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Abstract

We present a new combinatorial and conjectural algorithm for computing the
Mullineux involution for the symmetric group and its Hecke algebra. This algorithm
is built on a conjectural property of crystal isomorphisms which reduces in fact to
iterations of a very elementary procedure on sequences of integers.

Mathematics Subject Classifications: 20C08,05E10,20C20

1 Introduction

Mullineux involution is an important map which has been originally defined by Mullineux
[23] in the context of the modular representation theory of the symmetric group. More
generally, it can be defined for the class of Hecke algebras of the symmetric group [2].
Let n ∈ Z>0 and e ∈ Z>1. Let η be a primitive e root of 1. The Hecke algebra of the
symmetric group Hn(η) is defined as the associative unital C-algebra with generators T1,
. . . , Tn−1 and the following relations:

(Ti − η)(Ti + 1) = 0 for i = 1, . . . , n− 1,
TiTi+1Ti = Ti+1TiTi+1 for i = 1, . . . , n− 2,

TiTj = TjTi if |i− j| > 1.

It is known that the simple modules of this algebra are naturally labelled by the set of
e-regular partitions Rege(n) with rank n (see §2.1 for the definition):

Irr(Hn(η)) = {Dλ | λ ∈ Rege(n)}.

There is a C-algebra automorphism ] which can be defined on the generators of Hn(η)
as follows. For all i = 1, . . . , n − 1, we have T ]i = −ηTi. This automorphism induces an
involution:

me : Rege(n)→ Rege(n),
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defined as follows. For all λ ∈ Rege(n) there exists a unique µ ∈ Rege(n) such that
the module Dλ twisted by ] is isomorphic to Dµ. Then we define me(λ) := µ. If e is
prime, this involution describes the structure of a simple FeSn -module twisted by the
sign representation. If e is sufficiently large, or more generally if λ is an e-core, it is easy
to see that me(λ) is just the conjugate partition λ′.

The study of the Mullineux involution has a long story. A conjectural and combinato-
rial description of me (if e is prime) was first given by Mullineux [23] and proved later by
Ford and Kleshchev [11]. Before this proof, Kleshchev gave a solution to the computation
of the involution [19] (see also [1] and [3]). This solution may be rephrased in terms of
crystal graph theory. Other algorithms were given by Xu [24, 25], or more recently by
Fayers [6], and by the first author [15]. We also note that there exist different generaliza-
tions in the context of Ariki-Koike algebras [7, 17], affine Hecke algebras [22, 18], general
linear groups [5] or rational Cherednik algebras [21, 10] and they are all connected with
the above one. We also mention a recent conjecture by Bezrukavnikov on this involution
in relation with Nabla operators and Haiman’s n! conjecture studied in [4].

All the above algorithms for computing the Mullineux involution have a common
feature: they are recursive algorithms in n. The algorithms to compute the Mullineux
image of a partition λ of rank n requires the computation of the Mullineux involution
me(µ) for |µ| < n. The aim of this paper is to present a conjectural algorithm which is
recursive in e. This conjecture is in fact built on the description of the Mullineux involution
by Kleshchev in terms of crystal graphs together with the concept of crystal isomorphisms
described in [16]. The conjecture reduces in fact to a purely combinatorial conjecture on
sequence of integers which can be stated without any mention to crystals and in a very
simple way. Assuming the conjecture true, we prove a theorem (see Theorem 18) which
shows that it is possible to compute me from the datum of m2e. As me corresponds to
the conjugation of partitions if e is sufficiently large, the algorithm follows.

The paper is organized as follows. We first recall in Section 2 several elementary
combinatorial notions on partitions and crystals. This section ends with a presentation
of Kleshchev’s solution to the Mullineux problem. The third section explains the no-
tion of crystal isomorphism. We next write down the conjectural combinatorial property
previously evoked, Conjecture 11, which can be rephrased in the context of crystal iso-
morphisms. The last section presents several new results around this notion and states
the conjectural algorithm for computing the Mullineux involution.

2 Mullineux involution for Hecke algebras

We first start with the definition of several elementary notions. Then we present the
Kleshchev solution to the computation of the Mullineux involution.

2.1 Partitions and Young diagrams

A partition is a non increasing sequence λ = (λ1, . . . , λm) of nonnegative integers. The
rank of the partition is by definition the number |λ| =

∑
16i6m λi. We say that λ is a
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partition of n, where n = |λ|. The unique partition of 0 is the empty partition ∅. We
denote by Π(n) the set of partitions of n. For e ∈ Z>1, we say that λ is an e-regular
partition if no nonzero part of λ can be repeated e or more times. The set of e-regular
partitions of rank n is denoted by Rege(n). Given a partition λ ∈ Π(n), its Young diagram
[λ] is the set:

[λ] =
{

(a, b) | 1 6 a 6 m, 1 6 b 6 λa
}
⊂ N× N.

The elements of this set are called the nodes of λ. The e-residue (or more simply, residue)
of a node γ ∈ [λ] is by definition res(γ) = b− a+ eZ ∈ Z/eZ. For j ∈ Z/eZ, we say that
γ is a j-node if res(γ) = j. In addition, γ is called a removable j-node for λ if the set
[λ] \ {γ} is the Young diagram of some partition µ. In this case, we also say that γ is an
addable j-node for µ.

Let γ = (a, b) and γ′ = (a′, b′) be two addable or removable j-nodes of the same
partition λ. Then we write γ > γ′ if a < a′. Let wj(λ) be the word obtained by reading
all the addable and removable j-nodes in increasing order and by encoding each addable
j-node with the letter A and each removable j-node with the letter R. Then deleting as
many subwords RA in this word as possible, we obtain a new word w̃j(λ) = A · · ·AR · · ·R.
The node corresponding to the rightmost A (if it exists) is called the good addable j-node
and the node corresponding to the leftmost R (if it exists) is called the good removable
j-node.

2.2 Level 1 Fock space

Let F be the C-vector space with basis given by all the partitions. It is called the (level 1)

Fock space. There is an action of U(ŝle) on F which makes F into an integrable module of

level 1. For i ∈ Z, the Kashiwara operators ẽi+eZ,e and f̃i+eZ,e are then defined as follows.

• If λ has no good addable i-node then f̃i+eZ,e · λ = 0.

• if λ has a good addable i-node γ then f̃i+eZ,e · λ = µ where [µ] = [λ] t {γ}.

• If λ has no good removable i-node then ẽi+eZ,e · λ = 0.

• if λ has a good removable i-node γ then ẽi+eZ,e · λ = µ where [µ] = [λ] \ {γ}.

Using these operators one can construct the ŝle-crystal graph of F , which is the graph
with

• vertices: all the partitions λ of n ∈ N,

• arrows: there is an arrow from λ to µ colored by i ∈ Z/eZ if and only if f̃i+eZ,e·λ = µ,
or equivalently if and only if λ = ẽi+eZ,e · µ.

Note that the definition makes sense for e = ∞. The corresponding graph, thus a sl∞-
crystal graph, coincides with the Young graph, which describes the branching graph of
the complex irreducible representations of symmetric groups.
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2.3 Mullineux involution

We can first give an interpretation of the set of e-regular partitions using Kashiwara
operators. The following result can be found for example in [20, §2.2].

Proposition 1. A partition λ is an e-regular partition of n if and only if there exists
(i1, . . . , in) ∈ Zn such that:

f̃i1+eZ,e · · · f̃in+eZ,e · ∅ = λ.

In other words, the vertices in the connected component of the ŝle-crystal graph con-
taining the empty partition are exactly the e-regular partitions. We thus have a subgraph
of this crystal graph with vertices all these e-regular partitions.

Recall the definition of the Mullineux involution given in the introduction. The fol-
lowing result allows us to compute it in a purely combinatorial way thanks to the above
results.

Theorem 2 (Kleshchev [19]). Let λ be an e-regular partition and (i1, . . . , in) ∈ Zn such
that:

f̃i1+eZ,e · · · f̃in+eZ,e.∅ = λ.

Then, there exists an e-regular partition µ such that:

f̃−i1+eZe · · · f̃−in+eZ,e.∅ = µ.

Moreover, we have me(λ) = µ where me is the Mullineux involution defined in the intro-
duction.

If λ is a partition, every node of its Young diagram has an associated hook, defined as
the set of nodes directly below or to its right including itself (using English notation for
the Young diagram). A partition is called an e-core if it is empty or has no hook with k.e
nodes for every integer k > 0. Of course, if e is sufficiently large comparing to n (e > n),
every partition of n is an e-core. If λ is an e-core, it is already contained in Mullineux’s
original paper [23] that me(λ) is the conjugate partition of λ (defined as the partition
obtained by interchanging rows and columns in the Young diagram of λ.)

Example 3. Let e = 3 and let λ = (5, 2, 1, 1). This is a 3-regular partition. Then we
have:

f̃ 2
0+3Z,3f̃

2
1+3Z,3f̃0+3Z,3f̃

2
2+3Z,3f̃1+3Z,3f̃0+3Z,3∅ = λ.

We get
f̃ 2

0+3Z,3f̃
2
2+3Z,3f̃0+3Z,3f̃

2
1+3Z,3f̃2+3Z,3f̃0+3Z,3∅ = (4, 2, 2, 1).

and thus m3(5, 2, 1, 1) = (4, 2, 2, 1). If e = 6 then λ = (5, 2, 1, 1) is a 6-core and we have:

f̃0+6Z,6f̃3+6Z,6f̃
2
4+6Z,6f̃3+6Z,6f̃2+6Z,6f̃1+6Z,6f̃5+6Z,6f̃0+6Z,6∅ = λ.

We obtain

f̃0+6Z,6f̃3+6Z,6f̃
2
2+6Z,6f̃3+6Z,6f̃4+6Z,6f̃5+6Z,6f̃1+6Z,6f̃0+6Z,6∅ = (4, 2, 1, 1, 1),

which is the conjugate partition of λ, as expected.
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The above algorithm is quite efficient but it may be difficult to compute the Mullineux
image of an arbitrary partition of rank n >> 0. Indeed there is no simple canonical way
to produce a path (that is a sequence of crystal operators) from an arbitrary e-regular
partition to the empty one. In the following, we will study another way to compute this
map without any use of the crystal and the Kashiwara operators.

3 Crystal isomorphisms for bipartitions

In this section, we quickly summarize the needed results to expose our algorithm. These
results mainly concern certain expansions of the above discussion to the case of biparti-
tions.

3.1 Level 2 Fock space

From now we fix a bicharge, that is a couple s = (s1, s2) ∈ Z2. Let us denote by Π2(n) the
set of pairs of partitions (bipartitions) (λ1, λ2) such that |λ1|+|λ2| = n. One can define the
level 2 Fock space as the C-vector space with basis indexed by all the elements of Π2(n)
for n ∈ Z>0. There is also a notion of crystal for this 2 Fock space with similar notions

of Kashiwara operators f̃ s
i+eZ,e and ẽsi+eZ,e. Importantly, the action of these operators on

each bipartition really depends on the choice of s.
To each λ := (λ1, λ2) ∈ Π2(n) is associated its Young diagram:

[λ] = {(a, b, c) | a > 1, c ∈ {1, 2}, 1 6 b 6 λca}.

We define the content of a node γ = (a, b, c) ∈ [λ] as follows:

cont(γ) = b− a+ sc,

and the residue res(γ) is by definition the content of the node taken modulo e. We will
say that γ is an i+ eZ-node of λ when res(γ) ≡ i+ eZ (we will sometimes simply called
it an i-node). Finally, we say that γ is removable when γ = (a, b, c) ∈ [λ] and [λ]\{γ} is
the Young diagram of a bipartition. Similarly, γ is addable when γ = (a, b, c) /∈ [λ] and
[λ] ∪ {γ} is the Young diagram of a bipartition.

Let γ, γ′ be two removable or addable i-nodes of λ. We denote

γ ≺s γ
′ def⇐⇒

{
either b− a+ sc < b′ − a′ + sc′ ,
or b− a+ sc = b′ − a′ + sc′ and c > c′.

For λ a bipartition and i ∈ Z/eZ, we can consider its set of addable and removable

i-nodes. Let w
(e,s)
i (λ) be the word obtained first by writing the addable and removable

i-nodes of λ in increasing order with respect to ≺s, next by encoding each addable i-node
by the letter A and each removable i-node by the letter R. Write w̃

(e,s)
i (λ) = ApRq for

the word derived from w
(e,s)
i (λ) by deleting as many of the factors RA as possible. In the

following, we will sometimes write w̃i(λ) and wi(λ) instead of w̃
(e,s)
i (λ) and w

(e,s)
i (λ) if

there is no possible confusion.
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If p > 0, let γ be the rightmost addable i-node in w̃i. The node γ is called the good
addable i-node. If q > 0, the leftmost removable i-node in w̃i is called the good removable
i-node. The definition of the Kashiwara operators f̃ s

i+eZ,e and ẽsi+eZ,e follows then exactly
the same pattern as in §2.2. In the same spirit as in the above discussion, one can also
define a certain subset of bipartitions Φ(s,e)(n):

Definition 4. We say that (λ1, λ2) is an Uglov bipartition associated with s ∈ Z2 if there
exist (i1, . . . , in) ∈ Zn such that:

f̃ s
i1+eZ,e · · · f̃ s

in+eZ,e.(∅, ∅) = (λ1, λ2).

We denote by Φ(e,s) the set of Uglov bipartitions and by Φ(e,s)(n) the set Φ(e,s) ∩ Π2(n).

We make the three important following remarks.

Remark 5. 1. As explained in [16], the set Φ((s1,s2),e)(n) provides a natural parametriza-

tion of the vertices for the crystal graph of the irreducible highest weight Uv(ŝle)-
module with weight Λs1+eZ + Λs2+eZ (the Λ′is denoting the fundamental weights).
The structure of this graph thus only depends on the choice of the bicharge modulo
e. As a consequence, assume that k ∈ Z then there is a unique bijection:

ψ(e,(s1,s2+ke)) : Φ(e,(s1,s2+ke)) → Φ(e,(s1,s2+(k+1)e)),

preserving the rank of bipartitions and commuting with the Kashiwara operators,
that is, for all i ∈ Z and λ ∈ Φ(e,(s1,s2+ke)), we have

ψ(e,(s1,s2+ke))(f̃
(s1,s2+ke)
i+eZ,e .λ) = f̃

(s1,s2+(k+1)e)
i+eZ,e .ψ(e,(s1,s2+ke))(λ),

and
ψ(e,(s1,s2+ke))(ẽ

(s1,s2+ke)
i+eZ,e .λ) = ẽ

(s1,s2+(k+1)e)
i+eZ,e .ψ(e,(s1,s2+ke))(λ).

This bijection may be computed thanks to a purely combinatorial algorithm given
in section §4. This map is called a crystal isomorphism.

2. By [9, §6.2.16], in the case where s2 − s1 > n − 1 − e, the bijection ψ(e,(s1,s2))

restricted to Φ(e,(s1,s2))(n) is always the identity. We say that (s1, s2) is very dominant
(comparing to n). This implies in particular that as soon as s2 − s1 > n − 1 − e,
the set Φ(e,(s1,s2))(n) only depends on the congruence class of (s1, s2) modulo e.
Similarly, the action of the Kashiwara operators on the bipartitions of smaller rank
only depends on the congruence class of (s1, s2) modulo e as soon as the above
condition is satisfied. The set is then called the set of Kleshchev bipartitions. The
set of Kleshchev bipartitions of rank n will be denoted by ΦK

(e,s)(n) and we denote

ΦK
(e,s) := tn>0ΦK

(e,s)(n)

3. One can define a bijection:

ψ̃(e,(s1,s2)) : Φ(e,(s1,s2)) → ΦK
(e,s),
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as follows. Let n ∈ Z>0 and let λ = (λ1, λ2) ∈ Φ(e,(s1,s2)) of rank n. Assume that
k ∈ Z>0 is such that |s2 + ke− s1| > n− 1− e, then we define:

ψ̃(e,(s1,s2))(λ
1, λ2) := ψ(e,(s1,s2+(k−1)e)) ◦ · · · ◦ ψ(e,(s1,s2+e)) ◦ ψ(e,(s1,s2))(λ

1, λ2).

Due to the above remark, this bijection does not depend on k.

3.2 Mullineux map

There exists a Mullineux type map in the case of bipartitions. Let s = (s1, s2) ∈ Z2 and
let −s := (−s1,−s2). Our Mullineux map will be a map:

M(e,s) : ΦK
(e,s) → ΦK

(e,−s),

which is uniquely defined as follows. Let λ ∈ ΦK
(e,s)(n). Let n ∈ Z>0. Let s1 = (s1, s2 +ke)

be a very dominant bicharge such that s1 ≡ s+eZ and let s2 be a very dominant bicharge
such that s2 ≡ −s + eZ. There exists (i1, . . . , in) ∈ Zn such that:

f̃ s1

i1+eZ,e · · · f̃ s1

in+eZ,e.∅ = λ.

Then it is shown in [7, §2] that there exists µ ∈ ΦK
(e,s2) such that:

f̃ s2

−i1+eZ,e · · · f̃ s2

−in+eZ,e.∅ = µ.

We denoteM(e,(s1,s2))(λ) := µ. Then it is proved in [17, Prop. 4.2] that µ = (me(λ
1),me(λ

2)).
In the following section, we will use this property to deduce our conjectural algorithm.

4 Explicit computations and a combinatorial property

In this section, we explain how one can compute the above crystal isomorphisms. Our
main conjecture is relied on a combinatorial conjectural property of these maps. This
property can in fact be settled in a completely general framework.

4.1 A combinatorial map

We recall here results from [16]. Let e be a positive integer. For r a positive integer, we
denote by Pr the set of strictly increasing sequences of non-negative integers with r parts.
Let m1 and m2 be two positive integers such that m1 6 m2.

Let (X1, X2) ∈ Pm1 × Pm2 . Set

X1 = (a1, . . . , am1), X2 = (b1, . . . , bm2).

We define an injection ϕ : X1 → X2 as follows.

• We set
ϕ(a1) = max{bj | j = 1, . . . ,m2, bj 6 a1},

if it exists. Otherwise, we set
ϕ(a1) = bm2
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• We repeat this procedure with (a2, . . . , am1) and X2 \ {ϕ(a1)} and thus associate to
each element of X1 a unique element in X2.

We now define a map:

Ψ(e,(m1,m2)) : Pm1 × Pm2 → Pm1 × Pm2+e,

with (Y1, Y2) := Ψ(e,(m1,m2))(X1, X2):

Y1 = {ϕ(aj) | j = 1, . . . ,m1},

Y2 = {aj + e | j = 1, . . . ,m1} ∪ {bj + e | j = 1, . . . ,m2; bj /∈ Y1} ∪ {0, 1 . . . , e− 1},

where we reorder these two sets so that Y1 ∈ Pm1 and Y2 ∈ Pm2+e.

Remark 6. The map is injective and (Ψ(e,(m1,m2)))
−1 may be computed as follows. Assume

that (Y1, Y2) := Ψ(e,(m1,m2))(X1, X2) then take Y ′2 be the set {y− e | y ∈ Y2 \ {0, 1, . . . , e−
1}}. Then define (a1, . . . , am1) := Y1 and (b1 . . . , bm2) := Y ′2 . we define an injection
ϕ′ : Y1 → Y ′2 as follows.

• We set
ϕ′(a1) = min{bj | j = 1, . . . ,m2, bj > a1},

if it exists. Otherwise, we set
ϕ′(a1) = b1.

• We repeat this procedure with (a2, . . . , am1) and Y ′2 \ {ϕ′(a1)} and thus associate to
each element of Y1 a unique element in Y ′2 . Then we have

X1 = {ϕ′(aj) | j = 1, . . . ,m1},

X2 = {aj | j = 1, . . . ,m1} ∪ {bj | j = 1, . . . ,m2; bj /∈ X1}.

(after reordering the elements)

Remark 7. In the case where X1 ⊂ X2, it follows from the above definition that

Ψ(e,(m1,m2))(X1, X2) = (X1, {0, . . . , e− 1} ∪X2 + e).

4.2 Connection with crystal isomorphisms

Assume that s = (s1, s2) ∈ Z2 and assume in addition that s1 6 s2 (we only need this case
in the following but note that there is an analogue description of the crystal isomorphisms
if s1 > s2, see [16]). Let λ = (λ1, λ2) be a bipartition of n in Φ(e,(s1,s2)). One can assume
that there exists an integer m such that λ1 = (λ1

1, . . . , λ
1
m+s1

) and λ2 = (λ2
1, . . . , λ

2
m+s2

),
adding parts equal to 0 if necessary. For j = 1, . . . ,m+ s1, we set

β1
j = λ1

j − j + s1 +m.
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For j = 1, . . . ,m+ s2, we set

β2
j = λ2

j − j + s2 +m.

We then define
Xs1,m

1 (λ1) := (β1
s1+m, . . . , β

1
1) ∈ Pm+s1

and
Xs2,m

2 (λ2) := (β2
s2+m, . . . , β

2
1) ∈ Pm+s2 .

By [13, Th. 4.6] (see also the generalization in [16]), we get:

Proposition 8. Keeping the above notations, We have

ψ(e,(s1,s2))(λ
1, λ2) = (µ1, µ2),

where (µ1, µ2) is the unique bipartition of n such that

Ψ(e,(s1+m,s2+m))(X
s1,m
1 (λ1), Xs2,m

2 (λ2)) = (Xs1,m
1 (µ1), Xs2+e,m

2 (µ2)).

Remark 9. In the case where Xs1,m
1 (λ1) ⊂ Xs2,m

2 (λ2), by Remark 7, we obtain:

ψ(e,(s1,s2))(λ
1, λ2) = (λ1, λ2).

Remark 10. As noted in [16], the algorithm to compute (µ1, µ2) from the datum of (λ1, λ2)
in fact does not depend on e. This can be explained as follows. The map ψ(e,(s1,s2)) can
be seen as the composition of two crystal isomorphisms, the first one:

Φ(e,(s1,s2)) → Φ(e,(s2,s1)),

is the restriction of the crystal isomorphism

Φ(∞,(s1,s2)) → Φ(∞,(s2,s1)),

and thus do not depends on e, and the second :

Φ(e,(s2,s1)) → Φ(e,(s1,s2+e)),

sends (λ1, λ2) to (λ2, λ1).

4.3 Computing the map ψ̃(e,(s1,s2))

Assume that s1 6 s2. To compute ψ̃(e,(s1,s2)), as explained in Remark 5 (3), we have to fix

n ∈ Z>0 and compute ψ̃(e,(s1,s2))|Φ(e,s)(n). If k ∈ Z>0 is such that |s2 + ke− s1| > n− 1− e,
we have to compose k crystal isomorphisms:

ψ̃(e,(s1,s2))|Φ(e,s)(n) := ψ(e,(s1,s2+(k−1)e)) ◦ · · · ◦ ψ(e,(s1,s2+e)) ◦ ψ(e,(s1,s2))|Φ(e,s)(n) (1)
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However, in most of the cases, if we want to compute the image of a particular biparti-
tion λ ∈ Φ(e,s)(n) under ψ̃(e,(s1,s2)), one can be considerably more efficient thanks to the
following remark. Let λ ∈ Φ(e,s)(n) and h := max{i ∈ Z>0 | λ2

i 6= 0}+ 1. Assume that

λ1
1 − 1 + s1 6 s2 − h, (2)

then we have for all relevant m, we have Xs1,m
1 (λ1) ⊂ Xs2,m

2 (λ2). By Remarks 7 and 9,
this implies that

ψ(e,(s1,s2))(λ
1, λ2) = (λ1, λ2).

But now we also have λ1
1 − 1 + s1 6 s2 + e− h and thus we obtain

ψ(e,(s1,s2+e))(λ
1, λ2) = (λ1, λ2).

By an immediate induction, we deduce that for all k > 0, we have:

ψ(e,(s1,s2+ke))(λ
1, λ2) = (λ1, λ2).

In this case, we thus simply have:

ψ̃(e,(s1,s2))(λ
1, λ2) = (λ1, λ2).

Of course, a similar result holds for (ψ̃(e,(s1,s2)))
−1: if (λ1, λ2) ∈ ΦK

(e,s) satisfies the above

property, then we have for all k > 0 that (λ1, λ2) ∈ Φ(e,(s1,s2+ke)) and

(ψ(e,(s1,s2+ke)))
−1(λ1, λ2) = (λ1, λ2).

Note that the difference between the two charges of the multicharges appearing in 1
grows as we compose the isomorphisms. Thus, condition 2 must be satisfied after some
compositions. We can now state our combinatorial conjecture

4.4 A combinatorial conjecture

Our main conjecture is the following one:

Conjecture 11. Let X ∈ Pm. Set

(X0
1 , X

0
2 ) = (X,X)

and for k > 0 ∈ Z

(Xk
1 , X

k
2 ) = Ψ(e,(0,(k−1)e)) ◦ . . . ◦Ψ(e,(0,e)) ◦Ψ(e,(0,0))(X,X) ∈ Pm × Pm+ke.

Then if k is even, we have Xk
1 ⊂ Xk

2 .
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We can establish the conjecture in the case k = 2. Note that if X1 ⊂ X2 then ϕ is the
identity. We thus have that

Ψ(e,(0,0))(X,X) = (X,X + e ∪ {0, 1, . . . , e− 1}).

Now we set
Ψ(e,(0,e))(X,X + e ∪ {0, 1, . . . , e− 1}) = (Y1, Y2).

From the above procedure, the elements of Y1 are some elements of X+e∪{0, 1, . . . , e−
1} and Y2 is given by {0, 1, . . . , e− 1} together with all the elements of X + e and other
elements of X + 2e ∪ {e, e + 1, . . . , 2e − 1}. Now if y1 ∈ Y1, either y1 6 e − 1 and then
clearly y1 ∈ Y2 or y1 ∈ X + e by definition of the combinatorial procedure and therefore
we also have y1 ∈ Y2 since X + e ⊂ Y2. We thus have Y1 ⊂ Y2.

In the following, it will be convenient to write the image of an element (X1, X2) ∈

Pm1 ×Pm2 under a map Ψ(e,s) as

(
X2

X1

)
instead of (X1, X2). This is what we are going

to do in the following example. Assume that

X = {0, 3, 5, 6, 10, 12, 15, 18, 20},

and e = 3. We check that

Ψ(3,(0,0))(X,X) =

(
0 1 2 3 6 8 9 13 15 18 21 23
0 3 5 6 10 12 15 18 20

)
Ψ(3,(0,3)) ◦Ψ(3,(0,0))(X,X) =

(
0 1 2 3 4 6 8 9 13 15 18 21 23 24 26
0 2 3 6 8 9 13 15 18

)
and the set below is included in the set above, as claimed by the conjecture. Then by
applying Ψ(3,(0,6)) we get(

0 1 2 3 4 5 6 7 9 11 12 16 18 21 24 26 27 29
0 2 3 6 8 9 13 15 18

)
and the action of Ψ(3,(0,9)) then gives(

0 1 2 3 4 5 6 7 8 9 11 12 16 18 · · ·
0 2 3 6 7 9 11 12 18

)
which yet again satisfies the inclusion property.

Note that in the assumptions of the conjecture, we really need k to be even. In the
case when k is odd, the assertion is wrong as we can see in the above example.

Remark 12.

• This conjecture has been checked for all couples (X,X) = (X0,m(λ), X0,m(λ)) with
λ an arbitrary partition of rank n with n 6 40 (and e arbitrary). A proof for the
conjecture has already been obtained by M.Fayers when e = 2 [8].

• For any X ∈ Pm, there exists an integer k0 such that Xk
1 ⊂ Xk

2 for any k > k0. This
corresponds to the asymptotic case where (Xk

1 , X
k
2 ) is the symbol of a Kleshshev

bipartition.

the electronic journal of combinatorics 31(1) (2024), #P1.64 11



4.5 A reformulation of the conjecture

In fact, the previous sequence of elements

(
Xk

2

Xk
1

)
, k > 0 is completely determined by

the sequence (Xk
1 ), k > 0. Indeed, we have by definition X0

2 = X. Now if we assume
that the sequences X0

2 , X
1
2 , . . . , X

k−1
2 and X0

1 , X
1
1 , . . . , X

k−1
1 , Xk

1 are determined, we have
by definition of our algorithm

Xk
2 = {0, . . . , e− 1} ∪

(((
Xk−1

2 \Xk
1

)
∪Xk−1

1

)
+ e
)
.

For any integer k, we have the equivalence

Xk
1 ⊂ Xk

2 ⇐⇒ Xk+1
1 = Xk

1

Our conjecture is thus equivalent to the assertion

Xk+1
1 = Xk

1 for any even k > 0.

It is also interesting to observe that each list Xk
1 := (a1, . . . , al) determines an e-regular

partition λk := (λk1, . . . , λ
k
l ) where λkj := al−j+1 − (l− j) for j = 1, . . . , l. We thus get the

following proposition

Proposition 13. Conjecture 11 holds if and only if the sequence of e-regular partitions
(λk), k > 0 satisfies λk = λk+1 for any even integer k.

5 Conjectural consequences on crystal isomorphisms

We first establish some elementary results concerning e-regular partitions and then explain
our conjectural algorithm.

Proposition 14. Let λ be an e-regular partition and consider a sequence (i1, . . . , in) ∈ Zn
such that:

f̃i1+Ze,e · · · f̃in+Ze,e.∅ = λ.

Then we have
(f̃

(0,0)
i1+Ze,e)

2 · · · (f̃ (0,0)
in+Ze,e)

2(∅, ∅) = (λ, λ),

and in particular we have (λ, λ) ∈ Φ(e,(0,0)).

Proof. Let λ ∈ Rege(n). By Proposition 1, there exists (i1, . . . , in) ∈ Zn such that:

f̃i1+Ze,e · · · f̃in+Ze,e.∅ = λ.

We set
λ̃ := f̃i1+Ze,e · · · f̃in−1+Ze,e.∅.

By induction, we have that

(f̃
(0,0)
i1+Ze,e)

2 . . . (f̃
(0,0)
in−1+Ze,e)

2(∅, ∅) = (λ̃, λ̃).
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Assume that
win+eZ(λ̃) = Z1, . . . Zm.

where for all i = 1, . . . ,m, Zi ∈ {A,R} corresponds to a node (ai, bi). Then we have:

win+eZ(λ̃, λ̃) = T1, . . . , T2m,

where T2i−1 = Zi correspond to the node (ai, bi, 2) for i = 1, . . . ,m and T2i = Zi for
i = 1, . . . ,m corresponds to the node (ai, bi, 1). It follows that if (ak, bk) is a good addable

in + eZ-node for λ̃ then (ai, bi, 2) is a good addable in + eZ-node for (λ̃, λ̃) and (ai, bi, 1)

is a good addable in + eZ-node for (λ̃, λ). We conclude that

(f̃
(0,0)
i1+Ze,e)

2 . . . (f̃
(0,0)
in+Ze,e)

2(∅, ∅) = (λ, λ)

as required.

The following result comes from [14, Lemma 3.2.12] (see also [12] for an similar result,
but for a different realization of the Fock space).

Proposition 15. Let λ be an e-regular partition and let (i1, . . . , in) ∈ Zn be such that:

f̃i1+Ze,e · · · f̃in+Ze,e.∅ = λ.

Then we have:

f̃
(0,e)
i1+2Ze,2ef̃

(0,e)
i1+e+2Ze,2e . . . f̃

(0,e)
in+2Ze,2ef̃

(0,e)
in+e+2Ze,2e(∅, ∅) = (λ, λ),

and in particular we have (λ, λ) ∈ Φ(2e,(0,e)).

Our algorithm is now built on the following result which assumes Conjecture 11.

Proposition 16. Assume that Conjecture 11 is true then for all e-regular partitions λ of
n and k ∈ Z>0, we have:

ψ(2e,(0,(2k+1)e)) ◦· · ·◦ψ(2e,(0,3e)) ◦ψ(2e,(0,e))(λ, λ) = ψ(e,(0,(2k+1)e)) ◦· · ·◦ψ(e,(0,e)) ◦ψ(e,(0,0))(λ, λ).

In particular, we have
ψ̃(2e,(0,e))(λ, λ) = ψ̃(e,(0,0))(λ, λ).

Proof. Let λ be an e-regular partition of n. By Prop. 14 and 15, we have that (λ, λ) ∈
Φ(2e,(0,e)) ∩ Φ(e,(0,0)). By Remark 7, we have

ψ(e,(0,0))(λ, λ) = (λ, λ) ∈ Φ(e,(0,e)).

We thus have (λ, λ) ∈ Φ(e,(0,e)) ∩ Φ(2e,(0,e)). Now, the algorithm to compute the image of
a bipartition under the crystal isomorphism ψ(e,(s1,s2)) does not depend on e but only on
the pair (s1, s2). This implies that:

ψ(e,(0,e))(λ, λ) = ψ(2e,(0,e))(λ, λ).
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We then argue by induction. Assume that

(µ1, µ2) := ψ(2e,(0,(2k−1)e)) ◦ · · · ◦ ψ(2e,(0,3e)) ◦ ψ(2e,(0,e))(λ, λ)
= ψ(e,(0,(2k−1)e)) ◦ · · · ◦ ψ(e,(0,e)) ◦ ψ(e,(0,0))(λ, λ).

We use Conjecture 11 and Remark 7 to deduce that:

ψ(e,(0,2ke))(µ
1, µ2) = (µ1, µ2).

Again, the algorithm for computing the crystal isomorphisms implies that:

ψ(2e,(0,(2k+1)e))(µ
1, µ2) = ψ(e,(0,(2k+1)e))(µ

1, µ2),

and we are done.

Remark 17. Note that in fact to prove the above result, we only need to prove Conjecture
11 in the case where X ∈ Pm is such that there is no i ∈ X such that i, i+ 1, . . . , i+ e− 1
are in X (this corresponds to the β-sets associated with e-regular partitions).

Assuming that the conjecture 11 is true, we will now be able to obtain our algorithm.
To do this, we yet need a remarkable property of the Mullineux map. As our Mullineux
map is defined on the set of Kleshchev bipartitions, we will use the map ψ̃(e,s) which “takes
to the very dominant world” (see Remark 5 (3)).

Theorem 18. Assume that Conjecture 11 is satisfied. Let λ be an e-regular partition and
denote (µ1, µ2) := ψ̃(e,(0,0))(λ, λ). We have:

ψ̃(e,(0,0))(me(λ),me(λ)) = ψ̃(2e,(0,e))(me(λ),me(λ))
= (m2e(µ

1),m2e(µ
2))

= (me(µ
1),me(µ

2)).

Proof. Let λ be an e-regular partition. There exists (i1, . . . , in) ∈ Zn such that:

f̃i1+Ze,e · · · f̃in+Ze,e.∅ = λ.

By Proposition 14, we have that (λ, λ) ∈ Φ(e,(0,0)) and we have:

f̃ 2
i1+Ze,e · · · f̃ 2

in+Ze,e.(∅, ∅) = (λ, λ),

and by Proposition 15, we have (λ, λ) ∈ Φ(2e,(e,0)). Now by Proposition 16, we have that

ψ̃(e,(0,0))(λ, λ) = ψ̃(2e,(0,e))(λ, λ).

Set µ := (µ1, µ2) := ψ̃(e,(0,0))(λ, λ). Then by §4, we have M(e,(0,0))(µ) = (me(µ
1),me(µ

2))
andM(2e,(0,e))(µ) = (m2e(µ

1),m2e(µ
2)). If we argue exactly as above with the bipartition

(me(λ),me(λ)), we get:

ψ̃(e,(0,0))(me(λ),me(λ)) = ψ̃(2e,(0,e))(me(λ),me(λ)).
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By definition we have:

(f̃
(0,0)
−i1+Ze)

2 · · · (f̃ (0,0)
−in+Ze)

2(∅, ∅) = (me(λ),me(λ)),

Choose k ∈ Z such that (0, ke) is very dominant. We obtain

ψ̃(e,(0,0))(me(λ),me(λ)) = (f̃
(0,ke)
−i1+Ze)

2 · · · (f̃ (0,ke)
−in+Ze)

2(∅, ∅)

and by definition we get:

ψ̃(e,(0,0))(me(λ),me(λ)) =M(e,(0,0))(µ),

Similarly, with exactly the same argument we get:

ψ̃(2e,(0,e))(m2e(λ),m2e(λ)) =M(2e,(0,e))(µ),

and thus the result follows.

The algorithm can now be stated as follows. Let n ∈ N.

1. If e is sufficiently large, we know the Mullineux image of any e-regular partition
because then any e-regular partition is an e-core and thus its Mullineux image is its
conjugate partition.

2. Assume that we know m2e. Let λ be an e-regular partition. We compute:

(µ1, µ2) := ψ̃(2e,(0,e))(λ, λ).

3. Then we compute:

(ν1, ν2) := (ψ̃(2e,(0,e)))
−1(m2e(µ

1),m2e(µ
2)).

4. We must have by the previous proposition

me(λ) = ν1 = ν2.

Example 19. Take e = 3 and the 3-regular partition λ = (6, 5, 2, 2, 1, 1). This is a
partition of rank 17 and so the very dominant case is reached if s2− s1 > 30. To perform
our algorithm, we must compute:

ψ̃(2e,(0,0))(λ, λ) = ψ(2e,(0,ke)) ◦ · · · ◦ ψ(2e,(0,3e)) ◦ ψ(2e,(0,e))(λ, λ)

until we reach the “very dominant case”. We consider the β-sets associated with the
bipartition (λ, λ) with respect to the bicharge (0, 3):(

0 1 2 4 5 7 8 12 14
1 2 4 5 9 11

)
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To compute ψ(2e,(0,e))(λ, λ), we need to apply the algorithm described in §4.1. We obtain:(
0 1 2 3 4 5 6 7 8 11 12 15 17 18 20
1 2 4 5 7 8

)
The associated bipartition is ((3, 3, 2, 2, 1, 1), (6, 5, 5, 4, 1, 1)). In principle, we have to
apply again the algorithm until the “very dominant case”, but note that we are already
in the case described in §4.3 so

ψ̃(2e,(0,0))(λ, λ) = (µ1, µ2) = ((3, 3, 2, 2, 1, 1), (6, 5, 5, 4, 1, 1))

By induction, we know m6(3, 3, 2, 2, 1, 1) = (6, 4, 2) (because (3, 3, 2, 2, 1, 1) is a 6-

core) and m6(6, 5, 5, 4, 1, 1) = (11, 9, 2). So now we have to compute (ψ̃(6,(0,0)))
−1 for

((6, 4, 2), (11, 9, 2)) starting from the very dominant case. In fact, using Remark 4.3 again,
we see that ((6, 4, 2), (11, 9, 2)) is in Φ(6,(0,9)) and that:

(ψ̃(6,(0,0)))
−1((6, 4, 2), (11, 9, 2)) = (ψ(6,(0,3)))

−1((6, 4, 2), (11, 9, 2))

To compute this latter expression, we use our (reversed) algorithm, we consider the fol-
lowing symbol: (

0 1 2 5 13 16
2 5 8

)
.

This gives: (
0 1 2 5 8 16
2 5 13

)
.

We get ((11, 4, 2), (11, 4, 2)) and one can check that we indeed have me(λ) = (11, 4, 2).
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Uv(ŝle)-modules of higher level, Algebras and Rep. theory 13, 467-489, 2010.

[17] N. Jacon and C. Lecouvey, On the Mullineux involution for Ariki-Koike algebras, J.
Algebra Vol. 321, Issue 8, 15 April 2009, Pages 2156–2170.

[18] N. Jacon and C. Lecouvey, Kashiwara and Zelevinsky involutions in affine type A,
Pacific J. of Math. Vol. 243, No. 2, 2009, 287–311.

[19] A. Kleshchev, Branching rules for modular representations of symmetric groups III:
Some corollaries and a problem of Mullineux, J. Lond. Math. Soc. 54 (1996) 25–38.

[20] A. Lascoux, B. Leclerc, and Jean-Yves Thibon. Hecke algebras at roots of unity and
crystal bases of quantum affine algebras, Comm. Math. Phys. 181:205–263, 1996.

[21] I.Losev, Supports of simple modules in cyclotomic Cherednik categories O, Adv.
Math. 377 (2021), 107491.

[22] C. Mœglin and J.-L. Waldspurger, Sur l’involution de Zelevinski, J. Reine Angew.
Math. 372 (1986), 136–177.

[23] G. Mullineux, Bijections of p-regular partitions and p-modular irreducibles of the
symmetric groups, J. London Math. Soc. (2) 20 (1979), no.1, 60–66.

[24] M. Xu, On p-series and the Mullineux conjecture, Comm. Algebra 27 (1999), no. 11,
5255–5265.

the electronic journal of combinatorics 31(1) (2024), #P1.64 17



[25] M. Xu, On Mullineux’ conjecture in the representation theory of symmetric groups.
Comm. Algebra 25 (1997), no. 6, 1797–1803.

the electronic journal of combinatorics 31(1) (2024), #P1.64 18


	Introduction
	Mullineux involution for Hecke algebras
	Partitions and Young diagrams
	Level 1 Fock space
	Mullineux involution

	Crystal isomorphisms for bipartitions
	Level 2 Fock space
	Mullineux map

	Explicit computations and a combinatorial property
	A combinatorial map
	Connection with crystal isomorphisms
	Computing the map "0365(e,(s1,s2))
	A combinatorial conjecture
	A reformulation of the conjecture

	Conjectural consequences on crystal isomorphisms

