
The Squish Map and the SL2 Double Dimer Model

Leigh Foster Benjamin Young

Submitted: Oct 10, 2023; Accepted: Feb 21, 2024; Published: Mar 22, 2024

© The authors. Released under the CC BY-SA license (International 4.0).

Abstract

A plane partition, whose 3D Young diagram is made of unit cubes, can be ap-
proximated by a “coarser” plane partition, made of cubes of side length 2. Indeed,
there are two such approximations obtained by “rounding up” or “rounding down”
to the nearest cube. We relate this coarsening (or downsampling) operation to the
squish map introduced by the second author in earlier work. We exhibit a related
measure-preserving map between the dimer model on the honeycomb graph, and
the SL2 double dimer model on a coarser honeycomb graph; we compute the most
interesting special case of this map, related to plane partition q-enumeration with
2-periodic weights. As an application, we specialize the weights to be certain roots
of unity, obtain novel generating functions (some known, some new, and some con-
jectural) that (−1)-enumerate certain classes of pairs of plane partitions according
to how their dimer configurations interact.

Mathematics Subject Classifications: 05A15, 05C50, 82B20

1 Introduction

Anyone who has played with cubical building blocks in their youth has, at some point,
constructed a 2 × 2 × 2 cube out of eight 1 × 1 × 1 cubes. Later in life, some of us
(including the authors) went on to study plane partitions, which are nothing more than
stable piles of cubes in the corner of a large room. These two experiences tell us that
there ought to be some relation between plane partitions made out of the little cubes,
and plane partitions made out of the bigger ones. Or, going the other way: what if we
take a picture of a plane partition and “downsample” it, by approximating its 1× 1× 1
cubes by roughly one eighth as many 2× 2× 2 cubes, as best we can (see Figure 1)? How
much information do we lose by doing this?

We propose to answer this question through an analysis of the squish map – a map orig-
inally studied in [8], as a means of proving a combinatorial theorem about plane partition
enumeration. Here, we prove that the squish map is a measure-preserving transformation

Department of Mathematics, University of Oregon, Eugene, Oregon, U.S.A. (leighf@uoregon.edu,
bjy@uoregon.edu).

the electronic journal of combinatorics 31(1) (2024), #P1.61 https://doi.org/10.37236/12447

https://doi.org/10.37236/12447

1
2
3
4
5
6
7
8

1
2
3
3
4
4
6
8

1
1
2
3
3
3
6
6

0
1
1
2
3
3
5
5

7−→

1

2

3

4

1

2

2

3

Figure 1: A plane partition, viewed as a stack of boxes - and then “downsampled” by a
factor of two, rounding up to the nearest full box. The plane partitions are π and πmax,
respectively, from Example 8 in Section 3.3.

between instances of the single and double dimer models on honeycomb graphs. Thus, the
loops of the double dimer model indicate where information is lost in the “downsampling”
process.

1.1 Definitions and literature survey

A plane partition is an infinite matrix of nonnegative integers, all of which are zero
sufficiently far from the origin, which are weakly decreasing both in rows or in columns
(we do not typically draw the zeros). Equivalently, interpreting the numbers in a plane
partition as z coordinates, one can represent a plane partition as a stack of unit cubes in
the corner of a room - this is precisely the relationship between ordinary integer partitions
and their Young diagrams, but one dimension higher.

If the plane partition’s cubes fit inside an x× y × z box, then it is said to be a boxed
x × y × z plane partition. MacMahon [6] proved that the generating function for boxed
x× y × z plane partitions is

x∏
i=1

y∏
j=1

1− qi+j+z−1

1− qi+j−1

which, in the limit x, y, z →∞ gives the famous generating function for plane partitions,

∏
i>1

(
1

1− qi

)i
.

Boxed plane partitions are in bijection with perfect matchings on an x × y × z hexagon
graph, and hence with the dimer model on an certain graph. This result (as far as we
know) is folklore, and we don’t know a good reference; see Figure 6 for an illustration.
We call the graph in question Hx,y,z, the x× y × z honeycomb graph (see Figure 2). Let
Dx,y,z denote the set of perfect matchings (otherwise known as dimer configurations) on
Hx,y,z. Furthermore, let DDx,y,z be the set of double dimer configurations on Hx,y,z. That

the electronic journal of combinatorics 31(1) (2024), #P1.61 2

is, an element m ∈ Dx,y,z is an induced 1-regular subgraph of Hx,y,z – every vertex of
Hx,y,z is in exactly one edge of Dx,y,z, whereas an element m ∈ DDx,y,z is an induced
2-regular subgraph (with the slightly unusual convention that doubled edges are allowed).
See Figure 4.

We require Kenyon’s SL2(C)-weighted double dimer model [4]: in addition to an edge
weight, one assigns a 2 × 2 matrix Me ∈ SL2(C) to each edge e; the partition function
involves a product of traces of such matrices taken around a loop. This collection of
matrices is called a connection on the graph, by analogy with differential geometry, since
its contribution to the partition function is the monodromy around closed paths in the
graph. When all Me are the identity matrix, all loops contribute Tr(I) = 2, so the model
reduces to two independent copies of the ordinary dimer model, but this is typically a
much more general and subtle model.

There are standard, determinantal tools for computing single and double dimer par-
tition functions. For the single dimer model, one uses [3] and [7]; for lattice paths, the
references are [5] and [2]. Kenyon [4] introduces a matrix, analogous to Kasteleyn’s ma-
trix, whose determinant computes the partition function of this model. We do not need
either determinant for this paper.

The map we introduce here, the squish map, is a map from D2x,2y,2z to DDx,y,z. One
can (in principle) discover everything there is to know about it by drawing H2x,2y,2z with
distorted edge lengths (see Figure 5). It was introduced in [8]. Our result here is that the
squish map is measure-preserving, for particular choices of the parameters of the single
and double dimer models. Indeed, we are even able to prove a subtle result about the
enumeration of down-sampled plane partitions, hinted at in [8]: If we let x, y, z → ∞,
then there is a closed-form generating function which is preserved by the squish map. It
is a certain 4-variable generating function for “Z2×Z2 - colored plane partitions” studied
in [9]; in it, a cube at position (i, j, k) gets a color according to the parities of (i− j) and
(i − k); the four variables keep track of how many cubes of each color there are. The
squish map allows us to see this generating function as marking certain statistics on a
downsampled plane partition. This generating function was studied in [9] under a certain
specialization; we both study it in full generality here, including the original specialization
and a few intriguing others.

2 The single and double dimer models

Definition 1. The weight of a graph is an assignment ν : E → R>0 of real numbers onto
each edge of the graph, where E is the set of edges in a graph G.

Definition 2. Consider a perfect matching m on G. The weight of m is defined to be
w(m) =

∏
e∈mw(e).

Example 3. The following weighting reproduces the Q(number of boxes) statistic on plane
partitions, up to an overall power of Q. This, as far as the authors know, is a “folklore”
idea for which we do not know a good reference. Assign a weight of 1 to one horizontal
edge in each column of hexagons. Above each horizontal edge with weight 1, assign

the electronic journal of combinatorics 31(1) (2024), #P1.61 3

Q−2

Q−3

Q−1

Q−3

Q−2 Q−3

Q−2

Q−1

Q2

Q2

Q

1 1

Q2

1

Q2

Q−1

Q2
1

Q

Q−1
1

Q

1

Figure 2: A perfect matching (dimer configuration) on H6,2,4, with a monochromatic
weighting on the horizontal edges. Note that although the edges labeled 1 are lined up
along a particular diagonal, this does not have to be this case.

weights Q,Q2, Q3, . . ., and below weights Q−1, Q−2, Non-horizontal edges get weight
1. Then the overall weight of the perfect matching in Figure 2 is Q−6.

Figure 3: The two possible configurations of a single hexagon loop in the double dimer
model.

The following definition of the SL2(C) double dimer model is due to Kenyon [4]:

Definition 4. Let G = (V,E) be a bipartite graph with a scalar weight w : E → C as
well as an SL2 connection: a map Γ : E → SL2(C). Then the contribution of a double
dimer configuration DD is defined to be(∏

e∈m

w(e)

)
×
∏

closed loops L

Tr

(∏
e∈L

Γ(e)

)
.

the electronic journal of combinatorics 31(1) (2024), #P1.61 4

Figure 4: A double dimer configuration – an overlaying of the right and the left single
dimer configurations, that consists of closed loops and doubled edges.

3 The squish map

3.1 Coordinates on the honeycomb grid

The honeycomb graph is the tiling of the plane by hexagons; the center of each hexagon
is a point in the dual triangular lattice. A convenient way to give coordinates to the
triangular lattice is to draw it on the plane normal to (1, 1, 1) ∈ R3. This plane has an
orthonormal basis

~x =
1√
2

(−1, 1, 0) ~y =
1√
6

(−1,−1, 2)

which we won’t really use, but we will orient our pictures according to it, and we will use
words like up, left, bottom, horizontal, etc... in the conventional way with respect to this
basis.

The set Z3 ⊆ R3 projects onto a copy of the triangular lattice in this plane. Draw
the honeycomb graph G in such a way that the lattice points are the centers of the
hexagons, then label each lattice point (and thus each hexagon) with any of the lattice
points that project to its center. For instance, the hexagon at the origin has the labels
(0, 0, 0),±(1, 1, 1),±(2, 2, 2), etc. Call this particular embedding of the honeycomb graph
H. In the ~x, ~y coordinates above, the edge common to the hexagon at (0, 0, 0) and the
hexagon at (0, 0, 1) is horizontal.

There is also a second embedding of the honeycomb graph onto the plane which is of
interest to us, which we shall glibly call 2H, and it is obtained by projecting the double-
sized lattice (2Z) × (2Z) × (2Z) to a (bigger) triangular lattice in the plane, and taking
the planar dual. The hexagons of 2H have even coordinates (2i, 2j, 2k).

3.2 Degenerating H to 2H

The squish map can be defined entirely combinatorially, but for visualization purposes it
is extremely helpful to first define a continuous degeneration H(t) : [0, 1]→ R2 such that
H(0) = H and H(1) = 2H. This degeneration is shown in Figure 5 and first appeared in
[8].

the electronic journal of combinatorics 31(1) (2024), #P1.61 5

To define H(t), write H = (V,E), and let Hev = (V ev, Eev) be the subgraph of H
consisting of all hexagons whose centers have even coordinates; we say that Hev are the
“even hexagons”. Let P = H \ Hev. Then the graph (V, P) is a disconnected union
of “propellers” (or K1,3’s or “claws”, depending on what dialect of graph theory you
speak). Each propeller has a central vertex v and three leaves x, y, z. For t ∈ [0, 1], define
x(t) = tv + (1 − t)x, so that x(t) is a point on the edge joining v to x. Define y(t) and
z(t) similarly, and make the same definitions at each other propeller.

The graph embedding H(t) is obtained by drawing the vertex a at position a(t). For
0 6 t < 1, H(t) is an embedding of H; indeed, H(t) is an explicit homotopy equivalence.
At t = 1, however, we have v = x = y = z, and thus H(1) degenerates to an embedding
of 2H.

3.3 The squish map

H(t) defines a 2-to-1 map Sq from Eev to the edges of 2H: given an edge e of an even
hexagon in H, find the corresponding edge in H(0), and let Sq(e) be the corresponding
edge in H(1).

Definition 5. The squish map Sq : D(H) → DD(2H) sends a dimer configuration m
on H to a double dimer configuration Sq(m) on 2H as follows: let mev = m ∩ Eev; then
Sq(m) = Sq(mev).

Indeed, when drawing m on the graph H(t) for t < 1, visualize what the squish map
is doing: propeller edges of m get shorter and shorter, while the doubled edges get longer
and closer together. This process is shown in Figure 5.

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

Figure 5: The degeneration H(t).

We now relate the squish map to the 1× 1× 1 and 2× 2× 2 stacked cubes mentioned
in the introduction. We can use the language of plane partitions to visualize a perfect
matching in the single dimer model as a stack of cubes in the corner of a room, as in
Figure 6. Then putting our matching through the squish map ‘downsamples’ the plane
partition: we would use 1/8 as many 2 × 2 × 2 bricks instead. For example, to build a
2× 2× 4 prism we can use 16 single cubes, or two larger 2× 2× 2 cubes.

the electronic journal of combinatorics 31(1) (2024), #P1.61 6

Theorem 6. Consider a single dimer configuration S sent through the squish map result-
ing in a double dimer configuration D made of loops and doubled edges. In each 2×2 sec-

tion of the plane partition for S, let πmin

(
m

o

n
p

)
=
⌊
min(m,n,o,p)

2

⌋
, and πmax

(
m

o

n
p

)
=⌈

max(m,n,o,p)
2

⌉
.

These are the minimal and maximal plane partitions that, when overlayed, give us the
double dimer configuration D.

A few natural questions one might ask at this point would be: what single dimer
configurations squish to a given double dimer configuration? In the language of building
blocks, how can we tell which larger 2×2×2 brick configurations overlay with one another
to give us a particular double dimer model? How do we recover that information if we
were only given the 1× 1× 1 smaller blocks?

3 3 3 0
3 2 1 0
3 1 1 0
0 0 0 0

4 4 4 4
4 3 3 1
4 3 2 1
4 1 1 1

Figure 6: Two single dimer configurations shown as boxed plane partitions.

Example 7. Consider the two plane partitions given by Figure 6. Both of these con-
figurations become a loop within a loop (as in Figure 7) when sent through the squish
map. If we picture the plane partitions as boxes in a room, the minimal configuration
that squishes to the loop within a loop is the diagram on the left of Figure 6, and the
maximal one is the diagram on the right. (Note that these are just two out of a possible
23,364 configurations that squish to the same loop-within-a-loop. See Theorem 20.) To

the electronic journal of combinatorics 31(1) (2024), #P1.61 7

determine which possible two overlayed 2×2×2 single dimer configurations give the same
double dimer configuration, we start by downsampling either plane partition.

For this example, we will work through the process on the minimum diagram and
partition above, though the process will work on either partition (or any of the other
23, 362 in between).

We want to round down to get the first single dimer configuration, πmin, and round
up to get the second single dimer configuration, πmax. To do this rounding process, start
by sectioning the plane partition into 2× 2 grids.

0

3

3

3

0

1

2

3

0

1

1

3

0

0

0

0

Each 2× 2 section will become one entry in the downsampled plane partition. When
we round down, we want to count how many complete 2 × 2 × 2 blocks exist in each
section. (You can also think about this as removing smaller 1× 1× 1 cubes one-at-a-time

until you are only left with 2 × 2 × 2 blocks.) Thus, we have
1

0

0

0
as the first single

dimer configuration.
Now to find the second single dimer configuration, we want to round up to the nearest

larger cube. (You can also think about this as adding smaller cubes until we fill the

2×2×2 cube.) So the maximal configuration in its entirety becomes rewritten as
2

2

2

1
.

Now we have a pair of plane partitions that, when overlayed, become the same double
dimer configuration we had as the result under the squish map. In Figure 7, the yel-

low (lighter colored) configuration corresponds to
1

0

0

0
, and the blue (darker colored)

configuration corresponds to
2

2

2

1
.

Figure 7: A loop within a loop in the double dimer model.

the electronic journal of combinatorics 31(1) (2024), #P1.61 8

Example 8. For the plane partition

1
2
3
4
5
6
7
8

1
2
3
3
4
4
6
8

1
1
2
3
3
3
6
6

0
1
1
2
3
3
5
5

then

πmin =

0

1

2

3

0

0

1

2

and πmax =

1

2

3

4

1

2

2

3

Remark 9. Consider a plane partition that could already have been made out of 2× 2× 2
boxes. We can downsample in a straightforward manner. Each 2× 2 region in the plane
partition contains all the same even entry, so the entry in πmin would be half that number,
as it would be for πmax. Since all four entries were the same, then we have no rounding to
do, so πmin = πmax. Thus when we overlay the single dimer configurations corresponding
to πmin and πmax, we get all doubled edges in the double dimer configuration.

Proof of Theorem 6. Consider a given plane partition π that may not break down nicely
into 2 × 2 × 2 cubes, where π has k boxes. Then Sq(π) = πmin t πmax as double dimer
configurations. We proceed by induction on k. The base case is k = 0, which is straight-
forward by the remarks above: π, πmin, πmax and all the corresponding single or double
dimer configurations are minimal.

Suppose that π has k + 1 boxes. Delete a box from π to create a π′ that has k boxes.
Then via the induction hypothesis we have that Sq(π′) = π′min t π′max. If we add the
(k + 1)th box back in, we land in one of three cases.

In the first case, we have started a new 2 × 2 × 2 cube by adding that cube in the
(2i, 2j, 2k) position. Then, when viewed as a plane partition, πmax(i, j) = π′max(i, j) + 1,
while the minimum configuration stays the same (πmin(i, j) = π′min(i, j)). Under the
squish map we get that Sq(π) = Sq(π′), except at the hexagon located at (i, j, k), where
the perfect matching around said hexagon changes from the left of Figure 8 to the right.

In the second case, we have added the cube into the last empty slot of a 2×2×2 larger
cube, so the new cube has gone into position (2i+ 1, 2j + 1, 2k + 1). Then the maximum
plane partition remains the same, so πmax(i, j) = π′max(i, j), but πmin(i, j) = π′min(i, j)+1.

the electronic journal of combinatorics 31(1) (2024), #P1.61 9

So under the squish map we have that Sq(π) = Sq(π′), except at (i, j, k), where the
matching around the hexagon changes from the right of Figure 8 to the left.

Finally, the last case occurs when we add a cube anywhere else; i.e. adding this smaller
cube neither completes a 2×2×2 box nor is the first cube in an otherwise empty 2×2×2
box. Here we have that πmin = π′min and πmax = π′max. In this case we have no change
under the squish map, so Sq(π) = Sq(π′) exactly.

add a box

remove a box

.

Figure 8: Adding or removing a box.

3.4 Transfer matrix approach

Now that we have the squish map defined on graphs and plane partitions, we want to
be able to take a weight function in the single dimer model and push it through the
squish map to give us an SL2 connection and a scalar weight function in the double dimer
model. To do this, we first consider a perfect matching on the single dimer model. Once
the graph has been squished, we can consider walking along a path around a given loop
in the now-double dimer model. Given a starting vertex, each path consists of a series of
right and left turns at each new vertex encountered until we once again reach the starting
vertex. These turns are given labels L and R for left and right assigned to each vertex
in the path. We want to interpret L and R as 2 × 2 transfer matrices for keeping track
of the loop’s contribution to the dimer model. This was the strategy of [8], which used
different matrices.

To determine what particular matrices L and R should be, we consider a walk along
the path snippet given by Figure 9. We begin at the bottom edge and then turn left
at the next vertex, so we could step onto either edge z or w. If x is an edge in the
perfect matching, then z cannot also be a matched edge, so the only next step could be
w. Similarly, if y is in the perfect matching, then a left turn onto the next matched edge
could include either z or w.

the electronic journal of combinatorics 31(1) (2024), #P1.61 10

x

y

z

w

Figure 9: Left: the possible x, y, z, and w edge weights over a left-hand turn. Right: A
perfect matching on a squished hexagon lattice.

We represent this with the vectors[
x
0

] [
0
y

]
as our two possible starting locations. Then we need the first vector to map only to

edge w, and the second vector to map to both edges z and w, so we get the following
maps [

x
0

]
7→
[

0
w

] [
0
y

]
7→
[
z
w

]
.

A similar scenario happens for R, so we then find the 2× 2 matrix to make the above
maps hold, getting that

L =

[
0 1
1 1

]
and R =

[
1 1
1 0

]
Remark 10. Note that instead of defining L and R as above, we could also have defined
L to be R−1, and similar for R. So instead we would have had

L =

[
0 1
1 −1

]
and R =

[
−1 1
1 0

]
.

Sometimes it may be more convenient to define L and R this way (with the negative
signs), such as if we had specialized the edge weights to be ±1. We ultimately wanted to
use the version with only positive entries, however, to (hopefully) make it more clear to
the reader how things are working.

the electronic journal of combinatorics 31(1) (2024), #P1.61 11

3.5 From transfer matrices to the SL2 connection

We can now use the matrices L and R to compute the contribution of a closed loop under
the squish map from the single to the double dimer model by taking the trace of the
product. However, we’re supposed to have 2× 2 matrices, with determinant 1 associated
to the edges of H(i, j, k), not the vertices. We use the following process to include the
left and right turn information in the edges of the graph as matrix weights.

To begin with, we associate general 2 × 2 edge-weight matrices A,B, and C to be
placed on each horizontal, north-east, and north-west matched edge, respectively, as in
Figure 10.

A =

[
a 0
0 a−1

]
, B =

[
b−1 0
0 b

]
, C =

[
c 0
0 c−1

]

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

Figure 10: Matrix weights A, B, and C on the single dimer model.

To handle the process of moving L and R from the vertices to the edges, we need some
way to include the information for turns in an unknown path. Then we want to come
up with new matrices α, β, and γ that include the information from A, B, and C, but
that also encode the information in the turns. For example, the move A→ B is always a
left turn, and the move A→ C is always a right turn. So we somehow want the new βα
to include the same information as BLA and γα to encode the information from CRA
(reading paths from right-to-left).

Definition 11. Let J =

[
1 0
0 −1

]
, and i =

√
−1.

Then α, β, and γ are defined as follows:

α := iAJ =

[
ia 0

0 1
ia

]

β := iRBLJ =

[
i b −i b− i

b

0 1
ib

]
the electronic journal of combinatorics 31(1) (2024), #P1.61 12

γ := −iLCRJ =

[
1
ic

0
−i c− i

c
i c

]
.

Theorem 12. The single dimer model on the 2x × 2y × 2z hexagon lattice with A, B,
and C weights (as in Figure 10) gives rise to the same partition function as that on the
double dimer model on the x × y × z hexagon graph with scalar weight of 1 everywhere
and connection given by α, β, and γ (as in Figure 11).

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

β

γ

α−1

β−1

γ−1
α

Figure 11: The α, β, and γ connection on the squished hexagon lattice.

Proof. From the examples above, Let’s consider the right turn A → C. In our matrices,
we write this as γα, which is (−iLCRJ)(iAJ) = LCRA, which does indeed include the
information CRA, as we desired. There are 12 total ways to step from one edge to another,
whose equivalent products are given below.

Left Turns Right Turns

βα = −RBLA αβ = −JARBLJ
γβ = LCLBLJ βγ = −RBRCRJ

α−1γ = −JA−1LCRJ γα−1 = −LCRA−1

β−1α−1 = −RB−1LA−1 α−1β−1 = −JA−1RB−1LJ
γ−1β−1 = LC−1LB−1LJ β−1γ−1 = RB−1RC−1RJ

αγ−1 = −JALC−1RJ γ−1α = −LC−1RA

Assume we have a valid path of length n with matrix string χnχn−1 . . . χ1. Then this
string is equivalent to one of the form

XnMnTn−1Mn−1 · · ·T2M2T1M1X1,

the electronic journal of combinatorics 31(1) (2024), #P1.61 13

where each M ∈ {A,B,C,A−1, B−1, C−1} is one of the original edge matrices, Ti ∈ {R,L}
is a turning matrix L or R, and the Xi-terms on either end are the extras above used
for bookkeeping (the LJ , RJ , L, R, or J ‘bookkeeping’ terms on the left or right of
each full string). If we were to take another step along this path, then that (n + 1)th
step would involve left-multiplying our string by χn+1, so we now have χn+1χn · · ·χ1 =
(χn+1χn)χn−1 · · ·χ1. But the χn+1χn is a valid construction of two edge-weight matrices
with a left or right turn in the middle (possibly with an Xn+1 or Xn bookkeeping term),
which means it is one of the 12 turns explicitly computed above. So χn+1χn · · ·χ1 gives
us a string that is equivalent to using A, B, and C with left- and right-turn matrices.

Example 13. Consider the path around a single hexagon with these new weights. If
we begin at the bottom edge and then travel counterclockwise around the loop, then
we perform matrix multiplication (reading right to left) in the order we reach the edges,
getting γ−1β−1α−1γβα. This product gives us the total connection for the path.

Now if we compute this matrix out for the left-turn version, we get

γ−1β−1α−1γβα

= (iLC−1RJ)(−iRB−1LJ)(iA−1J)(−iLCRJ)(iRBLJ)(iAJ)

= i6LC−1RJRB−1LJA−1JLCRJRBLJAJ

= −LC−1LB−1LA−1iLCLBLA

=

a2b2c2 + a2b2 + a2c2 + a2 + 1
(a2b2c2+a2b2+a2+1)(b2+1)

a2b2

(a2b2c2+a2c2+a2+1)(c2+1)
c2

a2b4c4+a2b4c2+a2b2c4+3 a2b2c2+a2b2+a2c2+b2c2+a2+b2+c2+1
a2b2c2

and the trace of this matrix is a2b2c2 + a2b2 + a2c2 + b2c2 + a2 + b2 + c2 + 1

a2
+ 1

b2
+

1
c2

+ 1
a2b2

+ 1
a2c2

+ 1
b2c2

+ 1
a2b2c2

+ 4 which has 18 terms (including repeated terms).
So, in particular, we know that there are only 20 2 × 2 × 2 boxed plane partitions:

the minimal one, the maximal one, and 18 others. Then using the trace of our matrix,
we have accounted for all 18 terms that correspond to the 18 perfect matchings which
get squished by the squish map to a single loop. These are the correct weights for plane
partitions with 2-periodic weights.

4 Generating functions and specializations

Note that the previous sections have used periodic edge weights and connections. Here
we generalize to cover several natural weight functions for plane partition enumeration.

4.1 Arbitrary weights

We first consider an arbitrary nonzero weight function w : G → C∗. Note that every
vertex v of G is a part of some propeller: either v is the center vertex of a propeller, or
not (in which case, only one of the edges incident to v is part of the propeller).

We modify the weight function w by performing a so-called gauge transformation: for
each vertex v which is not the center of a propeller; suppose that the edge e connects v to

the electronic journal of combinatorics 31(1) (2024), #P1.61 14

the center of the propeller. Divide the weights of all of v’s incident edges by w(e). This
operation changes the dimer model partition function only by an overall constant, which
we can ignore at least in the case where G is a finite subgraph of the honeycomb graph.
Assume without loss of generality that this has been done.

Then, given two edges e1, e2 which get sent to e under the squish map, let w(e) =√
w(e1)w(e2), the geometric mean of the weights of e1 and e2. Define a new weighting on

G by

w̃(e1) =
w(e1)

w(e)
, w̃(e2) =

w(e2)

w(e)
.

This weighting w̃ has the property that w̃(e1) = w̃(e2)
−1, so we can push it through the

squish map as before.

4.2 Periodic weights on plane partitions

One has to be careful with computing the weight of a perfect matching m on any infinite
graph, such as H. There are infinitely many edges in such a graph, so one would need to
consider issues of convergence before multiplying all of the weights together to find the
weight of a perfect matching. There is then a separate convergence issue when trying to
sum over m.

However, our main interest is in plane partitions, which are in bijection with cer-
tain perfect matchings on H. Plane partitions come with a natural generating function,
computed by MacMahon, as stated in Section 1.1. We now define

M(a, q) =
∏
i>1

(
1

1− aqi

)i
for weighted plane partitions [6]. Indeed, there is a particular weighting which is uniquely
relevant on the entire honeycomb lattice: the Z2 × Z2 periodic weighting.

We assign the weights to the lattice points as follows:

w(i, j, k) =

q if i− j ≡ 0, i− k ≡ 0 (mod 2),

r if i− j ≡ 1, i− k ≡ 0 (mod 2),

s if i− j ≡ 0, i− k ≡ 1 (mod 2),

t if i− j ≡ 1, i− k ≡ 1 (mod 2).

(1)

There are a variety of edge weight functions on the dimer model which correspond
to this; one which is well behaved with respect to the squish map is (partially) shown in
Figure 12. We previously defined the weight function on a finite portion of the honeycomb
graph (as in the monochromatic weighting on Figure 2). To extend this weighting to the
entire plane, set p3 = q and include constants k1, k2, and k3.

Choose each of k1, k2, and k3 so that the desired region of the plane has the appropriate
edge weights. (Generally we choose this in such a way that the edge weights near the
center of the region in question are all of low degree.) This is comparable to choosing

the electronic journal of combinatorics 31(1) (2024), #P1.61 15

the weight “1” on a particular place in a given column of horizontal edges from Example
3. The result will be that each ‘strip’ of hexagons (in each vertical, northeast/southwest,
or northwest/southeast diagonal, as in figure 12) will have a weight of 1 in the desired
location, with increasing and decreasing powers traveling either direction away from the
center.

We can decompose this weighting into two pieces, as shown on the bottom of Figure 12.
The first piece becomes the SL2 connection, as described above and seen in the lower right
of the figure. The second piece becomes the scalar weights, which is shown in the lower
left. For further details on various weight functions of the honeycomb graph, see [9].

Theorem 14. Using the weight function given in Figure 2 and a monodromy given by
placing α on every northeast/southwest edge, β on every northwest/southeast edge, and γ
on every horizontal (east/west) edge, then the squish map is measure preserving.

Corollary 15. Using α, β, and γ as described in Theorem 14, we can find the generating
function for a given m× n× o boxed double dimer plane partition.

Remark 16. As seen in [4], we can compute the probability of a given edge being present
in the single dimer model by taking the determinant of a certain Kasteleyn matrix. When
we use this procedure in conjunction with the squish map, we can now determine the
probability that a given edge will appear as a doubled edge in the double dimer model.
If said doubled edge is present, then its preimage under the squish map would have two
edges mapping to the doubled edge, so the overall probability would be the product of the
two individual probabilities that each edge would be present in the single dimer model.

Define Q := qrst, and M̃(x, y) := M(x, y)M(x−1, y). The generating function for
plane partitions in which q, r, s, t mark the boxes in as in equation 1 was computed in [9]
(where it was denoted ZZ2×Z2); it is

ZQ = M(1, Q)4
M̃(rs,Q)M̃(st,Q)M̃(tr,Q)

M̃(−r,Q)M̃(−s,Q)M̃(−t, Q)M̃(−rst, Q)
. (2)

Under the specialization r = s = t = q (and hence Q = q4) we recover MacMahon’s
generating function for plane partitions by a slightly delicate manipulation of formal
power series. In [8] it is observed that under the specialization r = s = t = −1, the above
generating function specializes to M(1,−q), and this latter statement is proven using the
squish map (without the SL2 double dimer model).

Corollary 17 (to Theorem 14). The partition function for the SL2 double dimer model
is ZQ from equation 2.

5 Examples

We now work out two examples in which we squish boxed 2 × 2 × 2 and 2 × 2 × 4
plane partitions, with boxes weighted by w(i, j, k). These do not have nice closed-form

the electronic journal of combinatorics 31(1) (2024), #P1.61 16

t

t

t t

s

r

s

r

r

r

s

s

q

q

q

q

q

q

q

s1/2
t−1/2

r1/2

s−1/2

t1/2
r−1/2

s1/2
t−1/2

r1/2

s−1/2

t1/2
r−1/2

s1/2
t−1/2

r1/2

s−1/2

t1/2
r−1/2

s1/2
t−1/2

r1/2

s−1/2

t1/2
r−1/2

s1/2
t−1/2

r1/2

s−1/2

t1/2
r−1/2

s1/2
t−1/2

r1/2

s−1/2

t1/2
r−1/2

s1/2
t−1/2

r1/2

s−1/2

t1/2
r−1/2

s1/2
t−1/2

r1/2

s−1/2

t1/2
r−1/2

s1/2
t−1/2

r1/2

s−1/2

t1/2
r−1/2

s1/2k2
r1/2k1

t1/2k3

t3/2k3p

r3/2k1p

t1/2k3

r3/2k1p

t1/2k3

s1/2k2r1/2k1

t3/2k3p

s3/2k2pr1/2k1

s3/2k2p r3/2k1p

s3/2k2p

s3/2k2p

t1/2k3

s1/2k2

t3/2k3p

t3/2k3p Q2

Figure 12: Top: 2-periodic weights for the single dimer model. Bottom: SL2 connection
and scalar weight for the corresponding double dimer model.

generating functions akin to MacMahon’s generating function, but we can nonetheless
evaluate them with our techniques. We also investigate the specializations of our formula
at primitive roots of unity, recovering and extending the results of [9], as well as a new
conjecture.

Example 18 (2×2×2). Consider the path around a single hexagon that is the result of
a particular single dimer configuration sent through the squish map, or a 2× 2× 2 boxed
plane partition in the double dimer model. The two configurations on H2,2,2 that do not
give rise to a loop under the squish map are pictured in Figure 13. The right graphic has
a total weight of 1, and the right graphic has a total weight of Q2. Then the remaining
18 partitions are represented by the polynomial 1 + q + qr + qs + qt + qrs + qrt + qst +
4qrst+ qr2st+ qrs2t+ qrst2 + qr2s2t+ qr2st2 + qrs2t2 + qr2s2t2 + q2r2s2t2.

We want to draw a comparison between ZQ and the matrix model under the squish
map, so consider the trace of the product of terms corresponding to the single hexagon

loop,
η

a2b2c2
, where η := a4b4c4 + a4b4c2 + a4b2c4 + a2b4c4 + a4b2c2 + a2b4c2 + a2b2c4 +

4a2b2c2 + a2b2 + a2c2 + b2c2 + a2 + b2 + c2 + 1. Note that this is only the connection in the
SL2(C) double dimer model, not also the weights. So let the weight on every horizontal

the electronic journal of combinatorics 31(1) (2024), #P1.61 17

Figure 13: The only two configurations of a 2 × 2 × 2 single dimer model that do not
squish to a single hexagon loop.

edge be
Q(height of that edge) = (qa2b2c2)(height of that edge),

as in Figure 2. Then the total contribution (the connection and the weight) of that single
hexagon is

qa2b2c2
(η

a2b2c2

)
= q · η.

Now consider a mapping from ZQ to the matrices, where a2 = r, b2 = s, and c2 = t.
Then Q = qrst = qa2b2c2. Then making the replacements in the statement above, we get

q
(
r2s2t2 + r2s2t + r2st2 + rs2t2 + r2st + rs2t + rst2 + 4rst + rs + st + rt + r + s + t + 1

)
.

Then this matches what we got for ZQ when we include the 1 and Q2 terms from the
two non-loop configurations.

Example 19 (2×2×4). For another example, we consider the case with two hexagons,
or a 2× 2× 4 boxed plane partition. Our generating function is

GF2×2×4 = q4r4s4t4 + q3r4s4t4 + q3r4s4t3 + q3r4s3t4 + q3r3s4t4 + q3r4s3t3 + q3r3s4t3

+ q2r4s4t3 + q3r3s3t4 + q2r4s4t2 + 4q3r3s3t3 + q2r4s3t3 + q2r3s4t3 + q3r3s3t2

+ q2r4s3t2 + q2r3s4t2 + q3r3s2t3 + q3r2s3t3 + 3q2r3s3t3 + q3r3s2t2 + q3r2s3t2

+ 4q2r3s3t2 + q3r2s2t3 + 2q2r3s2t3 + 2q2r2s3t3 + q2r3s3t + q3r2s2t2 + 3q2r3s2t2

+ 3q2r2s3t2 + 3q2r2s2t3 + q2r3s2t + q2r2s3t + 9q2r2s2t2 + q2r2st3 + q2rs2t3

+ 3q2r2s2t + 3q2r2st2 + 3q2rs2t2 + qr2s2t2 + q2rst3 + 2q2r2st + 2q2rs2t + qr2s2t

+ 4q2rst2 + qr2st2 + qrs2t2 + 3q2rst + qr2st + qrs2t + q2rt2 + q2st2 + qrst2

+ q2rt + q2st + 4qrst + q2t2 + qrs + q2t + qrt + qst + qr + qs + qt + q + 1.

This generating function, however, contains all 105 of the terms given by a 2× 2× 4
four-colored boxed plane partition. To compare with the matrix version, we need to be
careful which terms squish to which configurations. See Figure 14.

the electronic journal of combinatorics 31(1) (2024), #P1.61 18

Figure 14: A representation of of each possible result of pushing the 2×2×4 single dimer
configuration through the squish map.

Note that the top row of configurations in Figure 14 has no loops (only doubled edges),
so there is no contribution from the SL2(C) connection. So we get a contribution only
from the weight, and we get 1 for the configuration on the left, Q2 for the configuration in
the middle, and Q4 for the configuration on the right. Since there is only one configuration
in the single dimer model that squishes to each of these they must each account for only
one term each in the generating function GF2×2×4, namely 1, q2r2s2t2, and q4r4s4t4.

Now we examine the second line of Figure 14. From the 2× 2× 2 (Example 18) case,
we see that we get 18 terms in the generating function for a single loop. So each of the first
two figures in the second line correspond to 18 terms in the generating function, but to
determine which terms we need to include the Q-weights. So the lower left figure has two
horizontal edges, the lower getting a weight of 1 and the upper getting a weight of Q. So
this diagram corresponds with the terms Q (the single hexagon generating function seen
previously) = Q (r2s2t2 +r2s2t+r2st2 +rs2t2 +r2st+rs2t+rst2 +4rst+rs+st+rt+r+
s+ t+ 1). Then the lower-middle diagram gets a weight of Q2 ·Q = Q3, so its generating
function is Q3(r2s2t2+r2s2t+r2st2+rs2t2+r2st+rs2t+rst2+4rst+rs+st+rt+r+s+t+1).
Then we have the 105 monomials from GF2×2×4, and subtract off the three monomials
corresponding to the no-loop configurations, and the 2 · 18 monomials just described
corresponding to single hexagon loop configurations, and we are left with the following
66 terms: (r4s4t2 + r4s4t + r4s3t2 + r3s4t2 + r4s3t + r3s4t + 3r3s3t2 + 4r3s3t + 2r3s2t2 +
2r2s3t2 + r3s3 + 3r3s2t+ 3r2s3t+ 3r2s2t2 + r3s2 + r2s3 + 8r2s2t+ r2st2 + rs2t2 + 3r2s2 +

the electronic journal of combinatorics 31(1) (2024), #P1.61 19

3r2st+3rs2t+rst2+2r2s+2rs2+4rst+3rs+rt+st+r+s+ t+1)q2t, which corresponds
to a loop around two hexagons, as in the lower right of Figure 14.

To compare with the corresponding contribution of the SL2 double dimer model, we
first take the matrix product of a monodromy around both hexagons, then take the trace
and multiply by the weight (qa2b2c2)2.

(qa2b2c2)2 ·
(

1

a4b4c2
·
[
a8b8c4 + a8b8c2 + a8b6c4 + a6b8c4 + a8b6c2 + a6b8c2

+3a6b6c4 + 4a6b6c2 + 2a6b4c4 + 2a4b6c4 + a6b6 + 3a6b4c2 + 3a4b6c2 + 3a4b4c4

+a6b4 + a4b6 + 8a4b4c2 + a4b2c4 + a2b4c4 + 3a4b4 + 3a4b2c2

+3a2b4c2 + a2b2c4 + 2a4b2 + 2a2b4 + 4a2b2c2 + 3a2b2 + a2c2 + b2c2 + a2 + b2 + c2 + 1
])

Then make the replacements using a2 = r, b2 = s, and c2 = t. The resulting poly-
nomial is (r4s4t2 + r4s4t + r4s3t2 + r3s4t2 + r4s3t + r3s4t + 3r3s3t2 + 4r3s3t + 2r3s2t2 +
2r2s3t2 + r3s3 + 3r3s2t+ 3r2s3t+ 3r2s2t2 + r3s2 + r2s3 + 8r2s2t+ r2st2 + rs2t2 + 3r2s2 +
3r2st+ 3rs2t+ rst2 + 2r2s+ 2rs2 + 4rst+ 3rs+ rt+ st+ r+ s+ t+ 1)q2t, which matches
exactly with the 66 terms from naively enumerating the plane partitions with the same
weights.

5.1 Specializations

In an attempt to find a simple application of these techniques to plane partition enumer-
ation, we have noticed the following curious phenomenon. Consider the specialization
a = b = c = ω, a primitive nth root of unity for various n, and let L be a loop which
appears in the SL2 double dimer model, after performing the squish map.

Theorem 20. If n = 1 or n = 2, then the contribution of L is the number of double
dimer configurations that contribute to that loop.

Example 21. Consider the shape from Figure 15 (one of the six snake tiles). The path
around this tile is γ−1(β−1α−1γα−1)2γ(βαγ−1α)2, and if we calculate out that matrix
product and then specialize to a = b = c = ω, a first or second root of unity, we get the
matrix [

1393 576
2208 913

]
.

The trace of this matrix is 2306, corresponding with the 2306 possible double dimer
configurations that squish to that particular snake tile.

Proof. The first and second roots of unity case essentially acts as a reduction from the
α, β, and γ version of the matrices to the original L and R vertex turn matrices. If
we calculate the path around a shape as turns instead of using edge connections α, β,
and γ, then we get the same resulting trace of the matrix product. In example 21,
we would have the turn sequence (reading right-to-left since it corresponds to a path)
LLLRRLLRLLLLRRLLRL, and if we use the originally-defined L and R matrices, we

would get

[
337 1152
576 1969

]
, which has a trace of 2306, as in the example.

the electronic journal of combinatorics 31(1) (2024), #P1.61 20

Figure 15: γ−1(β−1α−1γα−1)2γ(βαγ−1α)2.

Theorem 22. If n = 4 then the contribution of L is 2.

Proof. Note that this is the same contribution as if the connection were trivial (the matrix
associated to every edge of G being identity matrix). When n = 4, then each matrix α,
β, and γ is equivalent to −I, where I is the 2×2 identity matrix. Then since any possible
loop in the graph must have even length, the resulting product around a loop is I.

Theorem 23. If n = 8, then the result of multiplying the connection around L is

±
[
1 0
0 1

]
, where the sign tracks the parity of the number of hexagons contained in L.

Note that this is still true regardless of our choice of basepoint.

Proof. The trace of a loop around a single hexagon when specialized to eighth roots of

unity is

[
−1 0
0 −1

]
= −1 ·

[
1 0
0 1

]
= −I. Then assume that the path around a region

containing n hexagons is (−1)n · I.
Consider a region R with n hexagons, as in our assumption above. Attach one

additional hexagon on the boundary of R in a way that does not affect the simply-
connectedness of R, and call this new region R′. Choose your basepoint to be the spot
right after the added hexagon. Then the boundary of R is the same until the new hexagon.
Upon reaching the new hexagon, take the old path of R, then loop all the way around
the new hexagon (still in the counterclockwise direction). Note that this will traverse the
most recent one to five edges from R, but now in the opposite direction. Finally, the
boundary of R′ also includes the boundary of the new hexagon. So our whole path is that
of R · {path around a single hexagon}, which is (−1)n · I · (−1) · I = (−1)n+1 · I.

For the next conjecture we need some terminology from Conway-Lagarias [1] about
tiling regions in H with tiles made of unions of hexagons. A bone is the union of three
collinear adjacent hexagons in H; a stone is the union of three hexagons in H which all
share a common vertex. A signed tiling of L is a collection of tiles, each with a weight
of +1 or −1, covering L in such a way that the total contribution at each hexagon inside

the electronic journal of combinatorics 31(1) (2024), #P1.61 21

L is 1, and the total contribution of each hexagon outside L is zero. We also define one
more tile, the snake, which is a union of four hexagons in an “S” shape (see Figure 15).

Conjecture 24. If n = 3 or n = 6, then the contribution of L is 0 unless there exists a
signed tiling of L by stones, bones and snakes – in which case, the contribution is (−1)s ·I,
with s being the number of stones used in the signed tiling.

(γ−1β−1)3α−1(γβ)3α γ−1(β−1α−1)3γ(βα)3 β−1(α−1γ)3β(αγ−1)3

(γ−1β−1)2(α−1γ)2(βα)2 (β−1α−1)2(γβ)2(αγ−1)2

(αγ−1β−1γ−1)2β−1(α−1γβγ)2β (γ−1β−1α−1β−1)2α−1(γβαβ)2α (γ−1αγ−1β−1)2α−1(γα−1γβ)2α

γ−1(β−1γ−1β−1α−1)2γ(βγβα)2 β−1(α−1β−1α−1γ)2β(αβαγ−1)2 γ−1(β−1α−1γα−1)2γ(βαγ−1α)2

Figure 16: All of the tiles we use for ω a third or sixth root of unity. The top row is all
three orientation of bones, the second row both orientation of stones, and the bottom two
rows all six orientations of the snake tile.

When n = 3 or n = 6, then the contribution of a loop around a bone or snake is I. So
if we inductively add tiles to a region (as we did in the proof of Theorem 23 for individual
hexagons), we get ±I, where the parity depends only on the number of stone tiles used
in the tiling. So to prove the conjecture, one needs only show that the monodromy of all
non-signed-tilable L is 0.

the electronic journal of combinatorics 31(1) (2024), #P1.61 22

Figure 17: The single dimer model before and after the squish map showing various closed
loops, including two snakes, a bone, and some other loops with positive contributions
under Conjecture 24.

We expect that after this specialization our SL2 connection is strongly related to the
character of one of the Conway-Lagarias tiling groups, so the proof will involve computing
this character, as well as a map from said tiling group to a subgroup generated by the
matrices α, β, and γ. Note that a contribution of 0 means that a double dimer configura-
tion will not contribute at all to the partition function, so this should give an interesting
generating function for “good pairs” of plane partitions.

6 Concluding remarks

Here we explain the process of finding α, β, and γ. Perhaps our discovery process is of
interest to the reader that has made it this far.

Let M (for move) be the matrix M = L−1R. Then M−1 = R−1L. Our first attempt
to create matrices α, β, and γ involved simply conjugating A,B,C with different powers
of M , noting that M3 = −I. Based on empirical studies of the shortest possible loop, six
left turns around a single hexagon, this looked close to the correct definition. We defined
α1 := A, β1 := M−1BM , and γ1 := M−2BM2. These matrices worked for our main goal
– terms in the trace of the resulting matrix count how many perfect matchings squish
to a particular loop, with the correct weights. However, that polynomial had alternating
signs depending on the total degree of each term.

Our next step was to correct for the signs by replacing a with ai, b with bi, and c
with ci in the original A, B and C matrices. Let A′, B′, and C ′ be the corresponding
A, B, and C matrices after making the above replacements. We wanted all of the signs
to be positive because the matrix product of a path around a loop should give rise to a

the electronic journal of combinatorics 31(1) (2024), #P1.61 23

probability measure on the graph, as in [4]. After including the is we had a trace that
has all positive values. Then, α2 := A′, β2 := M−1B′M , and γ2 := M−2C ′M2.

We had one final problem, however: we needed to accomplish the specialization a 7→ ai,
etc, using linear algebra. We did this using the matrix J as defined above. We can
now rewrite A′ = iJA, B′ = −iJB, and C ′ = iJC. Finally, to correct for the signs we
mentioned, we conjugate each α2, β2, and γ2 with J . So (finally) we have that α3 := JA′J ,
β3 := JM−1B′MJ , and γ3 := JM−2C ′M2J . After rewriting and simplifying, we arrive
at the final definition of α, β, and γ as stated in Definition 11.

Acknowledgements

We would like to thank Richard Kenyon and Sunil Chhita for helpful conversations. Leigh
Foster received support from NSF grant DMS-2039316.

References

[1] J. H. Conway and J. C. Lagarias. Tiling with polyominoes and combinatorial group
theory. J. Combin. Theory Ser. A, 53(2):183–208, 1990.

[2] Ira Gessel and Gérard Viennot. Binomial determinants, paths, and hook length
formulae. Adv. in Math., 58(3):300–321, 1985.

[3] PW Kasteleyn. The statistics of dimers on a lattice. Physica, 27:1209–1225, 1961.

[4] Richard Kenyon. Conformal invariance of loops in the double-dimer model. Comm.
Math. Phys., 326(2):477–497, 2014.

[5] Bernt Lindström. On the vector representations of induced matroids. Bull. London
Math. Soc., 5:85–90, 1973.

[6] Percy A. MacMahon. Combinatory analysis. Vol. I, II (bound in one volume). Dover
Phoenix Editions. Dover Publications Inc., Mineola, NY, 2004.

[7] H. N. V. Temperley and Michael E. Fisher. Dimer problem in statistical mechanics—
an exact result. Philos. Mag. (8), 6:1061–1063, 1961.

[8] Benjamin Young. Squishing dimers on the hexagon lattice. Electron. J. Combin.,
16(1):#R86, 20, 2009.

[9] Benjamin Young. Generating functions for colored 3D Young diagrams and the
Donaldson-Thomas invariants of orbifolds. Duke Math. J., 152(1):115–153, 2010.

the electronic journal of combinatorics 31(1) (2024), #P1.61 24

	Introduction
	Definitions and literature survey

	The single and double dimer models
	The squish map
	Coordinates on the honeycomb grid
	Degenerating H to 2H
	The squish map
	Transfer matrix approach
	From transfer matrices to the SL2 connection

	Generating functions and specializations
	Arbitrary weights
	Periodic weights on plane partitions

	Examples
	Specializations

	Concluding remarks

