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Abstract

For a k-tree T , we prove that the maximum local mean order is attained in a
k-clique of degree 1 and that it is not more than twice the global mean order. We
also bound the global mean order if T has no k-cliques of degree 2 and prove that for
large order, the k-star attains the minimum global mean order. These results solve
the remaining problems of Stephens and Oellermann [J. Graph Theory 88 (2018),
61–79] concerning the mean order of sub-k-trees of k-trees.

Mathematics Subject Classifications: 05C05, 05C35

1 Introduction

In [10] and [11] Jamison considered the mean number of nodes in subtrees of a given
tree. He showed that for trees of order n, the average number of nodes in a subtree
of T is at least (n + 2)/3, with this minimum achieved if and only if T is a path. He
also showed that the average number of nodes in a subtree containing a root is at least
(n + 1)/2 and always exceeds the average over all unrooted subtrees. The mean subtree
order in trees was further investigated, e.g. in [3, 7, 14, 20, 22], as well as extensions to
arbitrary graphs [1, 4–6] and the mean order of the connected induced subgraphs of a
graph [8, 9, 17–19].
In [16], Stephens and Oellermann extended the study to k-trees and families of sub-k-trees.
A k-tree is a generalization of a tree that has the following recursive construction.

Definition 1 (k-tree). Let k be a fixed positive integer.

1. The complete graph Kk is a k-tree.
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2. If T is a k-tree, then so is the graph obtained from T by joining a new vertex to all
vertices of some k-clique of T .

3. There are no other k-trees.

Note that for k = 1 we have the standard recursive construction of trees. A sub-k-tree
of a k-tree T is a subgraph that is itself a k-tree. Let S(T ) denote the collection of all
sub-k-trees of T and let N(T ) := |S(T )| be the number of sub-k-trees. We denote by
R(T ) =

∑
X∈S(T )|X| the total number of vertices in all sub-k-trees (where for a graph G

the notation |G| is used throughout to mean the number of vertices in G). The global
mean (sub-k-tree) order is

µ(T ) =
R(T )

N(T )
.

For an arbitrary k-clique C of T , let S(T ;C) denote the collection of sub-k-trees containing
C and let N(T ;C) := |S(T ;C)|. The local clique number is R(T ;C) =

∑
X∈S(T ;C)|X| and

the local mean (sub-k-tree) order is

µ(T ;C) =
R(T ;C)

N(T ;C)
.

The degree of C is the number of (k + 1)-cliques that contain C.
Stephens and Oellermann concluded their study of the mean order of sub-k-trees of k-trees
with several open questions. Our main contribution here is to answer three of them.
It was conjectured by Jamison in [10] and proven by Vince and Wang in [20] that for
trees of order n without vertices of degree 2—called series-reduced trees—the global mean
subtree order is between n

2
and 3n

4
. For k-trees we provide similar asymptotically sharp

bounds, answering [16, Problem 6].

Theorem 2. For every k-tree T without k-cliques of degree 2, the global mean sub-k-tree
order satisfies

n+ k

2
− on(1) < µ(T ) <

3n+ k − 3

4
.

These bounds are asymptotically sharp. In particular, for large k, 3n
4

is not an upper
bound. For large n, the k-star is the unique extremal k-tree for the lower bound.

Wagner and Wang proved in [21] that the maximum local mean subtree order occurs at
a leaf or a vertex of degree 2. We prove an analogous result for k-trees, answering [16,
Problem 4]. In contrast to the result for trees, it turns out that for k > 2, the maximum
can only occur at a k-clique of degree 1, unless T is a k-tree of order k + 2.

Theorem 3. Suppose that k > 2. For a k-tree T of order n 6= k + 2, if a k-clique C
maximizes µ(T ;C), then C must be a k-clique of degree 1. For n = k + 2, every k-clique
C satisfies µ(T ;C) = k + 1.

Lastly, Jamison [10] conjectured that for a given tree T and any vertex v, the local mean
order is at most twice the global mean order of all subtrees in T . Wagner and Wang [21]
proved that this is true. Answering [16, Problem 2] affirmatively, we show
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Theorem 4. The local mean order of the sub-k-trees containing a fixed k-clique C is less
than twice the global mean order of all sub-k-trees of T .

1.1 Related Results

A total of six questions were posed in [16]. Problems 1 and 3 were solved by Luo and
Xu [13]. Regarding the first problem, Jamison [10] showed that for any tree T and any
vertex v of T , the local mean order of subtrees containing v is an upper bound on the
global mean order of subtrees of T . Stephens and Oellermann asked about a generalization
to k-trees, to which Luo and Xu showed:

Theorem 5 ([13]). For any k-tree T of order n with a k-clique C, we have µ(T ;C) > µ(T )
with equality if and only if T ∼= Kk.

For the third problem, it was shown in [10] that paths have the smallest global mean
subtree order. For k-trees we have:

Theorem 6 ([13]). For any k-tree T of order n, we have

µ(T ) >

(
n−k+2

3

)(
n−k+1

2

)
+ (n− k)k + 1

+ k

with equality if and only if T is a path-type k-tree.

Very recently, Li, Ma, Dong, and Jin [12] gave a partial proof of Theorem 3, showing that
the maximum local mean order always occurs at a k-clique of degree 1 or 2, thus also
solving [16, Problem 4]. They did this by combining the fact that the 1-characteristic trees
of adjacent k-cliques can be obtained from each other by a partial Kelmans operation [12,
Lem. 4.6], an inequality between local orders of neighboring vertices after performing a
partial Kelmans operation [12, Thm. 3.3], as well as [16, Lem. 11] and [21, Thm. 3.2].
Theorem 3 also solves Problem 5.4 from [12], asking whether the maximum local mean
order can ever occur at a k-clique of degree 2, but not at a k-clique of degree 1.
Outline: In Section 2, we go over definitions and notation. Theorems 2, 3, 4 are proven
in Sections 3, 4, 5 respectively. We additionally address [16, Problem 5], which is a
more general question asking what one can say about the local mean order of sub-k-trees
containing a fixed r-clique for 1 6 r 6 k. We give a possible direction and partial results
in the concluding section.

2 Notation and Definitions

The global mean sub-k-tree order µ(T ) and the local mean sub-k-tree order µ(T ;C) are
defined in the introduction. The local mean order always counts the k vertices from C
and it sometimes will be more convenient to work with the average number of additional
vertices in a (uniform random) sub-k-tree of T containing C, in which case we use the
notation µ•(T ;C) = µ(T ;C)− k. Moreover, the number of sub-k-trees not containing C
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will be denoted by N(T ;C) = N(T ) − N(T ;C) and the total number of vertices in the
sub-k-trees that do not contain C will be denoted by R(T ;C) = R(T )−R(T ;C).
A k-leaf or simplicial vertex is a vertex belonging to exactly one (k + 1)-clique of T , i.e.,
a vertex of degree k. A simplicial k-clique is a k-clique containing a k-leaf. Note that
a k-clique of degree 1 is not necessarily simplicial. A major k-clique is a k-clique with
degree at least 3. Two k-cliques are adjacent if they share a (k − 1)-clique.
The stem of a k-tree T is the k-tree obtained by deleting all k-leaves from T .
Subclasses of trees generalize to subclasses of k-trees. We will reference two in particular:
paths generalize to path-type k-trees that are either isomorphic to Kk or Kk+1 or have
precisely two k-leaves. Note that for every n > k + 4 and k > 2, there are multiple
non-isomorphic path-type k-trees of order n.
A k-star is either Kk or Kk+1, or it is the unique k-tree with n − k simplicial vertices
when n > k + 2.
Furthermore, the combination of a k-star and a k-path is called a k-broom: take a k-path
of a certain length and add some simplicial vertices to a simplicial k-clique of the k-path.

Figure 1: Examples of a 3-path, 3-star and 2-broom.

For a given k-clique C in T , it is often useful to decompose T into C and the sub-k-trees
that result from deleting C. Let B1, B2, . . . , Bd be the (k + 1)-cliques that contain C,
and let vi be the vertex of Bi \ C. Moreover, let Ci,1, . . . , Ci,k be the k-subcliques of Bi

other than C. The k-tree T can be decomposed into C and k-trees T1,1, . . . , Td,k, rooted at
C1,1, . . . , Cd,k respectively, that are pairwise disjoint except for the vertices of the cliques
Ci,j.
In a 1-tree, any two vertices are connected by a unique path. This fact generalizes to
k-trees through the construction of the 1-characteristic tree of a k-tree T [13, 16]. For a
k-clique C in T , a perfect elimination ordering of T to C is an ordering v1, v2, . . . , vn−k
of its vertices other than V (C) = {c1, . . . , ck} such that each vertex vi is simplicial in the
k-tree spanned by C and vj, 1 6 j 6 i. In [16] it is shown that for any v /∈ C, there is
a unique sequence of vertices that along with C induce a path-type k-tree P (C, v) and
that form a perfect elimination ordering of P (C, v) to C. It is also proven that T can
be written as

⋃
P (C, v) where the union is taken over all k-leaves v ∈ V . Each k-tree

P (C, v) has an associated 1-tree P ′(C, v) where the vertices consist of a single vertex
representing the entire clique C, along with the remaining non-C vertices of P (C, v). The
edges are consecutive pairs from the perfect elimination ordering. Taking

⋃
P ′(C, v) over

all k-leaves v gives us what is called the 1-characteristic tree of T , which we will denote
T ′C . See Figure 2 for an example.
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Figure 2: A 2-tree (left) with 2-clique C = {c1, c2} and the 1-characteristic tree (right).

Figure 3: Series-reduced trees with minimum mean subtree order for 6 6 n 6 10.

3 Excluding k-cliques of degree 2

In this section, we prove

Theorem 2. For every k-tree T without k-cliques of degree 2, the global mean sub-k-tree
order satisfies

n+ k

2
− on(1) < µ(T ) <

3n+ k − 3

4
.

These bounds are asymptotically sharp. In particular, for large k, 3n
4

is not an upper
bound. For large n, the k-star is the unique extremal k-tree for the lower bound.

3.1 The lower bound

Among series-reduced trees of order n, for 4 6 n 6 8 the star attains the maximum mean
subtree order, but for n > 11 it attains the minimum mean subtree order. It can be
derived from [7, Lem. 12] and an adapted version of [7, Cor. 11] (with 2 replaced by any
ε > 0, at the cost of replacing 30 by nε) that this is indeed the case for n sufficiently large.1

In [2], it is shown that for 6 6 n 6 10, the series-reduced trees attaining the minimum
mean subtree order are those presented in Figure 3, and for n > 11, Sn is always the
unique extremal graph.
In this subsection, we will prove that the above extremal statement generalizes to k-trees
without a k-clique of degree 2.
First, we prove the following lemma, which states that every k-tree contains a (k+1)-clique
C that plays the role of a centroid in a tree (a vertex or edge whose removal splits the
tree into components of size at most n

2
). Figure 4 is an example of a 2-tree demonstrating

why we must take a (k + 1)-clique and not a k-clique.

Lemma 7. Any k-tree T (of order n > k + 1) has a (k + 1)-clique C such that the order

of all components of T \ C is at most
⌈
n−(k+1)

2

⌉
.

1We thank John Haslegrave for this remark.
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Figure 4: 2-tree with a centroid 3-clique but no centroid 2-clique.

Proof. Suppose for contradiction that such a (k + 1)-clique does not exist. Consider the
(k + 1)-clique C for which the largest component of T \ C has minimum order over all

choices of C. By assumption, the largest component of T \C has order n0 >
⌈
n−(k+1)

2

⌉
, and

by the construction of a k-tree, there exist vertices u ∈ C and v in the largest component
T0 of T \ C such that u has no neighbor in T0 and v ∪ (C \ u) forms a (k + 1)-clique C ′.
Now T \ C ′ has components whose sizes are bounded by max {n− n0 − k, n0 − 1} < n0,
which gives a contradiction. Hence C satisfies the stated property.

The following lemma and its proof are similar to [15, Lemma 5.1].

Lemma 8. For any k-tree T without k-cliques of degree 2, there is a k-clique C ′ for which
µ(T ;C ′)− µ(T ) 6 n3

2(n−k)/4+1 = on(1).

Proof. Take C as in Lemma 7. Let its vertices be {u1, u2, . . . , uk+1}.
For every component of T \ C, there is a unique vertex ui, 1 6 i 6 k + 1, such that
the component together with C \ ui forms a k-tree. Now we consider two cases that are
handled analogously.
Case 1: There is some ui such that the union of components that form a k-tree when
adding C ′ = C \ ui has order at least n−k

2
.

In this case, we consider the r 6 n− k components of T \C ′ and for every 1 6 j 6 r, we
let Tj be the union of such a component and C ′.
We then apply the following claim:

Claim 9. Let C ′ be a k-clique in a k-tree T of order n with no k-cliques of degree 2. Then
T has at least n−k+1

2
simplicial vertices that are not in C ′.

Proof. Consider the 1-characteristic tree T ′C′ , whose order is n−k+1. For every u ∈ T \C ′,
either all the k-cliques containing u have degree 1, in which case u has degree 1 in T ′C′ ,
or (at least) one of them has degree at least 3 and so does u in T ′C′ . Thus T ′C′ is series-
reduced and thus has at least n−k+1

2
+ 1 leaves. The latter implies that T has at least

n−k+1
2

simplicial vertices that are not in C ′. ♦

By the choice of C, for every 1 6 j 6 r, there are at least
⌊
n−k+1

2

⌋
vertices that do not

belong to Tj. By Claim 9, among them are at least n−k
4

simplicial vertices of T . Observe
that given any sub-k-tree of T containing C ′, we can map it to its sub-k-tree intersection
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with Tj. If two elements of S(T ;C ′) differ only in some subset of k-leaves of
⋃
h6=j Th, then

they map to the same element of S(Tj;C
′). Thus, each element of S(Tj;C

′) is mapped to

at least 2
n−k
4 times, and N(T ;C ′) > 2

n−k
4 N(Tj;C

′).
Using the perfect elimination ordering, every sub-k-tree S in Tj not containing C ′ can be
extended in a minimal way into a sub-k-tree containing C ′. Furthermore, by considering
the 1-characteristic tree T ′C′ of C ′, it is clear that there are no more than |Tj| − k 6⌈
n−(k+1)

2

⌉
6 n

2
k-trees that extend to the same tree. Here we have used Lemma 7 again.

Thus, if we define a map from S(Tj;C
′) to S(Tj;C

′) using the minimal extension, every
element of S(Tj;C

′) is mapped to at most n
2

times.
Putting the previous two observations together, we have that the number of sub-k-trees
containing C ′ is N(T ;C ′) > 2

n−k
4 N(Tj;C

′) > 1
n
2

n−k
4

+1N(Tj;C
′).

By summing over all j, we obtain that

rN(T ;C ′) >
1

n
2

n−k
4

+1

r∑
j=1

N(Tj;C
′) =

1

n
2

n−k
4

+1N(T ;C ′).

Since r 6 n, we have that N(T ;C ′) > 1
n2 2

n−k
4

+1N(T ;C ′). This implies that
µ(T )

µ(T ;C′)
> 1− n2

2
n−k
4 +1

. The result follows now from µ(T ;C ′) 6 n.

Case 2: For every ui the union of components in T \ C that form a k-tree when adding
C \ ui has order smaller than n−k

2
.

Let Ti, 1 6 i 6 k+ 1, be the k-trees obtained above when adding C \ ui. By Claim 9, for
each i there are at least n−k

4
k-leaves not belonging to Ti. Thus, the same computations

apply and in particular we have that N(T ;C ′) > 1
n2 2

n−k
4

+1N(T ;C ′) as before. Now for
C ′ = C \u1, we conclude by inclusion monotonicity [13, Thm. 33] that µ(T ;C ′)−µ(T ) 6
µ(T ;C)− µ(T ) 6 n3

2(n−k)/4+1 .

Proof of Theorem 2, lower bound. Take a k-clique C ′ which satisfies Lemma 8. Let T ′C′
be the 1-characteristic tree of T with respect to C ′. By [13, Thm. 33] and [7, Lem. 12],
we conclude that µ(T ;C ′) = µ(T ′C′ ;C

′) + k − 1 > n+k
2

+ i−1
10
, where i is the number of

internal vertices in T ′C′ . By Lemma 8, we conclude.
For sharpness, observe that if T is not a k-star, we have i > 2 and the lower bound
inequality is strict. When T is a k-star, it contains no k-cliques of degree 2 provided that

n > k + 2. As computed in [16] (page 64), µ(T ) = R(T )
N(T )

= (n+k)2n−k−1

2n−k+(n−k)k = n+k
2
− on(1).

3.2 The upper bound

In this subsection, we generalize to k-trees the statement that a series-reduced tree has
average subtree order at most 3n

4
by giving a lower bound for the number of k-leaves and

proving that k-leaves belong to at most half of the sub-k-trees. This idea was also used
in [7]. Note that the upper bound is slightly larger than 3n

4
for larger k, which intuitively

can be explained by the fact that the smallest sub-k-tree already has k vertices, and more
precisely the vertices in the base k-clique will all be major vertices.
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Proof of Theorem 2, upper bound. Our upper bound will come from the observation that
µ(T ) =

∑
v∈T p(v) where p(v) is the fraction of sub-k-trees containing v. We will specifi-

cally consider when v is a k-leaf and bound the corresponding terms in the summation.
We first prove that the 1-characteristic tree T ′C of a k-tree T without k-cliques of degree
2 is a series-reduced tree, for any k-clique C of T . Indeed, given a k-clique C, there is
either exactly one vertex adjacent to C or at least 3. As such, the degree of C in T ′C is
not 2. For any other vertex v ∈ T \C, either it is a leaf or some vertex w was added to a
k-clique C ′, where v is the latest vertex of C ′. In the latter case, note that v was added
to some k-clique of the form C ′ ∪{u} \ {v}. This implies that u and w are adjacent to all
of C ′, and since T has no k-cliques of degree 2, there must be at least another vertex w′

with this property. Now v is adjacent to w, w′, and some earlier vertex, so its degree in
T ′C is at least 3.
Thus T ′C has at least n−k+1

2
+ 1 leaves, which implies that T contains at least this many

k-leaves (here one must also observe that if C has degree 1 in T ′C , some vertex of C is
simplicial in T ).
Now fix a k-leaf v. Since n > k + 2, there is a vertex u (different from v) such that
N(v) ∪ {u} spans a Kk+1. Define a function f on sub-k-trees containing v such that
f(C ′) = (C ′ \ {v}) ∪ {u} for a k-clique C ′ and f(T ′) = T ′ \ v otherwise. We can check
that f maps k-cliques to k-cliques and is in fact an injection from sub-k-trees containing
v to sub-k-trees not containing v. Indeed, because v is a k-leaf, C ′ ∪ {u} is not a (k+ 1)-
clique and thus not a sub-k-tree. Hence there does not exist a (k+ 1)-clique C ′′ for which
C ′′ \ {v} = (C ′ \ {v}) ∪ {u}.
This implies that every k-leaf belongs to at most half of the sub-k-trees in T . Remembering
that there are at least n−k+3

2
k-leaves, the global mean order of T is then

µ(T ) =
∑

v non-k-leaf

p(v) +
∑

v k-leaf

p(v) 6 n− 1

2
· n− k + 3

2
=

3n+ k − 3

4
.

For sharpness, let n = 2s + 3 − k for an integer s. We construct T by first constructing
a caterpillar T ′ which consists of a path-type k-tree P k+1

s on vertices v1, v2, . . . , vs, for
which every k + 1 consecutive vertices form a clique, and adding a k-leaf connected to
every k consecutive vertices. To obtain T , we extend T ′ by adding two k-leaves, which
are connected to {v1, . . . , vk} and {vs−k+1, . . . , vs} respectively. Note that T has a “stem”
of s vertices and the number of k-leaves is `+ 2 = (s− k + 1) + 2 = s− k + 3.
This k-tree T has the property that none of the k-cliques has degree 2: if a k-clique
contains one of the k-leaves, its degree is 1, since every k-leaf only belongs to one (k +
1)-clique. Otherwise, a k-clique consists entirely of vertices of the stem. If they are
consecutive vertices vi, vi+1, . . . , vi+k−1, the degree of the clique is 3: the clique can be
extended to a (k+ 1)-clique by adding vi−1, vi+k, or the additional k-leaf that is adjacent
to it. If the k-clique consists of stem vertices that are non-consecutive, then it must be
a subset of a clique of k + 1 consecutive vertices vi, vi+1, . . . , vi+k (otherwise its first and
last vertex would not be adjacent). This only extends to one (k + 1)-clique (by adding
the missing vertex), so the degree is 1.
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For every 1 6 i 6 s− k, there are i sub-k-trees of the stem each of order s+ 1− i. Each
of these can be extended by adding any subset of the ` + 1 − i neighboring k-leaves, or
even one or two more if some of the end-vertices of the stem are involved.
Now we can compute that

N(T ) = (k(n− k) + 1− `) + 2`+2 + 2
∑̀
i=2

2i +
s−k+1∑
i=3

(i− 2) · 2`+1−i

∼ 9 · 2`.

The first expression k(n − k) + 1 − ` counts the number of simplicial k-cliques different
from the ones consisting of k consecutive vertices in the stem. 2`+2 is the number of
sub-k-trees containing the whole stem. The third term counts the number of sub-k-trees
containing v1 or vs but not both and at least k vertices of the stem. The last summation
counts the sub-k-trees containing at least k vertices of the stem and none of v1 and vs.
We can also compute R(T ) by summing the total size of the respective sub-k-trees.

R(T ) = (k(n− k) + 1− `)k + 2`+2

(
s+

`+ 2

2

)
+ 2

∑̀
i=2

2i
(
k + i− 2 +

i

2

)

+
s−k+1∑
i=3

(i− 2) · 2`+1−i
(
s+ 1− i+

`+ 1− i
2

)
∼ 2`+2

(
s+

`+ 2

2

)
+ 2`+2(k − 2) + 3 · 2`+1(`− 1) + 2`

(
s+ 1 +

`+ 1

2

)
− 15 · 2`−1

=

(
5s+

17

2
`+ 4k − 16

)
2`

=

(
27

4
n+

9

4
k − 111

4

)
2`.

Finally, we conclude that µ(T ) = R(T )
N(T )

∼ 3
4
n + 1

4
k − 37

12
, which is only 7

3
away from the

upper bound. These computations have also been verified in https://github.com/

StijnCambie/AvSubOrder_ktree/blob/main/M_comb_ktree.mw.

4 The maximum local mean order

In this section, we prove

Theorem 3. Suppose that k > 2. For a k-tree T of order n 6= k + 2, if a k-clique C
maximizes µ(T ;C), then C must be a k-clique of degree 1. For n = k + 2, every k-clique
C satisfies µ(T ;C) = k + 1.

We consider the k-clique in a k-tree T for which the local mean order is greatest. Our
aim is to show that its degree cannot be too large, specifically at most 2. To do so,
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(a) A k-star (b) A k-caterpillar.

Figure 5: Sketch of k-trees with mean sub-k-tree order roughly n
2

and 3n
4

for k = 3.

we prove that if a k-clique C has degree at least 2, then there is a neighboring k-clique
whose local mean order is not smaller, with strict inequality when C has degree at least 3.
From this, it already follows that any k-clique attaining the maximum has degree at most
2. Moreover, in the case where the maximum is attained at a k-clique of degree 2, we
will show that one can always move along maximizing k-cliques without doubling back,
which means that one always ends up in at least one k-clique with degree 1 in which the
maximum is attained.
The proof requires some technical inequalities, which we prove first. We start with a
generalization of [21, Lemma 2.1] to the k-tree case as follows.

Lemma 10. For a sub-k-tree T and a k-clique C, we have

R(T ;C) 6
N(T ;C)2 + (2k − 1)N(T ;C)

2
.

Equality holds if and only if T is a path-type k-tree and C is a simplicial k-clique.

Proof. The statement is clearly true when T = C, so assume |T | > k. Observe that every
sub-k-tree T ′ of T containing C has a vertex v (not belonging to C) which is simplicial
within T ′ (consider a perfect elimination order where C is taken as the base k-clique).
This implies that T ′\v is a sub-k-tree containing C as well.
If there exists a sub-k-tree containing C of order ` > k, then the above implies that there
must also exist a sub-k-tree of order ` − 1 containing C. Thus, if we list the sub-k-trees
in S(T ;C) from smallest to largest order, we see that

R(T ;C) 6 k + (k + 1) + · · ·+ (k +N(T ;C)− 1) =
1

2
(N(T ;C)2 + (2k − 1)N(T ;C))

as desired.
The equality case is clear, since every sub-k-tree T ′ 6= C of T must have exactly one k-leaf
not belonging to C, and equality is attained when T is a path-type k-tree.
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Using the previous lemma, we can now bound the local mean order in terms of the number
of sub-k-trees.

Lemma 11. For a k-tree T and one of its k-cliques C, we have

k +
log2N(T ;C)

2
6 µ(T ;C) 6

N(T ;C) + (2k − 1)

2
.

The minimum occurs if and only if T is a k-star and C its base k-clique. The maximum
is attained exactly when T is a path-type k-tree and C is simplicial.

Proof. The upper bound follows immediately from Lemma 10 by dividing both sides of
the inequality by N(T ;C). The equality cases are the same.

By [16, Thm. 12] we have µ(T ;C) > |T |+k
2
. Since a sub-k-tree is determined by its vertices,

we also have
N(T ;C) 6 2|T |−k. (1)

Combining these two inequalities, we get µ(T ;C) > log2N(T ;C)
2

+ k.
To attain the lower bound, equality must hold for (1). This is the case if and only if T is a
k-star and C its base k-clique. Indeed, for a k-star of order n with base clique C, we have
N(T ;C) = 2n−k and µ(T ;C) = n+k

2
. In the other direction, every vertex together with C

needs to form a k-tree and thus a (k + 1)-clique, which is possible only for a k-star.

We will also make use of the following elementary inequality, which can be considered
as the opposite statement of the inequality between the arithmetic mean and geometric
mean (AM-GM).

Lemma 12. Let x1, x2, . . . , xn ∈ R>1, and let P =
∏

i xi. Then
∑

i xi 6 P + (n − 1).
Furthermore, equality is attained if and only if xi = P for some i and xj = 1 for all j 6= i.

Proof. This can be proven in multiple ways. The most elementary way is to observe that
if xi, xj > 1, then xixj + 1 > xi + xj since (xi − 1)(xj − 1) > 0. Repeating this with
pairs of elements which are strictly larger than 1 gives the result. Alternatively, one could
consider the variables αi = log(xi) > 0. Since their sum is the fixed constant logP and
the exponential function is convex, as a corollary of Karamata’s inequality

∑
i exp(αi) is

maximized when all except one are equal to 0.

We are now ready to prove Theorem 3. Recall that T can be decomposed into C and
k-trees T1,1, . . . , Td,k rooted at C1,1, . . . , Cd,k respectively that are pairwise disjoint except
for the vertices of the cliques Ci,j. Let Bi denote the (k + 1)-clique that contains C as
well as Ci,1, . . . , Ci,k, and let vi be the vertex of Bi \ C. Finally, set Ni,j = N(Ti,j;Ci,j)
and µ•i,j = µ•(Ti,j;Ci,j).

Proof of Theorem 3. We first observe that

N(T ;C) =
d∏
i=1

(
1 +

k∏
j=1

Ni,j

)
. (2)

the electronic journal of combinatorics 31(1) (2024), #P1.62 11



This is because a sub-k-tree S of T containing C is specified as follows: given 1 6 i 6 d,
choose the sub-k-tree intersection of S with Ti,1, . . . , Ti,k. There are

∏k
j=1Ni,j ways to do

this if vi ∈ S and one if vi /∈ S. We do this independently for each i, resulting in the
product above.
Next, we would like to express the local mean order at C in terms of the quantities Ni,j

and µ•i,j: it is given by

µ•(T ;C) =
d∑
i=1

1 +
∑k

j=1 µ
•
i,j

1 +
∏k

j=1N
−1
i,j

. (3)

To see this, note that we can interpret µ(T ;C) as the expected size of a random sub-k-tree
chosen from S(T ;C), which can then be written as the sum of the expected sizes of the
intersection with each component Ti,j in the decomposition. We have that 1

1+
∏k

j=1N
−1
i,j

=∏k
j=1Ni,j

1+
∏k

j=1Ni,j
is the probability that a randomly chosen sub-k-tree of T that contains C also

contains vi (by the same reasoning that gave us (2)). Once vi is included, it adds 1 to
the number of vertices, and an average total of

∑k
j=1 µ

•
i,j is added from the extensions in

Ti,1, . . . , Ti,k.
Without loss of generality, we can assume that N1,1 = mini,j Ni,j. We want to compare
µ•(T ;C) to µ•(T ;C1,1) and prove that µ•(T ;C1,1) > µ•(T ;C) provided that d > 2, with
strict inequality if d > 2. Observe that this will be enough to prove our claim: no
clique with degree greater than 2 can attain the maximum local mean order, and starting
from any clique, we may repeatedly apply the inequality above to obtain a sequence of
neighboring cliques whose local mean orders are weakly increasing and the last of which
is a degree-1 k-clique. (More precisely, for the first step replacing C with C ′ := C1,1 and
considering the decomposition {C ′i,j} and {T ′i,j} with respect to C ′, the clique adjacent
to C ′ with equal or larger µ• cannot be the original clique C as C will not correspond to
mini,j N

′
i,j. So in repeatedly applying the inequality, we will obtain a sequence of distinct

cliques which must terminate but can only terminate once we have reached a clique of
degree 1.)
Let us first express µ•(T ;C1,1) in terms of the Ni,j and µ•i,j as well. First, we have

N(T ;C1,1) = N1,1 +
k∏
j=1

N1,j

d∏
i=2

(
1 +

k∏
j=1

Ni,j

)
.

The reasoning is similar to (2): there are N1,1 sub-k-trees that contain C1,1, but not the
full (k + 1)-clique B1, and the remaining product counts sub-k-trees containing B1. We
also have

µ•(T ;C1,1) =
N1,1µ

•
1,1

N(T ;C1,1)
+

(
1− N1,1

N(T ;C1,1)

)(
1 +

k∑
j=1

µ•1,j +
d∑
i=2

1 +
∑k

j=1 µ
•
i,j

1 +
∏k

j=1N
−1
i,j

)
,

using the fact that N1,1

N(T ;C1,1)
is the probability that a random sub-k-tree containing C1,1

does not contain B1. Let us now take the difference µ•(T ;C1,1)−µ•(T ;C): we have, after
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some manipulations,

µ•(T ;C1,1)− µ•(T ;C) =
N1,1

N(T ;C1,1)

(
µ•1,1 − µ•(T ;C)

)
+

(
1− N1,1

N(T ;C1,1)

)(
1 +

k∑
j=1

µ•1,j −
1 +

∑k
j=1 µ

•
1,j

1 +
∏k

j=1N
−1
i,j

)

=
N1,1

N(T ;C1,1)

(
µ•1,1 − µ•(T ;C)

)
+

(
1− N1,1

N(T ;C1,1)

)(
1 +

∑k
j=1 µ

•
1,j

1 +
∏k

j=1N1,j

)
.

Now let F :=
1+

∑k
j=1 µ

•
1,j

1+
∏k

j=1N1,j
. We want to show that µ•(T ;C1,1)− µ•(T ;C) > 0, i.e., that

N1,1

N(T ;C1,1)
µ•1,1 + F >

N1,1

N(T ;C1,1)
(µ•(T ;C) + F ) .

Equivalently,

µ•1,1 +
N(T ;C1,1)

N1,1

· F > µ•(T ;C) + F. (4)

Using the previous computations, we know that

N(T ;C1,1)

N1,1

= 1 +
k∏
j=2

N1,j

d∏
i=2

(
1 +

k∏
j=1

Ni,j

)
.

So the left-hand side of (4) is equal to

µ•1,1 + F +

∏k
j=2N1,j

1 +
∏k

j=1N1,j

(
1 +

k∑
j=1

µ•1,j

)
d∏
i=2

(
1 +

k∏
j=1

Ni,j

)
.

We can subtract F from both sides and use (3) to replace µ•(T ;C). Taking into account
that µ•1,1 > 0, it is sufficient to prove∏k

j=2N1,j

1 +
∏k

j=1N1,j

(
1 +

k∑
j=1

µ•1,j

)
d∏
i=2

(
1 +

k∏
j=1

Ni,j

)
>

d∑
i=1

1 +
∑k

j=1 µ
•
i,j

1 +
∏k

j=1N
−1
i,j

. (5)

We first prove (5) for d = 2, in which case it can be rewritten as∏k
j=1N1,j

N1,1(1 +
∏k

j=1N1,j)

(
1 +

k∑
j=1

µ•1,j

)(
1−N1,1 +

k∏
j=1

N2,j

)

>

∏k
j=1N2,j

1 +
∏k

j=1N2,j

(
1 +

k∑
j=1

µ•2,j

)
.

the electronic journal of combinatorics 31(1) (2024), #P1.62 13



Write
∏k

j=1N1,j = Nk−1
1,1 y and

∏k
j=1N2,j = Nk−1

1,1 z where y, z > N1,1. By Lemma 11, we

have µ•1,j >
1
2

log2N1,j and µ•2,j 6
1
2
(N2,j − 1). Applying Lemma 12 to the numbers

N2,j

N1,1
,

1 6 j 6 k, gives us that
∑k

j=1N2,j 6 (k − 1)N1,1 + z. Hence we find that it suffices to
prove that

y
(
1−N1,1 +Nk−1

1,1 z
)

N1,1(1 +Nk−1
1,1 y)

(
1 +

(k − 1) log2N1,1 + log2 y

2

)
>

z

1 +Nk−1
1,1 z

(
1 +

(k − 1)N1,1 + z − k
2

)
.

We note that the left-hand side is strictly increasing in y and the right-hand side is
independent of y, which implies that it is sufficient to prove the equality when y = N1,1.
That is, we want to prove that for every z > y > 1

1− y + yk−1z

1 + yk

(
1 +

k

2
log2 y

)
>

z

1 + yk−1z

(
1 +

(k − 1)y + z − k
2

)
. (6)

If y = N1,1 = 1, (6) reduces to z
2
> z

2
.

If y = N1,1 > 2, z > y and k > 2 imply that 2 + (k − 1)y + z − k 6 kz. Together with
log2 y > 1, we conclude that it is sufficient to prove that

1− y + yk−1z

1 + yk
k + 2

2
>

z

1 + yk−1z

kz

2

which is equivalent to

(1− y + yk−1z)(k + 2)(1 + yk−1z) > (1 + yk)kz2.

For k = 2, the difference between the two sides is an increasing function in y, and for
y = 2 it reduces to 3z2 − 2 > 0, which holds.
For k > 3, the inequality is immediate, using that y2(k−1)z2 > (1.5yk+1)z2 > ykz+ykz2+
z2 (remember that z > y > 2).
Once (5) has been verified for d = 2, we can apply induction to prove it for d > 3. Let

C =
∏k

j=2N1,j

1+
∏k

j=1N1,j

(
1 +

∑k
j=1 µ

•
1,j

)
, gi = 1 +

∏k
j=1Ni,j and fi =

1+
∑k

j=1 µ
•
i,j

1+
∏k

j=1N
−1
i,j

. We can then

rewrite (5) as

C
d∏
i=2

gi >
d∑
i=1

fi

By the induction hypothesis, we have

C

gm

d∏
i=2

gi >

(
d∑
i=1

fi

)
− fm

the electronic journal of combinatorics 31(1) (2024), #P1.62 14



for every 2 6 m 6 d. Summing over m, we obtain that

C
d∏
i=2

gi

(
d∑

m=2

1

gm

)
> f1 + (d− 2)

d∑
i=1

fi.

Since we have gm > 2 for every m, the conclusion now follows as

d∑
m=2

1

gm
6

(d− 1)

2
6 d− 2,

and since f1 > 0, inequality (5) is even strict in the case that d > 2.
We conclude that if C has degree d > 2, then µ•(T ;C) 6 µ•(T ;C1,1). Equality can only be
attained when d = 2. Looking back over the proof of (5), we also see that for equality to
hold, all Ni,j except for N2,2 (up to renaming) must be equal to 1, and due to Lemma 11,
T2,2 has to be a path-type k-tree.
For n > k + 3, we compute that in a path-type k-tree T the maximum among the
degree-1 k-cliques is attained by a central one, which implies that no degree-2 k-cliques
can be extremal. Let B1 be the unique (k + 1)-clique containing C, and assume that
T \ B1 contains components of size a and b. Thus a + b = n − (k + 1). Then µ(T ;C) =
k+(a+1)(b+1)n+k

2

(a+1)(b+1)+1
= n+k

2
− n−k

2((a+1)(b+1)+1)
, and this is maximized if and only if |a−b| 6 1. The

latter can also be derived from considering the 1-characteristic tree. This is illustrated in
Figure 6 below. We emphasize that the maximizing k-clique of degree 1 is not simplicial.
When n 6 k + 2, every k-clique has the same local mean sub-k-tree order, and so the
(unique) degree-2 k-clique when n = k + 2 is the only case where equality can occur at a
k-clique with degree 2. This concludes the proof of Theorem 3.

C

0

C

Figure 6: 2-path for which the maximum local mean is attained in a non-simplicial clique
C, with its 1-characteristic tree T ′C .

5 Bounding local mean order by global mean order

In this section, we prove

Theorem 4. The local mean order of the sub-k-trees containing a fixed k-clique C is less
than twice the global mean order of all sub-k-trees of T .
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As before, given a k-tree T and a k-clique C in T , we utilize the decomposition of
T into C and k-trees T1,1, . . . , Td,k rooted at C1,1, . . . , Cd,k. Set Ni,j = N(Ti,j;Ci,j),
N i,j = N(Ti,j;Ci,j), µi,j = µ(Ti,j;Ci,j), µi,j = µ(Ti,j;Ci,j), µ

•
i,j = µ•(Ti,j;Ci,j) and

Ri,j = R(Ti,j;Ci,j), Ri,j = R(Ti,j;Ci,j).
Since a sub-k-tree not containing C needs to be a sub-k-tree of some k-tree Ti,j, we have

N(T ;C) =
d∑
i=1

k∑
j=1

(Ni,j +N i,j)

and

R(T ;C) =
d∑
i=1

k∑
j=1

(Ri,j +Ri,j).

Following the proof for trees, we show

Lemma 13. For any k-tree T and k-clique C ∈ T ,

R(T ;C) > N(T ;C).

Proof. Assume to the contrary that there exists a minimum counterexample T . Since the
statement is true when T = C, we have |T | > k and we can consider the decomposition
as before.
Note that if Ni,j = 1, we have that N i,j = 0, and otherwise we have N i,j 6 Ri,j =
µi,jNi,j = (k + µ•i,j)Ni,j.

We can rewrite R(T ;C)−N(T ;C) as

N(T ;C) (k + µ•(T ;C))−N(T ;C).

Thus it suffices to show that

N(T ;C)(k + µ•(T ;C))−
d∑
i=1

k∑
j=1

Ni,j −
d∑
i=1

k∑
j=1

Ni,j>1

(k + µ•i,j)Ni,j

is nonnegative. Expanding using (2) and (3) gives an expression that is increasing in µ•i,j
for each i, j, and so it suffices to prove that this expression is nonnegative when each of
these is 0.

Let f be a function on the positive integers defined by f(x) =

{
1 if x = 1,

1 + kx if x > 1.

We now want to prove that(
k +

d∑
i=1

1

1 +
∏k

j=1N
−1
i,j

)
N(T ;C) >

d∑
i=1

k∑
j=1

f(Ni,j). (7)
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When d = 1, this becomes k + (k + 1)
∏k

j=1N1,j >
∑k

j=1 f(N1,j). When increasing a
value N1,j which is at least equal to 2, the left-hand side increases more than the right-
hand side. As such, it is sufficient to consider the case where a of the terms N1,j equal
2, while the other k − a terms equal 1. In this case, the desired inequality holds since
k + (k + 1)2a > k + 2ak for every integer 0 6 a 6 k.
Next, we consider the case d > 2. In this case, when Ni,j increases by 1, the left-hand side
of (7) increases by at least 2k and the right-hand side by at most 2k. When all Ni,j are
equal to 1, the conclusion follows from

(
k + d

2

)
2d > k2d > dk.

We now bound the local mean order by the global mean order.

Proof of Theorem 4. Let T be a k-tree and C a k-clique in T . We want to prove that

µ(T ;C) < 2µ(T ).

We proceed by induction on the number of vertices in T . Note first that the inequality is
trivial if |T | 6 2k: since the mean is taken over sub-k-trees, which have at least k vertices
each, we have µ(T ) > k. On the other hand, we clearly have µ(T ;C) 6 |T |, and both
inequalities hold with equality only if |T | = k.
We thus proceed to the induction step, and assume that |T | > 2k. We have two cases
with respect to C.
Case 1: C is simplicial.
Let v be a k-leaf in C, let C ′ denote the clique adjacent to C, and let T ′ = T −{v}. More-
over, let N,N,R, and R denote N(T ′;C ′), N(T ;C ′), R(T ′;C ′) and R(T ′;C ′), respectively.
We have

µ(T ;C) =
N +R + k

N + 1

and

µ(T ) =
2R +R +N + k2

2N +N + k
.

We want to prove that

(2N +N + k)(2µ(T )− µ(T ;C)) > 0,

which is equivalent to

2R + 2R + 2k2 − 2k − (N +R + k)(N + k − 2)

N + 1
> 0.

By the induction hypothesis, we have

2
R +R

N +N
= 2µ(T ′) > µ(T ′;C ′) =

R

N
,
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so it is sufficient to prove that

R(N +N)

N
+ 2k2 − 2k − (N +R + k)(N + k − 2)

N + 1
> 0.

Multiplying by N+1
N

, this is seen to be equivalent to

R−N + 2k2 − 3k + 2− (k − 3)R + kN − k2

N
+
NR

N2
> 0.

This can be broken up into three terms as follows:

(N2 − kN + 3N +N)(R−N)

N2
+
(N
N
− k
)2

+
(

(k − 1)(k − 2) +
k2

N
+

3N

N

)
> 0.

Note here that the second term is trivially nonnegative, and the last term trivially positive.
Since |T ′| > 2k, we have N > k (one gets at least k + 1 sub-k-trees containing C ′ by
successively adding vertices); hence N2 − kN + 3N + N > 0. Thus the first term is
positive by Lemma 13, completing the induction step in this case.
Case 2: C is not simplicial.
By Theorem 3, we only need to consider the case where C has degree 1. Let v be the
unique common neighbor of C, and let Ci, 1 6 i 6 k, be the other k-cliques in the
(k + 1)-clique spanned by C ∪ {v}.
Let Ti, 1 6 i 6 k, be the sub-k-trees rooted at Ci (pairwise disjoint except for the vertices
of the cliques Ci). Let Ni = N(Ti;Ci), N i = N(Ti;Ci), Ri = R(Ti;Ci), Ri = R(Ti;Ci),
µi = µ(Ti;Ci) and µ•i = µ•(Ti;Ci). We can assume without loss of generality that
N1 > N2 > · · · > Nj > 1 = Nj+1 = · · · = Nk, where j > 2 since C is not simplicial.
We can now express the local and global mean in a similar way to Case 1. Here N(T ;C) =∏k

i=1Ni + 1, and all the sub-k-trees counted here, except for C, contain v. We have

µ(T ;C) =

∏k
i=1Ni(1 +

∑k
i=1 µ

•
i )∏k

i=1Ni + 1
+ k,

µ(T ) =

∏k
i=1Ni(1 +

∑k
i=1 µ

•
i + k) +

∑k
i=1(Ri +Ri) + k∏k

i=1Ni +
∑k

i=1(Ni +N i) + 1
.

In the remainder of this section, we will omit the bounds in products and sums if they are
over the entire range from 1 to k:

∑
Ni and

∏
Ni mean

∑k
i=1Ni and

∏k
i=1Ni respectively.

Then
(∏

Ni +
∑

(Ni +N i) + 1
)

(2µ(T )− µ(T ;C)) equals

(
∏

Ni)(1+
∑

µ•i+k)+k+2
∑

(Ri+Ri)−k
∑

(Ni+N i)−
(
∏
Ni)(1 +

∑
µ•i )
∑

(Ni +N i)∏
Ni + 1

.

(8)
We want to show that this expression is positive. By induction, we know that 2(Ri+Ri) >
(k + µ•i )(Ni + N i), thus 2(Ri + Ri) − k(Ni + N i) > µ•i (Ni + N i). It follows that (8) is
greater than

(
∏

Ni)(1 +
∑

µ•i + k) + k +
∑

µ•i (Ni +N i)−
(
∏
Ni)(1 +

∑
µ•i )
∑

(Ni +N i)∏
Ni + 1

.
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Multiplying by
∏
Ni+1∏
Ni

and observing that this factor is greater than 1, we find that (8) is
indeed positive if we can prove that

(
∏

Ni + 1)(1 +
∑

µ•i + k) + k +
∑

µ•i (Ni +N i) > (1 +
∑

µ•i )
∑

(Ni +N i). (9)

In particular, a potential counterexample would have to satisfy

(1 +
∑
µ•i )
∑

(Ni +N i)∏
Ni + 1

> 1 +
∑

µ•i + k. (10)

To simplify proving eq. (9), we first note that it is sufficient to consider the case where
k = j. Once Ni, µ

•
i and N i are fixed for 1 6 i 6 j, the terms that are dependent

on k are (
∏

i6j Ni + 1)k + k on the left, and (1 +
∑

i6j µ
•
i )(k − j) on the right. The

latter since if Ni = 1, then Ti only consists of Ci, and thus N i = µ•i = 0. Now since∏
i6j Ni + 1 > 1 +

∑
i6j Ni > 1 +

∑
i6j µ

•
i , the increase of the left side is larger than the

increase on the right side. Here
∏

i6j Ni >
∑

i6j Ni is true since the product of j > 2
numbers, each greater than or equal to 2, is at least equal the sum of the same j numbers.
Moreover, Ni > µ•i follows from Lemma 11.
So from now on, we can assume that j = k and all Ni are at least equal to 2.
By lemma 13, N i 6 Ri = µiNi = (k + µ•i )Ni. Since (9) is a linear inequality in each
N i and the coefficient on the right-hand side is always greater than the coefficient on the
left-hand side, we can reduce eq. (9) to a sufficient inequality that is only dependent on k,
Ni and µ•i for 1 6 i 6 k by taking N i = (k+µ•i )Ni. This will be assumed in the following.
If now all the parameters in (9) are fixed except for one µ•i , we have a linear inequality
in µ•i : the quadratic terms stemming from µ•iN i are equal on both sides and cancel. As
such, it is sufficient to prove the inequality for the extremal values of µ•i . Here we use
the trivial inequality µ•i > 0 as well as the upper bound µ•i 6

Ni−1
2

, which is taken from

lemma 11. So if (9) can be proven in the case where N i = (k + µ•i )Ni and µ•i ∈ {0, Ni−1
2
}

for all i with 1 6 i 6 k, we are done.
For 2 6 k 6 5, this is achieved by exhaustively checking all 2k cases that result (using
symmetry, there are actually only k + 1 cases to consider). See the detailed verifications
in https://github.com/StijnCambie/AvSubOrder_ktree. So for the rest of the proof,
we assume that k > 6, and we will use the slightly weaker bound µ•i 6 Ni

2
instead of

µ•i 6
Ni−1

2
for 1 6 i 6 k in a few cases.

We distinguish two further cases, depending on the value of µ•1. In these cases, we will
use the following two inequalities.

Claim 14. Let k > 6 and N1 > N2 > . . . > Nk > 2. Then

k∏
i=2

Ni > 3
∑
26i6k

Ni, (11)

5

3
(
k∏
i=1

Ni + 1) >

(∑
26i6k

Ni − 2

) ∑
16i6k

Ni. (12)
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Proof. The first inequality, eq. (11), is true if all the Ni are equal to 2, since 2k−1 > 6(k−1)
for every k > 6. Increasing some Ni by 1 increases the product by at least 2k−2, while the
sum increases by only 3. So the inequality holds by a straightforward inductive argument.
Next, we prove eq. (12). When all Ni are equal to 2, it becomes 5

3
(2k + 1) > 4(k − 2)k.

This is easily checked for k ∈ {6, 7}, and for k > 8, the stronger inequality 2k > 4k2 can
be shown by induction.
Now observe that the difference between the left- and right-hand sides is increasing with
respect to N1, since

∏
i>2Ni >

∑
i>2Ni by the first inequality. It is also increasing in the

other Ni’s; for example, we can see this is true for N2 since

5

3

∏
i 6=2

Ni > 5
∑
i 6=2

Ni > 2
∑
16i6k

Ni >

(∑
26i6k

Ni − 2

)
+
∑
16i6k

Ni.

In the first step, we have applied eq. (11) but replacing N1 with N2. Again, we may
conclude using induction. ♦

Claim 15. Given µ•1 = N1

2
, it is sufficient to consider the case where µ•i = Ni

2
for all

1 6 i 6 k.

Proof. Starting from any counterexample to (9), we can iteratively change µ•i (considered
as variables) for 1 6 i 6 k based on the worst case of the linearization (to 0 if the
coefficient on the left-hand side is greater and to Ni

2
if the coefficient on the right-hand

side is greater) to obtain further counterexamples.
To show that it suffices to consider µ•i = Ni

2
for every 1 6 i 6 k, we prove that, given

µ•1 = N1

2
, the coefficient of µ•2 on the left-hand side in eq. (9) is not greater than the

coefficient on the right-hand side. This then implies that µ•2 = N2

2
is indeed the worst

case. For 3 6 i 6 k, we can argue in the same fashion.
Assume for sake of contradiction that the coefficient on the left-hand side is greater. Recall
that N2 = (k + µ•2)N2. After subtracting µ•2(N2 + N2) from both sides, the coefficient of
µ•2 on the left is

∏
Ni + 1, while on the right it is

∑
i 6=2(Ni +N i) + (1 +

∑
i 6=2 µ

•
i )N2. Thus

we must have∏
Ni + 1 >

∑
i 6=2

(Ni +N i) + (1 +
∑
i 6=2

µ•i )N2 >
∑
i 6=2

(Ni +N i) + (1 + µ•1)N2.

Using that

(1 + µ•1)N2 =

(
1 +

N1

2

)
N2 >

(
1 +

N2

2

)
N2 > (1 + µ•2)N2 = N2 +N2 − kN2

(recall here that we are assuming without loss of generality that N1 > N2 > · · · > Nk),
this implies that

∏
Ni+1 >

∑
(Ni+N i)−kN2. Adding kN2 to both sides and multiplying

both sides by 1 +
∑
µ•i results in(∏

Ni + 1 + kN2

)
(1+

∑
µ•i ) > (1+

∑
µ•i )
∑

(Ni+N i) > (1+
∑

µ•i +k)(
∏

Ni+1).
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In the second inequality, we applied (10) which we may do since we began with the
assumption that we have a counterexample to (9). After simplification, we get that
N2(1 +

∑
µ•i ) >

∏
Ni, and thus∑

i 6=2

Ni > 1 +
1

2

∑
Ni > 1 +

∑
µ•i >

∏
i 6=2

Ni.

Since k > 6, this is a clear contradiction to eq. (11). ♦

Having proven Claim 15, we are left with two cases to consider: µ•i = Ni

2
for all 1 6 i 6 k,

or µ•1 = 0. It is easy to conclude in the former case, except when k = 6 and at least 5
values Ni are equal to 2, which has to be handled separately. See https://github.com/

StijnCambie/AvSubOrder_ktree/blob/main/2M-mu_j_large_case1.mw for details.
The final remaining case is when µ•1 = 0. We obtain two new inequalities by multiply-
ing eq. (12) with k+1

2
and eq. (11) with (1 +

∑
µ•i )

N1

6
, and use that N1 = max{Ni} and

µ•i 6
Ni−1

2
.

5(k + 1)

6
(
∏

Ni + 1) >
k + 1

2

(∑
26i6k

Ni − 2

) ∑
16i6k

Ni > (1 +
∑

µ•i )
∑
16i6k

(1 + k)Ni,

(13)∏
Ni

6
(1 +

∑
µ•i ) > (1 +

∑
µ•i )

N1

2

∑
26i6k

Ni > (1 +
∑

µ•i )
∑
26i6k

Niµ
•
i . (14)

Summing these two inequalities together, we have that eq. (9) holds as a corollary of

(
∏

Ni + 1)(1 +
∑

µ•i + k) > (1 +
∑

µ•i )
∑

(Ni(1 + k + µ•i )) .

We remark that by considering a suitable k-broom, one can show that theorem 4 is sharp,
as was also the case for trees.

6 Conclusion

This paper together with [13, Thm. 18 & 20] answers all of the open questions from [16]
except for one, which was stated as rather general and open-ended:

Problem 16. For a given r-clique R, 1 6 r < k, what is the (local) mean order of all
sub-k-trees containing R?

One natural version of this question is to consider the local mean sub-k-tree order over
sub-k-trees that contain a fixed vertex. In this direction, we prove the following result,
which can be considered as another monotonicity result related to [13, Thm. 23].

Theorem 17. Let T be a k-tree, k > 2, C a k-clique of T , and v a vertex in C. Then
µ(T ; v) < µ(T ;C).
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Proof. The statement is trivially true if |T | 6 k + 1. So assume that T with |T | > k + 2
is a minimum counterexample to the statement. Recalling the decomposition into trees
Ti,j used earlier, note that all sub-k-trees containing v and not C are part of Ti,j for some
i, j. Without loss of generality, we can assume that µ(T1,1; v) = maxi,j µ(Ti,j; v). It suffices
to prove that µ(T1,1; v) < µ(T ;C). Taking into account (3), it is sufficient to consider
the case where C is a simplicial k-clique of T . Let u be the simplicial vertex of B1. Let
T ′ = T \ {u} and C ′ = B1 \ {u}.

Claim 18. We have µ(T ′;C ′) < µ(T ;C).

Proof. Let R = R(T ′;C ′) and N = N(T ′;C ′). We now need to prove that µ(T ;C) =
2R+N+k
2N+1

> R
N

= µ(T ′;C ′), which is equivalent to N +k > R
N
. The latter is immediate since

N > |T ′| − (k − 1) and R
N

= µ(T ′;C ′) 6 |T ′|. ♦

Since the sub-k-trees containing v are exactly those that contain C, or sub-k-trees of
T ′ containing C ′, or k-cliques within B1 different from C, we conclude that µ(T ; v) <
µ(T ;C).

Luo and Xu [13, Ques. 35] also asked if for a given order, a k-tree attaining the largest
global mean sub-k-tree order is necessarily a caterpillar-type k-tree. In contrast with the
questions in [16], this question is still open for trees. We prove that the local version
(proven in [3, Thm. 3]), which states that for fixed order, the maximum is attained by
a broom, is also true for the generalization of k-trees. This is almost immediate by
observations from [16].

Proposition 19. If a k-tree T of order n and k-clique C of T attain the maximum possible
value of µ(T ;C), then T has to be a k-broom with C being one of its simplicial k-cliques.

Proof. Let T ′C be the characteristic 1-tree of T with respect to C. Then by [16, Lem. 11]
µ(T ;C) = µ(T ′C ;C) + k− 1. Since T ′C is a tree on n− (k− 1) vertices, by [3, Thm. 3], the
maximum local mean subtree order is attained by a broom B. Since there is a k-broom
T with C being a simplicial k-clique for which T ′C

∼= B with C as root, this maximum
can be attained. Reversely, if µ(T ′C ;C) is maximized, then T ′C is a broom where C is its
root (and thus simplicial).

As such, we conclude that the k-tree variants of many results on the average subtree order
for trees are now also proven. The analogue of [10, Ques. (7.5)] can be considered as the
only question among them where the answer is slightly different for k-trees: in contrast
with the case of trees (k = 1), the maximum local mean sub-k-tree order cannot occur in
a k-clique with degree 2 when k > 2 (with one small exception).

Acknowledgments

The authors would like to express their gratitude to the American Mathematical Soci-
ety for making a research visit possible related to the Mathematics Research Community
workshop “Trees in Many Contexts”. This was supported by the National Science Foun-
dation under Grant Number DMS 1916439. The first author has been supported by

the electronic journal of combinatorics 31(1) (2024), #P1.62 22



internal Funds of KU Leuven (PDM fellowship PDMT1/22/005). The third author is
supported by the Swedish research council (VR), grant 2022-04030. The fourth author is
supported by the National Institutes of Health (R01GM126554).

References

[1] S. Cambie, G. Chen, Y. Hao, and N. Tokar. Decreasing the mean subtree order by
adding k edges. J. Graph Theory, 105(3):357–366, 2024.

[2] S. Cambie and S. Wagner. Mean subtree order under contraction. In preparation,
2024.

[3] S. Cambie, S. Wagner, and H. Wang. On the maximum mean subtree order of trees.
European J. Combin., 97:Paper No. 103388, 19, 2021.

[4] B. Cameron and L. Mol. On the mean subtree order of graphs under edge addition.
J. Graph Theory, 96(3):403–413, 2021.

[5] X. Chen, G. Wei, and H. Lian. Solution to a conjecture on the mean subtree order
of graphs under edge addition. J. Graph Theory, 104(3):645–658, 2023.

[6] A. J. Chin, G. Gordon, K. J. MacPhee, and C. Vincent. Subtrees of graphs. J. Graph
Theory, 89(4):413–438, 2018.

[7] J. Haslegrave. Extremal results on average subtree density of series-reduced trees. J.
Combin. Theory Ser. B, 107:26–41, 2014.

[8] J. Haslegrave. The number and average size of connected sets in graphs with degree
constraints. J. Graph Theory, 100(3):530–542, 2022.

[9] J. Haslegrave. The path minimises the average size of a connected induced subgraph.
Discrete Math., 345(5):Paper No. 112799, 7, 2022.

[10] R. E. Jamison. On the average number of nodes in a subtree of a tree. J. Combin.
Theory Ser. B, 35(3):207–223, 1983.

[11] R. E. Jamison. Monotonicity of the mean order of subtrees. J. Combin. Theory Ser.
B, 37(1):70–78, 1984.

[12] Z. Li, T. Ma, F. Dong, and X. Jin. On the maximum local mean order of sub-k-trees
of a k-tree. arXiv:2309.11885, 2023.

[13] Z. Luo and K. Xu. On the Local and Global Mean Orders of Sub-k-Trees of k-Trees.
Electron. J. Combin., 30(1):Paper No. 1.43, 2023.

[14] Z. Luo, K. Xu, S. Wagner, and H. Wang. On the mean subtree order of trees under
edge contraction. J. Graph Theory, 102(3):535–551, 2023.

[15] D. Ralaivaosaona and S. Wagner. On the distribution of subtree orders of a tree. Ars
Math. Contemp., 14(1):129–156, 2018.

[16] A. M. Stephens and O. R. Oellermann. The mean order of sub-k-trees of k-trees. J.
Graph Theory, 88(1):61–79, 2018.

the electronic journal of combinatorics 31(1) (2024), #P1.62 23

https://arxiv.org/abs/2309.11885


[17] A. Vince. The average size of a connected vertex set of a graph—explicit formulas
and open problems. J. Graph Theory, 97(1):82–103, 2021.

[18] A. Vince. The average size of a connected vertex set of a k-connected graph. Discrete
Math., 344(10):Paper No. 112523, 4, 2021.

[19] A. Vince. A lower bound on the average size of a connected vertex set of a graph. J.
Combin. Theory Ser. B, 152:153–170, 2022.

[20] A. Vince and H. Wang. The average order of a subtree of a tree. J. Combin. Theory
Ser. B, 100(2):161–170, 2010.

[21] S. Wagner and H. Wang. On the local and global means of subtree orders. J. Graph
Theory, 81(2):154–166, 2016.

[22] R. Wang. Extrema of local mean and local density in a tree. arXiv:2306.13422,
2023.

the electronic journal of combinatorics 31(1) (2024), #P1.62 24

https://arxiv.org/abs/2306.13422

	Introduction
	Related Results

	Notation and Definitions
	Excluding k-cliques of degree 2
	The lower bound
	The upper bound

	The maximum local mean order
	Bounding local mean order by global mean order
	Conclusion

