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Abstract

This paper investigates the finite line-transitive point-imprimitive linear spaces.
Let S be a non-trivial finite line-transitive point-imprimitive linear space with the
Fang-Li parameter k(" = 11 or 12. Our conclusion is that S is the Desarguesian
projective plane PG(2,11).

Mathematics Subject Classifications: 05B05, 20B25, 51E05

1 Introduction

A finite linear space S = (P, L) consists of a finite set P and a non-empty set L of subsets
of P, where P is a set of v points and L consists of b distinguished subsets called lines,
such that any two distinct points are exactly on one line and each line contains at least
two points. & is said to be non-trivial if every line has more than two points. If the
lengths of all lines are equal, then we say that S is regular. An automorphism of S is a
permutation of P which leaves the set £ invariant. The full automorphism group of S will
be denoted by Aut(S). Any subgroup of Aut(S) will be called an automorphism group
of §. An automorphism group G of § is called line-transitive (resp.point-transitive) if it
acts transitively on £ (resp.P). Owing to the result of Block ([3]), S is point-transitive
if S is line-transitive. Similarly, if the automorphism group G acts primitively on points,
then we say that S is point-primitive, otherwise, S is said to be point-imprimitive.

In this paper, we focus on the non-trivial finite line-transitive point-imprimitive linear
space. Then the size of lines is constant, say k, so S is regular and is a 2-(v, k, 1) design.
It is easily known that for a non-trivial regular linear space, every point lies on the same
number of lines, and is denoted by r. For a non-trivial finite linear space with parameters
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v, 7, k and b > 2, it is well known that vr = kb and r = 7=.
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Let S = (P, L) be a non-trivial finite linear space admitting G as a line-transitive
point-imprimitive automorphism group, and C = {C},Cy,--- ,Cy} be a G-invariant par-
tition of the point set P with d classes of size c. In [9], Delandtsheer and Doyen proved
that there exist two positive integers x and y such that

G o ¢ )
Y x

where x represents the number of unordered pairs of points {a, 8} of a line A which belongs
to the same class of C. We refer to ¢,d, x and y as the Delandtsheer-Doyen parameters.
They also demonstrated that a line-transitive point-imprimitive 2-(v, k, 1) design must
satisfy v < (@ — 1)2. For the special case when v = (@ — 1)2, Nickel, Niemeyer,
O’Keefe, Penttila and Praeger proved that £ must be equal to 8 and constructed lots of
examples ([18]). On the other hand, the line-transitive point-imprimitive linear spaces
with line size k at most 8 were classified by Camina and Mischke in [5]. Praeger and Zhou
continued this work in 2008, classifying the line-transitive point-imprimitive linear spaces
with line size k at most 12 (]20]).
In 1991, Fang and Li introduced some parameters of linear spaces, defining

kY = ged(k,v), k") = ged(k,r), b = ged(b,v), b = ged(b, r).
For these parameters, we have
h= b(”)b(”, k= /{(v)]{(r)’ v=bWE® and r = £Mpr)
Furthermore, they proved that there exist two positive integers 7, d such that
c=~b" +1,d=6b" 4+ 1.

Here k@), k™) ™) b ~ and ¢ are called the Fang-Li parameters of S corresponding
to the partition C([12]). Note that, v is bounded by a function of k) according to [2,
Theorem 2.3]. Then Betten, Delandtsheer and Zhou et al. provided the classification of
the line-transitive point-imprimitive linear spaces with the Fang-Li parameter ged(k, r) <
8 ([2]). In 2012, this classification was extended up to 10 in [14]. In this paper, we continue
this work to find parameters which would yield multiple new examples of line-transitive,
point-imprimitive linear spaces, like the 2-(729, 8, 1) family constructed by Nickel et al. in
the 1990s which gave over 400 new examples. And we obtain the following classification.

Theorem 1. Let S be a non-trivial finite linear space with the Fang-Li parameter k") =
11 or 12, and the automorphism group G of S is line-transitive and point-imprimitive,
then S is the Desarguesian projective plane PG(2,11).

Combining Theorem 1, [2, Theorem 1.2] and [14, Theorem 1], we can conclude the
following corollary.
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Corollary 2. Let S be a non-trivial finite linear space with the Fang-Li parameter k™ <
12, and let G be a line-transitive point-imprimitive automorphism group of S. Then S is
the Desarguesian projective plane PG(2,4), PG(2,7), PG(2,9) or PG(2,11) or the Mills
design or Colbourn-McCalla design, both with (v, k) = (91,6), or one of the 467 Nickel-
Niemeyer-O’Keefe- Penttila- Praeger designs with (v, k) = (729, 8).

As can be seen from the corollary 2, we have not found any new examples. To find new
examples, it may be necessary to calculate larger Fang-Li parameter values. Therefore,
our next step is to explore new methods on the basis of the existing algorithms, find some
new parameters, and thus find some new examples. The rest of this paper is structured as
follows. In Section 2, we provide some preliminary results. In Section 3 and Section 4, we
utilize and implement the algorithms in [2] to generate a list of potential parameters and
some group theory information for k&) = 12 or 11. We then conduct a detailed analysis
of each of these potential parameters for k™ = 12 or 11, respectively.

2 Preliminary results

Let G be a transitive permutation group on P, C = {C1,Cy, -+ ,Cy} be a G-invariant
partition of P with d classes of size ¢. Then G¢ = G/G ) (called the top group) is a
transitive permutation group induced by G on C, and G = G¢/G ¢ ( called the bottom
group) is a transitive permutation group induced by G on C € C ([2]). Let C and C’ be
the partitions of P, if every class of C is contained in a class of C’, we say that C refines
C" and this refinement is strict if C # C’. We also say that C’ is coarser or strictly coarser
than C. The partition C is called minimal if it has no non-trivial strict refinement, and C
is called mazimal if the only G-invariant partition that is strictly coarser than C has only
one class. We called the group G is 2-step imprimitive if C is both maximal and minimal,
in this case, both G¢ and G¢ are primitive. If a partition C of P is both maximal and
minimal, then we call G is 2-step imprimitive relative to C, in this case, both G¢ and G¢
are primitive.

The partition C is G-normal if the subgroup G(¢y is transitive on each class of C.
By [2, Theorem 1.1], we know that if G is a line-transitive point-imprimitive group of
automorphisms of a linear space, then either

1. there exists a non-trivial G-normal point-partition; or
2. (G is point-quasiprimitive and almost simple.

Recall that a finite permutation group G is quasiprimitive if every non-trivial normal
subgroup of G is transitive. Equivalently, G is quasiprimitive if every minimal normal
subgroup of G is transitive (since overgroups of transitive groups are transitive).

In [10], the authors gave a systematic analysis of finite line-transitive linear spaces
with normal point-partition. Among their work, they defined the intersection type.

Definition 3. ([10]) Let S be a linear space, A € L. Define
di=|{CeC:|CNA =i},
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and
(Odoa 1d17 o 7kdk)

to be the intersection type of S.
We let the set of non-zero intersection sizes

Spec(S) :={i > 0:d; # 0}

be the spectrum of §. Since the transitivity of G on L, the intersection type and spectrum
are independent of the choice of A. We sometimes write Spece(S) if we need to specify
the partition C. For dy = d — Zle d;, hence it doesn’t matter to denote the intersection
type of S by (1%, ... | k).

In our discussion, t,,., plays an important role.

Definition 4. ([2]) For a given intersection type (19,--- k%), and non-empty subset
S C Spec (S), set d(S) = >_,cgdi. Define t,,q, to be the largest positive integer ¢ such
that, for all S C Spec (S), and all positive integers h < min{t,d(S)},

h

I
—

h—

(d=35) | b] ] (d(S) = 3).

20

<
Il
=)

If no such positive integer exists then define t,,,, to be 0.

According to the [2, Lemma 4.9], the condition holds for ¢t = 1, S0 t,,,4, is positive, and
then t,,.. is well-defined. For the sake of convenience, we state some results about linear
spaces and assume the following hypothesis throughout the paper.

HypPOTHESIS: Let S be a non-trivial finite linear space with v points and b lines, each
of line size k, and with r lines through each point. Assumes that G < Aut(S) be line-
transitive and point-imprimitive and leave invariant a non-trivial partition C = {C}, Cy,
-+, Cy } of P with d classes of size ¢ where ¢ > 1 and d > 1. Also, S has the Delandtsheer-
Doyen parameters c, d, z, y, the Fang-Li parameter £ k() b(®) b ~ § intersection type
(1%, k%), tpae. Moreover, let K = G¢), S = Soc(K), X = Ce(K), and Y = Cg(9)
if C is G-normal.

Next, we will present some lemmas regarding subgroups of the automorphism group

G.

Lemma 5. [5, Lemma 5] Assume that the HYPOTHESIS holds and let p be a prime divisor
of 1GI.

1) Ifp| |Gyl and k* =k + 1> max(r + k—p+1,r), then p | |G*| for any line X.

(i) Ifp>kand k> —k+1>r, thenp|v orp| (v—1). Furthermore, if T is a Sylow
p-subgroup of G, then |T| divides v or v — 1, respectively.

The following lemma is well known.
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Lemma 6. [8, Lemma 2] Assume that S = (P, L) is a non-trivial linear space admitting
a line-transitive automorphism group G. Let X € L and H < G such that, for F' :=
FiXP(H>7

(i) 2<|FNA| < |F|, and

(i) If K < Gy, |Fixp(K)N Al > 2, and H and K are conjugate in G, then H and K
are conjugate in Gy.

Then the deduced linear space S|p = (F,L|r) has constant line size and Ng(H) acts
line-transitively on S|p, where Llp = {ANF : A€ L|ANF| > 2}.

Since two Sylow p-subgroups of GG\ must be conjugate in Gy, we get:

Corollary 7. [2, Corollary 4.6] Assume that HYPOTHESIS holds. Let A € L, and let p be
a prime dividing |Gy|. Let P be a Sylow p-subgroup of Gy, and let F' = Fixp(P). Suppose
that 2 < |[F N A < |F|. Then

(i) Ng(P) is line-transitive on S|p;
(i) Clrp ={CNF:CeC,CNF +#0} is an Ng(P)-invariant partition of F;
(iii) |F|=f-|CNF|, where f =|C|p|, CNF €Clp, and |CNF| > 3.

Subsequently, some results about the top group G¢ and the bottom group G¢ were
given.

Lemma 8. [2, Lemma 4.9] Assume that the HYPOTHESIS holds. Then the corresponding
parameter t,q. 1S positive. Moreover, if G is t-transitive, then t < t,,40-

Lemma 9. [10, Proposition 2.6] Assume that the HYPOTHESIS holds.

(i) The number b(") divides each non-trivial subdegree of GC, and in particular, rank
(G°) < 1+6.

(i) The number b'") divides each non-trivial subdegree of G, and in particular, rank
(GY) < 1+7.

(iii) Moreover, for o € P, b divides each non-trivial subdegree of G¥ and each orbit

length of G, in A € L and o € \.
Lemma 10. [16] Assume that the HYPOTHESIS holds.
(i) If v =2, b is odd, and c is not a prime power, then G is 2-transitive on C.
(ii) If 6 = 2, b'") is odd, and d is not a prime power, then G€ is 2-transitive on C.

Finally, we collect some lemmas about line-transitive point-primitive linear spaces if
the partition C is G-normal.

ot

THE ELECTRONIC JOURNAL OF COMBINATORICS 31(2) (2024), #P2.10



Lemma 11. [2, Theorem 6.1] Assume that the HYPOTHESIS holds and that C is G-normal.

(i) If k> 2z + % + /4 — Z—i, then G ¢y is semiregular on points and lines, |G )| = c is
odd, and dy; > 0.

(ii) If < 8, then Gy has an abelian subgroup S of index at most 2 such that S is
normal in G, semiregular on points, and |S| = c is odd.

(iii) If either of the conditions of (i) or (ii) holds, and if C is minimal, then c is an odd
prime power and G is affine.

Lemma 12. [20, Lemma 2.2] Assume that the HYPOTHESIS holds, C is G-normal and
manimal.

(a) Then C is the set of S-orbits in P and

(i) Either Y N K =1, or S is elementary abelian and Y N K = S.
(i) Either X N K =1, or S is elementary abelian and X NK = K = S.

(b) Suppose in addition that C is mazimal, that Y N K = S # Y, and that one of the
following conditions holds:

Condition | Soc(G°) Eztra Property
1 abelian ged(e,d) =1
2 non-abelian | Schur multiplier of a minimal normal subgroup
of G¢ has no section isomorphic to S

Then G has a normal subgroup M =T x S, where T is a minimal normal subgroup of G
and TC is minimal normal in G¢. Moreover, either

(i) T is non-abelian and transitive on P, or

(ii) the set C" of T-orbits in P is a G-normal partition of P with |C'| = ¢ such that for
CeCandC' €, |C'=d, |CNC'| =1. Moreover, either M is reqular on P or

T is not semireqular on P.

3 Case k™ =12

In this section, we will deal with the non-trivial finite linear spaces with k(") = 12. By
applying Algorithms 1 and 2 in [1] which are implemented in GAP([13]), we obtain 16
cases listed in Table 1, which are potential parameter sequences

(d7 C? x? y? 77 67 k(v)7 kj(r)? b(v)7 b(’,‘)7 tma:v)'

For each case, there is no other partition of P which is neither a strict refinement nor
strict coarser than C, so all of their line-transitive and point-imprimitive automorphism
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groups are 2-step imprimitive relative to C. According to the classification of the primitive
groups (cf.[7],[11],[21]), we get the potential structures of the bottom groups and the top
groups for each case and list them in Table 2.

Table 1: Potential parameter sequences for k(") = 12

Case d-c (z,y) (7,0) k.M b®).p(r) tmaz  Reference
1 65-65 (1,1) (2,2) 1-12 4225-32 2 [20]
2 497-497 (7,7) (2,2) 7-12 35287-248 2 (T, 491)
3 3521-3521  (49,49) (2,2) 49-12 253009-1760 2 (T, 3517)
4 6113 (1L5)  (2,10) 112 7936 2 [20]
5 781-157 (11,55)  (2,10) 11-12 11147-78 2 KSXY
6 53-5 (1,13) (2,26) 1-12 265-2 1 [20]
7 1633-97  (23,391) (2,34) 23-12 6887-48 1 (T,1627)
8 2201-89 (31,775)  (2,50) 31-12 6319-44 1 (T,2179)
9 38549 (22,176) (4,32)  11-12 1715-12 1 (T, 383)
10 197 (39) (6,18  1.12 133-1 1or?2 [20]
11 13-61 (5,1) (10,2) 1-12 7936 2 [20]
12 157-781 (55,11)  (10,2) 11-12 11147-78 2 (T, tmaz)
13 7-19 (9,3) (18,6) 1-12 133-1 lor2 [20]
14 5-53 (13,1) (26,2) 1-12 265-2 5 [20]
15 49385  (176,22) (324) 1112 1715-12 1 (B, 383)
16 97-1633 (391,23) (34,2) 23-12 6887-48 2 (B,1627)
Table 2: Candidate groups with k(") = 12
Case | Soc(G°) Soc(GY)

1 Ags, PSL(2,2%), PSL(2,5%), Ags, PSL(2,2%), PSL(2,5%),
PSL(2,52%), PSU(3,22), Sz(2%) PSU(3,2%), Sz(2%)

2 Aggr Aggr

3 A3so1 A3zs21

4 A61, affine 14137 PSL(S, 3)7 affine

5 147317 PSL(5, 5) A157, affine

6 Ass, affine As, affine

7 A1633 14977 affine

8 A2201 Agg, affine

9 A385 14497 A7 X A7, PSL(Q, 7) X PSL(2, 7), affine

10 | Ajg, affine Az, PSL(2,7) = PGL(3,2), affine

11 Az, PSL(3,3), affine Ag1, affine

12 A157, affine A781, PSL(5, 5)

13 A7, PSL(2, 7) = PSL(?), 2) Alg, affine

14 As, affine Ass, affine

15 A49, A7 X 1477 PSL(2, 7) X PSL(Q, 7), affine A385

16 A97, affine A1633

Proposition 13. Assume that the HYPOTHESIS holds and k™) = 12. Then S is the
Desarguesian projective plane PG(2,11).

Proof. Since k") = 12, the parameter sequence of S

(d7 C? x? y? 7’ 57 k(v)7 k(’r)7 b(v)7 b(T)7 tmax)
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is one of lines in Table 1. By [20, Theorem 1.1], Cases 1, 4, 6, 11, 14 can be ruled out,
and S is the Desarguesian projective plane PG(2,11) for Cases 10, 13. ( The parameter
sequence of Case 1 was omitted in [20, Table 3|, but it also can be excluded by the method
of Case 12.)

Assume that Case 7 holds. Here d = 23-71 is not a prime power, then Soc(G¢) = Ag33
according to Table 2. It follows that 1627 | [Soc(G°)|, then 1627 | |G|. Let p = 1627,
then p > k = 276 and k* — k + 1 = 75901 > r = 576. However, p { v(v — 1) for
v(v—1) = 26.32.52.11-23-71-97, a contradiction by Lemma 5. Similarly, Soc(G®) = Aj33
for Case 16. Then p = 1627 satisfies the conditions of Lemma 5, but p { v(v — 1). Thus,
Case 16 can be ruled out. Cases 2, 3, 8, 9 and 15 can be excluded in the same way as
Cases 3 and 16. In Table 1, the symbol “(T,p)” (or “(B,p)”) denotes the contradiction
by the top group (or bottom group) and the prime p.

For Case 12, we have

3 / 7
k:132>2x+§+ 4:B—Z—lz126.3.

If the partition C is G-normal, then ¢ must be an odd prime power by Lemma 11, a
contradiction since here ¢ = 11 - 71. Therefore, G¢ = @ is quasiprimitive and almost
simple. Then lem(b,v) | |G|, thus, G > Aj5; according to Table 2. However, t,,4, = 2
for this case, which is impossible by Lemma 8. The symbol “(Tt,,4.)" refers to this
situation.

Suppose that Case 5 holds, then Soc(G€) = PSL(5,5) for ¢4, = 2 by Table 2 and
Lemma 8. If G¢ = G is an almost simple primitive group of degree d = 781, then
lem(v,b) | |G€|, a contradiction. Thus, the partition C is G-normal relative to K. Note

that
3 7
k=132> 20+ + 4z — £ =30,

then K = Z,57 is semiregular by Lemma 11, and
YﬁK:K:S, G/Y < Aut(S) = Zl56-

Since 781 | |G|, but 781 1 156, thus we have 781 | [Y|, hence Y¢ # 1. Therefore, there
exists a normal subgroup M of G by Lemma 12, such that

S<M<SY, M/S=M¢ M=TxS.

Also, we have ged(c, d) = 1, thus, either T is transitive on P or T" induces a new partition
of P with 157 parts of size 781. The latter cannot occur because the corresponding
case with parameters (d,c) = (157,781) in Table 1 has been ruled out. Thus, T is

transitive on P, and then ¢ | |T'|, we obtain the desired contradiction since |T| = |M€|
and |MC€| | |PSL(5,5)|. In Table 1, the symbol“ KSXY ” means that the corresponding
case is ruled out by Lemma 12. This completes the proof of Proposition 13. O
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4 Case k(™ =11

This section deals with the non-trivial finite linear spaces with k") = 11. By applying
Algorithms 1 and 2 of [1], a list of feasible parameters for k" = 11 is obtained. Table 9
(The table is placed in the Appendix) lists 180 cases, each providing values of the following
parameters:

(d,c,z,y,7,0, k™ kT b p® ¢ ).

The intersection types for each case are not displayed in Table 9 due to limited space.
For each case, there is no other partition of P which is neither strictly refined nor strictly
coarser than C, so all of their automorphism groups admitting line-transitive and point-
imprimitive are 2-step imprimitive relative to C, this provides a prerequisite for our proof
in this section.

Proposition 14. There is no non-trivial finite line-transitive point-imprimitive linear
space S with the Fang-Li parameter k™ = 11.

Proof. Suppose for the contrary that there exists a non-trivial finite line-transitive point-
imprimitive linear space S with the Fang-Li parameter k(" = 11. Then the parameter

sequence of &
(d7 C? x? y? ’Y’ 57 kj(v)? ]{;(T‘)7 b(v)7 b(r)7 tma:c)

is one of the lines in Table 9. Cases 67, 73, 80, 96, 117, 129 and 137 can be ruled out
by [20, Theorem 1.1]. According to [7, Table 2-8|, [11, TABLE B.4] and [21, Table 2-12],
there are 22 cases with SOC(GC) = A,. However, t,,.. = 1 or 2 for these cases, which
is impossible by Lemma 8. We denote this contradiction in Table 9 with the symbol
“(T, tmaz)”-

For Case 5, d = 1440 = 25 .32 .5 is not a prime power, then Soc(G¢) = Ay or
PSL(2, 1439) according to [21, Table 2-12]. For both cases, the prime 719 | |Soc(G¢)|.
Let p = 719, then p > k = 132 and k> — kK + 1 = 17293 > r = 15829. However,
pfou(v—1)=210.3".52.11-131- 1439, a contradiction by Lemma 5. Similarly, there
are 80 cases which can be ruled out. This contradiction is represented in Table 9 by the
symbols “(T,p)” or “(B,p)”.

Next, we consider the remaining cases in Table 9.

Step 1. Cases 1, 9-12, 16, 25, 28, 33, 44, 57, 66, 72, 76, 82, 92, 95, 101, 105, 106, 108, 115,
132, 145 and 155 cannot occur.

For Cases 9-12, 66, 105, 132, 145 and 155, we have § = 1. Then G€ is 2-transitive by
Lemma 9. For Cases 16 and 106, § = 2, b(") is odd, and d is not a prime power, then G¢
is 2-transitive by Lemma 10. Thus, we can get the potential top groups for these cases
according to the classification of 2-transitive permutation groups ([4, Theorem 5.3]). For
the rest of cases, we get the potential top groups by [11, TABLE B.4] and [21, Table 2-12].
The information for their top groups is listed in Table 3.

Firstly, Cases 9, 10, 12, 16, 106, 132, 135 and 155 are ruled out by Lemma 8. Secondly,
for Cases 1, 11, 25, 28, 33, 44, 57, 66, 72, 76, 82, 92, 95, 101, 105, 108 and 115, we have

3 7
k> 2 — 4+ /4r — —.
> x+2—|— X 1
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If the partition C is G-normal, then c is a prime power, a contradiction by Lemma 11.
Therefore, G¢ = G is quasiprimitive and almost simple. According to [6, MAIN THEO-
REM]|, Soc(GC) # A, for an integer n > 8. However, lem(b, v) 1 [Soc(GS)|| Out(Soc(G°))|
for each other potential top group, which is impossible.

Table 3: Relevant information for “Step 1”

Case | Soc(G°) k 2z + 3 + \/433 -1 c timax
1 Asso, PSL(2,229) ([11]) 22 =5 2-5-23 3
9 | Auzas ([4]) 2
10 | As7os ([4]) 2
11 | As700, PSL(2,8699) ([4]) 792 ~ 85.4 22.3.5%2.29 2
12| Arrarz ([4]) 2
16 | Aisses ([4]) 2
25 | Ass, PSL(2,41) ([21]) 132 ~ 18.2 24.3.5 2
28 | Ajyss, affine ([21]) 132 ~ 18.2 22.32.5 1
33 | Aisoo, affine ([21]) 132 ~ 18.2 23.3.5 2
44 | Ages, Us(22) ([11]) 22 = 2.5 1
57 | Aissi, affine ([21]) 132 ~ 18.2 23.3 2
66 | Agszo, PSL(2,9431) ([4]) 1716 ~ 338.4 13- 1451 2
72 | Ay, Ao, PSL(2,19) ([11]) | 33 ~ 10.7 5.7 2
76 A7697 affine ([11}) 143 ~ 34.6 5-13 1
82 | Aze1, affine ([11)) 143 ~ 34.6 3-13 1
92 | Asss, PSL(3,23) ([11]) 154 ~ 52.6 2.5-7 1
95 | Aigiz, PSL(2,1811) ([21]) 660 ~ 263.4 32.5.7-23 2
101 | Agyg, affine ([11]) 165 ~ 724 32 .52 1
105 | Aggaq, PSL(2,4643) ([4]) 2112 ~ 1005.3 24.1451 2
106 | Asos ([4]) 2
108 | Ao, Aog, PSL(2,19) ([11]) | 88 ~ 50.3 23 .17 1
115 | Agyo, PSL(2,239) ([11]) 132 ~ 85.4 5-7-41 2
132 | Ay ([4]) 2
145 | Asie ([4]) 2
155 | Aare ([4]) 2

Step 2. Cases 31, 38, 41, 43, 52, 54, 55, 59, 69, 75, 79, 81, 93, 109, 111, 113, 114 and 135
cannot occur.

For Cases 31, 38 and 43, we have v = 1, then G¢ is 2-transitive by Lemma 9. For
Case 69, v = 2, b is odd, and ¢ is not a prime power, then G¢ is also 2-transitive by
Lemma 10. Therefore, G¢ > A, for Cases 31, 38, 43 and 69 by [4, Theorem 5.3].

For Case 109, G¢ is a primitive group of degree ¢ = 2*-311. Let p; = 311, then G¢ has
an element g of order p;. Suppose that ¢ is a product of ¢ p;-cycles and |Fixe(g)| = m.
Then ¢ < 16. According to [22, Theorem 13.10], we have |Fixc(g)| < 4q — 4, it follows
that m = 0 since d = m (mod p;). Thus G > A, according to [17, Theorem1.1, Table
3]). Similarly, for Case 135, there is also G¢ > A.. For the rest of cases, we also can get
Soc(GY) = A, from [7, Table 2-8], [11, TABLE B.4] and [21, Table 2-12].

For Cases 31, 69, 109 and 135, we have k> — k + 1 > r, and a prime p > k which
p | |GC], but ptv(v — 1), contradicting Lemma 5. If the parameter sequence of S is one
of Cases 38, 41, 43, 52, 54, 55, 59, 75, 79, 81, 93, 111, 113 and 114 then there is a prime
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p | |G|, but ptb. Let P be a Sylow p-subgroup of G, then there is a line A € £ such that
P < G). Let F :=Fixp(P). For the line size k, let k; be the minimum integer such that
0 < k; <k and k = ky(mod p). For each case, we have k; > 2 and (v — k) 1 p, thus there
exist points not on A which are fixed by P, and so F' € . Then by Lemma 6, F' induces
a linear space S|p = (F, L|r). For this linear space, the number of the points

vo=|F|<k+r—p-—1,

the line-size
ko =|ANF| > k.

Since
Vo — 1 2 ko(k’o — 1) 2 kl(lﬁ — 1),

we have
kl(k1—1)<k+r—p—1,

a contradiction. The corresponding information about these cases is listed in Table 4.

Table 4: Relevant information for “Step 2”

Case | Group P Ky v—Fk ki(k1—1) | k+r—p—1
38 | GY > Agig ([4]) 811 | 377 22.33.83 1187 141752 9341
41 | GY > Agagp ([21]) | 2287 | 1673 | 2*-32.52.7.37-107 | 2797256 26873
43 | GY = Agre ([4]) 271 | 257 24.3%.7.17-31 65792 3281
52 | GY > Asrp ([11)) | 367 | 219 24.3.5-17-1319 47742 5033
54 | GC > Ag ([11]) 211 | 146 2.3°.5.23-43 21170 3209
55 | G¢ > Aggs ([11]) | 283 | 276 27.3.52.7.67 75900 4325
59 | GY > Aygso ([21]) | 1669 | 678 22.3%.19-10691 459006 27491
75 | GY > Aguss ([21)) | 2477 | 1813 | 2-3-5%-7-13-4289 | 3285156 15463
79 | G€ > Agper ([21]) | 2063 | 389 | 2-13-19-23.6577 150932 15877
81 | GY = Ayps([11]) 401 | 227 2-5-13-17-1429 51302 3239
93 | GY > Aus([11]) 443 | 57 2-3%.5.7-13-277 3192 2581
111 | G > Aszgse ([7]) | 3449 | 951 24.52.19.53-83 903450 8551
113 | GY > Aszpse ([7]) | 3049 | 2231 26.3.5.7-5279 4975130 8951
114 | GY > Agg ([11]) 89 87 24.52.7.13 7482 295

Step 3. Cases 24, 36, 46, 48, 49, 51, 58, 61, 62, 123 and 124 cannot occur.

For Case 24, since ¢4 = 2, we have G€ % Agso16 by Lemma 8. Now G€ is a primitive
group of degree d = 42-1451. Let p = 1451, then G has an element g of order p. Suppose
that ¢ is a product of ¢ p-cycles and |Fixc(g)| = m. Then ¢ < 16. According to [22,
Theorem 13.10], we have |Fix¢(g)| < 4g — 4, it follows that m = 0 since d = m (mod p).
However, there is no such primitive group of degree d according to [17, Theorem1.1, Table
3], a contradiction. Similarly, Cases 36, 46, 48, 49, 51, 58, 61, 62, 123, and 124 can also
be ruled out, and we list the corresponding information for these cases in Table 5.
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Table 5: Relevant information for “Step 3”

Case | G¢ tmaz d P
36 | % Ase2rs 1 52 . 1451 1451
46 | # Asere 1 22.32.241 | 241
48 | ¥ Ai3023 1 32.1447 | 1447
49 # Acera6 1 2-23-1451 | 1451
51 | 2% Ar1009 1 72 . 1451 1451
58 | % Asras 1 2°.179 179
61 # A10059 1 3-7-479 479
62 # A153806 1 2-53-1451 | 1451
123 | % Augrs 1lor?2 24.311 311
124 | £ Agss1 | lor2 | 3.7-311 | 311

Step 4. Cases 20 and 60 cannot occur.

For Cases 20 and 60, ¢ — 1 is prime. Let p = ¢ — 1, then Soc(GY) = A, or PSL(2, p)
by [21, Table 2-12] and [11, TABLE B.4]. If Soc(GY) = A, then there is a prime p;
(p1 = 1801 for Case 20, and p; = 541 for Case 60 ) such that p; | |GC|. Similar to Step
2, GY # A.. Thus, G¢ > PSL(2,c — 1). Now let P € Syl,(G), if P¢ =1, then P < G¢
for each C' € C, and |Fix¢(P)| > 1 since p 1 d. It follows that |Fixp(P)| > d, thus there
must exist a line A\ € £ such that P < Gy. On the other hand, P¢ < GY < PGL(2,p)
for each C € C. Since PGL(2,p) is sharply 3-transitive, the non-trivial subgroup P can
fix at most 2 points of C. But according to Lemma 7, |Fixc(P)| > 3, a contradiction.
Therefore, P¢ # 1, and then p | |G€|. Since G is a primitive group of degree d = q-p+1
(¢ = 4 for Case 20, ¢ = 83 for Case 60) and contains an element of order p which is a
product of m (1 < m < q) p-cycles and has at leat one fixed part of C. Then we get
G¢ > Ay according to [17, Theoreml.1, Table 2]. However, both Case 20 and 60 have
tmaz = 1, a contradiction by Lemma 8.

Step 5. Cases 125, 128, 136, and 159 cannot occur.

For Case 125, Soc(G€) = Az or PSL(2,179) by [11, TABLE B.4]. If G¢ = G is an
almost simple primitive group of degree d = 180, then lem(v,b) | |G€|, which leads a
contradiction because |G€| divides |Soc(G°)| - | Out(Soc(GC))|. Thus, the partition C is
G-normal relative to K. Note that

k:132>2x+;+\/4m—£%111.29,

then K = Zy433 is semiregular by Lemma 11, and
YNK=K= S, G/Y < Aut(S) = Z1432.

Since 180 | |G|, and 180 1 1432, we have 180 | |Y|. Hence Y # 1. Therefore, there exists
a normal subgroup M of G by Lemma 12, such that

S<M<Y,M/S=M° M=TxS.

Also, we have ged(c, d) = 1, thus, either T is transitive on P or T" induces a new partition
of P with 1433 parts of size 180. The latter case cannot occur because the corresponding

THE ELECTRONIC JOURNAL OF COMBINATORICS 31(2) (2024), #P2.10 12



case with parameters (d,c) = (1433,180) in Table 9 has been ruled out. Thus, T is
transitive on P, and ¢ | |T'|, we obtain the desired contradiction since |T| = |M¢| and
|MC]| | |Soc(GC)|. Therefore, this case is ruled out. Case 128 can be ruled out by the same
method as Case 125 (See Table 6).

For Case 136, 6 = 1, then G€ is 2-transitive by Lemma 9. Thus, Soc(G¢) = Ay or
PSp(8,2) by [4, Theorem 5.3]. If G¢ = G is an almost simple primitive group of degree
d = 120, then lem(v, b) | |G|, a contradiction. Thus, the partition C is G-normal relative
to K. If K is not semiregular, we have

L+ 2di(di = 1) < [Fixp(K,)| < d

by [19, Corollary 4.2] and [19, Lemma 5.1]. But in this case, the intersection type is (0?4,
184, 412) (036, 190 324) or (08, 124, 236, 312), a contradiction. Hence K is semiregular.
Since K < GY, K is the unique soluble minimal regular normal subgroup of primitive
group G¢. Thus,

K = 21429, YNK=K-= S, G/Y < Aut(S) = Zl428-
Since
511G, 5tlG/Y],
we have Y¢ # 1. There exists a normal subgroup M of G by Lemma 12, such that

S<M<Y,M/S=ZMM=TxS.

Then the conditions of Lemma 12 hold by [15, Theorem 5.1.4]. Thus, either T is
transitive on P or T induces a G-normal partition of P with 1429 parts of size 120.
The latter case cannot occur because the corresponding case with parameters (d,c) =
(1429,120) has been ruled out. Thus, T is transitive on P, and ¢ | |T'|, we obtain the
desired contradiction. Therefore, this case is ruled out. Cases 159 can be ruled out by
the same method as Case 136 (See Table 7).

Table 6: Relevant information for Case 128

Case | Soc(GC) lem(b, v) k| 2z+3+ \/4m -1 v
128 A225, A15 X A15, AS X Ag, 23 . 32 . 52 -7-449 165 =~ 136.9 32 . 52 - 449
A7 X A7, A6 X A6

Table 7: Relevant information for Case 159

Case | Soc(G°) lem(b, v) v intersection type
159 | Ags,PSL(2,25),PSL(2,5%), | 2°-5-13-769 | 5-13-769 | (1%5,226,513),  (139,429),
PSU(3,22),52(23) (013,113 326 413)

Step 6. Cases 122, 141, 157, 161, 164, 167, 170, 178 and 180 cannot occur.
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For Case 122, we have Soc(G¢) = A;7, PSL(2,2%), PSL(2,17), S4(2%), Ss(2) or Og (2)
for ¢4 = 2 according to [11, TABLE B.4] and Lemma 8. If G & G® is quasiprimitive and
almost simple, we have 19 | |G| for 19 | lem(b,v), a contradiction. Thus the partition
is G-normal. Suppose that K is semiregular, then K is regular since K is normal in the
primitive group G¢, hence K is a minimal normal subgroup of G¢ by [22, Proposition
11.4]. Then

K=M x Myx---x M,,

where M; is isomorphic to M; for all ¢ < i,j < s, and M, is simple. Therefore, |[K| =c =
|M;|°. However,
c=190=2-5-19,
thus, s = 1, then K is simple. But there is no simple group of order ¢, this contradiction
leads to that K is not semiregular.
According to [19, Proposition 4.3], we have
1 7

di < = 2k — - ~ 13.7,
1 2+ 1 3.7

however, the intersection type of this case is (054, 164 24 4%) (0% 156 2% 38) or (076,
132, 2%) a contradiction, so Case 122 is ruled out.

Similarly, Cases 141, 157, 161, 164, 167, 170, 178 and 180 can be ruled out. Please
refer to Table 8 for detailed information.

Table 8: Relevant information for “Step 6”

Casd Soc(G°) lem(b, v) c 14./26—7 | intersection type
141 | Agsgo, 2°.3%.5%.1451-2591 | 52-1451 | ~81.7 (01032 21500 5607
PSL(Q, 2591) (01092 21200 3300
157 | Ao, A, As 25.32.5.13 24.13 =7 (01,28,61), (02 2°.43)
161 | Asys, PSL(2,347) 24.3%.29.241 - 347 22.32.241 | ~40.3 (08, 2324 ,612,126)
164 | Asss, PSL(2,383) | 27- 32383 - 1447 321447 | ~49.2 (2216 336 4108 924y
(012 2216 4108 636 912)
(012 2216 336 5108 912
(024 2216 5108 636 912)
(036 3324 924)
(048 3288 636 912)
(048 2108 4216 912)
(060 3252 672 912
(060 2108 4108 5108 912)
167 | Aigos, 23.32.23.53-1451-1907 | 2-23-1451 | ~ 110.7 | (0%°2, 9552 4828 ,6276)
PSL(2,1907)
170 | Aigra, 24.32.72.13-1451-1871 | 721451 | ~ 114.2 | (0082588 3588 588)
PSL(2,1871)
178 | Ass, PSL(2,83) 27.3.7-83-179 25.179 ~ 32.97 | (424,6%8,1212),
(436 624 1024)
(03 412 648 818 163)
(06 424 854
180 | Ajos, PSL(2,107) | 22- 34.7.107 - 479 3-7-479 | =43.5 (784 1424)

This completes the proof of Proposition 14. m
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Proof of Theorem 1 and Concluding Remarks

The result follows from Propositions 13 and 14. OJ

In our future work, we will explore new methods, and then continue to expand the
classification up to the case of k(") = 16 to find new examples. Moreover, we will try to
explore whether there are other line-transitive point-imprimitive linear spaces which are
not Desarguesian projective planes when k(" > 13 and k = ¢+ 1, here ¢ is a prime power.
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Appendix

Table 9: Potential parameter sequences for k(") = 11

Case d-c (z,y) (7,0) k.M b(v).p(r) tmaz  Reference
I 230-230 @1 11 211 96450229 3 (Step 1)
2 472:472 (2,2) 1,1) 411 55696-471 2 (T, tmaz)
3 714714 (3,3) 1,1) 611 84966-713 2 (T tmas)
4 956-956 (4,4) (1,1) 811 114242-955 2 (T, tmaz)
5 1440-1440 (6,6) (1,1) 12-11 172800-1439 2 (T,719)
6 1924-1924 (8,8) (L,1) 16-11 231361-1923 2 (T, 1913)
7 2166-2166 (9,9) (1,1) 1811  260642-2165 2 (T,2161)
8 2892-2892 (12,12)  (L,1) 2411  348486-2801 2 (T, 2887)
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Case d-c (z,y) (7,0) k.M b(¥).p(r) tmaz  Reference
9 1344-4344 (18,18)  (1,1) 3611 5241764343 2 (Step 1)
10 5796-5796 (24,24) (1,1) 4811 699867-5795 2 (Step 1)
11 8700-8700 (36,36) (1,1) 72-11 1051250-8699 2 (Step 1)
12 1741217412 (72,72)  (1,1) 14411 210540117411 2 (Step 1)
13 471 - 236 (2,4) (1,2) 411 27789235 2 (T, traz)
14 1439-720 (6,12) (1,2) 1211 86340-719 2 (B, 359)
15 6279-3140 (26,52) (1,2) 52-11 379155-3139 2 (B, 3137)
16 18863-9432 (78,156) (1,2)  156-11  1140486-9431 2 (Step 1)
17 1438-480 (6,18) (1,3) 1211 57520-479 2 (T,1433)
18 101503384 (42,126)  (1,3) 8411  408900-3383 2 (B,3373)
19 1437-360 (6,24) (14) 1211 43110-359 2 (T, 1433)
20 7245-1812 (30,120)  (1,4) 6011  218799-1811 1 (Step 4)
21 226-46 (1,5) 1,5) 211 519845 2 (T, tmaz)
22 1436-288 (6,30) (15) 1211 34464-287 2 (B,283)
23 3856-772 (16,80) (1,5) 32-11 93026-771 2 (B, 769)
24 232164644  (96,480)  (L5) 19211  561537-4643 2 (Step 3)
25 1435-240 (6,36) (1,6) 12-11 28700-239 2 (Step 1)
26 708-102 (3,21) 1,7) 611 12036-101 1 (T, 701)
27 26118-3732 (108,756) (1,7)  216-11 451261-3731 1 (B,3727)
28 1433-180 (6,48) (18) 1211 21495179 1 (Step 1)
29 91771148 (38,304)  (1,8) 7611  138621-1147 1 (B,1129)
30 3610-402 (15,135) (1,9) 30-11 48374-401 1 (T, 3607)
31 1431144 (6,60)  (1,00)  12:11 17172143 2 (Step 2)
32 30471-3048  (126,1260) (1,10)  252-11 368554-3047 2 (B,3041)
33 1429-120 6,72)  (1,12) 1211 14290-119 2 (Step 1)
34 1912148 (8,104)  (1,13) 1611 17686-147 1 (T, 1907)
35 2305-172 (10,140)  (1,14)  20-11 20597171 1 (T, 2393)
36 36275-2592 (150,2100)  (1,14)  300-11 313416-2591 1 (Step 3)
37 1426-96 (6,90)  (1,15)  12:11 11408-95 2 (T, 1423)
38 13041-816 (54,864) (1,16) 10811 98532-815 1 (Step 2)
39 698-42 351)  (L,17) 611 4886-41 1 (T, 691)
40 2148114 (9,171)  (1,19) 1811 13604-113 2 (T, 2143)
A1 43530-2292  (180,3420) (1,19) 360-11  277141.2291 1 (Step 2)
42 142172 (6,120)  (1,20)  12:11 852671 2 (T, 1409)
43 5776-276 (24,504)  (1,21) 4811 33212275 1 (Step 2)
44 208-10 (1,23)  (1,23) 211 10409 1 (Step 1)
45 1417-60 (6,144)  (1,24) 1211 7085-59 1 (T, 1409)
46 8676-348 (36,900) (1,25) 7211 41934-347 1 (Step 3)
47 141148 (6,180)  (1,30)  12:11 5644-47 2 (T, 1409)
48 13023-384 (54,1836)  (1,34) 10811 46304-383 1 (Step 3)
49 66746:1908  (276,9660) (1,35) 55211 2307091907 1 (Step 3)
50 1888-52 (8,206)  (1,37) 1611 613651 1 (T, 1879)
51 71099-1872  (294,11172) (1,38) 58811 226356-1871 1 (Step 3)
52 14470372 (60,2340)  (1,39)  120-11 44857-371 1 (Step 2)
53 1401-36 (6,240) (1,40) 12-11 4203-35 1 (T, 1399)
54 10830222 (45,2205)  (1,49)  90-11 26714-221 1 (Step 2)
55 15424202 (64,3392)  (1,53) 12811 35186-291 1 (Step 2)
56 414-8 (2,118)  (1,59) 411 8287 1 (T, 409)
57 1381-24 (6,360) (1,60) 1211 2762-23 2 (Step 1)
58 5728-84 (24,1656)  (1,69) 4811 10024-83 1 (Step 3)
59 117531-1680  (486,34020) (1,70) 972-11 203140-1679 2 (Step 2)
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Case d-c (z,y) (7,0) k.M b(¥).p(r) tmaz  Reference
60 45402-548 (188,15604) (1,83) 376-11 66171-547 1 (Step 4)
61 10059-108 (42,3948)  (1,94) 8411 12933-107 1 (Step 3)
62 153806-1620  (636,60420) (1,95) 1272-11  195885-1619 1 (Step 3)
63 236-471 (4,2) (2,1) 411 27789-235 2 (T, tmaz)
64 720-1439 (12,6) 2,1) 1211 86340719 2 (T, 359)
65 3140-6279 (52,26) (2,1) 52-11 379155-3139 2 (T,3137)
66 9432-18863 (156,78) (2,1)  156-11  1140486-9431 2 (Step 1)
67 53-27 (1,2) (24) 111 143113 1 ([20))
68 39251963 (65,130)  (24) 6511 118535981 1 (T, 3923)
69 12576-5031 (208,520) (2,5) 208-11 304182-2515 1 (Step 2)
70 141484043  (234,819)  (2,7) 23411  244446-2021 1 (B, 4027)
71 777195 (13,52) (2,8) 13-11 11655-97 1 (T, 773)
72 171-35 (3,15) (2,10) 311 199517 2 (Step 1)
73 49.32 (1,6) (2,12) 111 441-4 1 ([20))
74 590-63 (10,95)  (2,19)  10-11 3717-31 1 (T, 587)
75 235802483 (390,3705)  (2,19) 39011  150126-1241 1 (Step 2)
76 769-65 (13,156) (2,24) 1311 3845-32 1 (Step 1)
7 342.23 6,93)  (2,31) 611 1311-11 1 (T, 337)
78 885-53 (15,255) (2,34) 1511 3127-26 1 (T, 883)
79 36156-2067  (598,10465) (2,35) 59811 124974-1033 1 (Step 2)
80 373 (1,18)  (2.36) 111 1111 1 ([20))
81 7840-403 (130,2535)  (2,39) 130-11 24304-201 2 (Step 2)
82 761-39 (13,260) (2,40) 1311 2283-19 1 (Step 1)
83 480-1438 (18,6) (3,1) 12-11 57520-479 2 (B, 1433)
84 338410150  (126,42)  (3,1) 8411  408900-3383 2 (T, 3373)
85 76-76 (3,3) (3,3) 2-11 2888-25 2 (T,73)
86 237-178 (9,12) (3,4) 6-11 7031-59 2 (T, 233)
87 156-94 (6,10) (3,5) 4-11 3666-31 1 (B, 89)
88 559-280 (21,42) (3,6) 14-11 11180-93 2 (T, 557)
89 316-106 (12,36) (3,9) 811 4187-35 1 (T,313)
90 556-112 (21,105)  (3,15)  14-11 444837 1 (T, 547)
91 2248-322 (84,588)  (3.21) 5611 12926-107 2 (T, 2243)
92 553-70 (21,168) (3,24) 1411 2765-23 1 (Step 1)
93 5067448 (189,2142)  (3,34) 12611 18016-149 1 (Step 2)
94 360-1437 (24,6) (4,1) 12-11 43110-359 2 (B,1433)
95  1812:7245 (120,30)  (4,1) 6011  218799-1811 2 (Step 1)
96 27.53 (2,1) (42) 111 143113 2 ([20))
97 1963-3925 (130,65) (4,2) 65-11 118535-981 2 (B,3923)
98 178-237 (12,9) (4,3) 6-11 7031-59 lor2 (B,233)
99 2265-2265 (150,150) (4,4) 75-11 68403-566 1 (T,2251)
100 540-309 (36,63)  (47) 1811 9270-77 lor2  (B,307)
101 449-225 (30,60)  (48) 1511 6735-56 1 (Step 1)
102 46226 (5,1) (51) 211 510845 2 (T, tmaz)
103 2881436 (30,6) (51)  12:11 34464-287 2 (T, 283)
104 772-3856 (80,16) (5,1) 32:11 93026-771 2 (T, 769)
105 464423216 (480,96)  (5,1) 19211  561537-4643 2 (Step 1)
106 5031-12576 (520,208) (5,2) 208-11 304182-2515 2 (Step 1)
107 94-156 (10,6) (5,3) 411 3666-31 2 (T,89)
108 190-136 (20,28) (5,7) 811 3230-27 1 (Step 1)
109 6966-4976 (720,1008)  (5,7)  288-11 120357-995 1 (Step 2)
110 92-36 (10,26) (5,13) 4-11 828.7 1 (T,89)
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111 9675-3456 (1000,2800)  (5,14)  400-11 83592-691 1 (Step 2)
112 18856 (20,68)  (517) 811 1316-11 1 (T,181)
113 11610-3056  (1200,4560) (5,19)  480-11 73917-611 1 (Step 2)
114 38196 (40,160)  (5,20) 1611 228619 lor2  (Step2)
115 2401435 (36,6) 6,1)  12:11 28700-239 2 (Step 1)
116 280-559 (42,21) (6,3) 14-11 11180-93 1lor2 (B, 557)
117 17-13 (3,4) 6,.8) 111 2212 lor2  ([20))
118 102-708 (21,3) (7,1) 6-11 12036-101 2 (B,701)
119 373226118 (756,108)  (7,1) 21611  451261-3731 2 (T, 3727)
120 4043-14148 (819,234) (7,2) 234-11 244446-2021 2 (T,4027)
121 309-540 (63,36) (7,4) 18-11 9270-77 2 (T,307)
122 136-190 (28,20) (7,5) 811 3230-27 2 Step 6
123 4976-6966 (1008,720)  (7,5)  288-11 120357-995 lor2 Step 3

124 6531-4572 (1323,1890) (7,10

~—

( )
( )
37811 78994-653 lor2  (Step 3)
( )

125 180-1433 (48,6) (8,1) 12-11 21495-179 2 Step 5

126 11489177 (304,38) (81) 7611 138621-1147 2 (T,1129)
127 195-777 (52,13) (8,2) 1311 11655-97 2 (B, 773)
128 225-449 (60,30) (8,4) 1511 6735-56 lor2  (Stepb)
129 1317 (4,3) (8,6) 1-11 221-2 lor2 ([20])

130 402-3610 (135,15) (9,1) 3011 48374-401 2 (B, 3607)
131 106-316 (36,12) (9,3) 811 4187-35 lor2 (B,313)
132 144-1431 (60,6) (10,1)  12-11 17172-143 2 (Step 1)
133 3048-30471  (1260,126)  (10,1)  252-11  368554-3047 2 (T,3041)
134 35-171 (15,3) (10,2) 311 1995-17 2 (T, tmax)
135 4572-6531  (1890,1323) (10,7) 37811 78994-653 lor2  (Step?2)
136 120-1429 (72,6) (12,1)  12-11 14290-119 2 (Step 5)
137 32.7% (6,1) (12,2) 1-11 441-4 9 ([20])

138 148-1912 (104,8) (13,1) 1611 17686-147 2 (B,1907)
139 36-92 (26,10) (13,5) 411 828-7 lor2  (B,89)

140 172-2395 (140,10)  (14,1) 2011 20597-171 2 (B,2393)
141 2592:36275  (2100,150)  (14,1)  300-11  313416-2591 2 (Step 6)
142 3456-9675  (2800,1000) (14,5)  400-11 83592-691 2 (T, timaz)
143 96-1426 (90,6) (15,1)  12-11 11408-95 2 (B, 1423)
144 112-556 (105,21)  (15,3) 1411 4448-37 lor2 (B,547)
145 816-13041 (864,54)  (16,1)  108-11 98532-815 2 (Step 1)
146 42-698 (51,3) (17,1) 611 4886-41 2 (B,691)
147 56188 (68,20) (17,5) 811 1316-11 lor2 (B,181)
148 114-2148 (171,9) (19,1) 1811 13604-113 2 (B,2143)
149 229243530  (3420,180) (19,1)  360-11  277141-2291 2 (T, tmaz)
150 63-590 (95,10) (19,2)  10-11 3717-31 2 (B, 587)
151 248323580  (3705,390) (19,2)  390-11 150126-1241 2 (T, tmaz)
152 3056:11610  (4560,1200) (19,5)  480-11 73917-611 lor2 (T, tmax)
153 72-1421 (120,6) (20,1) 1211 8526-71 2 (B, 1409)
154 96-381 (160,40)  (20,5)  16:11 2286-19 1 (T, tmaz)
155 276-5776 (504,24)  (21,1) 4811 33212275 2 (Step 1)
156 322-2248 (588,84)  (21,3)  56:11 12926-107 lor2 (B,2243)
157 10-208 (23,1) (23,1) 211 1040-9 3or 10  (Step 6)
158 60-1417 (144,6) (24,1)  12-11 7085-59 2 (B, 1409)
159 65-769 (156,13)  (24,2) 1311 3845-32 2 (Step 5)
160 70-553 (168,21)  (24,3) 1411 2765-23 lor2 (T tmaz)
161 348-8676 (900,36)  (25,1) 7211 41934-347 2 (Step 6)
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162 481411 (180,6)  (30,1)  12-11 564447 2 (B, 1409)
163 23-342 (93,6) (312) 611 1311-11 2 (B, 337)
164 384.13023  (1836,54)  (34,1) 10811 46304-383 2 (Step 6)
165 53-885 (255,15)  (34,2) 1511 3127-26 2 (B, 883)
166 448:5067  (2142,189) (34,3)  126-11 18016:149  lor2 (T, tmas)
167  1908-66746  (9660,276)  (35,1)  552-11  230709-1907 2 (Step 6)
168 2067-36156  (10465,598) (35,2) 59811 1249741033 2 (T tmaz)
169 521888 (296,8)  (37,1) 1611 6136-51 2 (B,1879)
170 1872:71099  (11172,204) (38,1) 58811  226356-1871 2 (Step 6)
171 37214470  (2340,60)  (39,1)  120-11 44857-371 2 (T, tmaz)
172 403-7840  (2535,130) (39,2)  130-11 24304-201 2 (T, traz)
173 36-1401 (240,6)  (40,1)  12-11 4203-35 2 (B,1399)
174 39-761 (260,13)  (40,2)  13-11 2283-19 2 (T traz)
175 22210830  (2205,45)  (49,1)  90-11 26714-221 2 (T tmaz)
176 29215424  (3392,64)  (53,1) 12811 35186-291 2 (T, tmaz)
177 8-414 (118,2)  (59,1) 411 828-7 3 (B,409)
178 84.5728 (1656,24)  (69,1) 4811 10024-83 2 (Step 6)
179 1680-117531  (34020,486) (70,1) 97211  203140-1679 2 (T traz)
180 108:10059  (3948,42)  (94,1)  84-11 12933107 2 (Step 6)
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