertex of the
current step can belong to the triangle. That results from the fact that, beside the first
two distinguished vertices, any vertex that becomes distinguished in the second recursive
call of a recursive step is first removed in the first recursive call of that step.

We are left with only one candidate for the edge of the triangle that is outgoing from v.
It is the edge directed towards the (counter-clockwise) next vertex of the outer cycle of the
current step. We denote it by v′. Note that v′ cannot be one of the distinguished vertices
of the current step, since it would imply that it has been removed in an earlier orienting
step. Let v′′ be the third vertex of the triangle (beside v and v′). Vertex v′′ cannot be an
interior vertex of the near triangulation of the current step, since then the triangle would
be counter-clockwise oriented. Moreover, by the choice of v, vertex v′′ cannot have been
removed before v. Therefore, v′′ must belong to a subgraph that is going to be dealt with
in the second recursive call of some earlier recursive step of the procedure, while v and v′

belong to the subgraph that is oriented in the first recursive call of that step. However,
in such a case, vertex v′ is going to be removed before v′′, in an orienting step executed
within the near triangulation of the current step. That (by invariant (I3)) implies that
the edge between v′ and v′′ is going to be directed towards v′. It contradicts the fact that
the triangle is clockwise oriented.

Proposition 19. Edges doubled by the procedure run on a triangular graph form one of
the trees of the realizer corresponding to the constructed internal 3-orientation.

Proof. Discussed invariants imply that double edges always form a forest that spans all
internal vertices. Moreover, when the procedure is run on a triangular graph, that forest
is, in fact, a tree that is rooted in the unique vertex of the outer triangle that has not been
distinguished in the first call. It remains to verify that all the doubled edges belong to
one of the trees of the realizer. It is easily checked that in the orienting step of a vertex v,
the edges that become doubled in this step are exactly all the edges between two outgoing
edges of v that are not doubled. That implies that all doubled edges indeed get the same
color (i.e. are going to belong to the same tree of the realizer). Moreover, the color is the
same as the color of the unique outgoing doubled edge of v.

It has been observed in [2] (Corollary 1.5.2) that whenever there is a clockwise oriented
cycle in an orientation of a triangular graph, this orientation also contains a clockwise ori-
ented triangle. Therefore, Proposition 18 implies that the orientation constructed by the
procedure is in fact the counterclockwise internal 3-orientation in which the edges of one
of the trees of corresponding realizers are doubled. As we already explained (Proposition
15 and the proof of Theorem 16), that orientation certifies that AT (G) 󰃑 5. Interestingly,
the above procedure can be also viewed as a specific realisation of the algorithm of Brehm
from [2] designed for generating realizers of planar graphs.
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5 Final thoughts

We showed that Zhu’s strengthening of the result of Thomassen can be derived from the
independent developments on the realizers of planar graphs started by Schnyder. Al-
though stemming from different lines of research, these two proofs are not really different.
We showed that a natural modification of Thomassen’s procedure can be used to construct
an orientation that certifies that the Alon-Tarsi number of the graph is at most 5.

A slight technical generalization of the method of Alon and Tarsi was used in our
proof. It has a property that, while it allows proving AT (G) 󰃑 5, it does not help to find
a monomial of fG that certifies that property. At the same time, after careful strength-
ening of some edges, the problem of counting Eulerian structures becomes much easier.
Indeed, in some sense, all nontrivial Eulerian subgraphs of the orientations corresponding
to monomials of fG certifying AT (G) 󰃑 5 cancel themselves. We expect that augmented
orientations may also be useful in analysing graph polynomials for other graph classes.
Let us also note that our modification of fG into WG,w by strengthening edges is just one
of the possible options. Polynomial WG,w used in our proof can be viewed as fG multi-
plied by another polynomial defined by a specific spanning tree of the underlying graph.
It is tempting to look for other useful examples of such multipliers that depend on other
substructures of the studied graphs.

The bound from Theorem 1 has also recently been given a short proof by Gu and
Zhu [5]. They managed to greatly simplify the original argument with a technique that
is somewhat similar to the extension of Alon-Tarsi method used in the current paper. As
these two ideas seem to be related, it is rational to take both perspectives into account
when considering potential generalizations of graph polynomials described above. That
paper (i.e. [5]) also contains a simplified proof of a recent result of Grytczuk and Zhu [4]
that every planar graph G contains a matching M such that AT (G −M) 󰃑 4. It would
also be interesting to describe this matching in terms of Schnyder realizers.

Acknowledgements

Jakub Kozik: Research partially supported by
Polish National Science Center (2023/49/B/ST6/01738).

Bartosz Podkanowicz: Research partially supported with an incentive scholarship from
the funds of the program Excellence Initiative - Research University at the Jagiellonian
University in Kraków.

References

[1] Noga Alon and Michael Tarsi. Colorings and orientations of graphs. Combinatorica,
12(2):125–134, 1992.

[2] Enno Brehm. 3-orientation and schnyder 3-tree-decompositions construction and
order structure. Diploma Thesis at Freie Universität Berlin, 2000.

the electronic journal of combinatorics 31(1) (2024), #P1.59 12



[3] Hubert de Fraysseix and Patrice Ossona de Mendez. On topological aspects of ori-
entations. Discrete Math., 229(1-3):57–72, 2001.

[4] Jaros󰀀law Grytczuk and Xuding Zhu. The Alon-Tarsi number of a planar graph minus
a matching. J. Combin. Theory Ser. B, 145:511–520, 2020.

[5] Yangyan Gu and Xuding Zhu. The Alon-Tarsi number of planar graphs–a simple
proof. arXiv:2203.16308, 2022.

[6] Tommy R. Jensen and Bjarne Toft. Graph coloring problems. Wiley-Interscience
Series in Discrete Mathematics and Optimization. John Wiley & Sons, Inc., New
York, 1995. A Wiley-Interscience Publication.

[7] Ringi Kim, Seog-Jin Kim, and Xuding Zhu. The Alon-Tarsi number of subgraphs of
a planar graph. arXiv:1906.01506, 2019.

[8] Yuri V. Matiyasevich. A criterion for vertex colorability of a graph stated in terms
of edge orientations. arXiv:0712.1884, 2007.

[9] Julius Petersen. Die Theorie der regulären graphs. Acta Mathematica, 15:193–220,
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