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Abstract

We study parabolic aligned elements associated with the type-B Coxeter group
and the so-called linear Coxeter element. These elements were introduced alge-
braically in (Mühle and Williams, 2019) for parabolic quotients of finite Coxeter
groups and were characterized by a certain forcing condition on inversions. We fo-
cus on the type-B case and give a combinatorial model for these elements in terms
of pattern avoidance. Moreover, we describe an equivalence relation on parabolic
quotients of the type-B Coxeter group whose equivalence classes are indexed by the
aligned elements. We prove that this equivalence relation extends to a congruence
relation for the weak order. The resulting quotient lattice is the type-B analogue of
the parabolic Tamari lattice introduced for type A in (Mühle and Williams, 2019).

Mathematics Subject Classifications: 05E15, 06A07, 20F55

1 Introduction

Knuth introduced in [17, Section 2.2.1] the family of stack-sortable permutations. These
are permutations that can be converted into the identity permutation by passing through
a stack. Combinatorially, stack-sortable permutations are characterized by avoiding the
pattern 231. More precisely, a permutation π of {1, 2, . . . , n} avoids the pattern 231 if
and only if for every i < j < k, when π(i) > π(k), we have π(i) > π(j). Following Björner
and Wachs this pattern-avoidance can be interpreted as a certain forcing of inversions [4,
Section 9].

Using a root-theoretic approach, Reading generalized this condition to all finite ir-
reducible Coxeter groups W and all Coxeter elements c. These c-aligned elements of
W play an important role in the very active stream of Coxeter–Catalan combinatorics.
First, the number of c-aligned elements of W is the W -Catalan number (for any choice
of Coxeter element c). Second, the c-aligned elements provide a bijective bridge between
c-noncrossing partitions and c-clusters associated with W [27].
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On top of that, the c-aligned elements behave nicely from a lattice-theoretic point of
view. Inside the weak order, they form the c-Cambrian lattice; a particular semidistribu-
tive and trim lattice. This family of lattices generalizes the famous Tamari lattice [26].
Another remarkable feature is that these lattices arise from a certain orientation of the
1-skeleton of the c-associahedron, a simple polytope associated with the Coxeter group W .
In fact, the boundary complex of the dual polytope of the c-associahedron is the c-cluster
complex associated with W , which arises from the almost positive roots associated with
W by means of a certain compatibility condition.

In [23], c-aligned elements, c-noncrossing partitions and c-clusters were generalized
to parabolic quotients of finite irreducible Coxeter groups. In this generalization, some
properties of these objects were conjectured to remain, such as the lattice property of
parabolic c-aligned elements under weak order ([23, Conjecture 35]), and—when W is
of coincidental type—the equinumerosity of parabolic c-aligned elements, parabolic c-
noncrossing partitions and parabolic c-clusters ([23, Conjecture 41]). The case of the
symmetric group with c the increasing long cycle was settled in the same article. Further
research has exhibited remarkable connections between parabolic Coxeter–Catalan objects
associated with the symmetric group, certain Hopf algebras, and the theory of diagonal
harmonics [6]. For more properties of these objects, readers are referred to [10, 18, 22].

In this article, we present a first study of parabolic Coxeter–Catalan objects associated
with the hyperoctahedral group, i.e., the Coxeter group of type B. We start by recalling
the necessary basics on posets and lattices (Section 2) and Coxeter groups (Section 3).
Then we turn our attention to the Coxeter group of type B, which can be viewed as
the symmetry group of the hyperoctahedron. We recall a permutation representation
of this group in terms of sign-symmetric permutations (Section 4.1), and then consider
a particular realization of the roots associated with this group (Section 4.2). With the
basics set up we then recall Reading’s construction of the ~c-aligned elements associated
with the Coxeter group of type B, where ~c is a linear Coxeter element, i.e., a particular
long cycle (Section 4.3).

In the main part of this article, we consider parabolic quotients of the hyperoctahedral
group of degree n. These parabolic quotients consist of minimal-length representatives
of the left cosets with respect to certain subgroups. We give a simple criterion for the
membership of a sign-symmetric permutation to such a parabolic quotient (Section 5.1).
In particular, it turns out that the parabolic quotients are determined by a type-B com-
position α of n, i.e., an integer composition of n with a possible additional 0-component.
We denote such a parabolic quotient by Hα.

Next, we study the longest element in Hα and describe its ~c-sorting word together with
the associated inversion order by means of skew shapes (Section 5.2). We then charac-
terize the ~c-aligned elements associated with a parabolic quotient of the hyperoctahedral
group algebraically in terms of a forcing condition on the inversions and combinatorially
in terms of a pattern-avoidance condition (Section 5.3). It shall be remarked here that
there are two types of type-B compositions: those with a 0-component and those without.
This dichotomy has an impact on the pattern-avoidance condition, because the avoided
patterns differ slightly depending on whether the 0-component is present or not. Nev-
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ertheless, we may write Align
(
Hα,wo;α(~c)

)
uniformly for the set of ~c-aligned elements in

Hα.
In the last section of this article (Section 6), we prove that Align

(
Hα,wo;α(~c)

)
induces

a quotient lattice of the weak order on Hα, called the type-B parabolic Tamari lattice
TamB(α).

Theorem 1. For every type-B composition α, TamB(α) is a lattice. Moreover, it is a
quotient lattice of the weak order on the parabolic quotient Hα.

These lattices enjoy some remarkable structural properties.

Theorem 2. For every type-B composition α, TamB(α) is congruence uniform (hence
semidistributive) and trim.

In fact, congruence-uniformity of TamB(α) follows right away from the fact that
TamB(α) is a quotient lattice of the weak order because the latter is itself congruence
uniform. Since trimness of TamB(α) cannot be deduced so easily, we think that it is
justified to state these important structural properties together as a theorem.

We conclude this article with a brief outlook on future research in this direction (Sec-
tion 7).

2 Posets and lattices

2.1 Partially ordered sets

Throughout this section, let P denote a finite set. If P is equipped with a reflexive,
antisymmetric and transitive relation 6, then P = (P,6) is a partially ordered set (or
poset for short). An induced subposet of P is a poset (Q,6′) for Q ⊆ P , where q 6′ q′ if
and only if q 6 q′ for all q, q′ ∈ Q. The direct product of P with a poset (P ′,6′) is the
poset (P × P ′,�) with (p1, p

′
1) � (p2, p

′
2) if and only if p1 6 p2 and p′1 6

′ p′2.
An element p ∈ P is minimal if for every q ∈ P with q 6 p it follows that p = q. It is

maximal if for every q ∈ P with p 6 q it follows that p = q. If P has a unique minimal
and a unique maximal element, then P is bounded . Then, we usually write 0̂ (resp. 1̂) for
the unique minimal (resp. maximal) element of P.

An interval of P is a set [p, q]
def
= {r ∈ P : p 6 r 6 q} for some p, q ∈ P with p 6 q. A

covering pair (or cover for short) of P is a pair (p, q) ∈ P × P such that p < q and there
does not exist an r ∈ P such that p < r < q. We usually write pl q in this situation. In
other words, a covering pair induces an interval of cardinality two.

A subset C ⊆ P is a chain if we can write C = {c1, c2, . . . , ck} such that c1 < c2 <
· · · < ck. A chain is maximal if there exists no strictly larger chain C ′ with C ( C ′. In
other words, a maximal chain C can be written as C = {c1, c2, . . . , ck} with c1lc2l· · ·lck,
where c1 is minimal and ck is maximal. The length of P is

`(P)
def
= max

{
|C| − 1: C is a maximal chain of P

}
.

If (P ′,6′) is another poset, then a map f : P → P ′ is order preserving if for all p, q ∈ P
with p 6 q it holds that f(p) 6′ f(q).
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2.2 Lattices

An element p ∈ P is a lower bound for a subset A ⊆ P if p 6 a for all a ∈ A. The greatest
lower bound of A is (if it exists) the unique maximal element of the set of lower bounds
of A (considered as a subposet of P). Upper bounds and least upper bounds are defined
analogously.

Then, P is a lattice if for all p, q ∈ P the set {p, q} has a greatest lower bound (the
meet , denoted by p ∧ q) and a least upper bound (the join, denoted by p ∨ q). It is easy
to see that every finite lattice is bounded. A sublattice of P is a subposet Q = (Q,6)
which is itself a lattice and for every p, q ∈ Q the join (and meet) of p and q in Q is the
same as the join (and meet) in P.

An element j ∈ P \{0̂} is join-irreducible if j = p∨q implies j ∈ {p, q} for all p, q ∈ P .
Since P is finite, for every join-irreducible element j ∈ P there exists a unique element
j∗ ∈ P such that j∗ l j. Meet-irreducible elements are defined analogously. Let J(P) and
M(P) denote respectively the set of join- and meet-irreducible elements of P.

2.3 Congruence-uniform lattices

Let P = (P,6) be a lattice. A lattice congruence of P is an equivalence relation Θ on P
that respects the lattice operations. More precisely, for p1, p2, q1, q2 ∈ P with (p1, q1) ∈ Θ
and (p2, q2) ∈ Θ, we have (p1 ∨ p2, q1 ∨ q2) ∈ Θ and (p1 ∧ p2, q1 ∧ q2) ∈ Θ. The set of
congruence classes of Θ forms a lattice again, called the quotient lattice P/Θ. The order
relation is given by comparing representatives of each congruence class.

The following characterization of lattice congruences will be useful later.

Lemma 3 ([26, Section 3]). Let P = (P,6) be a lattice and let Θ be an equivalence
relation on P . Then Θ is a lattice congruence of P if and only if the following conditions
are satisfied:

(i) Every equivalence class of Θ is an interval of P;

(ii) The map that sends p ∈ P to the unique minimal element in [p]Θ is order preserving;

(iii) The map that sends p ∈ P to the unique maximal element in [p]Θ is order preserving.

Given another lattice Q = (Q,6Q), a map f : P → Q is a lattice homomorphism if
for all p, p′ ∈ P we have f(p ∨ p′) = f(p) ∨Q f(p′) and f(p ∧ p′) = f(p) ∧Q f(p′). If f
is surjective, then the preimages of f induce a lattice congruence on P. Moreover, given
a lattice congruence Θ, the map that sends p ∈ P to the minimal element of [p]Θ is a
surjective lattice homomorphism.

We may as well consider the set of all congruence relations on P ordered by refinement.
This is again a lattice [12]; the congruence lattice of P, denoted by Con(P). From this
perspective, a lattice congruence Θ of P is join-irreducible if it is a join-irreducible element
of Con(P). For p l q, let cg(p, q) denote the finest lattice congruence on P in which p
and q are congruent, i.e., the intersection of all lattice congruences in which p and q are
congruent. Interestingly, the covering pairs of P determine the join-irreducible lattice
congruences.
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Theorem 4 ([13, Section 2.14] and [11, Theorem 3.20]). Let P be a finite lattice and let
Θ ∈ Con(P). The following are equivalent.

(i) Θ is join-irreducible in Con(P).

(ii) Θ = cg(p, q) for some pl q.

(iii) Θ = cg(j∗, j) for some j ∈ J(P).

As a consequence, any finite lattice P admits a surjective map

cg : J(P)→ J
(
Con(P)

)
, j 7→ cg(j∗, j),

which in general fails to be injective. A lattice P is congruence uniform if the map cg is
a bijection for P and its dual Pd = (P,>).

Proposition 5 ([25]). The class of congruence-uniform lattices is preserved under lattice
homomorphisms, under passing to sublattices, and under taking (finitely many) direct
products.

Congruence-uniform lattices have other remarkable properties. Recall that a lattice
P = (P,6) is semidistributive if for all p, q, r ∈ P it holds that

p ∨ q = p ∨ r implies p ∨ q = p ∨ (q ∧ r),
p ∧ q = p ∧ r implies p ∧ q = p ∧ (q ∨ r).

Lattices satisfying only the first implication are join-semidistributive. We record two
helpful, auxiliary results.

Lemma 6 ([9, Lemma 4.2]). Every congruence-uniform lattice is semidistributive.

Lemma 7 ([11, Corollary 2.55]). If P is a semidistributive lattice, then
∣∣J(P)

∣∣ =
∣∣M(P)

∣∣.
2.4 Trim lattices

According to [20], a lattice P is extremal if
∣∣J(P)

∣∣ = `(P) =
∣∣M(P)

∣∣. However, every
lattice can be embedded as an interval into an extremal lattice; see [20, Theorem 14(ii)].
Thus, extremality alone is not necessarily inherited by intervals.

A lattice property, which is stronger than extremality and behaves well with respect
to sublattices and quotients, was introduced in [31]. An element p ∈ P is left modular if
for all r, q ∈ P with r 6 q it holds that

(r ∨ p) ∧ q = r ∨ (p ∧ q).

Then, P is left modular if it has a maximal chain consisting of `(P) + 1 left-modular
elements. Left-modular lattices have interesting topological properties, though not in the
scope of this paper; see for instance [19, 21]. We are rather interested in lattices that are
both extremal and left modular; following [31] we call such lattices trim.
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Proposition 8 ([31, 32]). The class of trim lattices is preserved under lattice homomor-
phisms, under passing to intervals, and under taking (finitely many) direct products.

It is, however, not necessarily true that any sublattice of a trim lattice is trim again,
see [31, Theorem 3]. For semidistributive lattices it is somewhat easier to verify trimness,
as we only need to establish extremality.

Theorem 9 ([32, Theorem 1.4]). Every semidistributive and extremal lattice is trim.

3 Basics on Coxeter groups

3.1 Coxeter groups

We start with some algebraic background on Coxeter groups. A Coxeter group is a
group W with identity element e and a distinguished set S = {s1, s2, . . . , sn} of (Coxeter)
generators that admits a presentation of the following form:

W =
〈
S : (sisj)

mi,j = e
〉

such that for all i, j ∈ [n]
def
= {1, 2, . . . , n} it holds that

• mi,j > 1,

• mi,j = 1 if and only if i = j,

• mi,j = mj,i.

The parameters mi,j form the Coxeter matrix of W . Note that mi,j = ∞ is allowed if
there is no relation between the generators si and sj.

A word for w ∈ W is a representation of w by a group product wi1wi2 · · ·wik , where
wij ∈ W for all j. Such a word is S-reduced if wij ∈ S for all j and w cannot be expressed
as a product of fewer than k generators. The number of letters in an S-reduced word
for w is its Coxeter length, denoted by `S(w). If W is finite, then there exists a unique
element ωo, called the longest element , which maximizes `S.

3.2 The weak order

The (left) weak order on W is defined by

u 6weak v if and only if `S(u) + `S(vu−1) = `S(v).

The weak order on W constitutes a graded poset whose rank function is precisely `S.
This order is called left weak order, because we have a covering pair ulweak v if and only
if there exists s ∈ S such that v = su and `S(v) = `S(u) + 1. In other words, covering
pairs are determined by left multiplication with a Coxeter generator. We sometimes write
Weak(W ) instead of (W,6weak).
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Remark 10. We may as well define a right weak order on W in an analogous fashion. The
two orders are isomorphic via reversal of S-reduced words. For our purposes, it will be
more convenient to work with the left weak order, even though the right weak order is
more frequently used in the literature.

For our purposes, the following two properties of the weak order are of major interest.

Theorem 11 ([2, Theorem 3.2.1]). Weak(W ) is a meet-semilattice. It is a lattice if and
only if W is finite.

Theorem 12 ([5, 28]). Weak(W ) is join-semidistributive. If W is finite, then Weak(W )
is congruence uniform.

3.3 Reflections and inversions

The weak order on W can be expressed equivalently via inclusion on special set systems.
To explain this connection, we define the set of reflections of W by

T
def
=
{
wsw−1 : s ∈ S,w ∈ W

}
.

Clearly, S ⊆ T and we usually call the elements of S the simple reflections of W .
A (right) inversion of w ∈ W is a reflection t ∈ T such that `S(wt) < `S(w), and we

define the (right) inversion set of w by

Inv(w)
def
=
{
t ∈ T : `S(wt) < `S(w)

}
.

We have the following correspondence between inversion sets and length of S-reduced
words.

Lemma 13 ([2, Corollary 1.4.5]). For w ∈ W , we have
∣∣Inv(w)

∣∣ = `S(w).

Proposition 3.1.3 in [2] states that

u 6weak v if and only if Inv(u) ⊆ Inv(v).

A cover inversion of w is t ∈ Inv(w) such that there exists s ∈ S with sw = wt. The
name comes from the fact that, by definition, the cover inversions of w are in bijection
with the elements covered by w in Weak(W ). The cover inversion set of w is denoted by
Cov(w).

3.4 Roots and aligned elements

A Coxeter group admits a representation as a group of reflections acting on a Euclidean
vector space [16]; these reflections correspond bijectively to the elements of T . Such a
reflection sends a non-zero vector to its negative and fixes a hyperplane pointwise. We
may choose two (mutually inverse) normal vectors to every such hyperplane and obtain
the root system associated with W . Moreover, by choosing an appropriate half-space, we
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may partition the root system into positive and negative roots; the collection of positive
roots is denoted by Φ+

W . This sets up a bijection t 7→ αt from T to Φ+
W . Let us, conversely,

denote by tα the reflection corresponding to the positive root α ∈ Φ+
W .

Let w = a1a2 · · · ak be an S-reduced word for w ∈ W . For i ∈ [k], we define ti
def
=

akak−1 · · · ak−i+1 · · · ak−1ak. Then, as explained in [2, Section 1.3],

Inv(w) = {t1, t2, . . . , tk}.

In fact, we obtain a linear order on Inv(w) in this way, called the inversion order of w,
denoted by Inv(w).

Remark 14. Let us emphasize that throughout this article we use letters in a normal font
(e.g., w) for group elements, while boldface letters (e.g., w) indicate words. Likewise,
Inv(w) is a set of inversions, while Inv(w) indicates a tuple (or linear order) of the
inversions of w determined by the S-reduced word w.

The next definition is central for this article.

Definition 15 ([23, Definition 43]). An element x ∈ W is w-aligned if x 6weak w and
whenever tα ≺ taα+bβ ≺ tβ with respect to Inv(w) for a, b ∈ N, then taα+bβ ∈ Cov(x)
implies tα ∈ Inv(x).

Notice that the condition “tα ≺ taα+bβ ≺ tβ with respect to Inv(w)” in Definition 15
requires that {tα, taα+bβ, tβ} ⊆ Inv(w). We denote the set of w-aligned elements of W by
Align(W,w). We shall see examples of aligned elements when W = Bn (see Example 27).

Remark 16. Note that, if we plug in w = ωo in Definition 15, then we obtain the usual
definition of Coxeter-alignment as in [27, Section 4] except that we check only cover
inversions (instead of arbitrary inversions). This difference plays a crucial role when
establishing a “Coxeter-Catalan”-like theory for parabolic quotients of Coxeter groups.
We give a more concrete illustration in Example 53.

4 The Coxeter group of type B

4.1 A permutation representation

The finite Coxeter groups were classified by Coxeter [8], and we are mainly concerned
with the Coxeter groups of type B. If we consider the set S = {s0, s1, . . . , sn−1}, then the
group

Hn
def
=
〈
S : s2

i = e, (s0s1)4 = e, (si, si+1)3 = e for i > 0, (sisj)
2 = e for j > i+ 1

〉
.

is the Coxeter group of type B.
Combinatorially, we may realize Hn as follows. For n > 0 we define the set of signed

integers by

±[n]
def
= {−n,−n+1, . . . ,−2,−1, 1, 2, . . . , n−1, n}.
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A permutation π of ±[n] is sign-symmetric if π(−i) = −π(i) for all i ∈ [n]. Then,
equivalently, Hn is the group of all sign-symmetric permutations of ±[n]; we usually call
it the hyperoctahedral group of degree n. It is easily checked that

∣∣Hn

∣∣ = 2nn!.
Let [[i]] denote the sign-symmetric permutation that exchanges i and −i, and ((i j))

the sign-symmetric permutation that exchanges the values i and j (and simultaneously
−i and −j), where we do not make assumptions about the sign of i and j. Then, the
assignment s0 7→ [[1]] and si 7→ ((i i+1)) for i ∈ [n − 1] allows us to switch from the
Coxeter representation of Hn to its permutation representation (when multiplying by si
on the left of a sign-symmetric permutation). Via the induced isomorphism, we may
transfer the notions of reflection set, Coxeter length, (cover) inversions, and weak order
to sign-symmetric permutations.

Note 17. The set of reflections of Hn can be partitioned into three types: the ones that
exchange i with −i, the ones that exchange two positive values (and their opposite values),
and the ones that exchange a positive and a negative value (and their opposite). They
will respectively be denoted by [[i]], ((i j)), and ((−j i)). Since changing the signs of all
elements or exchanging both elements represent the same reflection, we shall write the
reflections in the following non-ambiguous way

[[i]] with i > 0,

((i j)) with 0 < i < j,

((−j i)) with 0 < i < j.

(1)

Note that, by definition, every reflection is itself an involution.

Lemma 18. Let π ∈ Hn and let i, j ∈ [n]. Then

• [[i]] ∈ Inv(π) if and only if π(i) < 0;

• ((i j)) ∈ Inv(π) with i < j if and only if π(i) > π(j);

• ((−j i)) ∈ Inv(π) with i < j if and only if π(−j) > π(i).

The length of π is as usual its number of inversions. Moreover,

• [[i]] ∈ Cov(π) if and only if π(i) = −1;

• ((i j)) ∈ Cov(π) with i < j if and only if π(i) = π(j) + 1;

• ((−j i)) ∈ Cov(π) with i < j if and only if π(−j) = π(i) + 1.

Proof. For the definition of the (right) inversions, consider a sign-symmetric permutation
π. Then one easily checks that multiplying it by a generator si on its right either adds or
subtracts one to its length. Moreover, if its length is not zero, there is always a way to
subtract one to its length by applying a suitable generator, that is, if there is an inversion
between i and j, then there exists an index k such that k and k + 1 is an inversion.
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Since composing π ∈ Hn with [[i]] on the right effectively swaps the sign of π(i);
composing π ∈ Hn with ((i j)) effectively exchanges the entries of π in the ith and jth

position, the first part of the claim holds.
Now, concerning the cover inversions, one just has to decode the action of the si on the

left of a sign-symmetric permutation: s0 exchanges the values 1 and −1, and si exchanges
the values i and i+ 1 along with −i and −i− 1, hence the statement.

Corollary 19. Let π ∈ Hn. Then `S(πsi) < `S(π) if and only if

• i = 0 and π(1) < 0; or

• i 6= 0 and either π(i) > 0 and π(i) > π(i+ 1), or π(i) < 0 and π(i) < π(i+ 1).

We usually represent sign-symmetric permutations via their long one-line notation,
i.e., for π ∈ Hn we write down the values

π(−n), π(−n+1), . . . , π(−1), π(1), . . . , π(n−1), π(n)

in that order. We represent negative values by an overbar rather than a minus sign for
stylistic reasons, and we add a vertical bar between π(−1) and π(1) to emphasize the
symmetry. If no ambiguities may arise, we omit the commas in this sequence. The right
part of π ∈ Hn is the sequence π(1), π(2), . . . , π(n). Clearly, the right part determines π
due to the sign-symmetry. We shall make use of the following notation:

i+
def
=

{
i+ 1, if i 6= 1,

1, otherwise.

One easily finds the cover inversions of a permutation in this notation: start with 1 and
then read 1, 2, and so on. If i+ is to the left of i, their positions form a cover inversion.

Example 20. Consider π ∈ Hn given by

π = 9 7 8 5 6 1 3 4 2 | 2 4 3 1 6 5 8 7 9.

One easily checks that π = s0s1s2s7s5s3s2s0. Then,

Inv(w) =
{

[[1]], [[4]], ((2 3)), ((2 4)), ((3 4)), ((5 6)), ((7 8)), ((−4 1))
}
,

and
Cov(w) =

{
[[4]], ((2 3)), ((5 6)), ((7 8))

}
.

4.2 Roots for the Coxeter group of type B

For n > 0, and i ∈ [n], we denote by εi the ith unit vector in Rn. Then, it is well-known
that the following is indeed a root system for the Coxeter group of type B:

Φ =
{
±εi : i ∈ [n]

}
]
{
±(εi ± εj) : 1 6 i < j 6 n

}
,
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see for instance [14, Section 5.3] for a detailed explanation. Let us consider the set

Φ+ def
=
{
εi : i ∈ [n]

}
]
{
−εi + εj : 1 6 i < j 6 n

}
]
{
εi + εj : 1 6 i < j 6 n

}
.

Then, the subset
Π =

{
ε1,−ε1 + ε2,−ε2 + ε3, . . . ,−εn−1 + εn

}
of simple roots consists of linearly independent vectors and spans Φ+. In particular,
expanding any α ∈ Φ+ in terms of Π yields a linear combination with nonnegative coeffi-
cients. This is enough to conclude that Φ+ is indeed a choice of positive roots for Hn. We
may equivalently see this by observing that if v = (1, 2, . . . , n) ∈ Rn, then any α ∈ Φ+

has (α,v) > 0 and any α ∈ Φ \ Φ+ has (α,v) < 0 with respect to the standard scalar
product of Rn.

In the following lemma, we abbreviate αi,j
def
= −εi + εj and αi,j

def
= εi + εj.

Lemma 21. Let α ∈ Φ+, and let i, k ∈ [n] with i < k. The following list of decompositions
of α as nonnegative linear combinations of two positive roots is exhaustive.

• If α = εi, then
α = αj,i + εj for 1 6 j < i.

• If α = αi,k, then
α = αi,j + αj,k for i < j < k.

• If α = αi,k, then

α =


εi + εk,

αi,j + αj,k, for 1 6 j < k,

αj,i + αj,k, for 1 6 j < i.

Proof. This is a straightforward computation. Note that for i = j, we get αi,j = 2εi in
the second decomposition of the third case.

In order to match Φ+ with the reflections of Hn, we identify a positive root εi with
the reflection [[i]], a positive root −εi + εj with the reflection ((i j)), and a positive root
εi + εj with the reflection ((−j i)).

4.3 A special family of aligned sign-symmetric permutations

We consider the linear Coxeter element ~c
def
= s0s1 · · · sn−1, whose long one-line notation is

1, n, . . . , 3, 2 | 2, 3, . . . , n, 1.

The ~c-sorting word of w ∈ Hn is the S-reduced word for w that appears as rightmost as
possible in the half-infinite word

∞~c
def
= . . . | sn−1 · · · s1s0 | sn−1 · · · s1s0
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consisting of infinitely many copies of the reverse of ~c. The ~c-sorting word of w is denoted
by w(~c). In order to describe the inversion order of wo(~c), we prove the following general
lemma regarding ~c-sorting words of particular elements of Hn. For i < k, let us abbreviate

sk···i
def
= sksk−1 · · · si+1si

and
si···k

def
= sisi+1 · · · sk−1sk.

Moreover, we use the notation [i, k]
def
= {i, i+1, . . . , k}.

Lemma 22. If the right part of a sign-symmetric permutation w ∈ Hn can be written as
the concatenation of intervals in the following form

[i1+i2, i1+1], [i1+i2+i3, i1+i2+1] . . . [i1+ · · ·+ir, i1+ · · ·+ir−1+1], [1, i1], (2)

then its ~c-sorting word is obtained by reading the following list from top to bottom, left to
right:

sn−ir...0 sn−ir+1···0 · · · sn−1···0

sn−ir−1...0 sn−ir−1+1···0 · · · sn−1···0

· · ·
sn−i2...0 sn−i2+1···0 · · · sn−1···0.

(3)

Proof. Given that ∞~c is the repetition of the same sequence sn−1 · · · s1s0, the rightmost
reduced word of w in it is obtained by computing, given a sign-symmetric permutation π
and a value j, the first value k within the ordered sequence j, . . . , n− 1, 1, . . . , j − 1 such
that `S(πsk) < `S(π). The induction begins with the pair (w, 0).

Now, the property holds by an easy induction on r: one gets again such an element by
multiplying w on the right by the sequence of si of the last line of (3) read from right to
left. This product is the rightmost one in ∞~c since each product s0...n−j first changes the
sign of the first letter then moves it to the right until it is followed by a letter greater than
itself or at the right extremity of the permutation. Since at the right of its final position
we have an increasing sequence, the next possible generator we can use is s0, hence the
induction.

Note that each product by an sk either changes the first value into a positive one or
exchanges it with a letter smaller than itself so that the length of the element decreases
at each step, hence showing that the final result is indeed a reduced word of w.

Example 23. Consider the sign-symmetric permutation w ∈ H7 given by its right part
as follows:

3 2 1 4 6 5 7 = [3, 1], [4, 4], [6, 5], [7, 7].

The parameters used in Lemma 22 are r = 5, i1 = 0, i2 = 3, i3 = 1, i4 = 2, i5 = 1. We
get

w(~c) = s6···0s5···0s6···0s6···0s4···0s5···0s6···0,
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since

(3 2 1 4 6 5 7)s0...6s0...5s0...4s0...6s0...6s0...5s0...6

= (2 1 4 6 5 7 3)s0...5s0...4s0...6s0...6s0...5s0...6

= (1 4 6 5 7 2 3)s0...4s0...6s0...6s0...5s0...6

= (4 6 5 7 1 2 3)s0...6s0...6s0...5s0...6

= (6 5 7 1 2 3 4)s0...6s0...5s0...6

= (7 1 2 3 4 5 6)s0...6

= (1 2 3 4 5 6 7),

as one can check by hand (or computer).

Corollary 24. The ~c-sorting word of the longest element ωo ∈ Hn is given by wo(~c) =
(sn−1 · · · s1s0)n.

Proof. Note that ωo ∈ Hn is determined by the right part 1 2 . . . n. Thus, we may apply
Lemma 22 with r = n + 1, i1 = 0 and i2 = i3 = · · · = ir = 1. Then, each line of (3)
consists of the word sn−1...0 and there is a total of n rows.

Starting from the ~c-sorting word of ωo ∈ Hn we can explicitly compute the inversion
order Inv

(
wo(~c)

)
. We defer a formal proof to Section 5.2.

For i ∈ [n], we consider the ordered list of pairs

(i, i−1), . . . , (i, 2), (i, 1), (i,−n), . . . , (i,−i−1), (i,−i).

The n possible rows are now arranged such that first components increase from top to
bottom and pairs with the same second component appear in the same column. If we
now read from top to bottom, right to left, then we obtain the inversion order Inv

(
wo(~c)

)
by identifying a pair (i,−i) with the reflection [[i]], a pair (i, j) for i > j > 0 with the
transposition ((j i)) and a pair (i,−j) for i < j with the transposition ((−j i)).

Example 25. Let n = 4. Then ~c = s0s1s2s3 and

wo(~c) = s3s2s1s0s3s2s1s0s3s2s1s0s3s2s1s0.

The previously mentioned arrangement of the sixteen possible pairs is:

(1,−4) (1,−3) (1,−2) (1,−1)

(2, 1) (2,−4) (2,−3) (2,−2)

(3, 2) (3, 1) (3,−4) (3,−3)

(4, 3) (4, 2) (4, 1) (4,−4)

The replacement from above produces the following inversion order:

� ((−4 1)) � ((−3 1)) � ((−2 1)) � [[1]]

� ((1 2)) � ((−4 2)) � ((−3 2)) � [[2]]

� ((2 3)) � ((1 3)) � ((−4 3)) � [[3]]

((3 4)) � ((2 4)) � ((1 4)) � [[4]]
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We may thus characterize the members of Align
(
Hn,wo(~c)

)
via their inversion sets.

Lemma 26. Let π ∈ Hn. Then π ∈ Align
(
Hn,wo(~c)

)
if and only if for every 1 6 i < k 6 n

it holds that

• if [[i]] ∈ Cov(π), then [[j]] ∈ Inv(π) for all 1 6 j < i;

• if ((i k)) ∈ Cov(π), then ((i j)) ∈ Inv(π) for all i < j < k;

• if ((−k i)) ∈ Cov(π), then

– [[i]] ∈ Inv(π),

– ((−j i)) ∈ Inv(π) for all 1 6 j < k, j 6= i,

– ((−k j)) ∈ Inv(π) for all 1 6 j < i.

Proof. Let t be a reflection of Hn such that αt can be written as αt = b1β1 + b2β2 for
positive roots β1, β2 and positive integers b1, b2. Assume further that tβ1 ≺ t ≺ tβ2 with
respect to Inv

(
wo(~c)

)
. Then, by Definition 15, it is enough to show that t ∈ Cov(π)

implies tβ1 ∈ Inv(π).

We use Lemma 21 and the description of Inv
(
wo(~c)

)
from above. To avoid lengthy

conversions from reflections to roots, we use the notation “t1 + t2” as a short-hand for
“tαt1+αt2

”. We consider the possible cases, and pick i, k ∈ [n] with i < k.

(i) If t = [[i]], then by Lemma 21, we have t = ((j i)) + [[j]] for 0 < j < i. In the inversion
order, we clearly have [[j]] ≺ ((j i)).

(ii) If t = ((i k)), then by Lemma 21, we have t = ((i j)) + ((j k)) for i < j < k. In the
inversion order, we clearly have ((i j)) ≺ ((j k)).

(iii) If t = ((−k i)), then by Lemma 21, we have the following three options.

(a) Say t = [[i]] + [[k]]. In the inversion order, we have [[i]] ≺ [[k]].

(b) Say t = ((−j i)) + ((j k)) for 1 6 j < k. If j = i, then we actually have
t = 2[[i]] + ((i k)). In the inversion order, we have [[i]] ≺ ((i k)). If j 6= i, then we
have ((−j i)) ≺ ((j k)) in the inversion order.

(c) Say t = ((j i)) + ((−k j)) for 1 6 j < i. Since j < i < k, we get ((j i)) ≺ ((−k j))
in the inversion order.

These considerations show that if t ∈ Cov(π), then Inv(π) must contain the specified
inversions for π to be wo(~c)-aligned.

Using the permutation representation of Hn, we can identify wo(~c)-aligned elements
in terms of pattern avoidance. A permutation π ∈ Hn has a type-B 231-pattern if there
exist indices −n 6 i < j < k 6 n such that π(i) = π(k)+ as well as π(j) > π(i)
and j, k > 0. In other words, we look for subwords of the long one-line notation of π
standardizing to 231 with the requirement that the positions of the ’2’ and the ’1’ form a
cover inversion and and the positions of the ’3’ and the ’1’ are positive. Let Hn(231) be
the set of sign-symmetric permutations without a type-B 231-pattern.
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Example 27. Let n = 5 and consider the sign-symmetric permutation

π = 4 3 5 1 2 | 2 1 5 3 4.

We get

Inv(π) =
{

[[1]], [[2]], ((−2 1)), ((3 4)), ((3 5))
}

and Cov(π) =
{

[[2]], ((3 5))
}
.

Comparing this with Lemma 26, we note that π is wo(~c)-aligned, and that π does not
have any type-B 231-pattern. There are three “usual” 231 patterns, determined by the
positions (4, 3, 5), (1, 2, 2) and (1, 2, 1). However, in each case the middle position is
negative, and therefore none of them is a type-B 231-pattern.

On the other hand, consider the sign-symmetric permutation

σ = 2 3 5 1 4 | 4 1 5 3 2.

We get

Inv(σ) =
{

((1 2)), ((1 3)), ((1 4)), ((1 5)), ((2 3)), ((2 5)), ((4 5)), ((−3 1)), ((−3 2)),

((−3 4)), ((−3 5)), ((−5 2)), [[3]], [[5]]
}
,

Cov(σ) =
{

((1 4)), ((−3 1)), ((−5 2))
}
.

Comparing this with Lemma 26, we observe that σ is not wo(~c)-aligned, because for
instance ((−3 1)) ∈ Cov(v) but [[1]] /∈ Inv(v). This manifests in the type-B 231-pattern in
positions (−1, 1, 3) highlighted above in boldface, because σ(−1) = −4 = −5+1 = σ(3)+1
(thus (−1, 3) is a cover inversion of σ) and σ(1) = 4 > −4 = σ(−1) (thus (−1, 1) is not
an inversion of σ).

Lemma 28 ([27, Lemma 4.9]). A sign-symmetric permutation π ∈ Hn is wo(~c)-aligned
if and only if π does not have a type-B 231-pattern.

Proof. This is immediate from Lemmas 18 and 26.

The weak order on the set Hn(231) inherits some remarkable properties from the weak
order on the full group Hn. Let us call the poset

TamB(n)
def
= Weak

(
Hn(231)

)
the type-B Tamari lattice.

Figure 1 shows the lattice Weak
(
H3

)
where we have highlighted the intervals charac-

terized by the projection map that sends an element to the largest aligned permutation
smaller than itself. Figure 2 shows TamB(3), which is the quotient lattice induced by the
highlighted intervals in Figure 1. In these figures, we have colored the positions in the long
one-line notation by symmetrically placed colors. This foreshadows our representation of
the elements in parabolic quotients of Hn in the next section.
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3 2 1 1 2 3

3 1 2 2 1 3

3 2 1 1 2 3

3 1 2 2 1 3

2 1 3 3 1 2

3 1 2 2 1 3

2 1 3 3 1 2

3 2 1 1 2 3

2 3 1 1 3 2

2 1 3 3 1 2 1 2 3 3 2 1

2 3 1 1 3 2

1 2 3 3 2 1

1 2 3 3 2 1

1 3 2 2 3 1

1 2 3 3 2 1

1 3 2 2 3 1

2 1 3 3 1 2

2 3 1 1 3 2

3 2 1 1 2 3

Figure 2: The lattice TamB(3).
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Theorem 29 ([26, 15]). For n > 0, the poset TamB(n) is both a sublattice and a quotient
lattice (for the projection sending a sign-symmetric permutation to the largest aligned
permutation smaller than itself) of Weak(Hn). Moreover, it is congruence uniform and
trim.

5 Parabolic quotients in type B

5.1 A distinguished set of representatives

Let W be a Coxeter group, whose set of simple reflections is S. Any J ⊆ S generates the

parabolic subgroup WJ of W . The parabolic quotient W J def
= W/WJ consists of the left

cosets of WJ in W . By construction, every such coset has a member of minimal Coxeter
length. In the following, we identify the quotient W J with this set of minimal length
representatives. Equivalently, we can define the set W J as follows:

W J =
{
w ∈ W | `S(ws) > `S(w) for all s ∈ J

}
.

If we consider the Coxeter group of type B in its permutation representation defined
above, we may describe the parabolic quotients neatly as follows. Let n > 0, and consider

a composition α = (α1, α2, . . . , αr) of n, i.e., α1+α2+· · ·+αr = n. Let us define p0
def
= 0 and

pi
def
= α1 +α2 + · · ·+αi. The number of compositions of n is 2n−1, because we may identify

α with the subset {p1, p2, . . . , pr−1} of [n−1]. Conversely, with {k1, k2, . . . , kr−1} ⊆ [n−1]
we may associate the composition (k1, k2 − k1, k3 − k2, . . . , kr−1 − kr−2, n− kr−1) of n.

A type-B composition of n > 0 is a composition of n with a possible zero-component

α0
def
= 0 in the beginning. A type-B composition is split if it has a zero-component, and

it is join otherwise.
The number of type-B compositions of n is 2n, because any type-B composition α

is associated with a unique subset Jα ⊆ S. The non-zero-components of α determine a
subset of {s1, s2, . . . , sn−1} as before, and we add s0 to this set if and only if α is split.

Therefore, type-B compositions are in natural bijection with the subsets of the simple
reflections of Hn, so that if α is a type-B composition, then there exists a unique parabolic
quotient of Hn determined by the complement S \ Jα. We write Hα for the resulting set
of minimal-length representatives (see Example 32).

Remark 30. Let us emphasize the difference between the notions Hn where the subscript
is an integer, and Hα where the subscript is a type-B composition. The first denotes the
full hyperoctahedral group of degree n and the second denotes the set of minimal length
representatives of the parabolic quotient associated with α. Clearly, if α = (0, 1, 1, . . . , 1)
is a composition of n, then H(0,1,1,...,1) = Hn.

Let α be a type-B composition with r non-zero-components α1, α2, . . . , αr appearing

in that order. As before, we define pi = α1 + α2 + · · · + αi, and we set pi
def
= −pi. We

define Part(α) as the following partition of ±[n]:{{
[n, pr−1−1], . . . , [p2, p1−1], [p1, 1], [1, p1], [p1+1, p2], . . . , [pr−1+1, n]

}
, if α is split,{

[n, pr−1−1], . . . , [p2, p1−1], [p1, p1], [p1+1, p2], . . . , [pr−1+1, n]
}
, if α is join.
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This means, if α is split, that we partition ±[n] into 2r symmetrically placed blocks, and
if α is join, we partition it into 2r − 1 blocks, where the middle block contains positive
and negative positions. This partition also explains the terminology “join” and “split” for
the type-B compositions. The partition corresponding to a join composition has a block
joining positive and negative positions, the partition corresponding to a split composition
does not.

For an index a ∈ [n] of the right part, we say that a is in the ith α-region if pi−1 6
a < pi, where p0 = 0. We sometimes write %α(a) = i in this situation.

Lemma 31. Let α be a type-B composition. A sign-symmetric permutation π ∈ Hn

belongs to Hα if and only if the long one-line notation of π, when partitioned according to
Part(α), is increasing in each block.

Proof. Let α be a type-B composition, and let Jα be the corresponding subset of the
simple reflections S = {s0, s1, . . . , sn−1}. Note that we use the set S \ Jα to construct the
parabolic quotient Hα.

Let π ∈ Hn and s ∈ S be such that `S(π′) > `S(π) for the product π′ = πs. Since
s is an involution, we get s ∈ Inv(π′), and according to Lemma 18 we have π′(1) < 0 if
s = [[1]] or π′(i) > π′(i+1) if s = ((i i+1)). Comparing this with the definition of Part(α)
yields the claim.

Example 32. Let n = 3 and consider α = (0, 1, 2). Then α is split and we obtain
Jα = {s0, s1}, which means that S \ Jα = {s2}. The long one-line notation is therefore
partitioned into four parts: {−3,−2}, {−1}, {1}, {2, 3}. We highlight the first and last
part in green and the second and third part in orange. Then, Hα has the following 24
elements:

3 2 1 1 2 3 , 3 2 1 1 2 3 , 2 3 1 1 3 2 , 2 3 1 1 3 2 ,

3 2 1 1 2 3 , 3 2 1 1 2 3 , 2 3 1 1 3 2 , 2 3 1 1 3 2 ,

3 1 2 2 1 3 , 3 1 2 2 1 3 , 1 3 2 2 3 1 , 1 3 2 2 3 1 ,

3 1 2 2 1 3 , 3 1 2 2 1 3 , 1 3 2 2 3 1 , 1 3 2 2 3 1 ,

2 1 3 3 1 2 , 2 1 3 3 1 2 , 1 2 3 3 2 1 , 1 2 3 3 2 1 ,

2 1 3 3 1 2 , 2 1 3 3 1 2 , 1 2 3 3 2 1 , 1 2 3 3 2 1 .

If we choose α′ = (1, 2), then α′ is join and we obtain Jα′ = {s1} which gives us
S \ {Jα′} = {s0, s2}. We may partition the long one-line notation into three parts
{−3,−2}, {,−1, 1}, {2, 3}, and we highlight the first and the last part in green and the
middle part in orange. The set Hα′ consists of the following twelve elements:
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3 2 1 1 2 3 , 3 2 1 1 2 3 , 2 3 1 1 3 2 , 2 3 1 1 3 2 ,

3 1 2 2 1 3 , 3 1 2 2 1 3 , 1 3 2 2 3 1 , 1 3 2 2 3 1 ,

2 1 3 3 1 2 , 2 1 3 3 1 2 , 1 2 3 3 2 1 , 1 2 3 3 2 1 .

5.2 Longest elements in parabolic quotients

The next result establishes that the set of minimal length representatives of parabolic
quotients behave well with respect to the left weak order.

Theorem 33 ([3, Theorem 4.1]). Let W be a finite Coxeter group, and let J ⊆ S be
a set of simple reflections. There exists an element wJ◦ ∈ W J such that the weak order
Weak(W J) is isomorphic to the interval [e, ωo;α] in Weak(W ).

Example 34. We continue Example 32 with α = (0, 1, 2), and observe that its maximal

element is 2 3 1 1 3 2 . With α′ = (1, 2), the maximal element is 2 3 1 1 3 2 .

It is our declared goal to describe the wo;α(~c)-aligned elements of Hα, and we therefore
need a good understanding of the parabolic longest element ωo;α (which is the element
wJ◦ from Theorem 33 for the parabolic quotient Hα) and its ~c-sorting word. The long
one-line notation of ωo;α is obtained by filling the blocks of Part(α) from left to right with
the largest available values so that the increasing property per block from Lemma 31 is
satisfied. This is made precise in the following lemma.

Lemma 35. Let α be a type-B composition, and let ωo;α be the longest element of Hα.
For a ∈ [n] with %α(a) = i, we have

ωo;α(a) =

{
a, if α is join and i = 1,

−(pi + pi−1 + 1− a), otherwise.

Proof. This is a straightforward computation.

For the description of the ~c-sorting word of ωo;α, it will be convenient to model it
combinatorially using certain skew shapes. This is foreshadowed in the arrangement of
the inversions of ωo for the full hyperoctahedral group Hn after Corollary 24.

Given integers λ1 > λ2 > · · · , a Ferrers diagram of shape (λ1, λ2, . . .) is a left-aligned
arrangement of unit boxes, where the ith row consists of λi boxes. We use the English
notation, i.e., the first row is at the top. We usually do not distinguish between the
Ferrers diagram and the integer partition it represents.

For two Ferrers diagrams λ, µ, the associated skew diagram λ/µ consists of all boxes
of λ that are not boxes of µ. See Figure 3 for an illustration.
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Figure 3: The skew shape λ/µ, where λ = (10, 9, 8, 7, 6) and µ = (5, 4, 3, 2, 1), consists of
the gray boxes.

Fix a type-B composition of n with non-zero components α1, α2, . . . , αr. We first
consider the Ferrers diagram µ(α) = (µ1, µ2, . . . , µn) given by

µk
def
= α%α(k) + α%α(k)+1 + · · ·+ αr.

In other words, the kth entry of µ is the sum of the sizes of the α-regions starting from the
one containing k. Now, we consider the Ferrers diagram λ(α) = (λ1, λ2, . . . , λn), where

λk
def
=

{
2n− α1, if α is join and k 6 α1,

2n+ 1− k, otherwise.

We write skew(α)
def
= λ(α)/µ(α).

We now construct a filling of skew(α) as follows. Let k ∈ [n]. If α is split or k > α1,
then we fill the kth row of skew(α) with the Coxeter generators s0, s1, . . . from right to left
until all the boxes in that row are exhausted. If α is join and k 6 α1, then we fill the
kth row of skew(α) with the Coxeter generators sα1−k+1, sα1−k+2, . . . also from right to left
until all the boxes are exhausted. We denote by wα the word obtained by reading the
Coxeter generators in skew(α) from bottom to top, left to right.

Example 36. Consider the split composition α = (0, 3, 1, 2, 1). Then n = 7, µ =
(7, 7, 7, 4, 3, 3, 1), and λ = (14, 13, 12, 11, 10, 9, 8). The skew shape skew(α) together with
its filling is shown below.

s0s1s2s3s4s5s6

s0s1s2s3s4s5s6

s0s1s2s3s4s5s6

s0s1s2s3s4s5s6

s0s1s2s3s4s5s6

s0s1s2s3s4s5s6

s0s1s2s3s4s5s6

We obtain the following reading word (bottom to top, left to right), where we have
separated the rows by vertical bars:

wα = s6s5s4s3s2s1s0 | s5s4s3s2s1s0 | s6s5s4s3s2s1s0 | s6s5s4s3s2s1s0 |
s4s3s2s1s0 | s5s4s3s2s1s0 | s6s5s4s3s2s1s0
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that may also be rewritten as

wα = s6...0 s5...0 s6...0 s6...0 s4...0 s5...0 s6...0 (4)

This word represents the following sign-symmetric permutation

ωo;α = 7 5 6 4 1 2 3 3 2 1 4 6 5 7 ,

which is the longest element of Hα.
Next we consider the join composition α′ = (4, 2, 2). In that case, n = 8, µ =

(8, 8, 8, 8, 4, 4, 2, 2), and λ = (12, 12, 12, 12, 12, 11, 10, 9). The skew shape skew(α′) together
with its filling is shown below.

s0s1s2s3s4s5s6s7

s0s1s2s3s4s5s6s7

s0s1s2s3s4s5s6s7

s0s1s2s3s4s5s6s7

s1s2s3s4s5s6s7

s2s3s4s5s6s7

s3s4s5s6s7

s4s5s6s7

The reading word is

wα′ = s6s5s4s3s2s1s0 | s7s6s5s4s3s2s1s0 | s6s5s4s3s2s1s0 | s7s6s5s4s3s2s1s0 |
s4s3s2s1 | s5s4s3s2 | s6s5s4s3 | s7s6s5s4,

that may also be rewritten as

wα′ = s6...0 s7...0 s6...0 s7...0 s4...1 s5...2 s6...3 s7...4. (5)

It represents

ωo;α′ = 7 8 5 6 4 3 2 1 1 2 3 4 6 5 8 7 ,

which is the longest element of Hα′ .

The previous examples suggest that wα is a candidate for wo;α(~c). This is indeed true
as the next proposition shows, whose proof makes use of Lemma 22.

Proposition 37. For every type-B composition α, the word wα is the ~c-sorting word of
ωo;α.

Proof. If α is split, we already are in the case of Lemma 22 with i1 = 0. If α is join,
then the first values on the right part of w are positive, and the first generator one can
apply is at the end of the first α-region. Then this value goes to the extreme right of
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the permutation and the same idea applies again to the other elements of the first α-
region: they move to the right until they get next to a value greater than themselves.
This exactly accounts for the first i1 rows of skew(α) read from right to left. Again, each
product decreases the length of the permutation, hence proving that we have a reduced
word. After that product of generators, we are back with a permutation of the type shown
in Lemma 22, hence the result.

Corollary 38. If α = (α1, α2, . . . , αr) is a type-B composition of n, then

`S(ωo;α) = n2 −
r∑
i=1

(
αi
2

)
−

{(
α1+1

2

)
, if α is join,

0, if α is split.

Proof. By definition, `S(ωo;α) is equal to the number of letters in the ~c-sorting word
wo;α(~c), and by Proposition 37 this number is equal to the number of boxes in skew(α).
Then the statement is immediate since we start with a skew arrangement of n rows, each
consisting of n boxes, and then we remove a triangular part for each component of α on
the left. If α is join, we remove another triangular part on the right.

Let us now exploit the skew shape used in the construction of wo;α(~c) to determine
the corresponding inversion order Inv

(
wo;α(~c)

)
. We start with an example.

Example 39. We continue on Example 36. First, let us consider α = (0, 3, 1, 2, 1). If we
write the ith inversion in Inv(wo;α(~c)

)
in the cell, which corresponds to the (`S(ωo;α)− i+

1)st letter of wα (recall that the last letter of wo is the right-most one on the top row),
we obtain the following filling of skew(α).

[[1]]((−2 1))((−3 1))((−4 1))((−5 1))((−6 1))((−7 1))

[[2]]((−3 2))((−4 2))((−5 2))((−6 2))((−7 2))

[[3]]((−4 3))((−5 3))((−6 3))((−7 3))

[[4]]((−5 4))((−6 4))((−7 4))((3 4))((2 4))((1 4))

[[5]]((−6 5))((−7 5))((3 5))((2 5))((1 5))((4 5))

[[6]]((−7 6))((3 6))((2 6))((1 6))((4 6))

[[7]]((3 7))((2 7))((1 7))((4 7))((6 7))((5 7))−7

−5 −6

−4

−1 −2 −3

7 6 5 4 3 2 1

−1

−2

−3

−4

−5

−6

−7

Note that each cell corresponds to the pair (i, j) where i is the label of its row and j the
label of its column (written outside of the shape in the picture above) up to taking the
opposite of both elements.

Now, let us consider α′ = (4, 2, 2). As before, we fill skew(α′) with the inversions
according to Inv

(
wo;α′(~c)

)
.
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((4 5))((4 6))((4 7))((4 8))

((3 5))((3 6))((3 7))((3 8))

((2 5))((2 6))((2 7))((2 8))

((1 5))((1 6))((1 7))((1 8))

[[5]]((−6 5))((−7 5))((−8 5))((−5 1))((−5 2))((−5 3))((−5 4))

[[6]]((−7 6))((−8 6))((−6 1))((−6 2))((−6 3))((−6 4))

[[7]]((−8 7))((−7 1))((−7 2))((−7 3))((−7 4))((6 7))((5 7))

[[8]]((−8 1))((−8 2))((−8 3))((−8 4))((6 8))((5 8))−7 −8

−5 −6

4 3 2 1

8 7 6 5

4

3

2

1

−5

−6

−7

−8

Note that again each cell corresponds to the pair (i, j) where i is the label of its row and
j the label of its column, up to taking the opposite of both elements.

This property is true in general. To state it precisely before proving it, let us construct
a filling of skew(α) by the inversions of ωo;α. First, we label the rows and the columns of
skew(α) as follows.

(i) The first n columns (from left to right) are labeled by ωo;α(n),ωo;α(n−1), . . ., ωo;α(1).
The next n − α1 columns are labeled by n, n − 1, . . . , α1 + 1. If α is split, then we
label the remaining α1 columns by α1, α1−1, . . . , 1. If α is join, there are no columns
left.

(ii) If α is split, then we label the rows (from top to bottom) by −1, −2, . . ., −n. If α
is join, then we label the first α1 rows by α1, α1− 1, . . . , 1, and the remaining n−α1

rows by −α1 − 1,−α1 − 2, . . . ,−n.

Now we fill the cells of skew(α), and we consider a cell in a row labeled by r and a
column labeled by c.

(i) If r > 0 and c > 0, then we fill this cell by ((r c)). This can only happen if α is join,
and then necessarily r < c.

(ii) If r < 0 and c = −r, then we fill this cell by [[r]].

(iii) If r < 0 and c > 0 with c > −r, then we fill this cell by ((−c −r)).

(iv) If r < 0 and c > 0 with c < −r, then we fill this cell by ((r c)).

(v) If r < 0 and c < 0, then we fill this cell by ((−c −r)). By construction, we are in the
first n columns, thus r < c.

Proposition 40. The filling of skew(α), read from top to bottom and from right to left,
yields the inversion order Inv

(
wo;α(~c)

)
.

We shall need the following lemma whose proof is immediate by direct computation.
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Lemma 41. Consider the product

s
(n)
i

def
= sn−i...0 sn−i+1...0 · · · sn−1...0. (6)

It sends k > 0 to {
−n+ k − 1 if k 6 i,

k − i if k > i.
(7)

For example, with n = 7 and i = 3, one gets s
(7)
3 = 4 3 2 1 5 6 7 | 7 6 5 1 2 3 4. Its

inverse is 1 2 3 7 6 5 4 | 4 5 6 7 3 2 1.

Proof of Proposition 40. Recall that each inversion is obtained by conjugating an si and
so is itself an reflection, and in particular an involution. And an involution that is not
the identity is characterized by the image of an element not sent to itself.

Let us start with a split composition α = (0, α1, α2, . . . , αr) of n and compute the
inversion corresponding to an si in the k-th row of part αj (so that k 6 αj). Note that
i+ k 6 n since each row has one element less than the previous one inside sαj .

Let us denote by π the permutation defined by the product

π = s
(n)
k−1s

(n)
αj−1

. . . s(n)
α1
. (8)

Then the involution we want to compute is w = π−1s0...i−1sisi−1...0π.
We are considering an element in row t = α1 +α2 + · · ·+αj−1 + k (from the top). Let

us compute w(t). First, π(t) = 1: each product sp...0 decreases the value by 1, and since
there are t− 1 such products, we get 1. Then s0...i−1sisi−1...0(1) is −i− 1.

Now, either k = 1 or k > 1. If k > 1 then s0...n−k+1(−i − 1) = −i − 2 since i + 1 6
n− k + 1. We now need to evaluate the remaining rows of π−1 on −i− 2 which is equal
to the image of t − 1 by the conjugate of the generator si+1 in row k − 1 of αj, hence
showing that the columns of the skew shape of α are filled with the same values within
the same part of the composition.

Now, if k = 1, there are again two cases. Either i + 1 6 n − αj−1 or not. If it is
the case, that exactly means that the cell we consider has a cell above it and the same
reasoning as before applies. Otherwise, we are in the topmost cell of its column. In that
case, s0...αj−1

(−i− 1) is either 1 (if i+ 1 = αj−1 + 1) or −i− 1 itself. Applying the other
elements s0...n−1 · · · s0...αj−1−1 of s−1

j1−1 to this result will eventually get the value 1 and then
increment it at each product by an s0...p. Moreover, applying then the other elements of
π−1, it will still increment on each row, finally giving the value n− i+α1 +α2 + · · ·+αj−2,
which is exactly the value of its column in skew(α).

Let us now consider the join case. The labels of the rows of the first part go backwards,
which is easily explained (see the proof of Proposition 37). Once that is noted, if the cell
under consideration has a cell above it, the same argument as before works and one easily
shows that the skew shape predicts the correct involution. If the cell is the topmost of
its column, the explanation we saw before in the case of the split composition will apply
again with one small difference: the first part behaves differently from the next ones since
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it is not multiplied on its left by a sequence sk but by a sequence that does not contain
the generator s0. That explains why their images do not change sign, in contrast to other
parts of α.

5.3 wo;α(~c)-aligned elements for parabolic quotients of Hn

In this section we want to generalize Lemma 26 to parabolic quotients of Hn. So, fix
a type-B composition α, and let π ∈ Hα. Let t ∈ Cov(π). We use the inversion order
Inv

(
wo;α(~c)

)
to describe the required implications.

In the following proofs we will simply write “aligned” when we mean “wo;α(~c)-aligned”.
Moreover, most of the time Inv(ωo;α) is a proper subset of the set of all reflections of Hn.
Therefore, if we have a reflection tbβ+cγ ∈ Inv(ωo;α), where tβ /∈ Inv(ωo;α) or tγ /∈ Inv(ωo;α),
we do not need to consider the relative order of {tβ, tbβ+cγ, tγ} ∩ Inv(ωo;α) with respect to
Inv

(
wo;α(~c)

)
. We then say that we discard this decomposition.

5.3.1 The split case

Lemma 42. If α is split, then π ∈ Hα is wo;α(~c)-aligned if and only if for every cover
inversion t ∈ Cov(π) the following implications hold.

• If t = [[i]] for 0 < i, then [[j]] ∈ Inv(π) for all 1 6 j < i with %α(j) < %α(i).

• If t = ((i k)) for 0 < i < k, then ((i j)) ∈ Inv(π) for all i < j < k with %α(i) <
%α(j) < %α(k).

• If t = ((−k i)) for 0 < i < k, then:

– [[i]] ∈ Inv(π),

– ((−j i)) ∈ Inv(π) for 1 6 j < k with %α(j) < %α(k),

– ((−k j)) ∈ Inv(π) for 1 6 j < i with %α(j) < %α(i).

Proof. If t = [[i]] for 0 < i, then, since t is a cover inversion of π, we have π(i) = −1
by Lemma 18. By Lemma 21 we have t = ((j i)) + [[j]] for 1 6 j < i. If %α(j) = %α(i),
then ((j i)) /∈ Inv(ωo;α) and we may discard this decomposition. Otherwise [[j]] appears
in a row above [[i]] and ((j i)) is to the left of [[i]] in the same row. Therefore, we have
[[j]] ≺ t ≺ ((j i)), and for π to be aligned, we need to have [[j]] ∈ Inv(π).

If t = ((i k)) for 0 < i < k, then π(i) = π(k)+ by Lemma 18, which means that
%α(i) < %α(k). By Lemma 21, we have t = ((i j)) + ((j k)) for i < j < k. By construction,
((i j)) is in the row labeled −j and the column labeled by −i, while ((j k)) is in the row
labeled −k and in the column labeled by −j. Now, j < k implies that ((i j)) lies above
t in skew(α), while ((j k)) lies to the left of t. We thus get the order ((i j)) ≺ t ≺ ((j k)).
So, for π to be aligned we need that ((i j)) ∈ Inv(π) whenever %α(i) < %α(j) < %α(k).
Indeed, if %α(i) = %α(j), then ((i j)) /∈ Inv(ωo;α) so that we may discard the corresponding
decomposition. Analogously, we may discard the case %α(j) = %α(k).
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If t = ((−k i)) for 0 < i < k, then π(−i) = π(k)+ by Lemma 18. By Lemma 21, there
are four decompositions to consider.

If we take t = [[i]] + [[k]], then i < k implies [[i]] ≺ t ≺ [[k]], so for π to be aligned we
need [[i]] ∈ Inv(π).

If we take t = 2[[i]] + ((i k)), then i < k implies [[i]] ≺ t ≺ ((i k)). Once again, for π to
be aligned we need [[i]] ∈ Inv(π).

Say that t = ((−j i)) + ((j k)) for 1 6 j < k and j 6= i. If %α(j) = %α(k), then
((j k)) /∈ Inv(ωo;α), so that we may discard this decomposition. Otherwise, ((−j i)) appears
in a row above ((j k)), because i < k. Indeed, if i < j, then ((−j i)) appears in the row
labeled by −i, and if j < i then ((−j i)) appears in the row labeled by −j, which is above
the row labeled −i. Therefore, we have ((−j i)) ≺ t ≺ ((j k)) and for π to be aligned, we
need to have ((−j i)) ∈ Inv(π).

Lastly, say that t = ((j i)) + ((−k j)) for 1 6 j < i. If %α(j) = %α(i), then ((j i)) /∈
Inv(ωo;α) and we may discard this decomposition. If %α(j) < %α(i), then ((j i)) is in the
row labeled −i and in the column labeled −j, and therefore it is to the left of t, which
is in the row labeled −i and in the column labeled k. Since j < i < k, we have that
((−k j)) is in the row labeled −j, which is above the row containing t. Thus, we get
((−k j)) ≺ t ≺ ((j i)). For π to be aligned we need to have ((−k j)) ∈ Inv(π).

Note 43. When a relation is implied by another, we also say that it is forced by that.
Since the inversions are put in a skew partition by rows from the top-right corner cell
to the left-bottom one, the alignment condition of Lemma 42 can be translated to: any
inversion forced by a given inversion is either in the same row as the given inversion and
to its right, or in the same column and above it, as one can check on Example 39.

Combinatorially speaking, we model aligned elements for Hα with α split as follows.

Definition 44. Let α be a split type-B composition of n. A type-B (α, 231)-split pattern
of a sign-symmetric permutation π ∈ Hα is a triple of indices −n 6 i < j < k 6 n such
that

• i, j, k are in different regions, with j > 0;

• π(i) = π(k)+, π(i) < π(j).

Proposition 45. Let α be a split type-B composition of n. A sign-symmetric permutation
π ∈ Hα is wo;α(~c)-aligned if and only if it does not have a type-B (α, 231)-split pattern.

Proof. According to Lemma 42, we only need to show that the violation of any condition
is equivalent to the existence of a type-B (α, 231)-split pattern. We first consider the
violation of conditions in Lemma 42.

• There are some 0 < j < i with %α(j) < %α(i) such that [[i]] ∈ Cov(π) but [[j]] /∈ Inv(π).
Then we have π(i) = −1, π(−i) = 1 and π(j) > 0. Thus, (−i, j, i) is a type-B
(α, 231)-split pattern.
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• There are some 0 < i < j < k with %α(i) < %α(j) < %α(k) such that ((i k)) ∈ Cov(π)
but ((i j)) /∈ Inv(π). In this case, we have π(i) = π(k)+, but π(i) < π(j), and (i, j, k)
is thus a type-B (α, 231)-split pattern.

• There are some 0 < i < k such that ((−k i)) ∈ Cov(π). In this case we have
π(−k) = π(i)+ and π(−i) = π(k)+, then we have several subcases.

– Either [[i]] /∈ Inv(π), in which we have π(−i) < π(i), then we have %α(i) < %α(k)
as π(i) > π(−i) > π(k). Therefore, (−i, i, k) is a type-B (α, 231)-split pattern.

– Or there is some 0 < j < k such that ((−j i)) /∈ Inv(π). We thus have
π(−i) < π(j), and therefore %α(j) < %α(k), as π(j) > π(−i) > π(k). Therefore,
(−i, j, k) is a type-B (α, 231)-split pattern.

– Or there is some 0 < j < i such that ((−k j)) /∈ Inv(π). We thus have
π(j) > π(−k) > π(i), and as π(−k) = π(i)+, we also have %α(j) < %α(i).
Therefore, (−k, i, j) is a type-B (α, 231)-split pattern.

Now assume that we have a type-B (α, 231)-split pattern (i, j, k). Then we have
((i k)) ∈ Cov(π) but ((i j)) /∈ Inv(π). There are several cases: either i > 0, or when i < 0,
the positive integer −i may fall in one of the intervals 0 < −i < j, −i = j, j < −i < k,
−i = k, or −i > k. We routinely check that each case leads to a violation of conditions
in Lemma 42. We thus have the equivalence.

Example 46. Let us illustrate Proposition 45, with examples of the three types of type-B
(α, 231)-patterns with respect to the split composition α = (0, 3, 1, 2, 1). The inversion
order Inv

(
wo;α(~c)

)
is shown in Example 39. We consider the following three members of

Hα:

π1 = 4 7 3 1 6 2 5 5 2 6 1 3 7 4 ,

π2 = 4 5 1 6 2 3 7 7 3 2 6 1 5 4 ,

π3 = 7 6 3 2 5 4 1 1 4 5 2 3 6 7 .

In each case, the highlighted positions constitute a type-B (α, 231)-split pattern.

• For π1, we have [[4]] ∈ Cov(π1) and ((3 4)) ∈ Inv(π1), but [[3]] /∈ Inv(π1). Moreover,
we have [[4]] = ((3 4)) + [[3]] and [[3]] ≺ [[4]] ≺ ((3 4)). It follows that π1 is not
wo;α(~c)-aligned.

• For π2, we have ((2 7)) ∈ Cov(π2) and ((6 7)) ∈ Inv(π2), while ((2 6)) /∈ Inv(π2). Since
((2 7)) = ((2 6)) + ((6 7)) and ((2 6)) ≺ ((2 7)) ≺ ((6 7)), π2 is not wo;α(~c)-aligned.

• For π3, we have ((−5 4)) ∈ Cov(π3) and ((2 4)) ∈ Inv(π3), while ((−5 2)) /∈ Inv(π3). At
the same time, we have ((−5 4)) = ((−5 2)) + ((2 4)) and ((−5 2)) ≺ ((−5 4)) ≺ ((2 3))
in Inv

(
wo;α(~c)

)
. Thus, π3 is not wo;α(~c)-aligned.
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5.3.2 The join case

Let us now consider the join case.

Lemma 47. If α is join, then for any π ∈ Hα we have π(i) > 0 for i ∈ [α1].

Proof. Let i ∈ [α1]. By definition, we have π(i) = −π(−i). Since α is join, −i and i lie in
the same part of Part(α), and by Lemma 31 we must have π(i) > π(−i) = −π(i). This
implies π(i) > 0.

Lemma 48. If α is join, then π ∈ Hα is wo;α(~c)-aligned if and only if for every cover
inversion t ∈ Cov(π) the following implications hold.

• If t = [[i]] for α1 < i, then [[j]] ∈ Inv(π) for α1 < j < i with %α(j) < %α(i).

• If t = ((i k)) for 0 < i < k, then ((i j)) ∈ Inv(π) for i < j < k with %α(i) < %α(j) <
%α(k).

• If t = ((−k i)) for 0 < i < k, then:

– [[i]] ∈ Inv(π) for i > α1,

– ((j k)) ∈ Inv(π) for 1 6 j 6 α1, j 6= i,

– ((−j i)) ∈ Inv(π) for j > α1, j 6= i,

– ((j i)) ∈ Inv(π) for 1 6 j 6 α1 < i,

– ((−k j)) ∈ Inv(π) for i > j > α1.

Proof. If t = [[i]] for 0 < i, then π(i) = −1 by Lemma 18. By Lemma 47, we have i > α1,
and by Lemma 21, we have t = ((j i)) + [[j]] for 1 6 j < i. If %α(j) = %α(i), then we may
discard this decomposition. If j 6 α1, then by Lemma 47, we have [[j]] /∈ Inv(ωo;α), and
we may discard this decomposition as well. For α1 < j < i, we see that [[j]] lies in the row
labeled by −j, which is above the row labeled −i that contains [[i]]. Moreover, ((j i)) lies
in the row labeled −i, to the left of [[i]], which yields [[j]] ≺ t ≺ ((j i)). Thus, for π to be
aligned, we must have [[j]] ∈ Inv(π).

If t = ((i k)) for 0 < i < k, then π(i) = π(k)+ by Lemma 18, and therefore %α(i) <
%α(k) by Lemma 31. By Lemma 21, ((i k)) = ((i j)) + ((j k)) for i < j < k. As in the
proof of Lemma 42, we may discard the cases where %α(i) = %α(j) or %α(j) = %α(k). Now,
there are two options where ((i k)) can be. If i 6 α1, then it is in the column labeled by k
and in the row labeled by i. By construction, j > α1, such that ((i j)) lies to the right of
((i k)) in the same row, and ((j k)) lies in the row labeled −k and in the column labeled
−j, which is below ((i k)). If i > α1, then ((i k)) lies in the row labeled −k and in the
column labeled −i. Moreover, ((i j)) lies in the row labeled −j (which is above the row
labeled −k) and ((j k)) lies in the row labeled −k and in the column labeled −j, to the
left of ((i k)). Thus, in both cases we have ((i j)) ≺ t ≺ ((j k)), so that for π to be aligned,
we need ((i j)) ∈ Inv(π).
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If t = ((−k i)) for 0 < i < k, then π(−i) = π(k)+ by Lemma 18. By Lemma 21, there
are four decompositions to consider.

If we take t = [[i]]+ [[k]], then Lemma 47 allows us to discard the case i 6 α1. If i > α1,
then by construction [[i]] lies above [[k]], and [[i]] lies in the same row as ((−k i)) but to the
right. Thus we have [[i]] ≺ t ≺ [[k]], and for π to be aligned, we need to have [[i]] ∈ Inv(π).

If we take t = 2[[i]]+((i k)), then we may again discard the case i 6 α1. Since k > i > α1

we conclude that [[i]] ≺ t ≺ ((i k)).
Say that t = ((−j i)) + ((j k)) for 1 6 j < k and j 6= i. Once more, we can discard

the case %α(j) = %α(k). If j 6 α1, then i > α1, because otherwise ωo;α(−j) < ωo;α(i)
by Lemma 31, so that we can discard this decomposition. Thus, ((−k i)) is in the row
labeled −i. Now, ((j k)) is in the row labeled j, and thus above t. Since j 6 α1, ((−j i))
is in the row labeled −i but to the left of t. Therefore, we have ((j k)) ≺ t ≺ ((−j i)). If
j > α1, then ((−j i)) is in the column labeled by −j and ((j k)) is in the column labeled
by −k. If i 6 α1, then ((−k i)) is in the row labeled −k but to the right of ((j k)), and if
i > α1, then ((−k i)) is in the row labeled −i, which is above the row labeled −j. Thus,
we get ((−j i)) ≺ t ≺ ((j k)). Concluding, for π to be aligned we need ((j k)) ∈ Inv(π)
when j 6 α1, and ((−j i)) ∈ Inv(π) when j > α1.

Lastly, say that t = ((j i)) + ((−k j)) for 1 6 j < i. If %α(i) = %α(j), then we can
discard this decomposition. Thus, %α(j) < %α(i). In any case, i > α1, which means that
((−k i)) is in the row labeled by −i. If j 6 α1, then ((j i)) is in the row labeled j, and
((−k j)) is in the row labeled by −k. This yields ((j i)) ≺ t ≺ ((−k i)). If j > α1, then
((j i)) is in the row labeled −i but to the left of t, and ((−k j)) is in the row labeled by
−j. Thus, we get ((−k j)) ≺ t ≺ ((j i)). Hence, for π to be aligned we need ((j i)) ∈ Inv(π)
if j 6 α1 and ((−k j)) ∈ Inv(π) if j > α1.

Note 49. As in the split case, when a relation is implied by another, we also say that it
is forced by that one. Since the inversions are put in a skew partition by rows from the
top-right corner cell to the left-bottom one, the alignment condition of Lemma 48 may
be translated to: any inversion forced by a given inversion is either on the same row as
the given inversion and to its right, or in the same column and above it, as one can check
on Example 39.

Combinatorially speaking, we model aligned elements for Hα when α is join as follows.

Definition 50. Let α be a join type-B composition of n. A type-B (α, 231)-join pattern
in a sign-symmetric permutation π ∈ Hα is a triple of indices −n 6 i < j < k 6 n such
that

• i, j, k are in different regions, with j > 0;

• π(i) = π(k)+;

• Either j > α1 and π(j) > π(i), or 0 < j 6 α1 and π(j) < π(k).

Comparing with the definition of split patterns, we see that the only difference in the
join case is that, when the middle index j is in the first region, the join one, π(j) must
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be smaller than the two consecutive values π(i), π(k) instead of being larger. In this
situation, we actually see a 312-pattern.

Proposition 51. Let α be a join type-B composition of n. A sign-symmetric permutation
π ∈ Hα is wo;α(~c)-aligned if and only if it does not have a type-B (α, 231)-join pattern.

Proof. Comparing Lemma 42 and Lemma 48 and using the same arguments in the proof
of Proposition 45 and the fact that π ∈ Hα, we observe that π has a type-B (α, 231)-join
pattern (i, j, k) with i < 0 and j > α1 if and only if π violates one of the conditions in
Lemma 48, except for the following.

• There are some 0 < i′ < k′ and 0 < j′ 6 α1 with j′ 6= i′ such that ((−k′ i′)) ∈ Cov(π)
but ((j′ k′)) /∈ Inv(π).

• There are some 0 < i′ < k′ and 0 < j′ 6 α1 with i′ > α1 such that ((−k′ i′)) ∈ Cov(π)
but ((j′ i′)) /∈ Inv(π).

We now only need to show that the violation of the conditions above is equivalent to the
existence of a type-B (α, 231)-join pattern (i, j, k) with i < 0 and 0 < j 6 α1.

When the first condition is violated, we have π(−i′) = π(k′)+ and π(j′) < π(k′). It
is not possible that k′ is also in the first region with j′, as then i′ and −i′ would also be
in the same region, violating π(−i′) > π(k′). Therefore, (−i′, j′, k′) is a type-B (α, 231)-
join pattern for π. When the second condition is violated, we have π(−k′) = π(i′)+ and
π(j′) < π(i′). As i′ > α1, we know that i′ and j′ are not in the same region. We thus
have a type-B (α, 231)-join pattern (−k′, j′, i′) for π.

Now assume that we have in π a type-B (α, 231)-join pattern (i, j, k) with i < 0 and
0 < j 6 α1. By definition, we have ((−k −i)) ∈ Cov(π) but ((j k)) /∈ Inv(π). If 0 < −i 6 k,
then π violating the first condition above with i′ = −i, j′ = j and k′ = k. Note that in
this case we cannot have j = −i, as then i,−i would be in the first region, and we would
have π(k) < π(i) < π(j), which is impossible. If −i > k, then it is the second condition
that is violated with i′ = k, j′ = j and k′ = −i. We thus have the equivalence.

Example 52. We now illustrate Proposition 51 using the composition α′ = (4, 2, 2). The
corresponding inversion order is shown in Example 39. It remains to illustrate examples
of (α′, 231)-join patterns, where the middle index is in the first α-region. The other cases
are analogous to the split case. We consider the following permutations of Hα′ :

π1 = 6 4 8 7 5 3 2 1 1 2 3 5 7 8 4 6 ,

π2 = 7 5 4 3 8 6 2 1 1 2 6 8 3 4 5 7 .

• We have ((−8 5)) ∈ Cov(π1) and ((−8 1)) ∈ Inv(π1), but ((1 8)) /∈ Inv(π1). We have
((−8 5)) = ((−5 1)) + ((1 8)), but ((1 8)) ≺ ((−8 5)) ≺ ((−1 5)), so that π1 is not
wo;α(~c)-aligned.
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• We see that ((−7 6)) ∈ Cov(π2) and ((−7 2)) ∈ Inv(π2), but ((2 6)) /∈ Inv(π2). It holds
that ((−7 6)) = ((−7 2)) + ((2 6)) and ((2 6)) ≺ ((−7 6)) ≺ ((−7 2)). Thus, π2 is not
wo(~c)-aligned.

Example 53. Let us come back to the subtlety mentioned in Remark 16, namely that for
the definition of w-aligned elements, where w is the c-sorting word of the longest element
in a parabolic quotient of W , only the cover inversions must pass a certain check. Let
us start with the observation that, in the case where the parabolic quotient is the whole
group (i.e., J = ∅), this difference is irrelevant because the conditions are equivalent, see
[23, Section 6.2].

When J 6= ∅, however, this difference is indeed crucial. Consider the group W = H3,
and choose α = (0, 2, 1). By Proposition 40, the inversion order Inv

(
wo;α(~c)

)
is

[[1]] ≺ ((−2 1)) ≺ ((−3 1)) ≺ [[2]] ≺ ((−3 2)) ≺ [[3]] ≺ ((2 3)) ≺ ((1 3)).

Let w = 2 3 1 1 3 2 . Then, we have

Inv(w) =
{

[[1]], ((−3 1)), [[3]], ((2 3)), ((1 3))
}
,

Cov(w) =
{

[[1]], ((1 3))
}
.

As [[1]] is a simple reflection and the only decomposition ((1 3)) = ((1 2)) + ((2 3)) must be
discarded because ((1 2)) /∈ Inv(ωo;α), we conclude that w is wo;α(~c)-aligned. However, the
inversion t = [[3]] can be decomposed as

[[3]] = [[1]] + ((1 3)) = [[2]] + ((2 3)),

and neither of these decompositions can be discarded, because
{

[[1]], [[2]], ((2 3)), ((1 3))
}
⊆

Inv(ωo;α). As we have [[2]] ≺ ((2 3)) and [[2]] /∈ Inv(w), the condition from Definition 15
would fail for w if all inversions were considered.

It can be verified that the wo;α(~c)-aligned permutation 3 1 2 2 1 3 exhibits the

same behavior, so that only fourteen of the sixteen wo;α(~c)-aligned elements pass the more
restrictive condition of checking all inversions in Definition 15.

Remark 54. In light of Example 53, we notice that changing the condition from Defi-
nition 15 to checking all inversions would in general produce a smaller set of “aligned”
elements for parabolic quotients of a Coxeter group W . The reason why it is proposed
in [23] to only verify the defining conditions for cover inversions lies in the numerical
coincidence mentioned in [23, Conjecture 41], namely that we can construct other sets of
“Coxeter–Catalan”-like objects which share the cardinality of Align

(
W J ,wJ

o (c)
)

but not
that of the smaller collection.
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6 The parabolic Tamari lattice in linear type B

6.1 A projection map

Let α be a type-B composition α of n. A sign-symmetric permutation π ∈ Hα is (α, 231)-
avoiding if π has no type-B (α, 231)-split (resp. (α, 231)-join) pattern when α is split
(resp. join). We denote by Hα(231) the set of such sign-symmetric permutations. By
Propositions 45 and 51, the set Hα(231) contains exactly the wo;α(~c)-aligned elements in
Hα. This fact leads naturally to the following definition.

Definition 55. For a type-B composition α of n, we define the associated type-B parabolic

Tamari lattice by TamB(α)
def
= Weak(Hα(231)).

To show that TamB(α) is indeed a lattice, we shall construct a surjective map from
Hα to Hα(231) which we then use to prove the lattice property. We need the following
lemma in our type-B case, which is similar to Lemma 12 in [23] for the type-A case.

Lemma 56. For every π ∈ Hα, there is a unique element π↓ ∈ Hα(231) with Inv(π↓) ⊆
Inv(π) such that Inv(π↓) is maximal by inclusion for any such element.

Proof. We proceed by induction on |Inv(π)|. When |Inv(π)| = 0, then π is the identity,
and the claim is clearly satisfied since π↓ = π. Assume that the claim holds for π ∈ Hα

with k − 1 inversions, and consider π ∈ Hα with |Inv(π)| = k. If π ∈ Hα(231), then the
claim is again satisfied since π↓ = π. Otherwise, there is some t ∈ Cov(π) that violates the
conditions in Lemma 42 or Lemma 48 according to α being split or join. Define σ = t·π, so
that |Inv(σ)| = |Inv(π)| − 1. Then define π↓ = σ↓. Let us show that π↓ satisfies our claim.
By definition, we always have π↓ ∈ Hα(231). For π′ ∈ Hα(231) with Inv(π′) ⊂ Inv(π), if
t /∈ Inv(π′), then we have π′ 6weak σ, and thus Inv(π′) ⊆ Inv(σ↓) = Inv(π↓) by induction
hypothesis. We shall show that t ∈ Inv(π′) is impossible. In the following, by abuse
of notation and in accordance with Lemma 18, we say that ((a b)) is an inversion of π
whenever a− b and π(a)− π(b) take different signs. We suppose that t = ((i k)).

We first deal with the case where α is split. By Proposition 45, we have a type-B
(α, 231)-split pattern (i, j, k) in π. Without loss of generality, we may assume that j is
the smallest such index in its region. We have %α(i) < %α(j) < %α(k). We know that
((i k)) /∈ Cov(π′), as the absent inversion that makes ((i k)) violating the conditions in
Lemma 42 is still absent in π′. We thus have π′(i) − π′(k) > 2. As ((i j)) /∈ Inv(π), we
also have ((i j)) /∈ Inv(π′), meaning that π′(j) > π′(i) > π′(k).

Let kd be the index such that π′(kd) = π′(k) + d. We have k0 = k. Let d∗ =
π′(i)−π′(k)−1. We have π′(kd∗) = π′(i)−1. We now show inductively that %α(kd) > %α(j)
for all 0 6 d 6 d∗. The case d = 0 follows from %α(j) < %α(k). Suppose that our claim
holds for some 0 6 d < d∗. It is clear that kd+1 6= i. If %α(kd+1) < %α(j), then we have
kd+1 < j < kd, thus ((kd+1 kd)) ∈ Inv(π′). As π′(j) > π′(i) > π′(kd+1) = π′(kd)

+ and
%α(j) < %α(kd) by induction hypothesis, (kd+1, j, kd) is a type-B (α, 231)-split pattern
in π′, which is impossible. If %α(kd+1) = %α(j), then we have %α(kd+1) < %α(k), but
π′(kd+1) > π′(k). Thus, ((kd+1 k)) ∈ Inv(π′) ⊆ Inv(π), meaning that π(kd+1) > π(k). We
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thus have (i, kd+1, k) as a type-B (α, 231)-split pattern in π. However, as π′(kd+1) <
π′(i) < π′(j) and %α(kd+1) = %α(j), we have kd+1 < j, which is impossible due to the
minimality of j. We thus have %α(kd+1) > %α(j) to conclude the induction. But this
is absurd, as it implies %α(i) < %α(j) < %α(kd∗), meaning that (i, j, kd∗) is a type-B
(α, 231)-split pattern in π′, which is impossible.

When α is join, the only difference is when %α(j) = 1 in the type-B (α, 231)-join
pattern (i, j, k). In this case, we take j the maximal such index in the same region, and
now we have π′(j) < π′(k) < π′(i), as ((j k)) /∈ Inv(π) ⊇ Inv(π′). We observe that all
patterns in the proof for α split above involving j remain valid, except that for the case
%α(kd+1) = %α(j). In this case, as π′(kd+1) < π′(i), we have ((i kd+1)) ∈ Inv(π′) ⊂ Inv(π),
thus π(kd+1) < π(i). Therefore, (i, kd+1, k) is still a type-B (α, 231)-join pattern in π.
However, as π′(kd+1) > π′(k) > π′(j) and %α(kd+1) = %α(j), we have kd+1 > j, violating
the maximality of j here. The modified argument thus applies to α that is join. We
thus conclude that such π′ with t ∈ Inv(π′) cannot exist, whether α is split or join. This
concludes the induction.

Remark 57. We saw in the proof of Lemma 56 that, to construct π↓ from π, we only need
to spot some type-B (α, 231)-split (or join, depending on α) pattern (i, j, k), apply the
inversion that exchanges π(i) and π(k), and then repeat the same procedure until there
is no longer any such pattern. The result is π↓. Lemma 56 also ensures that all choices of
inversion lead to the same π↓.

By Lemma 56, we see π 7→ π↓ as a surjective map from Hα to Hα(231).

Definition 58. We define the downward projection map

Πα
↓ : Hα → Hα(231), π 7→ π↓,

where π↓ is the unique element in Hα(231) with the inversion set Inv(π↓) ⊆ Inv(π) being
maximal, whose existence is ensured by Lemma 56.

We have the following immediate consequence of the proof of Lemma 56.

Corollary 59. A sign-symmetric permutation π is in Hα(231) if and only if Πα
↓ (π) = π.

Proposition 60. The poset TamB(α) is a lattice.

Proof. Let π, π′ ∈ Hα(231), and let σ denote the meet of π and π′ in Weak(Hα) (which
exists by Theorems 11 and 33). Then, σ↓ 6weak π and Πα

↓ (σ) 6weak π
′.

By Lemma 56, Inv(σ↓) is the unique maximal element of the set

INV(σ) =
{
X : X ⊆ Inv(σ) and there is τ ′ ∈ Hα(231) such that Inv(τ ′) = X

}
.

Let τ ∈ Hα(231) with τ 6weak π and τ 6weak π
′. Then, necessarily, τ 6weak σ, which also

implies that Inv(τ) ⊆ Inv(σ). It follows that Inv(τ) ∈ INV(σ), and thus Inv(τ) ⊆ Inv(σ↓).
We conclude τ 6weak σ↓ and that σ↓ is the meet of π and π′ in TamB(α).

Furthermore, as ωo;α contains all possible inversions, we have Πα
↓ (ωo;α) = ωo;α. There-

fore, TamB(α) is a finite meet-semilattice with greatest element ωo;α. A classical result
[13, Chapter I, Example 1.27] thus implies that TamB(α) is a lattice.
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3 2 1 1 2 3

3 1 2 2 1 3

2 1 3 3 1 23 1 2 2 1 3

2 1 3 3 1 23 2 1 1 2 3

1 2 3 3 2 12 3 1 1 3 2

1 2 3 3 2 11 3 2 2 3 1

1 3 2 2 3 1

2 3 1 1 3 2

Figure 4: The weak order on H(1,2) with the congruence classes with respect to Θ high-
lighted.

6.2 TamB(α) is a quotient lattice of the weak order

To obtain stronger properties on TamB(α), we now show that it is also a quotient lattice
of Weak(Hα) using Lemma 3, by defining an equivalence relation Θ on Hα which turns
out to be a congruence, using the downward projection Πα

↓ . This is illustrated in Figure 4
for α = (1, 2) and in Figure 5 for α = (0, 1, 2).

Definition 61. Let Θ be the binary relation on Hα such that (π, π′) ∈ Θ if and only if
Πα
↓ (π) = Πα

↓ (π
′). It is clear that Θ is an equivalence relation, with Πα

↓ giving the smallest
element of each equivalence class.

We first show that each equivalence class of Θ is order-convex.

Proposition 62. For any π, σ, π′ in Hα with π 6weak σ 6weak π
′, if Πα

↓ (π) = Πα
↓ (π

′), then
Πα
↓ (σ) = Πα

↓ (π).

Proof. Let π↓ = Πα
↓ (π) = Πα

↓ (π
′) and σ↓ = Πα

↓ (σ). As σ↓ 6weak σ 6weak π
′, by Lemma 56,

we have σ↓ 6weak π↓. The same argument on π↓ 6weak π 6weak σ gives π↓ 6weak σ↓. We
thus have σ↓ = π↓.

From a dual point of view, we also define an upward projection.

Definition 63. Let α be a split type-B composition of n. A type-B (α, 312)-split pattern
of a sign-symmetric permutation π ∈ Hα is a triple of indices −n 6 i < j < k 6 n such
that

• i, j, k are in different regions, with j > 0;
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3 2 1 1 2 3

3 2 1 1 2 3 3 1 2 2 1 3

3 1 2 2 1 3 3 1 2 2 1 3 2 1 3 3 1 2

2 1 3 3 1 2 3 1 2 2 1 3 3 2 1 1 2 3 2 1 3 3 1 2

2 1 3 3 1 2 3 2 1 1 2 3 2 3 1 1 3 2 1 2 3 3 2 1

1 2 3 3 2 1 2 3 1 1 3 2 1 3 2 2 3 1 1 2 3 3 2 1

1 2 3 3 2 1 1 3 2 2 3 1 1 3 2 2 3 1

1 3 2 2 3 1 2 3 1 1 3 2

2 3 1 1 3 2

Figure 5: The weak order on H(0,1,2) with the congruence classes with respect to Θ high-
lighted.
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• π(i) = π(k)+, π(k) > π(j).

For α a join type-B composition of n, a type-B (α, 312)-join pattern of π ∈ Hα is a triple
of indices −n 6 i < j < k 6 n such that

• i, j, k are in different regions, with j > 0;

• π(i) = π(k)+;

• either j > α1 and π(k) > π(j), or 0 < j 6 α1 and π(j) > π(i).

We denote by Hα(312) the subset of elements in Hα that avoid type-B (α, 312)-split or
-join patterns, depending on α being split or join.

Similar to the case of type-B (α, 231) patterns, we have the following lemma, whose
proof is essentially identical to that of Lemma 56. The only difference is that we are now
looking at cover inversions with a smaller element in the middle, instead of a greater one
in Lemma 56 (except in the case when 0 < j 6 α1, where it is reversed).

Lemma 64. For every π ∈ Hα, there is a unique element π† ∈ Hα(312) with Inv(π†) ⊆
Inv(π) such that Inv(π†) is maximal by inclusion for any such element.

Similarly, we define the map Πα
† : Hα → Hα(312) by taking Πα

† (π) = π† in Lemma 64.

Definition 65. We define a map ι : Hα → Hα by taking ι(π) = πωo;α. In other words,
to obtain ι(π), we replace all elements k by −k in π, and we reverse each α-region of π
so that the elements are sorted. We check that ι(π) is in Hα. We then define the upward
projection map

Πα
↑ : Hα → ι(Hα(312)), π 7→ ι(Πα

† (ι(π))).

Proposition 66. The map ι is order-reversing on Weak(Hα).

Proof. We only need to show that, for π, π′ ∈ Hα, we have Inv(π) ⊆ Inv(π′) if and only
if Inv(ι(π′)) ⊆ Inv(ι(π)). We observe that π(i) = ι(π)(−i) for all i, except when α is
join and %(i) > 1, and in this case we have π(i) = ι(π)(i). Since π, π′, ι(π), ι(π′) are all
in Hα, there is no inversion in the same α-region. Now, for i < j in different α-regions,
we have ωo;α(i) > ωo;α(j), thus the pair i, j contributes to Inv(π) if and only if the pair
ωo;α(i), ωo;α(j) does not contribute to Inv(ι(π)). We then have the equivalence.

Proposition 67. The maps Πα
↓ and Πα

↑ are order-preserving on Weak(Hα).

Proof. For π, π′ ∈ Hα with π 6weak π
′, we have Πα

↓ (π) 6weak π 6weak π
′. By the maximality

of Πα
↓ (π

′) ensured by Lemma 56, we have Πα
↓ (π) 6weak Πα

↓ (π
′), thus Πα

↓ is order-preserving.
We also obtain the case for Πα

↑ from that of Πα
↓ and Proposition 66.

Proposition 68. For σ and π ∈ Hα with σlweak π, let t be the only inversion in Inv(π) \
Inv(σ) ⊆ Cov(π). The following are equivalent:
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(i) The inversion t violates the conditions in Lemma 42 (when α is split) or in Lemma 48
(when α is join).

(ii) Πα
↓ (π) = Πα

↓ (σ).

(iii) Πα
↑ (π) = Πα

↑ (σ).

Proof. Assume that (i) holds. Then π /∈ Hα(231), and we are in the situation of the
inductive step of the proof of Lemma 56. We thus have (i) implies (ii). Now for (iii), by
Proposition 66, we have ι(π)lweak ι(σ), thus ω−1

o;α · t ·ωo;α is in Cov(ι(σ)). We observe that,
a type-B (α, 231) pattern (i, j, k) of π induced by t leads to a type-B (α, 312) pattern in
ι(σ) corresponding to ω−1

o;α · t · ωo;α, which is (−ωo;α(i),−ωo;α(j),−ωo;α(k)), except when
α is join and 0 6 j 6 α1, where the pattern will be (ωo;α(k), ωo;α(j), ωo;α(i)). Using the
same reasoning on (i) ⇒ (ii) but applied to Lemma 64 with ι(σ) and ι(π), we conclude
that (i) implies (iii).

Now we show that (ii) implies (i) by induction on |Inv(σ)|. As

Πα
↓ (π) = Πα

↓ (σ) 6weak σ <weak π,

by Corollary 59, we have π /∈ Hα(231). When |Inv(σ)| = 0, we have Πα
↓ (π) = Πα

↓ (σ) = σ,
which can only occur when t satisfies (i) to be removed from π in the procedure of
Lemma 56. Suppose that (ii) implies (i) for any σ′ with k − 1 inversions, and we now
consider σ with |Inv(σ)| = k. If σ ∈ Hα(231), then we conclude by the same reasoning as
in the case |Inv(σ)| = 0. Otherwise, suppose that there is some t′ ∈ Cov(π) giving rise to
a type-B (α, 231) pattern (i, j, k). If t′ = t, then by the construction in Lemma 56, we
have Πα

↓ (π) = Πα
↓ (t ·π) = Πα

↓ (σ), and the implication holds. Now suppose that t 6= t′. We
check that t · t′ · t gives rise to a type-B (α, 231) pattern in σ. If t commutes with t′, then
(i, j, k) remains a valid pattern. Otherwise, t may permute π(i) or π(k). Suppose that t
permutes π(i). As t 6= t′, t permutes π(i) with π(i)+ in σ. As t is an inversion in π, the
index i′ such that σ(i′) = π(i) satisfies i′ < i, meaning that (i′, j, k) is a valid pattern in
σ. The case where t permutes π(k) is similar. Now, applying the induction hypothesis to
t · t′ · t · σ and t′ · π = t′ · t · σ, we have Πα

↓ (t
′ · π) = Πα

↓ (t · t′ · t · σ) implying t satisfies (i).
By Lemma 56, we have Πα

↓ (π) = Πα
↓ (t
′ · π) and Πα

↓ (σ) = Πα
↓ (t · t′ · t · σ). We thus have (ii)

implies (i) in this case, which concludes the induction. The proof for (iii) implies (i) is
similar.

Proposition 69. For σ, π ∈ Hα, then Πα
↓ (σ) = Πα

↓ (π) if and only if Πα
↑ (σ) = Πα

↑ (π).

Proof. For the comparable case, we may suppose that σ <weak π. The case σ lweak π
follows from Proposition 68, and other cases follows from sucessive application of the
cover case.

For the incomparable case, we observe that Πα
↓ (σ ∧ π) = Πα

↓ (σ), as by Lemma 56,
Πα
↓ (σ) = Πα

↓ (π) is the unique maximal element in Hα(231) below both π and σ. With the
same argument, but passing by ι and Lemma 64, we also have Πα

↑ (σ∧π) = Πα
↑ (σ) = Πα

↑ (π).
The equivalence thus also holds.
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3 2 1 1 2 3

3 1 2 2 1 3

2 1 3 3 1 23 1 2 2 1 3

2 1 3 3 1 2

3 2 1 1 2 3 1 2 3 3 2 1

1 2 3 3 2 11 3 2 2 3 1

1 3 2 2 3 1

2 3 1 1 3 2

Figure 6: The lattice TamB

(
(1, 2)

)
.

Proposition 70. The equivalence relation Θ defined in Definition 61 is a lattice congru-
ence on Weak(Hα), which is the interval [e, ωo;α] in Weak(Hn), and the related quotient
lattice is TamB(α).

Proof. To show that Θ is a congruence on Weak(Hα), we check that the conditions in
Lemma 3 are satisfied. For each equivalence class of Θ, Lemma 56 implies the existence
of a minimal element, which is in Hα(231). Then Proposition 69 along with Lemma 64
shows the existence of a maximal element in each equivalence class. Along with Propo-
sition 62, this concludes that equivalence classes of Θ are intervals, which is precisely
the condition (i) in Lemma 3. The conditions (ii) and (iii) of Lemma 3 are ensured by
Proposition 67. Taking the minimal element in each equivalence class, the quotient lattice
is Weak(Hα(231)) = TamB(α).

Figure 6 shows TamB

(
(1, 2)

)
and Figure 7 shows TamB

(
(0, 1, 2)

)
. We have therefore

just proved Theorem 1.

Proof of Theorem 1. Proposition 60 states that TamB(α) is a lattice and Proposition 70
proves that it is a quotient lattice of the weak order on Hα.

Remark 71. In contrast to Theorem 29, the lattice TamB(α) is in general not a sublattice
of Weak(Hα). This can be witnessed for the composition α = (0, 2, 1). We have drawn
the weak order on H(0,2,1) in Figure 8, where we have highlighted the congruence classes
with respect to Πα

↓ , and we have drawn TamB

(
(0, 2, 1)

)
in Figure 9.

If we consider π1 = 3 1 2 2 1 3 and π2 = 2 1 3 3 1 2 , then their meet

in Weak
(
H
(
(0, 2, 1)

))
is σ1 = 2 1 3 3 1 2 , while their meet in TamB

(
(0, 2, 1)

)
is
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3 2 1 1 2 3

3 2 1 1 2 3

3 1 2 2 1 3

3 1 2 2 1 3

2 1 3 3 1 2

2 1 3 3 1 2 3 1 2 2 1 3

2 1 3 3 1 2

3 2 1 1 2 31 2 3 3 2 1

1 2 3 3 2 1 1 3 2 2 3 1

1 3 2 2 3 1

2 3 1 1 3 2

Figure 7: The lattice TamB

(
(0, 1, 2)

)
.

σ2 = 1 2 3 3 2 1 . It clearly holds that σ1 6= σ2 but we have Π
(0,2,1)
↓ (σ1) = σ2.

An immediate consequence is the following property of TamB(α).

Proposition 72. For every type-B composition α of n, the lattice TamB(α) is congruence
uniform.

Proof. By Theorem 12, Weak(Hn) is congruence uniform, and by Theorem 33, Weak(Hα)
is an interval of Weak(Hn). Since intervals are sublattices, Proposition 5 implies that
Weak(Hα) is congruence uniform, too. Proposition 70 now states that TamB(α) is a
quotient lattice of Weak(Hα), so that the claim follows by applying Proposition 5 once
more.

6.3 Extremality of TamB(α)

In this section, we prove that TamB(α) is an extremal lattice, i.e., it has the same number
of join- and meet-irreducible elements and this number agrees with its length.

Proposition 73. For every type-B composition α of n, the length of the lattice TamB(α)
is

n2 −
r∑
i=1

(
αi
2

)
−

{(
α1+1

2

)
, if α is join,

0, if α is split.

More precisely, the sequence C of suffixes of the ~c-sorting word of ωo;α forms a maximal
chain of TamB(α).
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3 2 1 1 2 3

2 3 1 1 3 2 3 2 1 1 2 3

1 3 2 2 3 1 2 3 1 1 3 2 3 1 2 2 1 3

1 3 2 2 3 1 1 3 2 2 3 1 2 1 3 3 1 2 3 1 2 2 1 3

2 3 1 1 3 2 1 3 2 2 3 1 1 2 3 3 2 1 2 1 3 3 1 2

3 2 1 1 2 3 2 3 1 1 3 2 1 2 3 3 2 1 1 2 3 3 2 1

3 2 1 1 2 3 2 1 3 3 1 2 1 2 3 3 2 1

3 1 2 2 1 3 2 1 3 3 1 2

3 1 2 2 1 3

Figure 8: The weak order on H(0,2,1).

3 2 1 1 2 3

2 3 1 1 3 2

3 2 1 1 2 3

1 3 2 2 3 1 2 3 1 1 3 2

3 1 2 2 1 3

2 1 3 3 1 2 3 1 2 2 1 3

1 2 3 3 2 1

2 1 3 3 1 2

1 2 3 3 2 1

1 2 3 3 2 1

3 1 2 2 1 3 2 1 3 3 1 2

3 1 2 2 1 3

Figure 9: The lattice TamB

(
(0, 2, 1)

)
.
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Proof. We shall show the more precise statement since it implies the first one. First, since
TamB(α) is a subposet of all type B permutations, its length cannot exceed the number of
inversions of its maximal element ωo;α. So the considered chain C is of maximal available
length and it is a chain since the whole ~c-sorting word is a reduced decomposition so that
each new letter exactly adds one inversion.

Now, all the suffixes of C are aligned. Indeed, let π be such an element. Its inversions
form a suffix of the list of inversions of ωo;α, or, in terms of the skew partition containing
the inversions, they satisfy that if a cell c is a inversion of π, then any cell above of c
or in its row to its right is also an inversion of π. But, thanks to Lemmas 42 and 48, a
permutation is aligned if and only if for any t ∈ Cov(π), it implies other inversions in π
and thanks to Notes 43 and 49, π satisfies all forcing relations.

Proposition 74. For every type-B composition α of n, the number of join-irreducible
elements of TamB(α) is

n2 −
r∑
i=1

(
αi
2

)
−

{(
α1+1

2

)
, if α is join,

0, if α is split.

The proof of this proposition directly comes from the next lemma. Indeed, recall that
join-irreducible elements have by definition exactly one cover inversion. Since a cover
inversion is in particular an inversion, the set of possible cover inversions of the join-
irreducibles of TamB(α) is the set of inversions of ωo;α. The next lemma shows that, given
any such inversion ((i j)), there is exactly one join-irreducible element of TamB(α) such
that ((i j)) is its cover inversion, hence showing that the number of join-irreducible is equal
to the length of ωo;α.

Lemma 75. Let α be a type-B composition and let ((i j)) be an inversion of ωo;α. Then
there is exactly one join-irreducible element π(i, j) of TamB(α) such that ((i j)) is its
unique cover inversion.

Moreover, it can be computed directly as follows.

• If i and j are both positive, fill from left to right the right part of a sign-symmetric
permutation with letters starting from 1 in increasing order, forgetting about position
i and the right of its block and ending at position j. Then fill the remaining positions
from left to right with the remaining positive values in increasing order.

• If i = −j, fill π with the values from 1 to n in that order the following positions:
all the left part of π starting at i (or, if α is join, all the left part except the central
block and then the right half of the central block instead) and then the right part of
π starting at position j + 1.

• If either i or j is negative and |i| < |j|, there are three different cases.

– If α is split, i is the negative one. Put k = i + j. Then its right part is given
by the sequence

j · · · k+1 1 · · · k j+1 · · ·n. (9)
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– If α is join and |i| > α1, then i is again the negative one. Put k = i + j and
` = j − α1. Then its right part is given by the sequence

`+1 · · · `+α1 ` · · · k+1 1 · · · k `+α1+1 · · ·n. (10)

– If α is join and |i| 6 α1, then i is the positive one. Put k = i and ` = i−j−α1.
Then its right part is given by the sequence

1 · · · k `+1 · · · `+α1−i ` · · · k+1 `+α1−i+1 · · ·n. (11)

Example 76. Here are a few examples showing in all cases above how a join-irreducible
is associated with a type-B composition and an inversion. We shall only represent the
right part of the permutation.

α = (0, 3, 1, 2, 1), ((i j)) = (2, 6) : π = 1 5 6 2 3 4 7

α = (4, 2, 2), ((i j)) = (2, 6) : π = 1 4 5 6 2 3 7 8

α = (0, 3, 1, 2, 1), ((i j)) = (5, 5) : π = 5 4 3 2 1 6 7

α = (4, 2, 2), ((i j)) = (6, 6) : π = 3 4 5 6 2 1 7 8

α = (0, 3, 1, 2, 1), ((i j)) = (2, 6) : π = 6 5 1 2 3 4 7

α = (4, 2, 2), ((i j)) = (5, 7) : π = 4 5 6 7 3 1 2 8

α = (4, 2, 2), ((i j)) = (2, 5) : π = 1 2 4 5 3 6 7 8

Proof. Let ((i j)) be an inversion of ωo;α and let us consider π a join-irreducible element
with ((i j)) as its unique cover inversion. Let k and k + 1 be the values of this cover
inversion, that is, the values in positions i and j. Since there is only one cover inversion,
that means that the values 1 up to k are in increasing order from left to right in π and so
are the values k + 1 up to n.

We shall distinguish cases depending on the values i and j, and show that π is unique.
First, consider the case i > 0 and j > 0. Then the positions of 1 and 1 do not form a

cover inversion, so 1 is in the right part of π. Thus, the other positive values must also
be in the right part of π: 1 up to k have to be on the right part, and since k + 1 is also
on the right, all the other values are too. So any type-B 231 pattern can only occur with
three values on the right half. We are thus in the type-A case and π is unique (see [23]).

Let us nonetheless prove by ourselves that π is unique, since we shall prove uniqueness
by building it explicitly using ideas that will be used in other cases of this proof. Since
there is only one cover inversion between values k and k+ 1, all values to the left of k+ 1
must be at most k − 1 and all values to the right of k must be at least k + 2. Moreover,
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all positions between the positions of k + 1 and k are filled with elements that are either
smaller or greater than k, but not both: the values to the right of k+ 1 in its block must
be filled with greater elements whereas all others must be filled with smaller elements.
In other words, given α and ((i j)), all positions are filled either with values greater or
smaller than k, hence showing that the filling is unique and in particular that k is fixed.
One easily checks that the element described in the statement is the correct one.

Now, consider the case i = −j. Since it is a cover inversion, it has to be that π(j) = 1
and π(i) = 1. Since there are no other cover inversions, all positive values are in increasing
order from left to right.

• If α is split, the values to the left of 1 in the right part of π must be negative.
Otherwise, we would have a type-B (α, 231)-pattern. So there are exactly n − 1
available positions to the right of 1 for the n− 1 positive values from 2 to n. So π is
unique and it has no type-B (α, 231)-pattern since the right part of π is increasing.
Moreover, it corresponds to the one in the statement.

• If α is join, the same holds except for the central one; but in that case, only the right
half of this part can be filled with positive values, again implying that we have to
put n values in n given spots, hence only one solution. Again, it avoids any type-B
(α, 231)-pattern (which is a 312 if the ’1’ is in the first block right half).

Let us finally consider the case where i and j have different sign and |i| < |j|. Let us
first solve the case α split. In that case, i is the negative one; otherwise, we would have a
type-B (α, 231)-pattern k · · · k · · · k+1. As before, since ((i j)) is the only cover inversion,
1 has to be in the right part of π, and so do all positive values up to k. Let now ` be
the maximal value of the left part of π. Then the right part consists of three possibly
intertwined sequences: ` · · · k+1, 1 · · · k, and `+1 · · ·n. But ` + 1 must be to the right
of k, or we would have a type-B (α, 231)-pattern k+1 · · · `+1 · · · k; and 1 must be to the
right of k + 1, otherwise we would have a type-B (α, 231)-pattern as k · · · 1 · · · k+1. So
the three sequences are not intertwined at all: they have to be concatenated. But since
the positions of k and k + 1 are given, one easily gets that ` = j and k = `+ i, so that π
is unique and is the one described in the statement.

The join case when |i| > α1 is essentially the same as in the split case up to one small
difference: the first α1 values of the first half have to be positive and greater than ` in
order to avoid the type-B (α, 231)-pattern (which is actually 312). The other positions
are filled as in the split case and one finds the sequence of the statement.

Finally, the join case when |i| < α1 is a little different. First, in that case i is the
positive one. The values 1 up to k must still be in the right part and in that order, so
that they form a prefix of the right part (so that k = i). Now, there still remains to
intertwine the sequences ` · · · k+1 and `+1 · · ·n. But again, there is no choice: the block
containing α1 must be filled after k by values greater than it, and the remaining part of
the permutation must be increasing in order to avoid type-B (α, 231)-patterns, hence the
solution of the statement.
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Proposition 77. For every type-B composition α of n, the lattice TamB(α) is trim.

Proof. By Proposition 72, TamB(α) is congruence uniform, and thus by Lemma 6 it is
semidistributive. Now, Lemma 7 states that in TamB(α) the number of join-irreducible
elements agrees with the number of meet-irreducible elements. Propositions 73 and 74
thus imply that TamB(α) is extremal. Using Theorem 9, we conclude that it is in fact
trim.

We are now ready to conclude our second main result.

Proof of Theorem 2. Proposition 72 states that TamB(α) is congruence uniform, which
implies together with Lemma 6 that it is semidistributive. Proposition 77 states that
TamB(α) is trim.

7 Conclusion and outlook

The constructions and results presented in this article are a natural follow-up to [23], where
combinatorial realizations for parabolic aligned elements in linear type A were considered.
Drawing inspiration from other results concerning the combinatorics of parabolic Catalan
objects in linear type A there are some natural research problems that may be studied
subsequently, see [6, 10, 22].

The first natural question to investigate is the exhibition of other combinatorial fam-
ilies associated with parabolic quotients of Hn. In [6], tree and lattice path models for
elements of parabolic quotients of the symmetric group were introduced, and these con-
structions can be extended to produce the corresponding models in linear type B. This
is work in progress and will be addressed in a future paper.

Following the approach from [22] in linear type A, it will certainly be fruitful to study
the secondary structures associated with the type-B parabolic Tamari lattices, such as
their Galois graph, canonical join complex or core label order. This will also help in the
research for a noncrossing partition model for parabolic quotients in linear type B.

One of the main results of [6] relates the parabolic Tamari lattices in type A to
the ν-Tamari lattices of Préville-Ratelle and Viennot [24], see also [10]. The underlying
geometric structure was generalized to type B in [7], and it is a natural question to study
if there is a similar connection with our type-B parabolic Tamari lattice. More precisely,
we may study the following research question.

Question 78. Let α be a type-B composition of an integer n. Is there some integer
N such that the associated type-B parabolic Tamari lattice TamB(α) is isomorphic to
an interval in the type-B ordinary Tamari lattice TamB(N)? Is it even possible that
TamB(N) contains all TamB(α′) as disjoint intervals, where α′ ranges over all type-B
compositions of n?

Besides the structural considerations, it may also be fruitful to consider various enu-
merative aspects of type-B parabolic Tamari lattices. For instance, the total sum of the
cardinalities of parabolic aligned elements with respect to all parabolic quotients of a fixed
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symmetric group yields the sequence [30, A151498] and enumerates the dimensions of a
certain family of Hopf algebras, see [1, 6]. The counterpart in type B is the sequence
t1, t2, . . ., where

tn
def
=

∑
α is a type-B composition of n

∣∣Hα(231)
∣∣.

The first six terms of this sequence are 3, 15, 91, 598, 4109, 29071, which currently is not
listed in the OEIS. Our work in progress on other combinatorial models for type B may
give a possible explanation of these numbers.

A second intriguing enumerative problem is the determination of the cover enumerator
of the type-B parabolic Tamari lattices. More precisely, if α is a type-B composition of
n, then we define

cα(x)
def
=

∑
π∈Hα(231)

x|Cov(π)|.

When α = (0, 1, 1, . . . , 1) is a type-B composition of n, then we have

cα(x) =
n∑
k=0

(
n

k

)2

xk,

which follows for instance from [29, Proposition 6] and [27, Theorem 6.1]. The coefficients
of this sequence may be considered as type-B (parabolic) Narayana numbers. Computer
experiments suggest the following.

Conjecture 79. Let t > 0 and let α = (t, 1, 1, . . . , 1) be a type-B composition of n.
Then,

cα(x) =
n−t∑
k=0

(
n− t
k

)(
n+ t

k

)
xk.

Consequently,
∣∣Hα(231)

∣∣ =
(

2n
n−t

)
.

In type A, the cover enumerator has been determined for certain parabolic quotients
of the symmetric group in [18, Theorem 3.1] using a slightly different perspective.

We wish to end by observing that computational evidence leads us to suggest that the
cardinality of Hα(231), where α = (0, 1, 1, . . . , 1, 2) is a type-B composition of n is given
by the type-D Catalan number 3n−2

n

(
2n−2
n−1

)
.
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