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Abstract

For integers k, n with 1 6 k 6 n/2, let f(k, n) be the smallest integer t such that
every t-connected n-vertex graph has a spanning bipartite k-connected subgraph.
A conjecture of Thomassen asserts that f(k, n) is upper bounded by some function
of k. The best upper bound for f(k, n) is by Delcourt and Ferber who proved that
f(k, n) 6 1010k3 log n. Here it is proved that f(k, n) 6 22k2 log n. For larger k,
stronger bounds hold. In the linear regime, it is proved that for any 0 < c < 1

2 and

all sufficiently large n, if k = bcnc, then f(k, n) 6 30
√
cn 6 30

√
n(k + 1). In the

polynomial regime, it is proved that for any 1
3 6 α < 1 and all sufficiently large n,

if k = bnαc, then f(k, n) 6 9n(1+α)/2 6 9
√
n(k + 1).

Mathematics Subject Classifications: 05C35, 05C40

1 Introduction

All graphs and digraphs considered here are finite and simple. For k > 1, a graph G is
k-connected if it has at least k + 1 vertices, but does not contain a set of k − 1 vertices
whose removal disconnects G. Let κ(G) be the largest k such that G is k-connected.

The study of k-connectivity and κ(G) are central in graph theory with several classical
results relating properties of G to its k-connectivity or to the k-connectivity of a subgraph
of G. One such result is a theorem of Mader [8] that any graph with n vertices and at least
2kn edges has a k-connected subgraph. For large n, the constant 2 can be replaced with
19
12

as proved by Bernshteyn and Kostochka [2], improving an earlier result of the author
[13], and arriving close to Mader’s conjectured optimal value of 3

2
[9]. As any graph has a

bipartite subgraph with at least half the number of edges, it follows that any graph with
at least, say, 4kn edges contains a bipartite k-connected subgraph. But what if we require
the subgraph to be spanning? As observed by Thomassen, if G is 2k−1 edge-connected (a
graph is t edge-connected if one must remove at least t edges to disconnect it), then every
maximum edge cut (which, in turn, is a spanning bipartite subgraph) is k edge-connected.
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A longstanding conjecture of Thomassen [12] asserts that a similar statement (replacing
2k − 1 with any function of k) should hold for k-connectivity. Let us be more formal
regarding this problem, as we are addressing it for k that may depend on the number of
vertices of G.

For integers k, n with 1 6 k 6 n/2, let f(k, n) be the smallest integer t such that
every t-connected n-vertex graph has a spanning bipartite k-connected subgraph. It is
clear that f(1, n) = 1 as shown by taking any spanning tree. It is also clear that the
requirement k 6 n/2 is necessary. Indeed, κ(H) 6 n/2 for any bipartite graph H with n
vertices. Also notice that f(k, n) 6 n−1 as Kn is (n−1)-connected. It is also not difficult
to prove that f(2, n) = 3 for all n > 5 (see Section 3 for such a proof). Thomassen’s
conjecture states that f(k, n) is upper bounded by some function of k.

The presently best upper bound on f(k, n) is by Delcourt and Ferber [4] who proved
that f(k, n) 6 1010k3 log n 1. While this does not prove Thomassen’s conjecture, it does
show that the dependence on n is at most logarithmic. It should be noted that Delcourt
and Ferber explicitly state that their main focus is the dependence on n and not the
dependence on k. Nevertheless, the problem is intriguing also for large k that depends
on n. For example, is it true that if G has linear connectivity, then it has a spanning
bipartite subgraph of reasonable linear connectivity? Here we give a positive answer to
this question and significantly improve the dependence on k and the absolute constants
in all regimes.

Theorem 1.
(a) For all 1 6 k 6 n/2, f(k, n) 6 22k2 log n.
(b) For all 0 6 α < 1 and sufficiently large n, if k = bnαc, then f(k, n) 6 9n(1+α)/2 6
9
√
n(k + 1).

(c) For all 0 < c < 1
2

and sufficiently large n, if k = bcnc, then f(k, n) 6 30
√
cn 6

30
√
n(k + 1).

Note that while the constant c in Item (c) covers every possible value, it is only meaningful
if c < 1

900
since we always have f(k, n) 6 n− 1.

It should be noted that Theorem 1 does not shed more light on Thomassen’s conjecture
as the dependence on n in Case (a) is still logarithmic as in [4]. On the other hand, it
scales the dependence on k from at most quadratic to ever smaller polynomials as k grows
beyond n1/3. We also note that while we did not try to optimize the absolute constants,
they are reasonably small.

Finally, we note that problem addressed here falls under the following general paradigm
(see Perarnau and Reed [10]). Given a graph parameter ρ, a value k, and a family of graphs
F , determine the largest value of ` such that for every graph G with ρ(G) > k there exists
an F -free subgraph H of G with ρ(H) > `. In our case ρ = κ and F is the family of odd
cycles. Some interesting results following under this paradigm are [3, 5, 6, 7, 10, 11].

1Throughout this paper, log n = log2 n.
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2 Proof of Theorem 1

Our proof of Theorem 1 is an adaptation of the method of Delcourt and Ferber, but
with several changes. In particular, we rely on their lemma on subgraph connectivity
of digraphs with high minimum out-degree (Lemma 2 below), but we do not rely on
Mader’s Theorem (the one mentioned in the introduction) which makes the choices of
our maximum counter-example (which we use for contradiction) more economical, and
resulting in meaningful bounds also when k is large.

We first need the following simple and useful lemma from [4]. For a directed graph D
and a vertex v ∈ V (D), let d+D(v) denote the out-degree of v in D and let U(D) denote the
underlying graph of D which is the undirected graph obtained by ignoring the directions
of the edges (each cycle of length 2, which is possible in D, corresponds to a single edge
in U(D)).

Lemma 2 ([4]). If D is a digraph on at most n vertices and with minimum out-degree
larger than (k − 1) log n, then it contains a subdigraph D′ with κ(U(D′)) > k and where
d+D′(v) > d+D(v)− (k − 1) log n for all v ∈ V (D′).

Lemma 3. Let G1 and G2 be two vertex-disjoint bipartite k-connected subgraphs of a
graph G. If there are at least 2k − 1 pairwise vertex-disjoint edges of G each having
an endpoint in G1 and an endpoint in G2, then one can pick k of these edges such that
the union of G1 and G2, together with the k picked edges, forms a bipartite k-connected
subgraph of G.

Proof. Let (A1, A2) be a proper bipartition of V (G1) and let (A3, A4) be a proper biparti-
tion of V (G2). Let F be 2k−1 pairwise vertex-disjoint edges, each with an endpoint in G1

and an endpoint in G2. Let Fi,j be the subset of F consisting of the edges with one end-
point in Ai and the other in Aj. Note that F is the disjoint union of F1,3, F1,4, F2,3, F2,4. So
either |F1,3∪F2,4| > k or |F1,4∪F2,3| > k. In the former case, we can take F1,3∪F2,4 and the
union of G1 and G2 to form a bipartite graph with proper bipartition (A1 ∪A4, A2 ∪A3).
In the latter case, we can take F1,4 ∪ F2,3 and the union of G1 and G2 to form a bipartite
graph with proper bipartition (A1 ∪ A3, A2 ∪ A4). In any case, the obtained union is
k-connected as the removal of any k− 1 vertices keeps G1 and G2 connected and at least
one of the connecting edges is still intact so the union remains connected as well.

Lemma 4. Let G1 be a bipartite k-connected subgraph of a graph G. If there is a vertex
v of G outside G1 with at least 2k − 1 neighbors in G1, then one can pick k of these
neighbors such that the union of G1 and v, together with the k edges connecting v to the
picked neighbors, forms a bipartite k-connected subgraph of G.

Proof. Let (A1, A2) be a proper bipartition of V (G1) where, without loss of generality, v
has at least k neighbors in A1. Taking G1 together with v and the k edges connecting v to
A1 gives a bipartite graph with bipartition (A1, A2∪{v}) which is clearly k-connected.

We begin by proving Case (a) of Theorem 1. We then show how to modify the proof
to obtain the other cases.
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Proof of Theorem 1, Case (a). Recall that we must prove that f(k, n) 6 22k2 log n. We
assume k > 3 (as k = 1 is trivial and k = 2 follows form Proposition 6). Let s =
b22k2 log nc. We may assume that s 6 n − 1 since f(k, n) 6 n − 1. Let G be an s-
connected graph with n vertices. We prove that G has a bipartite spanning k-connected
subgraph.

Let d = bs/4c > k. Consider a partition of the vertex set of G into parts V1, . . . , Vt
such that each Vi is either a singleton or else |Vi| > d and G[Vi] has a bipartite spanning
subgraph Bi that is k-connected (for convenience, when Vi is a singleton, let Bi denote
the graph with a single vertex; it is “bipartite” with one part of the bipartition being
empty). Hereafter we shall consider a partition P = {V1, . . . , Vt} where t is minimum and
show that we must have t = 1, concluding the proof. So, assume that t > 1.

Suppose Vi ∈ P is not a singleton (so n > |Vi| > d). Let Mi be a maximum matching of
the edge cut (Vi, V (G)\Vi). We must have |Mi| > d as otherwise the 2|Mi| 6 2d−2 6 s−1
vertices of the endpoints of Mi, once removed from G, disconnect the remaining vertices
of Vi from the remaining vertices of V (G) \ Vi, contradicting the s-connectivity of G. Let
Si ⊆ Mi be such that for any j 6= i, there is a single edge incident with Vj, if such an
edge exists. By Lemma 3, |Si| > |Mi|/(2k − 2) > d/(2k − 2) as otherwise t would not be
minimum.

Next, suppose that Vi = {v} ∈ P is a singleton. We say that Vi is of type α if v has at
least 3d neighbors in V , where each of them is a singleton part of P . Otherwise, we say
that Vi is of type β. Now, if Vi is of type α, let Si be a set 3d edges connecting v to 3d
singleton parts of P . Suppose now that Vi is of type β. As the degree of v in G is at least
s, we have that at least s− 3d edges connect v to non-singleton parts of P . By Lemma 4
and as t is minimum, at most 2k− 2 such edges connect v to the same non-singleton part
of P . Thus, there is a set Si of edges connecting v to non-singleton parts of P such that no
two edges of Si are incident with the same part and |Si| > (s−3d)/(2k−2) > d/(2k−2).

To summarize, for each part Vi ∈ P we have chosen a set of edges Si incident to that
part and connecting it to other parts, such than no other part Vj has more than one vertex
incident with Si. If Vi is non-singleton, then Si is a matching and if Vi is a singleton, then
Si is a star. In all cases, t− 1 > |Si| > d/(2k − 2) > (s− 3)/(8k − 8) > s/8k and if Si is
a singleton of type α, then |Si| = 3d.

Independently for each i, take a random red-blue proper vertex coloring of the bipartite
graph Bi (so either one part of the bipartition of Bi is red and the other part is blue,
or vice versa). Once making these t choices, let Ti ⊆ Si be those edges whose endpoints
have different colors. Observe that the union of all B1, . . . , Bt and the edge sets T1, . . . , Tt
is a bipartite spanning subgraph of G. As |Ti| has distribution Bin(|Si|, 12) we have by
Chernoff’s inequality,

Pr

[
|Ti| <

|Si|
4

]
= Pr

[
|Ti| − E[|Ti|] < −

|Si|
4

]
< e

− 2(|Si|/4)
2

|Si| = e−
|Si|
8 6 e−

s
64k . (1)

Since t 6 n and since s > 64k lnn, we have from (1) and the union bound that with
positive probability, |Ti| > |Si|/4 for all 1 6 i 6 t. Hereafter, we shall assume that this is
indeed the case.
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We construct a directed graph D on vertex set [t] where (i, j) is an edge whenever Ti
is incident with a vertex of Vj. Notice that the out-degree of i is precisely |Ti| > |Si|/4 >
s/32k. Since s > 32k(k − 1) log n, we have that |Ti| > (k − 1) log n so by Lemma 2, D
has a subdigraph D′ on vertex set V (D′) ⊆ [t] such that U(D′) is k-connected and for
each i ∈ V (D′) we have d+D′(i) > |Ti| − (k − 1) log n. For i ∈ V (D′), let T ∗i ⊆ Ti be
the set of edges in Ti incident with some Vj where j 6= i and j ∈ V (D′). Notice that
|T ∗i | = d+D′(i) > |Ti| − (k − 1) log n.

Consider the bipartite graph B obtained by taking the union of all Bi for i ∈ V (D′)
and all edge sets T ∗i for i ∈ V (D′). First notice that |V (B)| > d. Indeed, either some
i ∈ V (D′) is such that Vi is not a singleton (so already |Vi| > d), or else for all i ∈ V (D′)
we have that |Vi| is a singleton. But in the latter case, all these singletons must be of type
α (if Vi is of type β, then any edge (i, j) in D′ is such that Vj is non-singleton). However,
recall that if Vi is of type α, then |Si| > 3d which means that |Ti| > 3d/4. So

|T ∗i | = d+D′(i) > |Ti| − (k − 1) log n >
3d

4
− s

32k
>

3d

4
− 4d+ 4

32k
>
d

2
(2)

and thus B is a bipartite graph with minimum degree at least d/2 so it has at least d
vertices.

We will prove that B is k-connected. Note that once we do that, we arrive at a
contradiction, as the number of parts of the partition obtained by replacing all the parts
of P of the form Vi with i ∈ V (D′) with the single element V (B), is smaller than t.

To prove that B is k-connected, consider some set K of k − 1 vertices of B. We
must show that B∗, the graph remaining from B after removing K, remains connected.
Suppose x ∈ Vi and y ∈ Vj (possibly i = j) are two vertices of B∗. We must show that
there is a path in B∗ connecting them. Now, if i = j, then Bi[Vi \K] is connected since Bi

is k-connected. Hence, there is a path between x and y entirely inside Bi[Vi \K]. Assume
therefore that i 6= j. Let L = {` ∈ V (D′) | V` ∩ K 6= ∅}. As U(D′) is k-connected,
removing the vertices of L from D′ keeps U(D′[V (D′)\L]) connected. It therefore suffices
to show that there is a (possibly trivial) path connecting x to some vertex of Vm where
m /∈ L and there is a (possibly trivial) path connecting y to some vertex of Vm∗ where
m∗ /∈ L. As the two claims are identical, we prove it for x. Notice that the claimed
path trivially exists if i /∈ L. If, however i ∈ L (namely, some of the vertices of K are
in Vi), then Vi cannot be a singleton (as it contains both x and a vertex of K). So, T ∗i
is matching of size at least k (since U(D′) is k-connected, its minimum degree is at least
k). Hence, at least one edge of T ∗i is not incident with K nor with V` where ` ∈ L. Such
an edge is of the form uv where u ∈ Vi \K (possibly u = x) and v ∈ Vm with m /∈ L. As
there is a path in Bi[Vi \K] between x and u, the claim follows.

Proof of Theorem 1, Case (b). Recall that we must prove that for all 0 6 α < 1 and
sufficiently large n, if k = bnαc, then f(k, n) 6 9n(1+α)/2. The proof is very similar to
Case (a). We use the same notation and outline the differences. Set s = b9n(1+α)/2c and
let k = bnαc. We set d = bs/4c > k and use a partition P = {V1, . . . , Vt} where t is
minimum, as in Case (a), aiming to prove that t = 1. Assume, to the contrary, that t > 1.
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Let t∗ denote the number of non-singleton parts (i.e. those of size at least d) and observe
that t∗ 6 n/d 6 4n/(s− 3) < n(1−α)/2/2.

Suppose Vi ∈ P is not a singleton and recall that we have defined Mi to be a maximum
matching of the edge cut (Vi, V (G) \ Vi) and that as in Case (a) we have |Mi| > d.
By Lemma 3, at most (2k − 2)t∗ edges of Mi are incident with non-singleton parts,
so after removing them from Mi we obtain a subset Si with |Si| > d − (2k − 2)t∗ >
2n(1+α)/2 − 2nαn(1−α)/2/2 > n(1+α)/2. Notice that this definition of Si is slightly different
from the one used in Case (a), as we may take advantage of the fact that there are many
singleton parts.

Consider now a singleton part Vi and recall that if Vi is of type α, then Si is the set of
edges of a star connecting Vi only to singleton parts and |Si| = 3d. We claim that there
are no singletons of type β. Suppose that Vi is of type β, i.e., at least s−3d edges connect
it to non-singleton parts. However, by Lemma 4 at most (2k − 2)t∗ edges connect it to
non-singleton parts, which is impossible since (2k − 2)t∗ < n(1+α)/2 < s− 3d.

We observe that as in (1), we have that Pr [|Ti| < |Si|/4] < e−
|Si|
8 and since |Si|/8 =

ω(lnn), we have that |Ti| > |Si|
4

holds for all 1 6 i 6 t with positive probability, so we
assume this is the case. Thus, we have that in the directed graph D, the out-degree of i
is |Ti| > |Si|/4 > n(1+α)/2/4 > (k− 1) log n. We therefore apply Lemma 2 to obtain D′ as
in Case (a). The analogue of (2), which, recall, is only applied when Vi is of type α, now
becomes

|T ∗i | = d+D′(i) > |Ti| − (k − 1) log n >
3d

4
− nα log n >

3d

4
− d

4
>
d

2

so, as in Case (a), |V (B)| > d, the new partition has fewer parts than P , and B is
k-connected, contradicting the minimality of t.

Prior to proving Case (c) of Theorem 1, we require the following variant of Lemma 2.

Lemma 5. Let 0 < c < 1
2
. For all sufficiently large n, if D is a digraph on at most n

vertices and with minimum out-degree at least 3c log(1/c)n, then it contains a subdigraph
D′ with κ(U(D′)) > cn and where d+D′(v) > d+D(v)− 2c log(1/c)n for all v ∈ V (D′).

Proof. Let γ = 3c log(1/c). If γ > 1 or if κ(U(D)) > cn, there is nothing to prove.
So, assume that γ < 1 and that κ(U(D)) < cn. Delete a separating set of size at most
cn. The smallest component, denoted by A, has fewer than n/2 vertices and for any
v ∈ V (A), every out-neighbor of v is either in V (A) or in the separating set that we
removed. Hence, d+A(v) > d+D(v)− cn. We repeatedly apply this step, and note that this
process must terminate. However, after step r = dγ/2ce, we are left with a component
which consists of fewer than n/2r vertices where each of these vertices has out-degree at
least γn− rcn. However, this is impossible since

γ − rc = γ − c
⌈ γ

2c

⌉
>
γ

2
− c > γ

6
> c3/2 = 21.5 log c = 2−

γ
2c > 2−r .

Thus, the process ends after at most r − 1 steps, finding the desired D′ and we have
d+D′(v) > d+D(v)−(r−1)cn > d+D(v)−(γ/2)n > d+D(v)−2c log(1/c)n for all v ∈ V (D′).
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Proof of Theorem 1, Case (c). Recall that we must prove that for all 0 < c < 1
2

and
sufficiently large n, if k = bcnc, then f(k, n) 6 30

√
cn. The proof is similar to Case

(b). We use the same notation and outline the differences. Let c∗ = 30
√
c and observe

that Case (c) holds vacuously when c > 1/900, hence we assume that c < 1/900. let
k = bcnc, s = bc∗nc, d = bs/4c. We now have the number of non-singleton parts is
t∗ 6 n/d 6 4n/(s− 3) < 5/c∗.

If Vi ∈ P is not a singleton we have, as in Case (b), that

|Si| > d− (2k − 2)t∗ > n(c∗/5− 10c/c∗) > n
(
6
√
c−
√
c/3
)
> 5
√
cn .

Consider now a singleton part Vi and recall that if Vi is of type α, then Si is a star
connecting Vi only to singleton parts and |Si| = 3d. We again claim that there are no
singletons of type β. Suppose that Vi is of type β, i.e., at least s− 3d edges connect it to
non-singleton parts. However, by Lemma 4 at most (2k − 2)t∗ edges connect it to non-
singleton parts, which is impossible since (2k − 2)t∗ < n(10c/c∗) < n(c∗/5) < d 6 s− 3d.

As in Case (b), since |Si|/8 = ω(lnn), we may assume that |Ti| > |Si|
4

holds for all
1 6 i 6 t. Thus, we have that in the directed graph D, the out-degree of i is

|Ti| >
|Si|
4

>
5

4

√
cn > 3c log(1/c)n

where in the last inequality we have used that c < 1/900. We therefore apply Lemma
5 to obtain D′ with with κ(U(D′)) > cn and where d+D′(i) > |Ti| − 2c log(1/c)n for all
i ∈ V (D′). The analogue of (2), which, recall, is only applied when Vi is of type α, now
becomes

|T ∗i | = d+D′(i) > |Ti| − 2c log(1/c)n >
3d

4
− n
√
c >

3d

4
− nc∗/30 >

3d

4
− d

4
>
d

2

so, as in Case (a), |V (B)| > d, the new partition has fewer parts than P , and B is
k-connected, contradicting the minimality of t.

3 Concluding remarks

As mentioned in the introduction, it is not difficult to prove that f(2, n) = 3 for all n > 5
(f(2, 4) = 2) but as we have not found a proof in the literature, we present one.

Proposition 6. f(2, n) = 3 for all n > 5.

Proof. The lower bound follows by considering a cycle of length n when n > 5 is odd,
and a cycle of length n− 1 with an additional vertex connected to two non-adjacent cycle
vertices when n > 6 is even. These graphs are 2-connected and have no 2-connected
spanning bipartite subgraphs.

For the upper bound, suppose G has n vertices and is 3-connected. Let G∗ be a
subgraph of maximum order that is 2-connected and bipartite. Notice thatG∗ is nonempty
since a 3-connected graph has an even cycle. We claim that |V (G∗)| = n. Assuming the
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contrary, let A and B denote the two parts of the bipartition of G∗ and let G′ be the
subgraph of G induced by the vertices not in G∗. Note that it is possible that G′ is not
connected (nor bipartite), so let X be the set of vertices of some connected component
of G′ and let T be a spanning tree of G[X]. Let C and D denote the two parts of the
bipartition of T .

Any vertex x ∈ X cannot have two neighbors in A as otherwise we can add to G∗

the vertex x and two edges connecting it to A, forming a larger 2-connected bipartite
subgraph. Similarly, we cannot have two neighbors of x in B. Thus, every x ∈ X has
at most one neighbor in A and at most one neighbor in B. In particular, X is not a
singleton, as otherwise there is a vertex of degree 2 (namely x) in G which is impossible
as G is 3-connected.

Suppose that x has a neighbor a ∈ A and a neighbor b ∈ B. We claim that (i) for
any y ∈ X with y 6= x such that both x and y are in the same part of the bipartition
of T (either both in C or both in D), y cannot have any neighbor in (A ∪ B) \ {a, b}.
Indeed suppose y has such a neighbor, say a′ ∈ A. Then we can add to G∗ the unique
(even length) path of T connecting x and y, together with the edges xa and ya′, forming
a larger 2-connected bipartite subgraph. Similarly, we claim that (ii) for any y ∈ X such
that x and y are in opposite parts (one in C and one in D), y cannot have any neighbor
in (A ∪ B) \ {a, b}. Indeed suppose y has such a neighbor, say b′ ∈ B. Then we can add
to G∗ the unique (odd length) path of T connecting x and y, together with the edges xa
and yb′, forming a larger 2-connected bipartite subgraph.

We also claim (iii) that we cannot have a matching of size three between X and G∗

(this is similar to the proof of Lemma 3). To see this, suppose that xivi for i = 1, 2, 3 form
a matching of size three between X and G∗ where v1, v2, v3 ∈ V (G∗) and x1, x2, x3 ∈ X.
If v1, v2, v3 are in the same part of G∗ (either all in A or all in B), then w.l.o.g. x1 and x2
are in the same part of T , so there is a path of even length in T connecting x1 and x2, and
we may add that path and the edges x1v1, x2v2 to G∗ and obtain a larger 2-connected
bipartite graph. Otherwise, assume v1, v2 are in the same part of G∗ and v3 is in the
other part of G∗. If x1 and x2 are in the same part of T , then the same argument follows.
Otherwise, x1 and x2 are in different parts of T . W.l.o.g. x3 and x2 are in distinct parts
of T and recall that v2 and v3 are in distinct parts of G∗. Then we can add the odd
length path of T between x2 and x3 and the edges v2x2, v3x3 to G∗ and obtain a larger
2-connected bipartite graph.

Having shown (i)-(iii), we claim that we can disconnect G by removing two vertices,
which is a contradiction. Take a maximum matching M between X and A ∪ B. If M
consists of one edge, we can disconnect G by removing the endpoints of that single edge.
Hence, by (iii), it consists of precisely two edges, say M = {xv1, yv2} where x, y ∈ X. If
v1 is the only neighbor of X in A ∪ B and v2 is the only neighbor of y in A ∪ B, then
we can remove v1, v2 from G thereby separating X from the rest of the graph (recall that
M is a maximum matching). Otherwise, w.l.o.g., x has two neighbors in A ∪ B, one of
which is v1 and the other denoted by v3 (possibly v3 = v2). If y also has two neighbors in
A ∪ B, then by (i) and (ii) it must be that these neighbors are also v1 and v2 = v3. We
can then remove v1, v2 from G and disconnect X. Otherwise, v2 is the only neighbor of y
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in A∪B. Now, if v2 = v3 we can delete v1 and v2 from G thereby separating X from the
rest of the graph. Otherwise, we can delete x and v2 thereby separating y from the rest
of the graph.

Recall that if G is 2k − 1 edge-connected, then every maximum edge cut is k edge-
connected. It is easy to generalize this observation and show that if the edge connectivity
of G is larger than r(k − 1)/(r− 1), then G has a spanning r-chromatic subgraph that is
k edge-connected. Indeed, any maximum r-cut validates this fact. Stated otherwise, by
allowing more colors for the spanning subgraph, we can keep the edge-connectivity close
to its original value. The following proposition shows that the same holds for the case of
k-connectivity in the linear regime.

Proposition 7. Let 0 < c < c′ < 1. There is a constant r = r(c, c′) such that for all
n sufficiently large, if G has n vertices and is bc′nc-connected, then G has an r-colorable
spanning subgraph that is bcnc-connected.

Proof. Throughout the proof we assume that cn and c′n are integers as this does not affect
the correctness of the proposition. Let t = c′n and let G be a t-connected graph on n
vertices. Let r = r(c, c′) > 3 be a constant whose existence is shown later. Consider an r-
coloring of V (G) where each vertex independently chooses its color uniformly at random.
Let G′ be the r-colorable spanning subgraph of G consisting of all edges whose endpoints
receive distinct colors. We will prove that with positive probability, G′ is cn-connected.

By Menger’s Theorem, for any two distinct vertices a, b ∈ V (G), there is a set Pa,b of
t − 1 paths connecting a and b, each of length at least two, such that any two paths in
Pa,b are internally vertex-disjoint. We say that a path P ∈ Pa,b survives if P is present
in G′. It suffices to prove that the probability that fewer than cn paths of Pa,b survive
is less than 1/n2 as then, by the union bound and Menger’s theorem, G′ is cn-connected
with positive probability.

Fix two vertices a and b and fix a coloring of these two vertices (it is possible for a and
b to have the same color). Consider some path P ∈ Pa,b and let ` = |E(P )|−1 denote the
number of its internal vertices. The number of possible colorings of these internal vertices
is r` and at least (r − 1)`−1(r − 2) > (r − 2)` of these colorings yield a surviving path.
Hence, the probability that P survives is at least (1− 2/r)`. If XP denotes the indicator
variable for survival and X =

∑
P∈Pa,b XP is the number of surviving paths,

E[X] =
∑
P∈Pa,b

E[XP ] >
∑
P∈Pa,b

(
1− 2

r

)|E(P )|−1

.

The total number of internal vertices in all paths of P ∈ Pa,b is at most n − 2, so the
average number of internal vertices is at most (n− 2)/(t− 1). By the last inequality and
the AM-GM inequality we have

E[X] > (t− 1)

(
1− 2

r

)(n−2)/(t−1)

.
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Let c∗ = (c+ c′)/2. Recalling that t = c′n we have from the last inequality, that for all r
sufficiently large as a function of c′ and c∗,

E[X] > c∗n .

Notice, however, that X is the sum of t− 1 independent indicator variables, as the paths
are internally vertex-disjoint. Hence, by Chernoff’s inequality (in particular, Corollary
A.1.7 of [1])

Pr[X − E[X] < (c− c∗)n] < e−2(c
∗−c)2n2/t <

1

n2

implying that Pr[X < cn] < 1/n2. As the last statement holds for any choice of the
colors of a and b, we have that the probability that the number of surviving paths in Pa,b
(regardless of the colors of a and b) is smaller than cn is less than 1/n2.
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