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Abstract

Let G be a multipartite graph with partition Vi, Va,...,Vj of V(G). Let d;;
denote the edge density of the pair (V;,V;). An independent transversal is an in-
dependent set of G with exactly one vertex in each V;. In this paper, we prove
an asymptotically sharp upper bound on the maximum number of independent
transversals given the d; ;’s.

Mathematics Subject Classifications: 05C35, 05C69

1 Introduction

Let G be a multipartite graph with vertex partition Vi, V5, ..., Vi. Jacob Fox asked the
following question: given the edge density between every two vertex parts, what is the
asymptotically maximum number of independent transversals in G as |V;| goes to infinity
for each 7 An independent transversal is an independent set of G with exactly one
vertex in each V;. More precisely, for each ¢ # j, let constant d;; be the edge density
between V;,V;, defined as e(V;,V;)/|Vi||V;|. Independent transversals arise naturally in
extremal combinatorics and bounding its number appears, for example, in inducibility
type problems [2, 3]. The previous known bound to this question is the following result
of Fox, Huang, and Lee, which is an ingredient in [3] to prove a bound on the number of
induced copies of a given subgraph in another graph.

Theorem 1 (Lemma 4.1 [3]). Let k > 2 be an integer. For each integer pair 1 < i < j <
k, let d; ; = d;; be constants in [0,1]. Let G be a multipartite graph with vertex partition
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Vi, Va, ..., Vi such that for each pair 1 < i < j < k, the edge density between V;, V; is d; ;.
Let |V;| = n;.
Then the number of independent transversals in G is at most

(L) (11

However, this bound is not sharp in general, or even not asymptotically sharp. This
means that there are choices of constants d;;’s such that the number of independent

transversals divided by []F_, |V;| is strictly less than [Nicicjcr(1—di )Lk/2J/( ) as 1, Vil
goes to infinity. In this paper, we prove an asymptotically sharp bound, previously asked
by Jacob Fox [1]. Before stating our main theorem, we need the following definition.

Definition 2. An odd cycle decomposition H of the complete graph on k vertices K} is a
collection of disjoint multigraphs F1, Iy, ..., Fy satisfying J,., V(F;) = V(K}) such that
for all i € [¢], F; is an odd cycle, a double edge, or an isolated vertex. A double edge is
obtained by adding an additional edge between the ends of an isolated edge.

Note that our definition of odd cycle decomposition may be different from other uses
in the literature. See Figure 1 for an example. As a matter of notation, we denote an

edge between vertices v;, v; by 4.

Figure 1: An odd cycle decomposition of Kg.

Our main result is the following:

Theorem 3. Let k > 2 be an integer. For each integer pair 1 <1 < j < k, let d;j = dj;
be constants in |0, 1]. Let G be a multipartite graph with vertex partition Vi, Vg, e Vk
such that for each pair 1 < i < j < k, the edge density between V;, V; is d; ;. Let |V;| =n
Then the number of independent transversals in G is at most

min H H \/7] ana

HeH
FeH ijeE(F)
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where H 1is the set of all odd cycle decompositions of K. Furthermore, this bound is
asymptotically sharp.

By asymptotically sharp we mean that the bound is sharp up to a o(n; - - - ng)-term,
which refers to a function f(ni,...,ng) with the property that
My, ny,.ngsoo £ (115 -, 1) /(01 - - - i) = 0. In particular, given densities d; ; for ¢ # j €
[k], we can construct a k-partite graph G that attains the bound in Theorem 3 up to a
o(ny -+ ng)-term.

Observe that Theorem 3 implies Theorem 1 as follows: Let G be a multipartite graph
as in the hypotheses of the two theorems. Let {a;b; tLi/12J with aq, by € [k] be a set of |k/2]
edges corresponding to a matching on K. This corresponds to an odd cycle decomposition
of K} where each subgraph F; is a double edge between a; and b;. Since each edge 15 € ([g])
isin |k/2]/ (g) fraction of all possible matchings as above, the bound in Theorem 1 is equal
to the geometric mean over all products tti/fj (1 —da,p,) Hle n; given by all matchings.
This geometric mean is at least the minimum over all possible products, which is at least
the bound in Theorem 3 on the maximum number of independent transversals in G.

2 Proof of Theorem 3

The proof of Theorem 3 comprises of two parts. In Section 2.1, we show that the result
is an upper bound. In Section 2.2, we show that the result is asymptotically sharp.

2.1 Proof of Upper Bound

The following lemma is a special case of Theorem 3 (except that we consider transversal
cliques instead of independent transversals). We use this case in the proof of Lemma 11,
which is key to proving Theorem 3.

Lemma 4. For each integer pair 1 < i < j < 3, let d; j = d;; be constants in [0,1]. Let G
be a tripartite graph with vertex partition Vi, Vo, Vi such that for each pair 1 <1< 7 < 3,
the edge density between V;,V; is d; ;. Let |V;| = n,;. Suppose di o < di 3 < do3. Then the
number of transversal cliques in G is at most

min <d1,27 vV d1,2d1,3d2,3> n1N2N3. (1)

Proof. First suppose dyo < +/di2di3d2s. Then we must prove that the number of
transversal cliques in G is at most dj2ningns. However, there are at most djaning
choices for an edge between V; and V5, so clearly the number of transversal cliques is
upper-bounded by d; aninang. Thus we may assume dy o > +/dy2d; 3da 3. In particular,
this implies dy2,dy3,das > 0. Let Vi = {vy,v9,...,v,,}. For each i € [ny], we define
A ={veVy|vve EG)}and B, = {v e Vs | vve EG)}. Let |Ai]l = ana,
and |B;| = bins for some a;,b; € [0,1]. The number of transversal cliques in G is
Zie[nﬂ e(A;, B;). Since 0 < e(A;, B;) < ngnszmin(dy s, a;b;), the number of transversal

cliques in G is at most ngnz > min(ds 3, a;b;). Note that we have the constraints

i€[n1]
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D iciny [Ail = dignans and 37, [Bi| = digning. It suffices to solve the following prob-
lem:

Max Z min(&ibi,dzg) (2)
i€[n1]
subject to Z a; < diony, Z b; < disny, where 0 < a;,b; < 1. (3)
1€[n1] 1€[n1]

Here we still have the assumption that d; o < d; 3.

Let O be the set of all optimal solutions to our problem. The set O is nonempty
because the objective function (2) is continuous on the compact set defined by the con-
straints (3). We prove a series of claims, using local adjustments, to show that there
must be optimal solutions in O that satisfy certain nice conditions. We then use these
conditions to get the desired upper bound on the number of transversal cliques in G.

Claim 5. There is a nonempty subset Oy of O such that for each
O = {Cll, R ,am,bl, R 7bn1} € 01, we have aibi < d273 fOT all 1.

Proof. Suppose that there is O € O where for some i € [n;], a;b; > da3. Then we can
decrease a;, b; to a;, b; such that a/b; = ds3. This new set of variables still satisfies the
constraints (3) while the objective function (2) has the same value. O

Claim 6. Let O ={ay,...,apn,,b1,...,b,,} € O1. Then Zie[m] a; < Zie[m] b;.

Proof. Assume, to the contrary, that >, 1a; > >, 0. This implies 3, b <
disny. To obtain a contradiction, we have the following two cases (note that Claim 5
implies a;b; < dy 3 for all 7).

First assume that there exists an ¢ € [n;] such that a;b; < do3 and a; > b;. Then we
can choose € > 0 such that ¢ < min(d; 3n; — Zie[nl] b;,1 —b;). By increasing b; by e, we
satisfy the constraints (3) and strictly increase the objective function (2), contradicting
the optimality of O. This implies that for all ¢ € [ny] with a;b; < do 3 we have a; < b;.

Now assume that there exists ¢ € [ny] such that a;b; = do3 and a; > b;. We prove
that there exists j € [ny] with a;b; < do3. To this end, assume for contradiction that
for all j € [ny], we have a;b; = dy3. Then dy3n, = Zje[m} a;b;. Since a; > b;, we have
a;(1 —b;) > 0, and so 3 ., 1a; — ajbj = > icp,a;(1 —b;) > 0. Thus >°,.,a; >
> icm] a;bj, which implies d; » > dy 3, a contradiction. Therefore we can fix j € [n;] with
a;b; < da3. By the preceding paragraph, we must have a; < 1. Choose € > 0 such that
9 < min(ai—bz-, l—aj, d173n1—zie[n1] bz) Then (az—s)(bz—i—s) Z aib,- and (Clj +€)bj > Cljbj.
Hence, we can increase the objective function while satisfying the constraints, once again
contradicting the optimality of O. Thus for all ¢ € [n] such that a;b; = da3, we have

The two cases imply Zié[nﬂ a; < Eie[nl] b;, contradicting our initial assumption. [

Claim 7. Let O = {a1,...,an,,b1,....by } € O1. For all i € [ny] with a;b; < da3, we
have a; < b;.
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Proof. Assume for contradiction that there exists ¢ € [n;] with a;b; < do3 but a; > b;.
Then by Claim 6, there must exist j € [n;] with a; < b;. Notice that if ¢ € (0, min(a; —
bi,bj — a;)), then (a; —e)(b; +¢) — a;b; = e(a; — b;) —e* > 0 and (a; +¢)(b; —¢) — a;b; =
e(b; —aj) — e2 > 0. Since a;b; < dy 3, we can choose such an ¢ to obtain a solution to the
objective function whose value is greater than that of O as long as the constraints are still
satisfied. Thus, by choosing ¢ € (0, min(a; — b;, b; — aj, 1 — b;, a;,b;,1 — a;)), we increase
the objective function while satisfying the constraints. This contradicts the optimality
of O. m

Let Oy be the set of O in O; where > a; + > b; is minimized.

Claim 8. Let O = {ay,...,an,,b1,...,by,} € Og. For alli,j € [n1] with a;b; = a;b; =
dy 3, we have a; = a; and b; = b;.

Proof. Assume for contradiction that there exists i,7 € [nq] with a;b; = a;b; = da3
but a; # a;. By symmetry, say a; > a;. Then b; < b;. Choose sufficiently small
g, > 0and let a; = a; —¢,a; = a; +&,b; = b; + &b, = b; —&'. Now a;b + ajb); =
(a; —e)(b; +€') + (a; +€)(bj — €') = 2dos + €'(a; — aj) + e(bj — b;) — 2ee’ > 2dy3
when ¢,¢" are sufficiently small. Observe a;b; — ajb; = €'(a; + a;) — e(b; + b;). Thus if
g'/e = (bi +b;)/(a; + a;) with €, &’ sufficiently small, then we must have a;b; = a’;b}; > d 3.
Therefore we can decrease the values of a;, a} so that ajb; = ajb; = dy 3, and in this way
the objective function value does not change although > a;+ > b; strictly decreases. This
contradicts the definition of O,. O

For each O = {al,. .. ,am,bl,. .. 7bn1} S 02, define CO = {Z c [nl] | 0 < a;b; < dg’g}
and Do = {i € [n1] | a;b; = da3}. We prove the following two claims involving Co.

Claim 9. Let O = {ay,...,an,,b1,...,by, } € Oy. Either the objective function is at most
/1 2d;1 3d2 311 (and so the desired upper bound (1) holds), or for all i € Co, we have
b; < 1.

Proof. Suppose that there exists i € Cp with b; = 1. Then we must prove that the
objective function is at most y/d; 2d; 3d23n;. Since b; = 1, the definition of Cp implies
a; < 1. Assume for contradiction that there exists j with a;b; > 0 and b; < 1. Then we can
decrease a; and increase a; by some sufficiently small e > 0 to contradict the optimality
of O. Thus for all j with a;b; > 0, we must have b; = 1. Since Zie[nﬂ b, < disn
(recall constraints (3)), the number of j such that a;b; > 0 is at most dysn;. The
objective function is Zje[nﬂ min(a;b;,ds3) = Zje[m]’ajbpo min(a;b;,ds3) < dysnidas.

By our assumption that dl’g > \/d172d173d273, we have d173d2’3 < \/d172d173d273, and so
Zje[m] min(a;b;, ds3) < \/di2dy 3da 301, as desired. O

Claim 10. Let O ={ay,...,ap,,b1,...,bp, } € Os. Then |Co| < 1.

Proof. Assume for contradiction that |Cp| > 2. Without loss of generality, assume indices
1,2 € Cp. By definition of Cp and Claim 7, we have 0 < a1, as < 1. We have three cases.
If by < by, then we can decrease a; and increase as by some ¢ € (0, min(a;, 1 — as)] to

ot
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increase the objective function, thereby contradicting the optimality of O. Similarly, if
by > by, then we can decrease ay and increase a; by some ¢ € (0,min(as, 1 — ay)] to
contradict the optimality of O. If b; = by, then we can assume 0 < b; = by < 1 by Claim 9
and the definition of C'n. Now, without loss of generality, suppose a; < as. In this case, we
can decrease aq, by and increase ag, by by the same amount € € (0, min(ay, 1 —ag, by, 1 —by)]
to contradict the optimality of O. [

To finish the proof, fix O = {ay,...,apn,,b1,...,by,} € Oy. Claim 8 implies that for
each i,7 € Do, we have a; = ay = a and b; = by = b for some a,b € (0, 1] with ab = da3.
The objective function is

Z min(aib,-, d273) = Z min(aibi, d2’3> = d2,3|Do| + Z ajbj.

i€[n1] 1ieCoUDo 7j€Co

By the constraints, the quantity |Do| satisfies |Dola + >
Z]eco b; < dy 3n,. Using this, we can write

|Dol| < \/(dl,in — Z )(dy3n1 — Z b;)/ds3.

Jj€Co jeCo

< d172’l’L1 and |Do|b +

j€Co a]

If |Co| = 0, then |Do| < niy/diadis/das. This implies that the objective function
is at most nj\/dj2d;3ds3, and so the number of transversal cliques in G is at most
N1N2N3/ d1,2d1,3d2,3-

By Claim 10, the only other case that we need to consider is |Cpo| = 1. Let j € Cp.
In this case, we can bound |Do| by

|Dol| < \/(d1,2n1 —a;)(dizny —b;)/da 3
= \/1/d2,3\/d172d173n% — (dl,gbj + d173aj)n1 + ijbj

< \/1/61273 ¢d172d173n% -2 dlvgdljgajbjnl + ajbj

—\/1/d23<\/d12d13n1 ]b)a

where the second inequality follows from the AM-GM inequality (z +y > 2\/_ for any
x,y = 0). In the last step above, note that \/d1,2d173n1 — \/ajbj > 0 because a; < di2n4
and b; < d; 3ny by the constraints. Using the fact that 0 < a;b; < ds 3, we can bound the
objective function by

d273 |Do| + (ljbj < niy/ d1’2d173d2’3 — 1/ ajbde’?, + Cljbj
< nyy/dyady3ds 3.

This implies that the number of transversal cliques in G is at most nynonsy/dy 2d; 3ds 3,
completing the proof. O
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We use Lemma 4 in the below proof of Lemma 11, which is key to the proof of the
upper bound in Theorem 3.

Lemma 11. Let k > 3 be an integer. For each integer pair 1 < i < j < k, let d;i; = dj;
be constants in [0,1]. Let G be a multipartite graph with vertex partition Vi, Vs, ... Vi
such that for each pair 1 < i < j < k, the edge density between V;, V; is d; ;. Let |V;| = n,.
Then the number of transversal cliques in G is at most

() (1)

where the index 1 + 1 is modulo k.

Proof. We show by induction on k that the statement holds for all £ > 3. By Lemma 4,
the statement holds for £ = 3. Assume that the statement holds for £ — 1 > 3. Let
N(v) = {u: w € E(G)}. Forv; € Vi, let A1, = N(v;) NVa and A}, = N(v;) N Vi
Let |Al,| = afyne and |A,| = @} n,. We bound the number of transversal cliques in

G containing v; (i.e., the number of transversal cliques in G[A] 5, Vs, ..., Vi1, A} ,]), and
then sum this quantity over all v; € V; to get the bound in the lemma.
If ai, = 0 or aj, = 0, then there are zero transversal cliques in G containing

v;, so we need only consider ¢ with aZi’Q,&ﬁ’k > 0. Observe that the edge density be-
tween Af 5, Vs is at most min(dys/af 5, 1), the edge density between Af,, Vi is at most
min(dg_14/a5 ;, 1), and the edge density between Aj,, Af, is at most 1. Then applying
the inductive hypothesis to G[Aig, Ve, oo Vi, Aik], the number of transversal cliques
in G[A{,, V3, ..., Veoy, A ;] is at most

a’izngng s nk,la’i,knk\/min(dlg/aig, 1)d374 e dk72,k71 min(dk,l,k/ail’k, 1)

To bound the number of transversal cliques in GG, we sum the above quantity over all
v; € V1. This amounts to bounding

>~ ah g0t g/ min(das/al o, 1) min(di- 1/l 5, 1)

v; €V

subject to Y oy, @}y =digny and Y i, @i, = digni. In turn, this amounts to bound-
ing

Vdazdg_1 E \/aﬁzalug

v; EVY
subject to Y oy, @iy, = digng and Y i aj, = digni. Applying the Cauchy-Schwarz
inequality, we have
Ay 207 i < o ay g
v; €V v; €V v;EVY

= N1/ dl,zdl,k-
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Hence, the number of transversal cliques in G is at most

ning - - 'nk\/d1,2d2,3 s qu,kdk,l,
as desired. O

We now use Lemma 11 to prove the below proposition, which is the upper bound in
Theorem 3. Although we may minimize over all (not necessarily odd) cycle decompositions
in the below bound, it turns out that it suffices to minimize over just the odd ones to get
that the bound is asymptotically sharp (see Section 2.2).

Proposition 12. Let k > 2 be an integer. For each integer pair 1 < i < 7 < k,
let d;; = d;; be constants in [0,1]. Let G be a multipartite graph with vertex partition
Vi, Va, ..., Vi such that for each pair 1 <1i < j < k, the edge density between V;, V; is d; ;.
Let |V;| = n;. Then the number of independent transversals in G is at most

k

min H H m Hni,

HeH ;
FeH ijeE(F) i=1
where H s the set of all odd cycle decompositions of K.

Proof. Since the number of independent transversals in G is equal to the number of
transversal cliques in G, we obtain an upper bound for the latter. Note that each edge den-
sity d; ; in G corresponds to the edge density 1 —d; ; in G. Let H = {F\,F5,....,F;} ¢ H.
By definition of odd cycle decomposition (Definition 2), the sets V' (F1), V(Fy),...,V(F)
partition V(Kj). For each ¢ € [l], let S; = {V; : v; € V(F;)}. Observe that Si,..., 5
correspond bijectively to V(Fy),...,V(F)) and partitions Vi, Vs, ..., Vi. We now obtain
a bound for each possible G [S;], that is, each possible subgraph of G induced by S;. If
Sy ={Vi,...,Viu} corresponds to an odd cycle, then the number of transversal cliques in
G [S,] is at most ny - - - 1y HUGE(FT) \/1—d;; by Lemma 11. If S, = {Vj, V4} corresponds
to a double edge, then the number of transversal cliques in G[S,] is niny(1 — di2) =
nine [Ljepr) V1 — diy- 1S, = {Vi} corresponds to an isolated vertex, then the num-

ber of transversal cliques in G[S,] is trivially n;. Putting the three cases together, the

number of transversal cliques in G is at most nq - - - ny H H /1 —d; ;. Minimizing
FeH ijeE(F)
this over H, we obtain the desired upper bound. O

The following section is dedicated to showing that the above upper bound is asymp-
totically sharp.
2.2 Proof of Asymptotic Sharpness

Assume the hypotheses of Theorem 3. To show that the upper bound in Theorem 3 is
asymptotically sharp, we use linear programming and duality to prove the existence of a
k-partite graph G that attains the bound up to a o(n; - - - ng)-term. Since the number of

THE ELECTRONIC JOURNAL OF COMBINATORICS 31(1) (2024), #P1.68 8



independent transversals in G equals the number of transversal cliques in G, it suffices to
consider the latter. Note that each edge density d; ; in G corresponds to the edge density
1 —d,;; in G. Consider the following construction of G' which satisfies our constraints:

For each 1 < i <k, let S; CV; with |S;| = |a;n;|, where
aa; <1—d;; (forall 1 <i<j<k), and a; € (0,1] (for all 7).
Suppose that each pair S;, S; (i # j) forms a complete bipartite graph.

In this construction, the number of transversal cliques is at least Hle |a;n;|. We will show
that some construction described above is close to the maximum number of transversal
cliques. This motivates the following optimization problem:

k
P: Max Hami

i=1
subject to a;a; <1 —d;; (for all 1 <i < j<k), a; € (0,1] (for all 7).

If we have an optimal solution (ay,...,az), then []_,|am;] is a lower bound on the
number of transversal cliques in the above construction in G. Observe Hle lain;| =

<Hf:1 ami) +o(ny - - -ny). Thus the construction will attain the bound in Theorem 3 up

to a o(ny - - - ng)-term if we can prove that Hle a;n; is given by a product over some odd
cycle decomposition of K}, (see Equation (4) for more specificity).

In problem P, note that a; > 0 for all ¢ implies d; ; < 1 for all ¢, j (if d; ; = 1 is allowed,
then the number of transversal cliques in G is zero). Applying the natural log to P, we
get an equivalent linear programming problem:

k k
LP1: Max Zln(ni) + Zln(ai)
i=1 i=1
subject to In(a;) + In(a;) < In(1 —d;;), In(a;) < 0.
Ignoring the constant 3% In(n;) and setting b; = —In(a,), p;; = —In(1 — d; ), we can

rewrite LP1 as an equivalent problem more convenient to work with:

k
LP2: Min ) b
i=1
subject to b; +b; = p; ;, by = 0.

The dual of LP2 is

LP2-dual: Max Z Di j i 5

1<i<j<k

subject to Zx” < 1 for each fixed i (1 <i < k), x;; > 0.
i#£j
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Introducing the slack variable y;, LP2-dual becomes

LP2-dual: Max Y piji;

1<i<j<k

subject to y; + Zx” =1 for each fixed i (1 < i< k),x;; >0,y, > 0.
1#]

We need the following results from linear programming. The first is known as the
duality of linear programming.

Theorem 13 (Duality of Linear Programming [4]). For the linear programs
mazimize ¢’ x subject to Az < b and © > 0 (P)

and
minimize b’y subject to ATy > ¢ and y> 0 (D),

the following holds: If both (P) and (D) have a feasible solution, then both have an optimal
solution, and if ' is an optimal solution of (P) and y* is an optimal solution of (D), then

T = by
That is, the mazimum of (P) equals the minimum of (D).
We also need a corollary to the above duality theorem called complementary slackness.

*

Theorem 14 (Complementary Slackness [4]). Let " = (23, 25,...,2%) be a feasible so-
lution of the linear program

mazimize ¢’ x subject to Az < b and x> 0 (P),
and let y* = (y5,y5, ...,y be a feasible solution of the dual linear program
minimize b’y subject to ATy > c and y> 0 (D).
Then the following two statements are equivalent:
1. x* is optimal for (P) and y* is optimal for (D).

2. Foralli € [m], =" satisfies the ith constraint of (P) with equality oryf = 0; similarly,
for all j € [n], y* satisfies the jth constraint of (D) with equality or x% = 0.

Since LP2-dual’ and LP2 are both feasible, both have an optimal solution by Theo-
rem 13. We will show that there is an optimal solution to LP2-dual’ which is given by
an odd cycle decomposition of K. Then Theorem 14 will show that optimal solutions to
LP2 are given by that odd cycle decomposition of K}, which will imply that Hle a;n; is
given by a product over that odd cycle decomposition of K}, as desired.

More specifically, we define the graph @) on k vertices z1, ...,z as follows (recall that
LP2-dual’ has variables w; ;):
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1. there exists an edge z;z; € @ if and only if z; ; > 0,

2. there exists a self-loop on vertex x; if and only if y; > 0.

Thus @ can be used to represent elements of the feasible set of LP2-dual’ (non-edges and
non-self-loops correspond to variables being 0). Consider the set of Q’s that represent
optimal solutions to LP2-dual’ (this set is nonempty by Theorem 13). From this set, con-
sider the (’s with the minimum number of non-loop edges, and then among which choose
the ones with the minimum number of self-loops. Call the resulting set Q. Asymptotic
sharpness of the bound in Theorem 3 is proved in the following proposition.

Proposition 15. Let k > 2 be an integer. For each integer pair 1 < 1t < 7 < k, let
d;; = d;; be constants in [0,1]. For any sufficiently large integers ny, ..., ny, there exists
a multipartite graph G with vertex partition Vi, ..., Vi where |V;| = n; for each i € [k]
such that the number of independent transversals in G is at least

FEH ijeE(F)

where H is the set of all odd cycle decompositions of Ky, and the edge density between
Vi, Vi is d; j for each pair 1 <@ < j < k. Hence, the bound in Theorem 3 is asymptotically
sharp.

Proof. Recall that we must prove that Hle a;n; is given by a product over some odd
cycle decomposition of K. We show that Claim 16 below gives the required odd cycle
decomposition. We then prove Claim 16 to complete the proof of the proposition.

Claim 16. For each QQ € Q, define a graph Q' constructed by adding an additional edge
between the ends of isolated edges in Q) and removing self-loops from isolated vertices in
Q. Then there is a Q' constructed from some Q € Q which is an odd cycle decomposition

Oka

Suppose that Claim 16 holds. Fix such a @ and @’. Recall that @) represents an
optimal solution to LP2-dual’. We are done if we can prove

k

Hami:nl-nnk H H \/1_di,j~ (4)

i=1 FeQ' ijeE(F)

Let (b1, ..., bx) be an optimal solution to LP2. Then Theorem 14 (Complementary Slack-
ness) and the construction of () imply that each edge z;x; in () corresponds to an equality
in LP2’s constraints, that is, b; + b; = p; ;. Similarly, each isolated vertex z; of @) cor-
responds to b; = 0. Converting (by,...,b;) back to an optimal solution (as,...,ax) of
P, we get that for each edge z;x; in @), we have an equality in P’s constraints, that is,
a;a; = 1 —d;;; similarly, for each isolated vertex x; of (), we have the equation a;, = 1.
Thus, since @' is an odd cycle decomposition of K}, the objective function of P, [] a;n;,
has the above form, as desired.
To prove Claim 16, we first need a series of claims.
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Claim 17. For any Q € Q, there is at most one vertex with a self-loop in Q).

Proof. Assume for contradiction that there exists () € Q with at least two vertices with
a self-loop. Then by the construction of (), there exist ¢ < j with y; > 0 and y; > 0.
To contradict the optimality of @, set ¢ = min(y;,y;). Let y; = y; — ¢, y; = y; — ¢,
x;; = r;; + ¢, and all other primed variables have the same value as the correspond-
ing non-primed variable. Then the objective function of LP2-dual’, ) p; ;x; j, increases
while the constraints are still satisfied. However, the number of self-loops has decreased,

contradicting the minimality of self-loops in Q. m
Claim 18. For any Q € Q, there is no even cycle in Q.

Proof. Assume for contradiction that there exists () € Q containing an even cycle. Say
C=ux129...2,_ 12,71 is an even cycle in (). Let

§=p12%12 + P2,3%23 + * + Pm—1mTm—1,m + P1,mT1,m

be the part of the objective function of LP2-dual’, ) p; ;z; ;, involving this even cycle.
Without loss of generality, assume pio + psa + -+ + Dm—3m—2 + Dm—1,m = P2,3 + Pas +
ot Pm—2m—1 + P1m. Set € = min(xa3, Tas, - - Tm—2.m—1, T1,m) > 0. Then

Pr2(x12+€) +pas(Tas —€)+ -+ Dt (Tm—1m + €) + D1 (T1m — ) = 5.

Notice that the constraints are still satisfied. If this inequality is strict, then the optimality
of @ is contradicted. If there is equality, then, by our choice of €, at least one of x5 3 —
€,T45 —€,...,%1,m — € is 0. Thus we have obtained an optimal solution by removing an
edge from (), contradicting the minimality of non-loop edges in Q). n

Now our goal is to show that every connected component of () € Q with at least three
vertices is an induced odd cycle. In the following claim, the degree of a vertex includes
the possibility of self-loops.

Claim 19. For any @) € Q, if C'is a connected component of Q) with at least three vertices,
then C' contains an odd cycle.

Proof. Suppose that C' is a connected component of () € Q with at least three vertices.
We first prove that C' has no vertex of degree 1 in ). Assume, to the contrary, that C' has
a vertex x; of degree 1 in (). Let x; be the neighbor of x;. Then since C' is a connected
component on at least three vertices, it follows that z, € C' and z # z;. Thus x; does
not have a self-loop, and so, by the construction of @), we have y; = 0. Thus the ith
constraint y; + Zi# x;; = 1 in LP2-dual’ becomes z;; = 1, and so the kth constraint in
LP2-dual’ implies that x; has degree 1 in . Hence, C' must be a connected component
on only the two vertices x;, z), a contradiction since C' has at least three vertices.

We now prove the claim. By Claim 18, it suffices to prove that C' contains a cycle.
Assume, to the contrary, that C' is acyclic. Then since C' is connected, acyclic, and
|C| > 2, there are at least two vertices z;, # x;, in C of non-loop degree 1 in C. By
the preceding paragraph, z;, must have another neighbor z;,, and x; must have another
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neighbor z;,. Since C is a connected component, these two neighbors must lie in C,
and so we must have z;, = x;, and z;, = z;,. In other words, x;,,x; have self-loops,
contradicting Claim 17. O

Claim 20. For any Q € Q, every odd cycle in Q) is an induced cycle.

Proof. Let C be an odd cycle in () € Q. Assume for contradiction that C' is not induced.
Then there exists a chord in F(C). This chord splits C' into two cycles C" and C”. One
of them is an even cycle, contradicting Claim 18. [

In the remaining claims, we use the following notation. Define an edge weight function
w: V(Q)* — R such that for each distinct z;, z; € V(Q), we have w(z;, x;) = w(x;, x;) =
z;; and w(z;, z;) = y;. For convenience, we write w(e) for e € E(Q).

Claim 21. For any Q € Q, the odd cycles in () are vertex disjoint.

Proof. 1t is easy to see that if there are two distinct odd cycles in ) sharing an edge or
at least two vertices, then () contains an even cycle, contradicting Claim 18.

Let 01 = UQU2 -+ * Us+1UT and 02 = V1U3 - - V24 41U1 be distinct odd cycles in Q S Q
Assume that C] and C5 share exactly one vertex, say u; = v;. Let ¢ = min{w(e) :
e € E(Cy) U E(Cy)}. We show that by adjusting the values of the w(e)’s, we can either
construct an optimal solution with fewer edges or increase the value of the objective
function. In both cases, we reach a contradiction. We define a new edge weight function
w' as follows (where the indices of u;y1,v;41 below are considered modulo 2s + 1,2s" + 1
respectively):

w(e) + (=)  if e =wuy € E(CY),
+(=1)"le if e = vvy € E(Cy),

w(e) otherwise.

w'(e) = < w(e)

By choice of ¢, we know that w'(e) > 0 for all e € E(Q). Furthermore, for each fixed
z, € V(Q), it is easy to see that »_  w'(z,,2;) = >, w(x,, ;). This shows that the
constraints of LP2-dual’ are satisfied. Let A =", . p; ;(w' (2, 2) —w(w;, z;)). I A >0,
then the optimality of @) is contradicted. If A < 0, then add 1 to the powers of —1 in
the definition of w’ to contradict the optimality of ). Assume A = 0. By choice of ¢,
either there exists a w’(e) = 0, or there exists such a zero edge weight after adding 1 to
the powers of —1 in the definition of w’. Since A = 0, we get an optimal solution with
fewer non-loop edges, contradicting the minimality of non-loop edges in Q). O

Claim 22. For any QQ € Q, each connected component of () contains at most one odd
cycle.

Proof. Assume, for the sake of contradiction, that C' is a connected component of () € Q
that contains distinct odd cycles € and C5. By Claim 21, these two cycles are vertex
disjoint. Let P be a shortest (C7,Cs)-path. Let C} = ujug -« - ugsiiug, P = wiws - + - wy,
and Cy = 010y - - - Vagr4101. Let 6 = min{w(e) : e € E(Cy) U E(Cy)} and ¢ = min{w(e) :
e € E(P)}. Define e = ¢ if 20 < ¢', and € = 0’/2 otherwise. Without loss of generality,

THE ELECTRONIC JOURNAL OF COMBINATORICS 31(1) (2024), #P1.68 13



say wy; = u; and w; = v;. We define a new edge weight function w’ as follows (where the
indices of u;41,v;41 below are considered modulo 2s + 1,25’ + 1 respectively):

w(e) + (—1)e if e = wu; 41 € E(CY),

() = w(e) + (—1)?“5 if e = vv41 € E(Cy),
w(e) + (=12 if e = wyw; 1, € E(P),
w(e) otherwise.

We chose a shortest path P to ensure that P does not share edges with C; or Cs. This
makes w’ well-defined. By choice of ¢, we know that w’(e) > 0 for all e € E(Q). Further-
more, for each fixed z, € V(Q), it is easy to see that >, w'(z,,z;) = >0, w(x,, ;).
This shows that the constraints of LP2-dual’ are satisfied. Let A =3, . p; ;(w'(zi, ;) —
w(x;, z;)). If A > 0, then the optimality of @) is contradicted. If A < 0, then add 1
to the powers of —1 in the definition of w’ to contradict the optimality of (). Assume
A = 0. By choice of ¢, either there exists a w’(e) = 0, or there exists such a zero edge
weight after adding 1 to the powers of —1 in the definition of w’. Since A = 0, we get
an optimal solution with fewer non-loop edges, contradicting the minimality of non-loop
edges in Q. O]

In the following claim, a pendant path P of an odd cycle C" is a path vyv, ... v, such
that vy is the only vertex on P that lies on C’ and v, has degree 1 in non-loop edges.

Claim 23. For any Q € Q, no connected component in () contains an odd cycle with a
pendant path as a subgraph.

Proof. Assume, for the sake of contradiction, that C is a connected component of () €
Q containing an odd cycle C’ with a pendant path P. Say C' = ujus - - - uss11u; and
P = vy - v, with u; = v1. Let § = min{w(e) : e € E(C')} and ¢ = min{{w(e) : e €
E(P)} U{w(ve,ve)}}. We know that w(vg,v,) > 0 because P is a pendant path. Define
e =0if 20 < ¢, and ¢ = §'/2 otherwise. We define a new edge weight function w’ as
follows (where the index of u;;1 below is considered modulo 2s + 1):

w(e) + (—1)e if e = wyuyq € C,
w/<€> _ w(e) + <_1)Z+125 lf € = VjVit1 € P7

w(e) + (=112 if e = vy,

w(e) otherwise.

By choice of ¢, we know that w'(e) > 0 for all e € E(Q). Furthermore, for each fixed
z, € V(Q) \ vy, it is easy to see that >, w'(z,, 2;) = >, w(z,, z;). For vy, we have
W' (ve—1,ve) + w'(ve,vg) = w(ve_q,ve) + w(ve,ve). Thus the constraints of LP2-dual’ are
satisfied. Let A = >, . p;;(w'(z;, v;) — w(w, ;). If A > 0, then the optimality of
Q@ is contradicted. If A < 0, then add 1 to the powers of —1 in the definition of w’
to contradict the optimality of ). Assume A = 0. By choice of ¢, either there exists a
w'(e) = 0, or there exists such a zero edge weight after adding 1 to the powers of —1 in the
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definition of w’. Since A = 0, we get an optimal solution with fewer edges, contradicting
the minimality of edges in Q. ]

We now have almost all the pieces needed to prove Claim 16. Fix () € Q. Suppose
that C is a connected component of ). If C' contains exactly one vertex, then C is an
isolated vertex with a self-loop. If C' contains exactly two vertices, then C' is an isolated
edge which, a priori, may have self-loops. Suppose now that C' contains at least three
vertices. By Claim 19, C' contains an odd cycle. By Claims 20 and 22, this cycle in C'
must be induced and unique. By Claim 23, every vertex in C' lies on this unique cycle.
This implies that C'is an odd cycle which may have self-loops. In fact, the following claim
proves that isolated edges and connected components with at least three vertices must
have no self-loops.

Claim 24. For any Q € Q, if a vertex v € V(Q) has a self-loop, then v is an isolated
vertezx.

Proof. Let @ € Q, and let v € V(Q) be a vertex with a self-loop. Assume, to the contrary,
that v is not an isolated vertex. Then v must lie in a connected component C' of () on
exactly two vertices or at least three vertices. In the first case, we can use the constraints
to deduce that both vertices in C' must have a self-loop. This contradicts Claim 17. Now
assume that C' contains at least three vertices and v € C. By the above discussion, C' is
an odd cycle which may have self-loops. Say C' = vjvs - - - V941101 for some positive integer
s with v = v;. Let 6 = min{w(e) : e € E(C)} and §' = w(v,v). Define ¢ = ¢ if 20 < &,
and € = ¢'/2 otherwise. We define a new edge weight function w’ as follows (where the
index of v;,1 below is considered modulo 2s + 1):

w(e) + (=1)e if e = vv;4 € C,
w'(e) = S w(e) + 2¢ if e = vv,

w(e) otherwise.

Now the proof is similar to that of Claim 23. We can either increase the objective function
or reduce the number of edges, a contradiction. O]

By Claim 24, only isolated vertices in () have self-loops. Constructing )’ from @), we
get that @) is an odd cycle decomposition of K}, thus proving Claim 16, as desired. This
completes the proof of Proposition 15, finishing the proof of Theorem 3. O

Concluding Remarks: Observe that the o(n; ---ng)-term in the bound of Proposi-
tion 15 occurs due to divisibility issues. In particular, it is nonzero when an optimal
solution (ay, ..., ay) of problem P is not rational. Here are two examples where the bound
is sharp for infinitely many values of nq, ..., ng.

1. Suppose that, in the hypotheses of Theorem 3, £ > 3 is an odd integer, and for all
i#j€elk],1—d;; =a*/b* € Q. That is, all the 1 — d, ;’s are the same rational
perfect square. By Theorem 3, the number of independent transversals is at most
Ty /T = diga [1, 7 = (a/b)* ]2, s, where the index i + 1 is modulo k. We
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now construct a graph G that attains this bound. Note that there are infinitely
many integers n such that (a/b)n is an integer. Let n be such an integer, and for
all i € [k], let n; = n and S; C V; be a set of size (a/b)n. For each i # j € [k], put
a complete bipartite graph between V; \ S;, V; and between S;, V; \ S; with no other
edges occurring between V;, V;. Then G satisfies 1 — d; ; = a®/V? for all i # j € [k],
ki k

and the number of independent transversals in G is Hle |S;| = (a/b)*n", showing

that G attains the desired bound.

2. Suppose the hypotheses of Theorem 3. Let I3,...,I, be a a partition of [k| such
that for all r € [¢], |I,| isodd. For allr € [{]and i # j € I, let 1 —d;; = a?/b? € Q
(if |I,| = 1, let a,/b. = 1); otherwise, if i € I,,5 & I, let 1 —d;; = 1. We are
essentially taking disjoint copies of example 1 above. By Theorem 3, the number of
independent transversals is at most []._,(a,/b,)/"" T]F_, ns. We construct a graph
G that attains this bound for infinitely many nq,...,n; by applying example 1 to
each I,.

One could also study stability type of results. One could show that if d; ; = d for all
1, 7, then, by an argument similar to our proof, if the number of independent transversals
in G is close to the optimal value, then GG should be close to the construction in Section 2.2
where a; = /1 — d for each 7. In the case where the d; ; are not all equal to each other,
there could be very different optimal constructions. However, one should be able to show
that each of those optimal constructions is close to a construction corresponding to some
solution of P.
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