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Abstract

For graphs G and H, the Ramsey number R(G,H) is the minimum integer N
such that any red/blue edge coloring of KN contains either a red G or a blue H. Let
χ(G) be the chromatic number of G, and s(G) the minimum size of a color class over
all proper vertex colorings of G with χ(G) colors. A connected graph H is called
G-good if R(G,H) = (χ(G)− 1)(|H|− 1) + s(G). For graphs G and H, it is shown
Kp+nH is (K2+G)-good, where n is double-exponential in terms of p, |G|, |H|, and
Kp + nH is C2m+1-good for n 󰃍 (100q)8q

3
, where q = max{m, p, |H|}. Both proofs

are short and avoid using the regularity method.

Mathematics Subject Classifications: 05C55, 05D10

1 Introduction

For graphs G and H, the Ramsey number R(G,H) is the minimum N such that any
red/blue edge coloring of KN contains either a red G or a blue H.

For vertex disjoint graphs G1 and G2, denote by G1 ∪G2 the union of G1 and G2, and
G1 + G2 the graph obtained from G1 ∪ G2 by adding new edges to connect G1 and G2

completely. Call G1 ∪G2 and G1+G2 the union and the joint of G1 and G2, respectively.
Let mG be the union of m disjoint copies of G. Call Bp(n) = Kp+nK1 a p-book, in which
the given p-clique is called the base and the n additional vertices are called the pages.
Books play central roles in Ramsey theory, and many important questions and results
concern the Ramsey numbers of books versus other natural classes of graphs, see, e.g.,
[4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22].

Let χ(G) be the chromatic number of G, and s(G) the minimum size of a color class
over all proper vertex colorings of G with χ(G) colors. Burr [2] observed a general lower
bound as

R(G,H) 󰃍 (χ(G)− 1)(|H|− 1) + s(G) (1)
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for a connected graph H of order |H| 󰃍 s(G). Burr defined H to be G-good if (1) becomes
an equality. A well-known result of Chvátal [3] says R(Km, Tn) = (m− 1)(n− 1) + 1, in
which Tn is a tree of order n. Hence, Tn is Km-good.

Ramsey goodness has been extensively studied in the literature. An extremely general
result of Nikiforov and Rousseau [21] says, roughly speaking, that H is G-good whenever G
is “small” and H is “poorly connected” and “large”. This theorem resolved the majority
of the open problems on Ramsey goodness, but it comes with a major caveat: Nikiforov
and Rousseau’s proof uses Szemerédi’s regularity lemma, and as such, the quantitative
bounds involved in the definition of “large” above are truly enormous. A certain special
case of the Nikiforov-Rousseau theorem is as follows.

Theorem 1 ([10, 17, 21]). Let G and H be graphs, and p a positive integer. If n is
sufficiently large, then Kp + nH is (K2 +G)-good.

Recently, Fox, He, andWigderson [9] found an alternative proof technique which avoids
the regularity lemma, and allowed them to prove certain special cases of the Nikiforov-
Rousseau theorem with much stronger quantitative bounds. Particularly, they proved the
following result.

Theorem 2 ([9]). If n is double-exponential in terms of p and |G|, then Bp(n) = Kp+nK1

is (K2 +G)-good. Particularly, if n 󰃍 2p
10m

, then Bp(n) is Km-good.

Furthermore, their theorem [9] allows one to take |G| = δn for some small δ > 0, as
long as G satisfies certain structural properties, namely, only one of its color classes can
be this large, and the remaining ones must be of constant size. Both proofs are direct
and avoid using the regularity method. They proposed a problem by writing “It would
be interesting to find a direct proof of Nikiforov-Rousseau theorem without regularity
lemma, as this would likely lead to superior quantitative bounds.”. In this note, we shall
answer them affirmatively by giving a direct and short proof for Theorem 1 without using
regularity lemma.

Theorem 3. Let G and H be graphs, and p a positive integer. If n is double-exponential
in terms of p, |G| and |H|, then Kp + nH is (K2 +G)-good.

An easy corollary of Theorem 1 is as follows.

Corollary 4. Let graphs F and H be fixed. If F is a subgraph of K2 +G for some graph
G such that

χ(F ) = 2 + χ(G), and s(F ) = 1,

then Kp + nH is F -good.

Let C2m+1 be an odd-cycle of length 2m + 1. On the one hand, C2m+1 is a subgraph
of K2 + P2m−1, where P2m−1 is a path of length 2m − 2. However, χ(C2m+1) = 3 and
χ(K2 + P2m−1) = 4. On the other hand, C2m+1 is a subgraph of K1 + Km,m, where
Km,m is complete bipartite graph with m vertices in each part. Lin, Li and Dong [12]
proved that K1 + nH is not (K1 +Km,m)-good, Fan and Lin [7] proved that Bp(n) is not
(K1 +Km,m)-good. Thus we shall consider the goodness of Kp + nH for C2m+1.
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Theorem 5. Let m, p 󰃍 1 be integers and H a graph with h = |H|. Let q = max{m, p, h}.
If n 󰃍 (100q)8q

3
, then Kp + nH is C2m+1-good. Namely

R(C2m+1, Kp + nH) = 2(nh+ p− 1) + 1.

2 A direct proof of Theorem 3

Proof of Theorem 3. Let Γ be a graph with N = (χ(G) + 1)(hn+ p− 1) + 1 vertices,
where h = |H| is the order of H. The proof of Theorem 3 follows by a reduction from
Theorem 2. For the sake of completeness, we sketch the proof.

Firstly, a blowup variant of the Andrásfai-Erdős-Sós [1] theorem was proved, which
says that if a graph has high minimum degree and does not contain some blowup of Km,
then it is (m− 1)-partite.

Secondly, they proved that, under the assumptions of the theorem, most vertices of
Γ have degree at least (1 − 1/(m − 1) − o(1))N (This is the only place where a double-
exponential dependence is needed).

Thirdly, they applied the blowup variant of the Andrásfai-Erdős-Sós theorem, which
proved that except for the small number of low-degree vertices, Γ is (m− 1)-partite.

Finally, they used a careful averaging argument to show that under these assumptions,
Γ must contain a copy of Bp(n).

To complete the proof, it suffices to show the following lemma.

Lemma 6. Let G and H be graphs. If Bp(n) = Kp +nK1 is G-good for any fixed p when
n is large, then Kp + nH is G-good for any fixed p when n is large.

Proof. Let L = (χ(G) − 1)(hn + p − 1) + s(G). From (1), we shall show that
R(G,Kp+nH) 󰃑 L for large n. Assume that the edges of KL are colored red and blue and
there is no red G. Let w 󰃍 p+(h−1)(R(G,Kh)−1) be an integer. From the assumption,
Kw + (hn + p − w)K1 is G-good for large n, so we have a blue Kw + (hn + p − w)K1.
Let W be the vertex set of Kw and X be the set of other hn + p − w vertices. We shall
complete the proof by giving a blue Kp + nH. Since R(G,Kh) < |X| for large n, we can
find a blue Kh in X. Let us delete such blue Kh’s one by one. Then the number of the
remaining vertices in X is at most R(G,Kh)−1. By deleting a vertex from the remaining
vertices and h − 1 vertices from W , we have some other blue Kh, this step needs to be
repeated, potentially R(G,Kh) − 1 times. Then the number of vertices left in W is at
least w − (h − 1)(R(G,Kh) − 1) 󰃍 p, and the difference between this number and p is a
multiple of h. We then delete some Kh from W and stop when the number of remaining
vertices in W is just p, thus we have a blue Kp + nKh hence a blue Kp + nH.

Hence the proof of Theorem 3 is completed. □

3 Proof of Theorem 5

To show the result, we need a lemma from [9].
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Lemma 7. Let r, s, t, p be positive integers with s 󰃑 t and 2p 󰃑 t, and let G be any
graph. Let Γ be a G-free graph with N 󰃍

󰀃
t
s

󰀄r t
2ps

R(G,Ks) vertices which contains Kr(t)

as an induced subgraph, with parts V1, . . . , Vr. If Γ does not contain a book Bp(n) with
at least (1 − 4ps/t)N/r vertices, then Γ contains an induced copy of Kr+1(s) with parts
W0, . . . ,Wr, where Wi ⊂ Vi for every 1 󰃑 i 󰃑 r.

Proof of Theorem 5. Let N = 2(nh + p − 1) + 1 and n 󰃍 (100q)8q
3
, where q =

max{m, p, h}.
Claim 1. R(C2m+1, Bp(n)) = 2(n+ p)− 1, namely, Bp(n) is C2m+1-good.
Proof of Claim 1. From (1), we shall show that R(C2m+1, Bp(n)) 󰃑 2(n + p) − 1.

Suppose for the sake of contradiction that there is a C2m+1-free graph Γ on 2(n + p)− 1
vertices such that Γ does not contain a Bp(n). Let 󰂃 = 1/(8p) so that 1− 4p󰂃 = 1/2. Let
t2 = mp and t1 = t2/󰂃 = 8mp2. Since n 󰃍 (100q)8q

3
, we have

R(C2m+1, Kt1) < R(Kt1 , Kt1) < 4t1 < 48q
3

< 2(n+ p)− 1,

and so Γ contains an independent set of order t1. By Lemma 7, applied with s = t2, t = t1,
and G = C2m+1. Observe that

󰀕
t1
t2

󰀖
t1
2pt2

R(C2m+1, Kt2) 󰃑 (e/󰂃)t2
t1
2pt2

R(C2m+1, Kt2) 󰃑 2(n+ p)− 1

for n 󰃍 (100q)8q
3
. So either Γ contains a p-book with at least (1−4p󰂃)(2(n+p)−1) 󰃍 n+p

vertices, in which case we are done, or Γ contains Kmp,mp as an induced subgraph. Denote
V (Kmp,mp) = V ′

1 ∪ V ′
2 , where |V ′

1 | = |V ′
2 | = mp. Denote U = V (Γ) \ V (Kmp,mp), and

partition U into U1, U2, U3, U4 as follows, in which E(u, V ′
i ) denote the edge set between

u and V ′
i for i = 1, 2.

U1 = {u ∈ U | E(u, V ′
1) ∕= ∅, E(u, V ′

2) = ∅},
U2 = {u ∈ U | E(u, V ′

1) = ∅, E(u, V ′
2) ∕= ∅},

U3 = {u ∈ U | E(u, V ′
1) ∕= ∅, E(u, V ′

2) ∕= ∅},
U4 = {u ∈ U | E(u, V ′

1) = ∅, E(u, V ′
2) = ∅}.

We claim that U3 = ∅. Suppose to the contrary, that there exist two edges ux, uy with

u ∈ U3, x ∈ V ′
1 and y ∈ V ′

2 . We shall construct a C2m+1 as follows. Choose m − 1
vertices {y1, . . . , ym−1} from N(x) ∩ (V ′

2 \ y), and choose m − 1 vertices {x1, . . . , xm−1}

from
m−1󰁗
i=1

N(yi) ∩ N(y) ∩ (V ′
1 \ x). Then uxy1x1y2x2 · · · ym−1xm−1yu is an odd-cycle of

length 2m+ 1, a contradiction.
Since |V ′

1 |+|V ′
2 |+|U1|+|U2|+|U4| = 2(n+p)−1, we have that either |V ′

1 |+|U2|+|U4| 󰃍
p + n or |V ′

2 | + |U1| + |U4| 󰃍 p + n, which implies Γ contains a Bp(n) in any case, a
contradiction. □

By Lemma 6, we know that Kp + nH is C2m+1-good for n 󰃍 (100q)8q
3
. □
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