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Abstract

For graphs G,H, we write G
rb−→ H if for every proper edge-coloring of G

there is a rainbow copy of H, i.e., a copy where no color appears more than
once. Kohayakawa, Konstadinidis and the last author proved that the threshold

for G(n, p)
rb−→ H is at most n−1/m2(H). Previous results have matched the lower

bound for this anti-Ramsey threshold for cycles and complete graphs with at least 5
vertices. Kohayakawa, Konstadinidis and the last author also presented an infinite
family of graphs H for which the anti-Ramsey threshold is asymptotically smaller
than n−1/m2(H). In this paper, we devise a framework that provides a richer family
of such graphs.

Mathematics Subject Classifications: 05C80, 05C55

1 Introduction

We say that a graph G has the anti-Ramsey property G
rb−→ H if for every proper edge-

coloring of G there is a rainbow copy of H. The study of anti-Ramsey properties can be
traced back to a question of Spencer, mentioned by Erdős in [6]: Does there exist a graph
with arbitrarily large girth such that in every proper edge-coloring there is a rainbow
cycle? Rödl and Tuza answered this question affirmatively [16] by showing that for some
ε > 0, the random graph G = G(n, p) with p = nε−1, with high probability, has few small

cycles and G
rb−→ Ck, for large k.
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As G
rb−→ H is an increasing property, it admits a threshold function[3], which we

denote by prb
H = prb

H (n). Kohayakawa, Konstadinidis and the last author [9] proved that,
for any fixed graph H, we have prb

H 6 n−1/m2(H), where

m2(H) := max

{
e(J)− 1

v(J)− 2
: J ⊆ H, v(J) > 3

}
(1)

is the maximum 2-density of H. Furthermore, if the maximum in (1) is attained with H,
then we say that H is 2-balanced.

Nenadov, Person, Škorić and Steger [14] showed that in fact prb
H = n−1/m2(H) if H is

a cycle with at least 7 vertices or a complete graph with at least 19 vertices. This result
was extended for cycles and complete graphs with at least 5 vertices, respectively, in [2]
and [12].

Apart from complete graphs and cycles, not much is known about prb
H for other

graphs H. One might feel compelled to conjecture that indeed this threshold is de-
termined by the maximum 2-density for every graph that contains a cycle, specially be-
cause of ‘standard’ Ramsey threshold results such as the classical one from Rödl and
Ruciński [15]. However, as proved in [10], this is not the case for a fairly large family of
graphs H, whose threshold is asymptotically smaller than n−1/m2(H).

Note that every proper-coloring of a triangle is rainbow and therefore the threshold

for the event G(n, p)
rb−→ K3 is the same as the threshold for the appearance of triangles

in G(n, p), which is a local property. But for some other graphs H, such as complete

graph and cycles with more than 3 vertices, it turns out that the property G(n, p)
rb−→ H

seems to be related with more global aspects of the host graph. In this paper we explore
the interplay of these two cases.

The family of graphs J for which is known that the threshold prb
J is asymptotically

smaller than n−1/m2(J) consists of graphs J obtained by ‘attaching’ a triangle to an edge of
a graph H with 1 < m2(H) < 2, a result that we extend by allowing different graphs to be
attached to H. Given graphs H and F with disjoint vertex sets and edges u1u2 ∈ E(H)
and v1v2 ∈ E(F ), an amalgamation of F and H with u1u2 = v1v2 is the graph obtained
by identifying the vertices u1 = v1 and u2 = v2 (see Figure 1). We denote by F ⊕H the
family of all amalgamations of F and H.

u1 u2

v2v1

Figure 1: An example of the amalgamation obtained by identifying u1u2 and v1v2.

An interesting fact about amalgamations is that we do not increase the maximum
2-density of a graph by amalgamating it to a sparser graph. In fact, one can check that

for any J ∈ F ⊕H, we have m2(J) = max{m2(F ),m2(H)}. (2)
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In our main theorem, we apply a strategy to find rainbow copies of J in a proper edge-
coloring of G(n, p), which, under some conditions on F , typically works even when p
is much smaller than n−1/m2(J). For that, we need to define the following parameter of
graphs, where S is a 2-balanced graph with m2(S) > m2(H):

β(H,S) =
1

e(S)

(
v(S)− 2 +

1

m2(H)

)
.

We remark that the definition of β(H,S) comes from a more general defined in [11], which
generalizes the maximum 2-density to pairs of graphs. Also, note that

1

m2(S)
6 β(H,S) 6

1

m2(H)
, (3)

and both inequalities above are strict when m2(S) > m2(H). We are now ready to state
our main theorem.

Theorem 1. Let H, F be graphs with 1 < m2(H) < m2(F ) and let S be a 2-balanced

graph S such that S
rb−→ F . For any graph J ∈ F ⊕ H, there exists C > 0 such that if

p > Cn−β(H,S), then

lim
n→∞

P
(
G(n, p)

rb−→ J
)

= 1.

The proof of Theorem 1 is an extension of the ideas developed in [10]. However, since
the class of graphs considered here is more general, our proof requires more technicalities
and a considerable improvement on their techniques. Note that Theorem 1 is useful when
β(H,S) > 1/m2(J), since the result from [9] already implies that with high probability

G(n, p)
rb−→ J for p > Cn−1/m2(J). Furthermore, if m2(S) = m2(F ), then (2) and (3) give

that

β(H,S) > 1/m2(S) = 1/m2(F ) = 1/m2(J).

Therefore, Theorem 1 implies that, given graphs H and F with 1 < m2(H) < m2(F ), if

there is a 2-balanced graph S with m2(S) = m2(F ) such that S
rb−→ F , then for every

J ∈ F ⊕H, we have prb
J � n−1/m2(J).

For any t ∈ N, we define the t-book graph Bt as the graph composed by t triangles

which all intersect on exactly one edge. In Section 6 we observe that B3t−2
rb−→ Bt and,

since m2(Bt) = 2, the hypothesis of Theorem 1 are satisfied for every positive integer t
and every graph H with 1 < m2(H) < 2 (e.g., cycles of length at least 4). Furthermore,
since m2(B3t−2) = m2(Bt), we obtain as corollary the following theorem that give us an

infinite family of graphs J such that n−1/m2(J) is not the threshold for G(n, p)
rb−→ J .

Corollary 2. Let t ∈ N and let H be a graph with 1 < m2(H) < 2. Then for any
J ∈ Bt ⊕H we have prbJ � n−1/m2(J).
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The paper is organized as follows: in Section 2 we give an overview of the proof of The-
orem 1 and in Section 3 we recall some definitions and results on the Regularity Method.
In Section 4 we explore properties of proper colorings of G(n, p) and the complete proof
of Theorem 1 is given in Section 5. We finish by deducing Corollary 2 from Theorem 1
in Section 6.

2 Overview of the proof of the main result

Following the approach from [9], we randomly partition the colors of a proper coloring of
G = G(n, p) into finitely many classes. We show that, with high probability, the spanning
subgraph induced by the colors in each of those classes has some quasi-random properties.
In order to find a rainbow copy of a graph J ∈ F ⊕ H, our strategy is to find a copy
of H in which the color of each of its edges belong to different classes (which implies that
it is a rainbow copy of H), and such that it can be extended on an edge e ∈ E(H) to a
rainbow copy of F where all of its edges have their colors in the same class as the one
that contains the color of the edge e.

In order to find such rainbow copy of H that can be extended to a rainbow copy of J ,
we start our proof by fixing an equipartition of V (G) into v(S) + e(S)(v(H)− 2) sets as
follows:

V (G) =

v(S)⋃
i=1

Vi

 ∪ ⋃
e∈E(S)

v(H)⋃
k=3

U e
k

 .

For each e = vivj ∈ E(S), we simply set U e
1 = Vi and U e

2 = Vj. Then the first step
of our strategy is to find many edge-disjoint transversal copies of S in V1 ∪ · · · ∪ Vv(S)
such that the colors of their edges belong all to the same class of our random partition

of the colors. Since S
rb−→ F , in each of those copies of S, there is a rainbow copy of F .

For each edge e ∈ E(F ), we can show that the edges of those copies of F that belongs
to the bipartite graph G[U e

1 , U
e
2 ] are well distributed and induce a subgraph with density

at least Bn2−1/m2(H), for some B > 0. The next step is to extend those copies of F to a
rainbow copy of J . This is done by showing that we can find a transversal copy of H in
U e
1 ∪ · · · ∪U e

v(H) that extends those copies of F to a copy of J and such that the colors of
each of its edges belong to different classes of our random partition of the colors.

3 Tool box

For any graph G and disjoint subsets U, V ⊆ V (G), let us define the density of the pair
(U, V ) in G as

dG(U, V ) =
eG(U, V )

|U ||V |
,

where eG(U, V ) denotes the number of edges across U and V . We suppress G from the
notation whenever it is clear from context. For any µ, p ∈ R, we say that G is (µ, p)-upper
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uniform if
dG(U, V ) 6 (1 + µ)p,

for every disjoint pair of sets U, V ⊆ V (G) with |U | > |V | > µv(G). If G is a bipartite
graph with parts (U, V ), then we say that G is (ε, p)-regular if

|dG(U, V )− dG(U ′, V ′)| 6 εp,

for all U ′ ⊆ U and V ′ ⊆ V with |U ′| > ε|U | and |V ′| > ε|V |.
The next lemma states that large induced graphs of regular subgraphs are still regular.

The proof is straightforward by checking the definition.

Lemma 3. Let p ∈ (0, 1] and 0 < ε < µ < 1/2. If G[V1, V2] is an (ε, p)-regular bipartite
graph, then for every V ′1 ⊆ V1, with |V ′1 | > µ|V1|, the graph G[V ′1 , V2] is (ε/µ, p)-regular.
Furthermore, we have d(V ′1 , V2) > d(V1, V2)− εp.

The next lemma states that regular bipartite graphs contain regular subgraphs with
any given (sufficiently large) number of edges. A proof can be found in [7, Lemma 4.3].

Lemma 4. For ε ∈ (0, 1/6), there exists C = C(ε) > 0 such that the following holds.
Let G = G[V1, V2] be an (ε, dG)-regular bipartite graph, where dG = dG(V1, V2). For all
Cn 6 m 6 e(G), there exists a spanning subgraph H = H[V1, V2] of G with m edges which
is (2ε, dH)-regular, where dH = e(H)/|V1||V2|.

The following lemma can be found in [10, Lemma 6]. It states that upper uniform
bipartite graphs contain a bipartite subgraph which is regular and has the same density.

Lemma 5. For ε ∈ (0, 1/2) and γ ∈ (0, 1), there exists µ > 0 such that the following
holds for all p ∈ (0, 1]. Let G = G[V1, V2] be a (µ, p)-upper uniform bipartite graph, with
|V1| = |V2| and d(V1, V2) > γp. There exist V ′1 ⊆ V1 and V ′2 ⊆ V2, with |V ′1 |, |V ′2 | > µ|V1|,
such that G[V ′1 , V

′
2 ] is (ε, p)-regular with density at least γp.

Let η > 0. We say that a graph G has the discrepancy property DISC(η) if for any
subsets V1, V2 ⊆ V (G), we have∣∣∣∣eG(V1, V2)−

vol(V1) vol(V2)

vol(V (G))

∣∣∣∣ 6 η vol(V (G)),

where vol(X) :=
∑

x∈X dG(x), for any X ⊆ V (G). Roughly speaking, if a graph G has

the DISC(η) property, then its edges are almost uniformly distributed. The next lemma
builds a bridge between discrepancy and classical regularity (see [10], Lemma 4).

Lemma 6. For every ε, µ > 0 there exist η, δ > 0 such that the following holds. Let
p ∈ (0, 1] and G be an n-vertex graph which satisfies

(1) the discrepancy property DISC(η);

(2) |dG(v)− pn| 6 δpn, for every v ∈ V (G).
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Then, for any disjoint subsets V1, V2 ⊆ V (G) such that |V1|, |V2| > µn, the graph G[V1, V2]
is (ε, p)-regular.

In what follows, we will state Janson’s inequality [8]. Suppose that A1, . . . , At are t
events in a given probability space, all of them with probability p. For each i ∈ [t], let Xi

be the indicator random variable for the event Ai. Let X = X1 + · · ·+Xt and let

∆ =
∑
i∼j

P(Ai ∩ Aj),

where i ∼ j indicates that i 6= j and Ai ∩ Aj 6= ∅. Then, we have the following.

Lemma 7 (Janson’s inequality [8]). For every ε > 0, we have

P (X 6 (1− ε)µ) 6 exp

{
− ε2µ

2(1 + ∆/µ)

}
,

where µ = E[X]. In particular, if ∆ = o(µ), then X > (1− ε)µ, with high probability.

We end this section with one last probabilistic tool.

Lemma 8 (McDiarmid’s inequality [13]). Let X1, . . . , XM be independent random vari-
ables, with Xi taking values on a finite set Ai for each i ∈ [M ]. Suppose that f :

∏M
i=1Ai →

R satisfies |f(x)−f(x′)| 6 ci whenever the M-tuple x and x′ differ only in the ith element.
If Y is the random variable given by Y = f(X1, . . . , XM), then, for any a > 0,

P (|Y − E(Y )| > a) 6 2 exp

{
− 2a2∑M

i=1 ci
2

}
.

4 Pseudorandomness and isolated copies

Given a proper edge-coloring of G = G(n, p), we will consider a random partition of
the colors used in this coloring. In this section we focus on exploring properties of the
spanning subgraph of G generated by each color class of this partition. In particular, the
proof of Theorem 1 reduces to an application of an embedding lemma in a sparse setting,
formerly known as K LR conjecture, which was proved in [5, 1]. Therefore, our goal is
to guarantee that the graphs that we construct fit in the requirements of this embedding
lemma.

Let m and n be positive integers with m 6 n2 and let ε > 0 and p ∈ [0, 1]. Suppose
that H is a graph with V (H) = [h]. Consider h disjoint sets V1, . . . , Vh, each of size n,
and for each ij ∈ E(H), add m edges between the pair (Vi, Vj) in a way that the resulting
bipartite graph is (ε, p)-regular. We denote by G(H,n,m, p, ε) the collection of all graphs
obtained in this way. In most applications, p will be of order O(m/n2) and sometimes
we will have p = m/n2. But we would like to point out that the main role of p here
is controlling the sparse regularity. We say that a copy of H in G ∈ G(H,n,m, p, ε)
is transversal if the vertex corresponding to i in the copy of H is in Vi. We denote by
G∗(H,n,m, p, ε) the set of all graphs G ∈ G(H,n,m, p, ε) that do not contain a transversal
copy of H. Now we are ready to state the embedding result we use in our proof.
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Theorem 9 (K LR conjecture [1, 5]). For every graph H and every positive ϑ, there exist
positive constants B, n0 and ε such that the following holds. For every n ∈ N with n > n0

and m ∈ N with m > Bn2−1/m2(H), we have∣∣G∗(H,n,m,m/n2, ε)
∣∣ 6 ϑm

(
n2

m

)e(H)

.

4.1 Random partition of the colors

In this subsection, we prove that, in a typical outcome of G(n, p), the hypothesis of
Lemma 6 is met by the graphs induced by the colors assigned to each edge of H. Let G
be a graph and consider a proper edge-coloring c : E(G)→ N of G. Fix a positive integer
T . To each color i ∈ N, we assign to i an element σ(i) ∈ [T ] chosen uniformly at random
from [T ]. For each t ∈ [T ], let Gt be the spanning subgraph of G with edge set

E(Gt) = {e ∈ E(G) : σ(c(e)) = t},

that is, E(Gt) corresponds to the edges of G for which their color was assigned to t.
In this strategy we have to consider two probability spaces when dealing with Gt:

the one which defines G (n, p) and the one which defines the random assignment σ for
a fixed proper edge-coloring of G (n, p). To avoid confusion, we use P and E to refer to
the distribution of G (n, p) and for a fixed proper-coloring of c : E(G) → N, we use Pσ
and Eσ to refer to the distribution of the random assignment of colors σ. Our aim in this
subsection is to show that Gt satisfies the two requirements of Lemma 6, which are the
concentration of degrees and DISC(η). Let us start with the degree distribution of Gt.

Lemma 10. Let δ > 0 and T be a positive integer. If p � (log n)/n, then the following
holds for G = G(n, p) with high probability. For any proper edge-coloring c : E(G) → N
of G, we have for a random assignment σ : N→ [T ] that

Pσ
(
∀v ∈ V (G), dGt(v) = (1± δ)pn

T

)
= 1− o(1),

for every t ∈ [T ].

We omit the proof of Lemma 10, since it follows from a straightforward Chernoff’s
bound argument, together with the fact that edges touching each vertex have distinct
colors.

Let us now focus on proving thatGt has the DISC(η) property. A straightforward proof
that a random graph satisfies DISC(η) can be tricky, since any concentration inequality we
obtain has to be stronger than the number of choices of subsets of the vertex set. Luckily
for us, the works of Chung and Graham [4] relate this property with the distribution of
circuits of even length. Given a graph G, we say that a sequence C = (v1, . . . , v`) of
vertices of G is an `-circuit if vivi+1 ∈ E(G), for every i ∈ [`− 1], and v1v` ∈ E(G). The
weight of an `-circuit C = (v1, . . . , v`) is given by

w(C) =
∏̀
i=1

1

dG(vi)
.
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We denote by C`(G) the collection of all `-circuits of G. We say that G has the
CIRCUIT`(η) property if ∑

C∈C`(G)

w(C) = 1± η.

The following lemma from [4] shows that CIRCUIT essentially implies DISC.

Lemma 11. For every η > 0 and positive integer `, if G has the CIRCUIT2`(η) property,
then G has the DISC(η1/2`) property.

Since the degrees in Gt are concentrated around pn/T for every t ∈ [T ], we basically
have to show that the number of circuits of some even length ` is close to (pn/T )` in Gt.
In principle, it is not clear even how to compute the expectation of this value, since the
edges are not selected independently. We simplify this problem in two steps. First we
call upon the result stated below and proved in [9, Corollary 4.9], which shows that for
certain values of p, almost all `-circuits are actually cycles. For that, we denote by C ′`(G)
the number of `-cycles in a graph G.

Lemma 12. Let ` > 2 be an integer and δ > 0. If p� n−1+1/`, then with high probability
G = G (n, p) satisfies

|C2`(G)| 6 (1 + δ)|C ′2`(G)|.

Our next aim is to show that almost all cycles in a proper edge-coloring of G(n, p) are
in fact rainbow. If we assume that to be true, it is easy to see that the expected number
of `-cycles in each Gt is roughly (pn/T )`, since each color is independently assigned to
a class. In order to prove such statement we count the number of non-rainbow cycles
basically by counting the shortest path whose first and last edges have the same color and
then by completing them into cycles. Therefore, the following special case of a classical
result of Spencer [17, Theorem 2] is fairly convenient.

Lemma 13. Let ` > 2 and G = G (n, p), with p`n`−1 � log n. Then with high probability,
for every pair of vertices u, v ∈ V (G), there are Θ(p`n`−1) paths of length ` connecting u
to v in G.

We remark that the values of p needed to apply Lemma 13 are lower for longer paths.
This fact plays an important role in the proof of Lemma 14, which we are now ready to
state.

Lemma 14. Let ` be an integer and pd`/2end`/2e−1 � log n. With high probability, in every
proper edge-coloring of G = G (n, p) there are O(p`−1n`−1) non-rainbow `-cycles.

Proof. Let G = G(n, p) be as in the statement. Notice that as an straightforward appli-
cation of Chernoff’s inequality (which we will omit the details here), it follows that with
high probability we have d(v) 6 2pn, for every v ∈ V (G). Fix now a proper edge-coloring
of G.
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We say that a path in G is color-tied if the first and last edges have the same color.
Note that every non-rainbow `-cycle must contain a color-tied path of length at most
b`/2c + 1, by considering the shortest path between edges with the same color. We will
give an upper bound for the number of non-rainbow `-cycles by giving an upper bound
for the number of color-tied paths and then by counting in how many ways these paths
can be extended into an `-cycle in G.

To count the number of color-tied paths of length k, for a fixed k ∈ [b`/2c + 1], we
first choose an ordered pair (v0, v1) such that v0v1 ∈ E(G). For i = 1, . . . , k − 2, we
inductively extend the path v0v1 · · · vi by choosing a vertex vi+1 from the neighborhood
of vi. We then let the last vertex vk be the only neighbour of vk−1 such that v0v1 has
the same color as vk−1vk. Therefore, the number of color-tied of length k is at most
4pn2 · (2pn)k−2 · 1 = O(pk−1nk), which is smaller than the number of paths in G of length
k by a factor of Ω(pn).

Now let v0v1 . . . vk be a color-tied path of length k ∈ [b`/2c+ 1]. Since p`−kn`−k−1 �
pb`/2c−1nb`/2c−2 � log n, then Lemma 13 give us that, with high probability, there are
Θ(p`−kn`−k−1) paths of length ` − k connecting v0 to vk. Therefore, the number of non-
rainbow cycles is at most

b`/2c+2∑
k=1

O
(
pk−1nk · p`−kn`−k−1

)
= O(p`−1n`−1),

which conclude the proof of the lemma.

Now we put all pieces together to prove that Gt has the DISC(η) property.

Lemma 15. Let η, β ∈ (0, 1) and T be a positive integer. If p� n−β, then the following
holds for G = G(n, p) with high probability. For any proper edge-coloring c : E(G) → N
of G we have

Pσ
(
Gt satisfies DISC(η)

)
= 1− o(1),

for every t ∈ [T ].

Proof. Let ` > 1/(1 − β) and η′ = η2`. Note that p`n`−1 � log n and pn � log n. By
Lemma 10, for any δ > 0, with high probability we have

Pσ
(
dGt(v) = (1± 3δ)

pn

T

)
= 1− o(1),

for all v ∈ V (G) and all t ∈ [T ]. Therefore, by choosing δ small enough as a function of
η′ and `, we have

∑
C∈C2`(Gt)

w(C) =
∑

C∈C2`(Gt)

∏
v∈V (C)

1

dGt(v)
= |C2`(Gt)|

(
1± η′

3

)(
T

pn

)2`

, (4)

where C2`(Gt) denotes the set of 2`-circuits in Gt.
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Lemma 11 implies that if Gt has the CIRCUIT2`(η
′) property, then it has the property

DISC(η). Therefore, it is enough to prove that

Pσ
(
Gt satisfies CIRCUIT2`(η

′)
)

= 1− o(1),

By the definition of the CIRCUIT2`(η
′) property, we have to show that

∑
w(C) = 1± η′.

By (4), it is sufficient to prove that for every t ∈ [T ], we have

Pσ
(
|C2`(Gt)| =

(
1± η′

3

)(pn
T

)2`)
= 1− o(1). (5)

Recall that C ′2`(Gt) ⊂ C2`(Gt) is the collection of 2`-cycles in Gt. Let us turn our
attention to G(n, p). Since p � n−1+1/2`, the numbers of 2`-circuits and of 2`-cycles
in G(n, p) are with high probability asymptotically equal. More precisely, by choosing
δ 6 η′/(12T 2`) and observing that |C ′2`(G)| 6 2(pn)2`, Lemma 12 implies that with high
probability, we have

|C2`(G) \ C ′2`(G)| 6 η′

12T 2`
· |C ′2`(G)| 6 η′

6

(pn
T

)2`
. (6)

Therefore, we can disregard the 2`-circuits that are not 2`-cycles from the computation.
That is, in order to prove (5), it is enough to show that

Pσ
(
|C ′2`(Gt)| =

(
1± η′

6

)(pn
T

)2`)
= 1− o(1), (7)

for every t ∈ [T ].
In order to prove (7), fix t ∈ [T ] and for each i ∈ c(E(G)), let Ai = {0, 1} and let

Xi be the indicator function for the event {σ(i) = t} and set Y = |C ′2`(Gt)|. Note that
Y = f(X1, . . . , Xr), for some f :

∏r
i=1Ai → R. Now, let ci be the smallest real number

for which |f(x)− f(x′)| 6 ci, whenever x, x′ ∈
∏r

i=1Ai differ only on the ith coordinate.
By double counting the pairs (i, e) such that i ∈ c(E(G)) and e ∈ E(G) has color i and
is contained in a 2`-cycle, we obtain

r∑
i=1

ci 6 2`|C ′2`(G)|. (8)

Moreover, since pn1−2/(2`−1) → ∞, Lemma 13 implies that the number of 2`-cycles
in G containing a given edge e ∈ G is at most Dp2`−1n2`−2, for some large constant
D > 0. Since each color i ∈ [r] induces a matching in G, it follows that ci 6 Dp2`−1n2`−1.
Together with (8), we obtain that

r∑
i=1

c2i 6 Dp2`−1n2`−1
r∑
i=1

ci 6 2`Dp2`−1n2`−1|C ′2`(G)|.

To finish the proof of (7), we have to calculate the expectation of Y = |C ′2`(Gt)|. Since
each edge of G is in Gt with probability 1/T , for each C ∈ C ′2`(G), we have Pσ(C ∈
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Gt) > 1/T 2` (with equality, if C is rainbow). Since (pn)2` � 1, we know that with high
probability, |C ′2`(G)| = (1 − o(1))(pn)2`. Since p`n`−1 � log n, we can use Lemma 14 to
get that, with high probability, almost all of the 2`-cycles in G are rainbow and, therefore,
they contribute with 1/T 2` to the expectation of Y . In conclusion, with high probability,
we have that

Eσ(Y ) = |C ′2`(G)|
(

1

T 2`
+ o(1)

)
=

(
1± η′

12

)(pn
T

)2`
.

Finally, by McDiarmid’s inequality (Lemma 8),

Pσ
(
|Y − E[Y ]| > η′

12

(pn
T

)2`)
6 2 exp

{
−Ω((pn)4`)∑r

i ci
2

}
= 2 exp{−Ω(pn)} = o(1).

Therefore, with probability tending to 1 (under Pσ) equation (7) holds, which, together
with with (6), implies (5) and finishes the proof.

4.2 Isolated copies of S

Given a graph G on n vertices, we call a copy of a graph S in G isolated if it does not
share an edge with any other copy of S in G. Let GS be the spanning subgraph of G
induced by all the edges that belong to some isolated copy of S in G. Since GS will play
a role in the application of Theorem 9, the following issue arises. Theorem 9 is a counting
result that states that most pseudo-random blow-ups of a graph H will have a transversal
copy of H. We would like to apply this fact to a blow-up of H with edges in GS. However,
it is not clear, at first glance, that the edges of GS are well distributed. The following
lemma, which first appeared at [11] (see their Lemma 13), give us that. For E ⊆ E(Kn),
we write E v GS if E ⊆ GS and if no two edges in E belong to the same isolated copy
of S.

Lemma 16. Let F be a graph and G = G (n, p), with p = p(n) ∈ (0, 1]. If q =
nv(F )−2pe(F ), then for any E ⊆ E(Kn) we have that

P
(
E v E(GS)

)
6 q|E|.

Later in the proof of Theorem 1, we will need to prove that GS, and hence GS
t , is

(µ, q)-upper uniform for q = O(nv(S)pe(S)). This is stated in the next lemma. The proof
is a straightforward application of Lemma 16 and it can be found in [11, Lemma 14].

Lemma 17. Let S be a graph, β > 0 be such that β < (v(S) − 1)/e(S), and let µ > 0.
Then with high probability, for G = G (n, p) with p = n−β, the graph GS is (µ, q)-upper-
uniform, where q = 6e(S)nv(S)−2pe(S).

For disjoint sets V1, . . . , Vv(S) ⊆ V (G), we denote by ZG(V1, . . . , Vv(S)) the number of
transversal copies of S in G[V1, . . . , Vv(S)], i.e., copies of S in G with one vertex in each Vi
with i ∈ [v(S)]. Let YG(V1, . . . , Vv(S)) be the number of transversal copies of S that are also
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isolated. We may omit the sets V1, . . . , Vv(S) from the notation if they are clear from the
context. Note that for G = G (n, p) and for disjoint linear-sized sets V1, . . . , Vv(S) ⊆ V (G),
we have that

E[Z(V1, . . . , Vv(S))] = Θ
(
nv(S)pe(S)

)
.

In the next lemma, which can also be found in [11], we prove that in a typical outcome
of G = G(n, p), a positive proportion of transversal copies of S in G[V1, . . . , Vv(S)] are
actually isolated.

Proposition 18. Let S be a 2-balanced graph and β > 0 such that 1/m2(S) < β 6
(v(S)−1)/e(S). For every µ > 0, the following holds with high probability for G = G(n, p),
with p = n−β. For every family of pairwise disjoint sets V1, . . . , Vv(S) ⊆ V (G), with
|Vi| > µn, we have

YG(V1, . . . , Ve(S)) >
1

2
EZG(V1, . . . , Ve(S)).

In particular, YG(V1, . . . , Ve(S)) = Ω
(
nv(S)pe(S)

)
.

Proof. Let V1, . . . Vv(S) ⊂ V (G) be a fixed family of pairwise disjoint sets. In order to
apply Janson’s inequality (Lemma 7) to the random variable Z = ZG(V1, . . . , Ve(S)), note
that

∆ =
∑

K2⊆J⊂S

O
(
n2v(S)−v(J)p2e(S)−e(J)

)
= o(EZ). (9)

Indeed, since S is 2-balanced, for every K2 ⊆ J ⊂ S, we have that

v(S)− v(J)

e(S)− e(J)
6

1

m2(S)
.

Consequently, by our choice of p, we get

nv(S)−v(J)pe(S)−e(J) = o(1).

And since EZ = Ω(nv(S)pe(S)) (here, we use the fact that |Vi| > µn, for each i ∈ [v(S)]),
we have that (9) follows. Then, by Janson’s inequality, we have that

P
(
Z 6

3

4
EZ
)

= exp(−Ω(EZ)).

Since EZ � n, we can take an union bound over all the choices of V1, . . . , Vv(S) (which
is at most 2v(S)n) and guarantee that with high probability, we have Z > 3EZ/4 =
Ω(nv(S)pe(S)), for any choice of V1, . . . , Vv(S).

Let X be the number of non-isolated copies of S in G. Notice that EX = O(∆).
Therefore, by Markov’s inequality and by (9), we have

P
(
X >

1

4
EZ
)
6

4EX
EZ

=
o(EZ)

EZ
= o(1).
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Then, with probability 1− o(1), we have

YG(V1, . . . , Ve(S)) > Z −X > 3

4
EZ − 1

4
EZ =

1

2
EZ,

for any choice of V1, . . . , Vv(S) as in the statement.

In the next lemma, we show that many transversal copies are isolated, even in a
typical outcome of Gt, for each t ∈ [T ]. In particular, the bipartite graph GS

t [Vi, Vj], for
ij ∈ E(S), has Ω(nv(S)pe(S)) = Ω(n2−1/m2(H)) many edges, since each edge in GS

t [Vi, Vj]
comes from an isolated copy of S and by our choice of p.

Lemma 19. Let S be a 2-balanced graph and β > 0 such that 1/m2(S) < β 6 (v(S) −
1)/e(S). For every µ > 0 and integer T > 0, there exists α > 0 such that the following
holds. With high probability for every proper edge-coloring of G = G(n, p), with p = n−β,
and for a fixed family of disjoint sets V1, . . . , Vv(S) ⊆ V (G) with |Vi| > µn, for i ∈ [v(S)],
we have

Pσ
(
YGt(V1, . . . , Ve(S)) > αnv(S)pe(S)

)
= 1− o(1),

for every t ∈ [T ].

Proof. Let G = G(n, p), with p = n−β and 1/m2(S) < β 6 (v(S) − 1)/e(S)), and let
c : E(G) → [r] be a proper edge-coloring of G, for some r ∈ N. For an integer T > 0
consider a random partition of the colors into T classes. For each i ∈ [r], let Xi be the
indicator function for the event σ(i) = t and observe that YGt = YGt(V1, . . . , Ve(S)) is a
function of X1, . . . , Xr. For each i ∈ [r], let ci = ci(G) be the smallest real number such
that if we change the value of Xi only, then the value of YGt will be altered by at most ci.
Since the coloring of G is proper, by altering the value of Xi we add or remove at most
a perfect matching from Gt, which implies that it will affect at most n isolated copies
of S. Therefore, we have ci 6 n. Furthermore, since a transversal isolated copy of S
in G can be affected by at most e(S) changes in the value of X1, . . . , Xr, we also have∑r

i=1 ci 6 e(S)YG. Hence,

r∑
i=1

c2i 6 n
r∑
i=1

ci 6 e(S) · n · YG.

Furthermore, note that each copy of S in G belongs to Gt with probability (1/T )k,
where k is the number of colors that appears in such copy of S. In particular, such copy
of S is in Gt with probability at least (1/T )e(S). Therefore,

Eσ[YGt ] >
YG
T e(S)

.

Note that, by Proposition 18, we have that YG = Ω(nv(S)pe(S)). Therefore, Lemma 8
yields that
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Pσ
[
YGt <

1

2
E[YGt ]

]
6 2 exp

{
− E[YGt ]

2

2
∑

i∈[r] ci
2

}
= exp

{
−Ω(nv(S)−1pe(S))

}
= o(1).

The last equality follows from the fact that β < (v(S)− 1)/e(S). Consequently, with
probability 1− o(1) under Pσ, we have that

YGt >
1

2
E[YGt ] >

YG
2T e(S)

> αnv(S)pe(S),

for some α > 0 that only depends on the graph S and the values of T and µ.

5 Proof of Theorem 1

LetH, F and S be as in the statement of Theorem 1. Let us say that V (H) = {u1, . . . , uh},
V (S) = {v1, . . . , vs} and V (F ) = {w1, . . . , wf}. Consider J ∈ F ⊕H as an amalgamation
of F and H with u1u2 = w1w2 and as in the statement of Theorem 1 and let p > Cn−β(H,S),
where C is a sufficiently large constant. We consider an equipartition of V = V (G)) into
s+ e(S)(h− 2) sets as follows:

V =

(
s⋃
i=1

Vi

)
∪
⋃

e∈E(S)

(
h⋃
k=3

U e
k

)
. (10)

Let V0 := ∪si=1Vi and n0 := |V0|. For each e = vivj ∈ E(S), we define U e
1 = Vi and U e

2 = Vj.
The partition given by (10) can be pictured as a blow-up of S (namely, (V1, . . . , Vs)) and
e(S) blow-ups of H (namely, (U e

1 , . . . , U
e
h), for each edge e = vivj ∈ E(S)), such that

each (U e
1 , . . . , U

e
h) together with (V1, . . . , Vs) make a blow-up of an amalgamation of H

and S with u1u2 = vivj. In the proof of Theorem 1, we will first look for several rainbow
copies of F in each transversal isolated copy of S contained in the blow-up (V1, . . . , Vs)
and then extend it to a rainbow copy of J using the transversal copies of H in the blow-up
(U e

1 , . . . , U
e
h), where e is the edge of S in which the edge w1w2 of F is associated to.

As sketched in Section 2, the proof has two steps: in the first step we want to find
a transversal copy of S; in the other step, we want to find a transversal rainbow copy
of H. These two steps are done in two subgraphs of G(n, p) with different densities. For
this reason, instead of working in G(n, p), we work on a random graph G obtained in two
rounds: in the first round, we sample a random graph G′ as G(n, p′), where p′ := e(H)q
and q := 6e(S)nv(S)−2pe(S) (this choice of q is motivated by Lemmas 16 and 17). In the
second round, we generate the random graph G as follows: each pair of vertices uv in V ,
independently of any other pair of vertices, becomes an edge in G with probability 1 if
uv ∈ E(G′); and with probability (p − p′)/(1 − p′) if uv /∈ E(G′). Therefore, a pair
of vertices in V is an edge in G with probability p, which means that G has the same
distribution as G(n, p). Note that, since p′ < p, we may consider a coupling between G′
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and G such that G′ ⊆ G. In order to prove Theorem 1, it suffices to prove that with high

probability the random graph G satisfies G
rb−→ J , for any J ∈ F ⊕H.

Now, let us define some constants. Our choice of constants is such that it allows us
to apply all the lemmas in Sections 3 and 4. Let α = α(H,S) be given by Lemma 19
with µ = |V1|/n and T = e(H). We may also assume that α 6 1/(6e(S)sf ). One should
keep in mind that α is the constant controlling the number of isolated transversal copies
of S. Having α we define ϑ = (α2/4e)e(H) and let B and ε be given by Theorem 9 applied
with H and ϑ. The constant ε controls the density error in the regularity of G and B
is the constant that controls p. Let γ = α2 and consider µ > 0 as the constant given by
Lemma 5 applied with ε and γ. Notice that µ controls the uniformity, and γ controls the
density of small bipartite subgraphs. Let δ and η be given by Lemma 6 applied with ε
and µ/2. By considering a smaller value of η, we may also suppose that η 6 µ2/(28s4h2).
The constant δ controls the degree error in G′ and η is the parameter for the discrepancy
property of G′. Here it is a list of the associations between the constants just for quick
reference:

H,S
Lemma 19−−−−−−→ α, H, α

explicit−−−−→ ϑ, H, ϑ
Theorem 9−−−−−−→ ε, B,

α
explicit−−−−→ γ, ε, γ

Lemma 5−−−−−→ µ, ε, µ
Lemma 6−−−−−→ δ, η.

Let c : E(G)→ N be a proper coloring of E(G). We will consider a random assignment
σ : N→ E(H) of the colors as follows: for each color i ∈ N, we assign independently and
uniformly at random an edge σ(i) ∈ E(H). For each t ∈ E(H), let Gt be the spanning
subgraph of G with edge set

E(Gt) = {e ∈ E(G) : σ(c(e)) = t},

that is, E(Gt) is the subset of edges of E(G) for which their color was randomly assigned
by σ to t. In the same way, we define G′t (that is, G′t is the subgraph of G′ with edges
whose color is assigned to t by σ). Note that Gt and G′t are random graphs like the one
analyzed in Section 4.1.

Recall from Section 4.2 that YGt := YGt(V1, . . . , Vs) denotes the number of transversal
isolated copies of S in Gt[V1, . . . , Vs]. For a fixed G and a fixed proper edge-coloring
c : E(G)→ N of G, we denote by E1 = E1(G, c) the event where, in a random assignment
σ : N→ E(H), we have YGt > αnv(S)pe(S), for every t ∈ E(H). By Lemma 19, with high
probability, the random graph G is such that for every proper edge-coloring c of G, we
have

Pσ (E1) = 1− o(1). (11)

Let GS be the spanning subgraph of G induced by all the edges that belong to transver-
sal isolated copies of S in V1 ∪ · · · ∪ Vs. Let P be the event where the random graph G is
such that GS is (µ, q)-upper uniform. By Lemma 17, we have that P happens with high
probability. Our next claim states that, if P happens, then for any assignment σ in E1,
we have that for some vivj ∈ E(S), there is a large fairly regular and dense subgraph
of Gt[Vi, Vj] whose edges are all contained in distinct isolated rainbow copies of F and
correspond to the edge w1w2 of F .
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Claim 20. Suppose that G ∈ P and let c : E(G) → N be a proper edge-coloring. For
a random assignment σ in the event E1, the following holds for t0 = u1u2. For some
e = vivj ∈ E(S) there exist W1 ⊆ Vi, W2 ⊆ Vj with |W1| = |W2| > µ|Vi| and a bipartite
spanning subgraph Bt0 ⊆ Gt0 [W1,W2] such that

(1) For every ab ∈ E(Bt0), with a ∈ W1 and b ∈ W2, there is an isolated rainbow copy
of F in V0 containing ab and such that all the edges have colors assigned to t by σ.
Moreover, in this copy, the vertices a and b correspond to the vertices w1 and w2 of
F , respectively.

(2) The graph Bt0 is (2ε, q)-regular and has m = γq|W1||W2| edges.

Proof. Since S
rb−→ F , in each transversal isolated copy of S in Gt0 [V1, . . . , Vs], we can

find an transversal isolated rainbow copy of F . Note that there are at most sf different
ways for a copy of F to be transversal in Gt0 [V1, . . . , Vs]. As E1 holds, by the pigeon-hole
principle, we have for some i1, . . . , if ∈ [s] at least( α

sf

)
nv(S)pe(S)

transversal isolated rainbow copies of F in Gt0 [Vi1 , . . . , Vif ] with the corresponding copy
of wk belonging to Vik , for each k ∈ [f ]. Let i = i1 and j = i2. We turn our attention to
the bipartite graph B = (Vi∪Vj;E ′) induced by the edges in Gt0 [Vi, Vj] contained in those
transversal isolated rainbow copies of F . Observe that B already satisfies property (1).
Furthermore, since each edge of B is in exactly one of those copies of F , and since
α 6 1/(6e(S)sf ) and γ = α2, we have

E(B) >
( α
sf

)
nv(S)pe(S) =

α

6e(S)sf
qn2 > α2qn2 > γq|Vi||Vj|.

As G ∈ P , the graph GS is (µ, q)-upper uniform and so it is B. Moreover, since
dB(Vi, Vj) > γq, Lemma 5 give us W1 ⊆ Vi and W2 ⊆ Vj with |W1| = |W2| > µ|Vi|, such
that the bipartite graph B[W1,W2] is (ε, q)-regular with density at least γq. To finish the
proof, we apply Lemma 4 to B and obtain a (2ε, q)-regular spanning subgraph Bt0 ⊆ B
with exactly m = γq|W1||W2| edges. This shows property (2). �

We may assume, without lost of generality, that the edge e in Claim 20 is the edge
e = v1v2. Therefore, we obtain a subgraph Bt0 ⊆ Gt0 [W1,W2] with density exactly γq
satisfying conditions (1) and (2) of Claim 20.

In what follows, we will focus on the random graph G′ and we will define two events
E2 and E3 for which a random assignment σ : N → E(H) in those events will guarantee
that, for every t ∈ E(H), the random graph G′t satisfies, respectively, condition (1) and
(2) of Lemma 6 with the chosen δ and η.

For a fixed G′ and a fixed proper edge-coloring c : E(G′)→ N of G′, let E2 = E2(G′, c)
be the event in which the random assignment σ : N → E(H) give us that, for every
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t ∈ E(H),

dG′t(v) = (1± δ)qn, for every v ∈ V. (12)

By Lemma 10, with high probability, the random graph G′ is such that for every edge-
coloring c of G′, we have

Pσ (E2) = 1− o(1). (13)

For a fixed G′ and a fixed proper edge-coloring c : E(G′)→ N of G′, let E3 = E3(G′, c)
be the event in which the random assignment σ : N → E(H) give us that for every
t ∈ E(H), G′t has the property DISC(η). By Lemma 15, with high probability, the
random graph G′ is such that for every edge-coloring c of G′, we have

Pσ
(
E3
)

= 1− o(1). (14)

We now show that, for each i ∈ [h] \ {1, 2}, there exists Wi ⊆ U e
i of the same size as

W1 and such that, for each t = uiuj ∈ E(H) \ {t0} (note that t may contain u1 or u2, but
not both at the same time), the bipartite graph G′t[Wi,Wj] is fairly regular and dense.

Claim 21. For any assignment σ in the event E2 ∩ E3, the following holds. For every
i ∈ [h] \ {1, 2}, there exists Wi ⊂ U e

i , with |Wi| = |W1|, such that for each t = uiuj ∈
E(H) \ {t0}, there exists a bipartite spanning subgraph Bt ⊆ G′t[Wi,Wj] that is (2ε, q)-
regular and has exactly m = γq|Wi||Wj| edges.

Proof. For each i ∈ [h] \ [2], let Wi be an arbitrary subset of U e
i of size |W1|. Under the

event E2 ∩ E3, Lemma 6 guarantees that the bipartite graph G′t[Wi,Wj] is (ε, q)-regular,
for each t = uiuj ∈ E(H) \ {u1u2}. Now we are left to show that G′t[Wi,Wj] has density
at least γq.

Since G′t has the DISC(η) property, we have

e(G′t[Wi,Wj]) >
vol(Wi)vol(Wj)

vol(G′t)
− η · vol(G′t), (15)

where the volume is over G′t. By (12), we have vol(G′t) < 2qn2. Moreover, the volumes
vol(Wi) and vol(Wj) are at least qn|Wi|/2. Therefore, it follows from (15) that

e(G′t[Wi,Wj]) >
(qn

2

)2
· |Wi||Wj|

2qn2
− 2ηqn2 >

q

16
|Wi||Wj|.

In the last inequality, we used that |W1| > (µ/hs2)n and η 6 µ2/(28s4h2). As γ 6 1/16, it
follows that G′t[Wi,Wj] has density at least γq. We apply Lemma 4 to obtain a spanning
bipartite subgraph Bt ⊆ G′t[Wi,Wj] that is (2ε, q)-regular and has m = γq|Wi||Wj| edges.

�
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By Lemma 17, G ∈ P with high probability. Combining this with Lemmas 10, 15
and 19, with high probability for every proper edge-coloring of G, a random assignment σ
is in the event E1 ∩ E2 ∩ E3 with probability 1 − o(1). There must exist an assignment
σ : N → E(H) such that the conclusion of Claims 20 and 21 hold. Hence we have that
the G0 := ∪t∈E(H)Bt is a spanning subgraph of G[W1, . . . ,Wh] and with the following
properties:

(a) For all i ∈ [h], we have |Wi| = ñ for some ñ > µ|V1|.

(b) For each t = uiuj ∈ E(H), the bipartite graph G0[Wi,Wj] is (2ε, q)-regular, has
m = γqñ2 edges and all the colors on those edges are assigned to t.

(c) For every ab ∈ G0[W1,W2], with a ∈ W1 and b ∈ W2, there is a copy Fab of F in
G[V0] containing ab. Moreover, in these copies the vertices a and b correspond to
the vertices w1 and w2, respectively.

(d) The graph Fab is a rainbow graph whose colors are assigned to t0.

Observe that properties (a) and (b) guarantee that G0 ∈ G(H, ñ,m, γq, 2ε).
Recall that J ∈ H ⊕ F . Now we claim that if G0 contains a transversal copy of H,

then G contains a rainbow copy of J in the coloring c. In fact, as the edges in G0[Wi,Wj]
only use colors assigned to t = uiuj, any transversal copy of H in G0 is rainbow. Moreover,
by properties (c) and (d), each transversal copy of H in G0 can be extended to a copy
of J in G by amalgamating a copy of F with H on the edge t0 = u1u2 that is rainbow
and only uses colors assigned to t0. Therefore, we conclude that the copy of J we found
is also rainbow.

Let G be the family of h-partite graphs G0, with V (G0) ⊆ V , that may be construct
as the following. Chose W1 ⊆ U e

1 , . . . ,Wh ⊆ U e
h (for some e ∈ E(H)) as subsets of size ñ

to be the h parts of G0; and for each uiuj ∈ E(H), chose m edges to belong to G0[Wi,Wj]
such that G0[Wi,Wj] is a (2ε, q)-regular graph. Let G∗ be the family of graphs G0 ∈ G
that has no transversal copy of H. Therefore, G∗ is the family of possible graphs G0 that
we can construct in G and that satisfies (a)− (d) above, but that has not transversal copy
of H.

Let A be the event in which G has a subgraph G0 satisfying (a)− (d). We have proved
so far that P(A) = 1−o(1). The discussion above implies that if G ∈ A and if none of the

graphs in G∗ are contained in G, then G
rb−→ J . Therefore, we can bound the probability

that G
rb9 J by

P
(
G

rb9 J
)
6 P

( ⋃
G0∈G∗

{
G0 ⊆ G

})
+ P (¬A)

We already have that P (¬A) = o(1). It remains to show that other term in the inequality
above is o(1).
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By Lemma 16 and properties (b)-(c), we have

P
(
G0[W1,W2] v GF

)
6 qm and P

(
G0[Wi,Wj] ⊂ G

)
6 qm

for every {i, j} ⊆ [h] for which uiuj ∈ E(H) \ {t0}. Therefore,

P

( ⋃
G0∈G∗

{
G0 ⊆ G

})
6 |G∗| · qe(H)m. (16)

Since C is large enough and p > Cn−β(H,S), we have m = γqñ > Bn2−1/m2(H). This
together with the choice of ε allow us to apply Theorem 9 and obtain the that

|G∗| 6 e(S)2hñ · ϑm
(
ñ2

m

)e(H)

6 2e(H)m · ϑm
(
ñ2

m

)e(H)

.

The term e(S)2hñ (which is at most 2e(H)m, since m� n) comes from the possible choices
of W1, . . . ,Wh to be the h parts of G0. Combining with (16), we obtain that

P
(
G

rb9 J
)
6 |G∗| · qe(H)m + o(1)

6 2e(H)m · ϑm
(
ñ2

m

)e(H)

qe(H)m + o(1)

6 ϑm
(

2eqñ2

m

)e(H)m

+ o(1)

6 ϑm
(

2e

α2

)e(H)m

+ o(1).

Since ϑ = (α2/4e)e(H), we get P
(
G

rb9 J
)
6 2−m + o(1), which finishes our proof.

6 Book graphs

Recall that, for a positive integer t, the book graph Bt is the graph obtained by the
amalgamation of t triangles along the same edge. In this short section we show that

B3t−2
rb−→ Bt, which guarantee that prbJ � n−1/m2(J), for any J ∈ Bt ⊕H, as discussed in

the end of the introduction (see Corollary 2).

Lemma 22. B3t−2
rb−→ Bt for every t > 1.

Proof. The base case t = 1 is trivial, since every proper edge coloring of a triangle is
rainbow. We assume that the lemma holds for every integer up to t− 1 and we move one
step in the induction. Let Φ be a proper-coloring of B3t−2 and let

V (B3t−2) = {u1, u2, v1, . . . , v3t−2}
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where {u1, u2, vi} is a triangle, for each i ∈ [3t− 2], and {v1, . . . , v3t−2} is an independent
set. By induction, we have that Φ induces a rainbow copy of Bt−1, which, without loss of
generality, we assume to be induced by {u1, u2, v1, . . . , vt−1}.

Let X be the set containing any vk, with t 6 k 6 3t−2, such that {u1, u2, . . . , vt−1, vk}
does not induces a rainbow copy Bt. Since the coloring is proper, we have that Φ(uivk)
is different of Φ(u1u2) for every i ∈ {1, 2} and vk ∈ X. Therefore, if vk belongs to X,
then we must have that Φ(uivk) = Φ(u3−iv`) for some i ∈ {1, 2} and ` ∈ [t− 1]. For fixed
i ∈ {1, 2}, since the coloring is proper, there can be at most t − 1 indices k such that
Φ(uivk) = Φ(u3−iv`), for some ` ∈ [t − 1]. Therefore we have that |X| < 2t − 2 and we
conclude that there exists a vertex that yields a rainbow copy of Bt.
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