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Abstract

Let Γ be a bipartite graph, and let AutΓ be the full automorphism group of the
graph Γ. A subgroup G 6 AutΓ is said to be bi-regular on Γ if G preserves the
bipartition and acts regularly on both parts of Γ, while the graph Γ is called a bi-
Cayley graph of G in this case. A subgroup X 6 AutΓ is said to be bi-quasiprimitive
on Γ if the bipartition-preserving subgroup of X is a quasiprimitive group on each
part of Γ.

In this paper, a characterization is given for the connected bi-Cayley graphs on
nonabelian simple groups which have prime valency and admit bi-quasiprimitive
groups.

Mathematics Subject Classifications: 05C25, 20B25

1 Introduction

All (di)graphs considered in this paper are assumed to be finite and simple, unless other-
wise stated.

For a graph Γ, we use V Γ, EΓ and AutΓ to denote the vertex set, edge set and full
automorphism, respectively. A subgroup R of AutΓ is said to be bi-regular on Γ if R
is semiregular on V Γ with exact two orbits. If AutΓ admits a bi-regular group R then
Γ is called a bi-Cayley graph over R, refer to [19]. (Note, some authors have used the
term semi-Cayley instead, see [9] for example.) In the past three decades, bi-Cayley
graphs have been involved deeply in many fields of graph theory and played an important
role. In particular, many research works have been published about bi-Cayley graphs
regarding their strong regularity [9, 20, 30, 31], automorphism [26, 40], semisymmetry
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[27], classification [5, 19, 32, 39], connectivity [3, 25], extendability [17, 29] and spectrum
[16].

In this paper, we deal with bi-Cayley graphs in some narrow sense as in [11], where
the term bi-Cayley graph were first used to name those bi-partite graphs which admit bi-
regular groups. Thus a bi-Cayley graph of R is isomorphic to a bipartite graph BCay(R, S)
with vertex set R× {0, 1} such that (x, i) and (y, j) are adjacent if and only if i 6= j and
yx−1 ∈ S, where S ⊆ R. Up to graph isomorphism, the subset S may be chosen so that
it does not contain the identity 1 of R, refer to [27, Lemma 2.2].

Let R be a group and S ⊆ R \ {1}. The Cayley digraph Cay(R, S) is a directed graph
with vertex set R such that x ∈ R is adjacent to y ∈ R if and only if yx−1 ∈ S. For the
case where S is inverse closed, Cay(R, S) can be viewed as a graph and called a Cayley
graph of R. For a (di)graph Γ, the standard double cover Γ(2) of Γ is a bipartite graph
with vertex set V × C2 such that {(u1, 0), (u2, 1)} is an edge if and only if u1 is adjacent
to u2 in Γ. Thus every bi-Cayley graph BCay(R, S) with 1 6∈ S is in fact the standard
double cover of the Cayley digraphs Cay(R, S).

In the literature, Cayley (di)graphs on nonabelian simple groups have received consid-
erable attention, and a quite number of papers have addressed questions regarding their
normality and symmetry, see [10, 12, 13, 14, 21, 24, 28, 36, 38] for references. This and
the fact that bi-Cayley graphs are standard double covers of Cayley digraphs provide us
the main motivation to investigate bi-Cayley graphs on nonabelian simple groups under
certain limitations. In this paper, we give a characterization for bi-Cayley graphs on
nonabelian simple groups which have prime valency and admit bi-quasiprimitive groups.

Let Γ be a connected graph, and X 6 AutΓ. An arc in Γ is an ordered pair of adjacent
vertices, and a 2-arc is a triple (α, β, γ) of vertices with α 6= γ and {α, β}, {β, γ} ∈ EΓ.
The graph Γ is called X-vertex-transitive, X-edge-transitive, X-symmetric or (X, 2)-arc-
transitive if X acts transitively on the vertex set, the edge set, the arc set or the 2-arc set
of Γ, respectively. Assume that Γ is bipartite, and let X+ be the bipartition preserving
subgroup of X. Then X is said to be bi-quasiprimitive on Γ if X+ induces a quasiprimitive
permutation group on each part of Γ. Recall that a permutation group is quasiprimitive
if its non-trivial normal subgroups are all transitive.

The main result of this paper is stated as follows.

Theorem 1. Let T be a nonabelian simple group, and let Γ be a connected bi-Cayley graph
on T of prime valence p. Assume that Γ is X-symmetric and X is bi-quasiprimitive on
Γ, where T < X 6 AutΓ. Then one of the following cases holds:

(1) T EX and X is almost simple;

(2) X = X+ × 〈o〉, X+ is an almost simple group, o is an involution, and Γ is the
standard double cover of the complete graph Kp+1 or some X+-symmetric Cayley
graph Σ on T of valency p;

(3) Γ is isomorphic to one of the five graphs given in Example 5;

(4) p > 5, X = Sn and T = An−1, where n is divisible by p.
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Remark 2. For Theorem 1 (2), if T E X+ then T E X, if T 5 X+ then the graph Σ
is either the complete graph Kp+1 or described as in [10, Theorem 1.1], [24, Theorem
1.1], [37, Theorem 5.1] and [38, Theorems 1.3 and 1.4]. As for Theorem 1 (4), some
explanations are given at the end of this paper.

To end this section, we give some notations which are used in this paper. For the
group-theoretic terminology not defined here we refer the reader to [6, 35]. For two
groups K and H, denoted by K.H an arbitrary extension of K by H, and by K:H a
semidirect product of K by H. For a group G, use soc(G) to denote the socle of G.

2 The groups X, X+ and T

Let T be a nonabelian simple group, let Γ be a connected bi-Cayley graph on T of valency
an odd prime p, and let T < X 6 AutΓ. Let ∆1 and ∆2 be the X+-orbits on V Γ. In the
following, we assume that Γ is X-symmetric and X is bi-quasiprimitive on Γ.

Since T is nonabelian simple, it is easily shown that T 6 X+. If X+ is unfaithful
on ∆1 or ∆2 then Γ is isomorphic to the complete bipartite graph Kp,p, yielding |T | = p,
which is impossible. Thus we may consider X+ as a quasiprimitive group is faithful on
each of ∆1 and ∆2.

For α ∈ V Γ, let Xα = {x ∈ X | αx = α} and Γ(α) = {β ∈ V Γ | {α, β} ∈ EΓ}, called
the stabilizer of α in X and the neighborhood of α in Γ, respectively. It is easy to show
that Xα is a subgroup of X+.

Let G = X+, and α ∈ ∆1 ∪∆2. Then G = XαT is an exact factorization, where exact
means that Xα ∩ T = 1. By [22, Theorem 1.7], as a quasiprimitive group on ∆1 or ∆2,
T 6 soc(G) and one of the following holds:

(C1) soc(G) = T ;

(C2) soc(G) ∼= T × T , and either T EG or soc(G)α ∼= T ;

(C3) G is almost simple, soc(G) 6= T and G = XαT is one of those exact factorizations
in [2, Theorem 3] and [22, Theorem 1.2] with a simple factor T .

We next deal with the case (C3) by producing a possible list for (X,G,Xα, T ) from
[2, Theorem 3] and [22, Theorem 1.2] when X is also almost simple.

Denote by X
[1]
α the kernel of Xα acting on the neighborhood Γ(α) of α in Γ. Then

X
Γ(α)
α
∼= Xα/X

[1]
α . Let β ∈ Γ(α), and consider the action of Xαβ on Γ(β). We have

X [1]
α /(X

[1]
α ∩X

[1]
β ) ∼= (X [1]

α )Γ(β) EX
Γ(β)
αβ = (X

Γ(β)
β )α ∼= (XΓ(α)

α )β.

Note that X
Γ(α)
α is a transitive permutation group on Γ(α) of degree p. Then X

Γ(α)
α is

known up to permutation isomorphism, refer to [8, page 99]:

(i) X
Γ(α)
α 6 AGL1(p);

(ii) X
Γ(α)
α = Ap or Sp, where p > 7;
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(iii) X
Γ(α)
α = PSL2(11), (X

Γ(α)
α )β ∼= A5 and p = 11;

(iv) X
Γ(α)
α = Mp, (X

Γ(α)
α )β = Mp−1 and p ∈ {11, 23};

(v) PSLd(q) EX
Γ(α)
α 6 PΓLd(q), and p = qd−1

q−1
, where d is a prime.

Lemma 3. Assume that X is almost simple and soc(X) = soc(X+) 6= T . Then
(X,G,H, T, p) is listed as in Table 1, where G = X+, and H = Xα for some α ∈ V Γ.

Row X G H T p Remark

0 S12 A12 C2 × S3 A11 3

1 S24 A24 S4 A23 3

2 S48 A48 C2 × S4 A47 3

3 Sn An |Xα| = n An−1 > 5 p
∣∣ n, n > 5, H has no cyclic

Sylow 2-subgroup unless n is odd

4 PGL2(11) PSL2(11) C11 A5 11

5 PGL2(29) PSL2(29) C29:C7 A5 29

6 PGL2(59) PSL2(59) C59:C29 A5 59

7 M12.2 M12 D12 M11 3

8 S11 A11 A7 M11 7

9 S11 A11 M11 A7 11

10 S12 A12 A7 M12 7

11 Sn An An−1 |T | = n n− 1

12 Sq+1 Aq+1 PSL2(q) Aq−2 p = q + 1 q = 22s > 2

13 Sq+1 Aq+1 Sq−2 PSL2(q) p = q − 2 q ≡ 3 (mod 4)

14 Ω+
8 (2).2 Ω+

8 (2) C4
2:A5 A9 5

15 Ω+
8 (2).2 Ω+

8 (2) S5 Sp6(2) 5

Table 1: Almost simple groups X with T 6= soc(X+)
.

Proof. By the foregoing analysis, either X
Γ(α)
α 6 AGL1(p) or X

Γ(α)
α is insolvable.

Case 1. Assume that X
Γ(α)
α 6 AGL1(p). By [34, Theorem 4.7], either p = 3 or

X
[1]
α ∩ X [1]

β = 1, where β ∈ Γ(α). For p = 3, we have Xα
∼= C3, S3, C2 × S3, S4 or

C2 × S4, refer to [1, 18C, page 126]. Noting that Xα = ((X
[1]
α ∩ X [1]

β ).(X
[1]
α )Γ(β)).X

Γ(α)
α

and (X
[1]
α )Γ(β) E (X

Γ(β)
β )α, if X

[1]
α ∩X [1]

β = 1 then Xα = Cl′ .(Cp:Cl) = (Cl′ ×Cp).Cl, where

l′
∣∣ l ∣∣ (p − 1). Now Xα is solvable, and the almost simple group G = X+ has an exact

factorization G = HT with H = Xα solvable. Then T is one of the groups K described
as [2, Theorem 3]. Since T is a nonabelian simple group, (iii) of [2, Theorem 3] does not
occur here. If (v) of [2, Theorem 3] holds then we get Rows 4-7 of Table 1 by comparing
Xα and those H listed in [2, Table 4].
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Suppose that (i) of [2, Theorem 3] holds. Then soc(G) = An, T = An−1 and H is
transitive on Ω := {1, 2, . . . , n}, where n > 6. Since |X : G| = 2 and X is almost simple,
either G = An and X = Sn, or n = 6 and X 6= S6. For the latter case, Γ is a connected
symmetric cubic graph of order 120, and then |AutΓ| = 720 by [4], it follows that G = A6

and X = M10 or PGL2(9). Thus G = An for both cases, and |H| = |G : T | = n. In
particular, p is a divisor of n as H = Xα acts transitively on Γ(α). Clearly, H is regular
on Ω. Assume that H contains an element o of order 2s. Then o is a product of n

2s
cycles

of length 2s. If s > 0 then, since a 2s-cycle is an odd permutation, n
2s

must be even, and
so 〈o〉 is not a Sylow 2-subgroup of H. Therefore either n is odd or H has no cyclic Sylow
2-subgroup; in particular, n 6= 2p. Now, if p > 5 then we have Row 3 of Table 1, if p = 3
then one of Rows 0-2 of Table 1 holds.

Suppose that (ii) of [2, Theorem 3] holds. Then we have G = Ara , T = Ara−2,
H . AΓL1(ra), and H is a 2-homogeneous subgroup of Ara in the natural action, where
r is a prime. In particular, H has a unique minimal normal subgroup, say Ca

r . If p = 3
then, since H = Xα

∼= C3, S3, C2× S3, S4 or C2× S4, we have ra 6 4, which is impossible
as T is a nonabelian simple group. Thus p > 5, and so H has a minimal normal subgroup
Cp. It follows that p = ra, yielding p = r, a = 1 and H ∼= AGL1(p). Then H contains
a (p − 1)-cycle, which is an odd permutation. Thus we have a contradiction as H is a
subgroup of Ap.

Suppose finally that (iv) of [2, Theorem 3] holds, that is, soc(G) = PSp2m(q), H ∩
soc(G) 6 qm:(qm − 1).m and T ∩ soc(G) = Ω−2m(q), where m > 3 and q = 2f . Since
T is a nonabelian simple group, we have T = Ω−2m(q) 6 soc(G). This leads an exact
factorization soc(G) = (H ∩ soc(G))T . In particular, |H ∩ soc(G)| = qm(qm − 1), and
|Xα| is divisible by qm(qm − 1). If p = 3 then we have qm − 1 = 3, yielding m = 2 < 3,
a contradiction. Therefore, p > 5. Pick a Sylow 2-subgroup Q of H ∩ soc(G), and
let P = Cmf

2 E qm:(qm − 1).m. Then |Q| = |P | = 2mf . Write m = 2sm0 for an odd
integer m0. Then every Sylow 2-subgroup of qm:(qm− 1).m has order 2mf+s. Noting that
PQ is a 2-subgroup of qm:(qm − 1).m, it follows that |PQ| is a divisor of 2mf+s. Since

|PQ| = |P ||Q|
|P∩Q| = 22mf

|P∩Q| , we conclude that |P ∩ Q| has a divisor 2mf−s. Thus H = Xα has

a subgroup Cmf−s
2 . Recall that H = Xα = (Cl′ × Cp).Cl, where l′

∣∣ l ∣∣ p − 1. Checking
the orders of elementary abelian 2-subgroups of H, we conclude that 2mf−s 6 4. Then,
since m > 2, we have m = 4 and q = 2, and so |H ∩ soc(G)| = qm(qm − 1) = 24 · 15. In
particular, 5 is the largest prime divisor of |Xα|. This forces that Γ has valency p = 5,
and then |H| = |Xα| = 5l′l with l′

∣∣ l ∣∣ 4, a contradiction.

Case 2. Assume that X
Γ(α)
α is insolvable. Then we may read out (X,G,Xα, T )

from [22, Table 1.1]. Rows 5, 8, 12-14, 16-18 and 21 in [22, Table 1.1] are not in our
consideration as the corresponding factorizations have no simple factor. By [7, Lemma
1.1], p is the largest prime divisor of |Xα| and p2 - |Xα|. This excludes Rows 9-11 in [22,
Table 1.1]. Noting that |X : G| = 2 and X is almost simple, Rows 15, 22 and 23 in [22,
Table 1.1] are excluded.

For Row 4 in [22, Table 1.1], we have Xα = (A5 × C3).C2, forcing X
Γ(α)
α = PΓL2(4),

(X
Γ(α)
α )β ∼= S4 and X

[1]
α = C3. By [34, Theorem 4.1], X

[1]
α ∩X [1]

β is a 2-group for β ∈ Γ(α),
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and thus X
[1]
α ∩X [1]

β = 1. Then

C3 = X [1]
α
∼= (X [1]

α )Γ(β) E (X
Γ(β)
β )α ∼= (XΓ(α)

α )β ∼= S4,

which is impossible.
Finally, inspecting the left 7 rows in [22, Table 1.1], we get Rows 3,8-15 of Table 1.

3 Graphs arising from Table 1

It is well-known that every connected symmetric graph may be represented as a coset
graph defined as follows.

Let X be a finite group, and K < H < X such that H is core-free in X. Suppose that

(I) there exists an element z ∈ NX(K)\H such that X = 〈H, z〉, z2 ∈ K and Hz∩H =
K.

Define a graph Cos(X,H,K, z) on [X : H] := {Hx | x ∈ X} such that {Hx,Hy} is an
edge if and only if yx−1 ∈ HzH \H. Then Cos(X,H,K, z) is a connected X-symmetric
graph of valency k := |H : K|, where X acts on [X : H] by right multiplication, and
the subgroups H, K and 〈K, z〉 serve as a vertex-stabilizer, an arc-stabilizer and an edge-
stabilizer respectively.

It follows from (I) that z has even order, say 2sm for s > 0 and odd m. Then z = hz0,
where h is a power of z2s and z0 is a power of zm. It is easily shown that h ∈ K,
HzH = Hz0H, z0 ∈ NX(K) \ H, X = 〈H, z0〉, z2

0 ∈ K and Hz0 ∩ H = K. Thus, it is
sufficient to consider those 2-elements z satisfying (I) when we determine the existence or
construct connected symmetric graphs from a given triple (X,H,K).

For an automorphism φ ∈ AutX, we have a bijection Hx 7→ Hφxφ, x ∈ X, which
in fact a graph isomorphism from Cos(X,Hφ, Kφ, zφ). Thus, in practices, we always
choose the subgroup H up to the conjugation under AutX, while the subgroup K is
chosen up to the conjugation under Aut(X,H) := {φ ∈ AutX | Hφ = H}. Given
a triple (X,H,K) and two elements z′ and z′′ satisfying the condition (I) above. If
Hz′H = Hz′′H then Cos(X,H,K, z′) = Cos(X,H,K, z′′), and if z′′ = (z′)x for some
NX(H) then Cos(X,H,K, z′) ∼= Cos(X,H,K, z′′). These observations will greatly help
us deal with the triples (X,H, p) listed in Table 1.

Denote by (Xi, Gi, Hi, pi) the quadruple described as in Row i of Table 1, where

i ∈ {0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 14, 15}.

It is easy to see that all subgroups of Hi with index pi are conjugate. Note that Hi is
recorded as in Table 1 up to isomorphism. Let ni be the number of conjugacy classes of
subgroups in Gi isomorphic to Hi. Then

n0 = n1 = n2 = n4 = n5 = n6 = n8 = n10 = 1, n9 = 2, n7 = n14 = 3, n15 = 15.

For each representative for Hi up to conjugacy, still denoted by Hi, we fix a subgroup Ki

of Hi with index pi. Computation by GAP [15] shows that
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(i) For i ∈ {0, 2, 7, 8, 10, 14, 15}, the normalizer NXi
(Ki) does not contain 2-element z

satisfying the condition (I);

(ii) For i ∈ {1, 4, 5, 6, 9}, up to isomorphism of graphs, the pair (Xi, Hi) produces a
unique symmetric graph Cos(Xi, Hi, Ki, zi) of valency pi, where (Xi, Hi, Ki, zi) is
recorded as in Example 5.

Then we have the following lemma.

Lemma 4. Let Γ be a connected X-symmetric graph of prime valency with a vertex
stabilizer H. Assume that (X,H) is one of the pairs listed in Rows 0-2, 4-10, 14, 15 of
Table 1. Then Γ is isomorphic to one of the five graphs given in Example 5.

Example 5. For each i ∈ {1, 4, 5, 6, 9}, the coset graph Cos(Xi, Hi, Ki, zi) is a connected
symmetric bi-Cayley graph on Ti of prime valency p, where

(1) X1 = S24, H1 = 〈a1, b1〉 ∼= S4, K1 = 〈c1, d1〉, T1 = A23, p = 3:

z1 =(3, 21)(5, 23)(6, 24)(7, 16)(8, 15)(9, 20)(10, 19)(11, 22)(12, 14),

a1 =(1, 10, 17, 19)(2, 9, 18, 20)(3, 12, 14, 21)(4, 11, 13, 22)(5, 7, 16, 23)

(6, 8, 15, 24),

b1 =(1, 7)(2, 8)(3, 9)(4, 10)(5, 11)(6, 12)(13, 15)(14, 16)(17, 18)(19, 21)

(20, 22)(23, 24),

c1 =(1, 15)(2, 16)(3, 13)(4, 14)(5, 18)(6, 17)(7, 9)(8, 10)(11, 12)(19, 24)

(20, 23)(21, 22),

d1 =(1, 24)(2, 23)(3, 22)(4, 21)(5, 20)(6, 19)(7, 18)(8, 17)(9, 16)(10, 15)

(11, 14)(12, 13).

(2) X4 = PGL2(11), H4 = 〈a4〉, K4 = 1, T4
∼= A5, p = 11:

z4 = (1, 8)(2, 5)(3, 10)(4, 6)(7, 9), a4 = (2, 8, 9, 6, 10, 12, 7, 5, 11, 4, 3).

(3) X5 = PGL2(29), H5 = 〈a5, b5〉, K5 = 〈c5〉, T5
∼= A5, p = 29:

z5 =(1, 2)(3, 30)(4, 29)(5, 28)(6, 27)(7, 26)(8, 25)(9, 24)(10, 23)(11, 22)(12, 21)

(13, 20)(14, 19)(15, 18)(16, 17),

a5 =(3, 19, 7, 23, 11, 27, 15)(4, 20, 8, 24, 12, 28, 16)(5, 21, 9, 25, 13, 29, 17)

(6, 22, 10, 26, 14, 30, 18),

b5 =(2, 24, 25, 29, 26, 18, 30, 8, 27, 6, 19, 21, 3, 14, 9, 23, 28, 17, 7, 5, 20, 13, 22, 16,

4, 12, 15, 11, 10),

c5 =(3, 19, 7, 23, 11, 27, 15)(4, 20, 8, 24, 12, 28, 16)(5, 21, 9, 25, 13, 29, 17)

(6, 22, 10, 26, 14, 30, 18).
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(4) X6 = PGL2(59), H4 = 〈a6, b6〉, K6 = 〈c6〉, T6
∼= A5, p = 59:

z6 =(1, 2)(4, 60)(5, 59)(6, 58)(7, 57)(8, 56)(9, 55)(10, 54)(11, 53)(12, 52)(13, 51)

(14, 50)(15, 49)(16, 48)(17, 47)(18, 46)(19, 45)(20, 44)(21, 43)(22, 42)

(23, 41)(24, 40)(25, 39)(26, 38)(27, 37)(28, 36)(29, 35)(30, 34)(31, 33),

a6 =(2, 27, 28, 19, 29, 33, 20, 45, 30, 11, 34, 52, 21, 14, 46, 25, 31, 9, 12, 7, 35, 37, 53,

42, 22, 39, 15, 3, 47, 55, 26, 18, 32, 44, 10, 51, 13, 24, 8, 6, 36, 41, 38, 60, 54, 17,

43, 50, 23, 5, 40, 59, 16, 49, 4, 58, 48, 57, 56),

b6 =(3, 13, 23, 33, 43, 53, 5, 15, 25, 35, 45, 55, 7, 17, 27, 37, 47, 57, 9, 19, 29, 39, 49,

59, 11, 21, 31, 41, 51)(4, 14, 24, 34, 44, 54, 6, 16, 26, 36, 46, 56, 8, 18, 28, 38, 48,

58, 10, 20, 30, 40, 50, 60, 12, 22, 32, 42, 52),

c6 =(3, 13, 23, 33, 43, 53, 5, 15, 25, 35, 45, 55, 7, 17, 27, 37, 47, 57, 9, 19, 29, 39, 49,

59, 11, 21, 31, 41, 51)(4, 14, 24, 34, 44, 54, 6, 16, 26, 36, 46, 56, 8, 18, 28, 38, 48,

58, 10, 20, 30, 40, 50, 60, 12, 22, 32, 42, 52).

(5) X9 = S11, H9 = 〈a9, b9〉 ∼= M11, K9 = 〈c9, d9〉, T9
∼= A7, p = 11:

z9 =(2, 5)(4, 9)(7, 10), a9 = (1, 4, 7, 6)(2, 11, 10, 9), b9 = (1, 10)(2, 8)(3, 11)(5, 7),

c9 =(2, 3, 8, 4)(5, 6, 9, 10), d9 = (1, 5)(2, 10, 7, 6, 3, 8, 9, 4).

4 Proof of Theorem 1.1

Let T be a nonabelian simple group, and let Γ be a connected bi-Cayley graph on T
of valency an odd prime p with bi-parts ∆1 and ∆2. In the following, assume that a
subgroup X 6 AutΓ is symmetric and bi-quasiprimitive on Γ, and T < X+. Noting that
|∆1| = |T | = |∆2|, since T is nonabelian simple, we conclude that Γ is a not a complete
bipartite graph. In particular, X+ is faithful on both ∆1 and ∆2.

Lemma 6. One of the following holds:

(1) X = X+ × 〈o〉, X+ is almost simple and T 6 soc(X+), where o is an involution;

(2) X is almost simple, and T 6 soc(X+) = soc(X).

Proof. Recalling that X+ is a quasiprimitive group on ∆1, by [22, Theorem 1.7], T 6
soc(X+), and either soc(X+) is simple or soc(X+) = T × L, where L ∼= T .

Suppose that soc(X+) = T ×L. For α ∈ ∆1, we have T ×L = soc(X+) = T soc(X+)α,
yielding soc(X+)α ∼= L ∼= T . In particular, Xα is insolvable, and hence Γ is (X, 2)-arc-
transitive. On the other hand, appealing to the [33, Theorem 2.3], either soc(X+) is
regular on ∆1 or soc(X+)α 6 H × K for some H < T and K < L, a contradiction.
Therefore, soc(X+) is simple.
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Assume that X has a minimal normal subgroup N such that N 66 X+. Then N∩X+ =
1, and X = X+N as |X : X+| 6 2. It follows that X = X+ ×N and |N | = 2. Then part
(1) of the lemma follows.

Now assume that every minimal normal subgroup of X is contained in X+. Then
each minimal normal subgroup of X has at most two orbits on V Γ = ∆1 ∪∆2. By [23,
Theorem1.1], soc(X) is the unique minimal normal subgroup of X. Since soc(X+) is
characteristic in X+, we know soc(X+) E X due to X+ E X. Since soc(X+) is simple,
one has soc(X) = soc(X+), and part (2) of this lemma occurs.

Lemma 7. Assume that X = X+ × 〈o〉, where o is an involution. Then Γ is isomorphic
to the standard double cover of some X+-symmetric Cayley graphs of valency p on T .

Proof. Pick δ1 ∈ ∆1. Then δ2 := δo1 ∈ ∆2, ∆1 = {δg1 | g ∈ T} and ∆2 = {δg2 | g ∈ T}.
Let S = {g | δg2 ∈ Γ(δ1)}. Then |S| = p. Since Xδ1 acts transitively on Γ(δ1), we have
|Xδ1 : Xδ1β| = p for each β ∈ Γ(δ1). In particular, Xδ1 6= Xβ. Thus δ2 6∈ Γ(δ1) as

Xδ1 = Xδ2 , yielding 1 6∈ S. For g ∈ S, since δg2 ∈ Γ(δ1), we have δg
−1

1 ∈ Γ(δ2), and so

δg
−1

2 = (δg
−1

1 )o ∈ Γ(δo2) = Γ(δ1). This yields that S = S−1. Then we have a Cayley graph
Σ = Cay(T, S). Define

φ : V Γ→ V Σ× C2, δ
oig
1 7→ (g, i).

It is easily shown φ is an isomorphism from Γ to Σ(2). Then the only thing left is to equip
Σ with X+ as an arc-transitive graph.

Since T is regular on ∆1, for any given g ∈ T and x ∈ X+, there is a unique gx ∈ T
such that δgx1 = δgx1 . By a routine examination, we get a faithful action of X+ on T by

gx := gx, g ∈ T, x ∈ X+,

while T acts on V Σ by right multiplication, andXδ1 fixes the vertex δ1 and acts transitively
on S. This completes the proof.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. By Lemmas 6 and 7, either one of Theorem 1 (1) and (2) holds, or
X is almost simple and T < soc(X+) = soc(X). For the latter case, by Lemma 4, either
(3) of Theorem 1 holds or (X,H) is one of the pairs described as in Rows 3, 11, 12 and
13 of Table 1. For Row 11 of Table 1, X+ acts 2-transitively on each ∆1 and ∆2, this
forces that Γ is the standard double cover of Kp+1, desired as in Theorem 1 (2). If Row 3
of Table 1 holds for (X,H), then have Theorem 1 (4).

Next we assume that (X,H) is one of the pairs in Rows 12 and 13 of Table 1. Let
{α, β} ∈ EΓ, H = Xα and K = Xαβ. Write Γ = Cos(X,H,K, z), where z satisfies the
condition (I) in Section 3. In particular, X{α,β} = K〈z〉 = K.C2.

Case 1. Suppose that (X,H) is described as in Row 12 of Table 1. ThenH = PSL2(q),
X = Sq+1 and X+ = Aq+1, where q = 22s > 2 and p = q + 1. Considering the natural
action of Sq+1 on Ω = {1, 2, . . . , q + 1}, the vertex-stabilizer H is a sharply 3-transitive
subgroup of Sq+1, and the arc-stabilizer K is the stabilizer of some point, say q+ 1, in Ω.
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Then K a sharply 2-transitive subgroup of Sq acting on Ω0 = {1, 2, . . . , q}. It is easy to
see that NX(K) fixes the point q + 1, and thus NX(K) = NSq(K). Note K = E:C with
E ∼= C2s

2 and C ∼= C22s−1. Then E is a characteristic subgroup of K, and E is regular
on Ω0. Then NSq(K) 6 NSq(E). Viewing Ω0 as the 2s-dimensional vector space over the
field of order 2, it follows that NSq(K) 6 NSq(E) = E:GL2s(2). Then

NSq(K) = NSq(K) ∩NSq(E) = E:(NSq(K) ∩GL2s(2)) 6 E:NGL2s (2)(C).

By [18, page 187, II.7.3], we write NGL2s (2)(C) = C:D, where D ∼= C2s . Then z ∈
NX(K) = NSq(K) 6 E:(C:D). Write z = ecd, where e ∈ E, c ∈ C and d ∈ D. Then
K.C2 = K〈z〉 = K〈d〉, which forces that d is an involution. Thus |C〈d〉| = 2|C|. On the
other hand, NH(C) has order 2|C|. Noting that C:D has a unique subgroup of order 2|C|,
we get C〈d〉 = NH(C). Then 〈H, z〉 6 〈H, e, c, d〉 = 〈H, d〉 = H 6= X, a contradiction.

Case 2. Suppose that (X,H) is described as in Row 13 of Table 1. Then p = q − 2
and K ∼= Sq−3. Consider the natural action of Sq+1 on Ω = {1, 2, . . . , q + 1}. Since
Sq−2

∼= H < Aq+1, either H has three orbits on Ω with length 1, 2 and q − 2, or q = 7
and H has two orbits on Ω with length 2 and 6.

Assume that q = 7 and H has two orbits on Ω, say Ω1 and Ω2 of length 6 and 2,
respectively. In this case, K acts transitively on Ω1 and fixes Ω2 setwise. It follows that
NX(K) fixes Ω2 setwise. Then 〈H, z〉 is not transitive on Ω, a contradiction.

Assume H has three orbits on Ω say, without of generality, Ω1 = {1, 2, . . . , q − 2},
Ω2 = {q−1, q} and Ω3 = {q+1}. Then Ω2 and Ω3 are K-orbits. Noting that 4 6 q−3 6= 5,
we conclude that K fixes one point in Ω1, say q− 2, and acts transitively on Ω1 \ {q− 2}.
Then NX(K) fixes Ω2 setwise. Thus 〈H, z〉 6= Sq+1, a contradiction.

We end this paper by some remarks on Theorem 1 (4).

Remark 8. Suppose that H is a regular subgroup of the alternating group An, where n
is divisible by a prime p > 5. Then all regular subgroups isomorphic to H are conjugate
in Sn, see [37, Lemma 4.6]. It is easily shown that H is core-free in Sn. Suppose further
that H contains a subgroup of index p, and there exists a 2-element z ∈ Sn satisfying
the condition (I) given in Section 3. Then we have a connected Sn-symmetric graph
Cos(Sn, H,K, z), which has valency p and vertex set [Sn : H]. Clearly, z 6∈ An, and An

has two orbits on [Sn : H], say [An : H] and [An : H]z := {Hxz | x ∈ An}. It follows that
Σ is a bipartite graph with the bipartition ([An : H], [An : H]z).

Consider the natural action of Sn on {1, 2, . . . , n}, and view Sn−1 as the stabilizer of n
in Sn. Then we have exact factorizations Sn = HSn−1 and An = HAn−1. By An = HAn−1,
we know that An−1 acts regularly on [An : H]. By Sn = HSn−1, there exist unique h ∈ H
and z0 ∈ Sn−1 such that z = hz0. Then An = Hz0An−1 and [An : H]z = [An : H]z0.
Noting that Hz = Hz0 and Hz0 is the vertex-stabilizer of Hz0 in An, it follows that An−1

is regular on [An : H]z. Therefore Cos(Sn, H,K, z) is an Sn-symmetric bi-Cayley graph
of An−1. Clearly, HzH = Hz0H, 〈H, z0〉 = Sn and Hz0 ∩H = Hz ∩H = K. In addition,
if further z2

0 ∈ K then z0 ∈ NSn(K), and so we may use z0 instead of the element z in
Cos(Sn, H,K, z).
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Let n = pm. By the above argument, it suffices to complete the following three steps
for the existence and construction of graphs meeting Theorem 1 (4).

Step 1 Determine those groups of order n which is possible as a vertex-stabilizer of some
symmetric graph of valency p;

Step 2 For a possible vertex-stabilizer H, consider the action of H on H by right mul-
tiplication, and determine whether or not H can be embedding in An as a regular
subgroup;

Step 3 Consider the subgroups K of H with |H : K| = p up to the conjugation under
NSn(H), calculate NSn(K) and search for the elements z satisfying the condition
(I) given in Section 3.

(1) If n = p then there exist graphs meeting Theorem 1 (4). Let a = (1, 2, . . . , p),
z = (1, 2) and H = 〈a〉. Then 〈a, b〉 = Sp and H ∩ Hz = 1. Thus we have a connected
Sp-symmetric graph Σ = Cos(Sp, H, 1, z) of valency p, which is a bi-Cayley graph of Ap−1.

(2) If p = 5 and H ∼= A5 then there are S60-symmetric bi-Cayley graphs of A59 of
valency 5. Note that A5 has a permutation representation (induced by right multiplication
on elements) of degree 60. This says that S60 has a regular subgroup H ∼= A5. Since H
is a nonablian simple group, no odd permutation is contained in H, forcing H < A60.
Then we have an exact factorization A60 = HT , where T = A59. Fix a subgroup K
of H with K ∼= A4. Calculation with GAP shows that there exists z ∈ S60 such that
z2 ∈ K = H ∩ Hz and 〈H, z〉 = S60. Then we get a connected S60-symmetric graph
Cos(S60, H,K, z) of valency 5, which is a bi-Cayley graph of A59.

(3) Assume that H is solvable. Then, as a vertex-stabilizer of some symmetric graph
of valency p, we have H ∼= (Cl′ × Cp) : Cl, where l′

∣∣ l ∣∣ (p− 1). If |H| = p then, by (1),
the pair (Sp, H) produces connected symmetric bi-Cayley graphs of Ap−1 with valency p.

Suppose next that |H| > p. By Lemma 3, H has no cyclic Sylow 2-subgroup unless
n is odd. In the following, we consider only the existence of graphs when p = 5 or 7.
Note that a subgroup of H with index p is a Hall p′-subgroup. Since H is solvable, all
subgroups of H with index p are conjugate in H.

Let p = 5. We have H ∼= C2×D10, (C2×C5).C4 or C4×C5:C4. Consider the action of
H on H by right multiplication, and embed in An as a regular subgroup. Fix a subgroup
K < H with |H : K| = 5. For H ∼= (C2 × C5).C4 or C4 × C5:C4, calculation with GAP
shows that |NSn(K)| = |NAn(K)|, yielding NSn(K) < An, and so there exists no element
z satisfying the condition (I) given in Section 3. Thus let H ∼= C2×D10. Calculation with
GAP shows that there exist elements z satisfying (I). Therefore, the pair (S20, H) with
H ∼= C2×D10 produces connected S20-symmetric bi-Cayley graphs of A19 with valency 5.

Let p = 7. We have H ∼= C2 × (C7:C2), C7:C3, C3 × (C7:C3), C2 × (C7:C6) or C6 ×
(C7:C6). Fix a subgroup K < H with |H : K| = 7. By a similar argument as for the
case p = 5, if H ∼= C2 × (C7:C2), C7:C3, C3 × (C7:C3) or C2 × (C7:C6), then there exist
elements z satisfying (I), and thus each pair (Sn, H) produces connected symmetric bi-
Cayley graphs of An−1 with valency 7. As for H ∼= C6 × (C7:C6), by calculation with
GAP, we know that NS252(K) is of order 113747151468625920 and not contained in A252,
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but we do not know if there are some elements z ∈ NS252(K) satisfying z2 ∈ K and
〈H, z〉 = S252.
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