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Abstract

Classical Hamming graphs are Cartesian products of complete graphs, and two
vertices are adjacent if they differ in exactly one coordinate. Motivated by connec-
tions to unitary Cayley graphs, we consider a generalization where two vertices are
adjacent if they have no coordinate in common. This generalization is equivalent to
a direct product of complete graphs. Metric dimension of classical Hamming graphs
is known asymptotically, but, even in the case of hypercubes, few exact values have
been found. In contrast, we determine the metric dimension for the entire diagonal
family of 3-dimensional generalized Hamming graphs. Our approach is construc-
tive and made possible by first characterizing resolving sets in terms of forbidden
subgraphs of an auxiliary edge-colored hypergraph.

Mathematics Subject Classifications: 05C69, 05C12

1 Introduction

Consider an m× n chessboard with some cells occupied by landmarks. A landmark in
cell (i, j) sees all other cells that are in row i or column j. Is it possible to place landmarks
on the board so that each unoccupied cell is seen by a different (possibly empty) set of
landmarks? What is the minimum number of landmarks required? What if the puzzle is
played in higher dimensions on an n1 × · · · × nr board, where a landmark sees all other
cells that share at least one coordinate with the landmark’s cell?

This optimization puzzle is equivalent to finding the metric dimension of a generalized
Hamming graph. After providing background on metric dimension and Hamming graphs,
we solve the 2-dimensional puzzle using known results and then devote the rest of the
paper to solving 3-dimensional puzzles on n× n× n boards.

aDepartment of Mathematics and Statistics, California State Polytechnic University, Pomona,
California, U.S.A. (brianaf@cpp.edu).

bDepartment of Mathematics, St. Bonaventure University, St. Bonaventure, New York, U.S.A.
(cuhl@sbu.edu).

the electronic journal of combinatorics 31(2) (2024), #P2.13 https://doi.org/10.37236/12399

https://doi.org/10.37236/12399


1.1 Metric dimension

Let G be a finite connected graph with vertex set V . For vertices x, y ∈ V , define the
distance d(x, y) to be the length of the shortest path between x and y in G. Given a
subset of vertices W ⊆ V , whose elements are referred to as landmarks, we say W
is a resolving set (or W resolves G) provided that for every pair of distinct vertices
x, y ∈ V −W , there exists a landmark w ∈ W such that d(x,w) 6= d(y, w). A minimum
size resolving set is a metric basis for G. The metric dimension of G, denoted dimG,
is the size of a metric basis.

In the context of graph theory, metric dimension was introduced independently by
Harary and Melter [6] and Slater [16] in the 1970s. Bounds and values for metric dimension
and its variants have been found for many graph families. See [18] for a nice survey paper
on metric dimension and some applications, which include source localization (detecting
the source of spread in networks), detecting network motifs, and embedding biological
sequence data. See [11] for a survey on the many variants of metric dimension.

1.2 Hamming graphs

While there are many generalizations of Hamming graphs, we adopt the definition from
[15]. For an r-tuple of positive integers n1, . . . , nr and a set of distances K ⊆ {1, 2, . . . , r},
let the generalized Hamming graph HG(n1, . . . , nr;K) be the graph with vertex set
V = {(x1, . . . , xr) | 1 6 xi 6 ni} and adjacency defined by x ∼ y if and only if there
exists k ∈ K such that x and y differ in exactly k coordinates.

As noted in [15], generalized Hamming graphs include Cartesian products of complete
graphs

HG(n1, . . . , nr; 1) ∼= Kn1� · · ·�Knr .

In particular, this includes the classical Hamming graphs H(d, q) which are the Cartesian
products of d copies of the complete graph Kq (with the case of q = 2 yielding hypercubes,
also known as binary Hamming graphs). Cáceres et al. [3] determine the metric dimension
of a Cartesian product of two complete graphs and bound the metric dimension of the
Cartesian product of a complete graph with another graph. Research on resolvability in
Hamming graphs includes, for instance, work on coin-weighing problems (e.g., [5], [13],
[4], [14]), asymptotic results for metric dimension of general Cartesian powers [8], and
an integer linear programming approach for testing resolvability [12]. For more details
and references, see the survey [18]. We also note that Junnila et al. [9] determine the
minimum size of self-locating-dominating codes for the Hamming graphs H(3, q), which
is a different problem but has a similar flavor to metric dimension.

For purposes of the puzzle introduced at the beginning of this article, we are interested
in the generalized Hamming graphs HG(n1, . . . , nr; r). These graphs are isomorphic to
direct products (also called categorical or Kronecker products) of complete graphs

HG(n1, . . . , nr; r) ∼= Kn1 ×Kn2 × · · · ×Knr ,

in which two vertices are adjacent if they have no coordinates in common. For r > 2 and
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ni > 3, the graphs are connected with diameter two. In particular,

d(x, y) =


0 if x = y,

1 if x and y have no coordinates in common,

2 if x and y have at least one coordinate in common.

(Note that for r > 2, if n1 = n2 = 2, the graph HG(n1, . . . , nr; r) is disconnected, and if
n1 = 2 and n2, . . . , nr > 3, the graph is connected but has diameter 3.)

In terms of the puzzle, we see that, for r > 2 and ni > 3, the cells of an n1 × · · · × nr

board correspond to vertices in the graph HG(n1, . . . , nr; r), and a landmark w sees vertex
x precisely when d(w, x) = 2. Also, x and y that are not landmarks will be resolved if
and only if there is a landmark that sees x or y but not both, i.e., x and y are seen
by different sets of landmarks. Therefore a resolving set for the graph HG(n1, . . . , nr; r)
corresponds to a solution to the puzzle, and the metric dimension is the minimum number
of landmarks required to solve the puzzle.

Note that, alternatively, we could use the graphs HG(n1, . . . , nr; 1, . . . , r − 1). These
graphs also have diameter two, but the criteria for distance one and distance two are
swapped. It follows that the graphs HG(n1, . . . , nr; r) and HG(n1, . . . , nr; 1, . . . , r − 1)
have the same resolving sets and metric dimension, so we could use either graph to
represent our puzzles.

The generalized Hamming graphs under consideration can be expressed in terms of
various graph operations involving Cartesian products, complements, power graphs, and
exact distance graphs. Given a graph G, we can construct the graph complement G,
the k-th power graph G(k), and the exact distance-k graph G[\k]. All three graphs
share the same vertex set as G. Distinct vertices are adjacent in the k-th power graph
if they are at most distance k apart in G, while adjacency in the exact distance-k graph
requires a distance of exactly k. By [15, Lemma 3.1], the graphs HG(n1, . . . , nr; r) and
HG(n1, . . . , nr; 1, . . . , r−1) are complements of each other and we have the isomorphisms

HG(n1, . . . , nr; r) ∼= Kn1 ×Kn2 × · · · ×Knr
∼= (Kn1� · · ·�Knr)

[\r]

and
HG(n1, . . . , nr; 1, . . . , r − 1) ∼= (Kn1� · · ·�Knr)

(r−1).

For structural results on exact distance graphs of product graphs, see [1]. The above
isomorphisms will be useful in solving the 2-dimensional puzzle.

1.3 Two- and three-dimensional puzzles

By the remarks in the previous subsection, we can solve the 2-dimensional puzzle on an
m × n board by finding the metric dimension and minimum resolving sets of the direct
product HG(m,n; 2) ∼= Km×Kn or Cartesian product HG(m,n; 1) ∼= Km�Kn. Choosing
the latter, we can apply [3, Theorem 6.1] that for all n > m > 1, the metric dimension of
a Cartesian product of two complete graphs is

dim(Km�Kn) =

{
b2
3
(n+m− 1)c if m 6 n 6 2m− 1

n− 1 if n > 2m− 1.
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Moreover, [3, Lemma 6.2] provides necessary and sufficient conditions for a subset of
vertices S to be resolving based on relationships between the elements of S. More recently,
Kuziak et al. [10] determined an equivalent formula for the metric dimension of the direct
product Km ×Kn.

To solve the puzzle on an n1 × n2 × n3 board, we want to find the metric dimension
of HG(n1, n2, n3; 3) ∼= Kn1 × Kn2 × Kn3 or HG(n1, n2, n3; 1, 2) ∼= (Kn1�Kn2�Kn3)

(2).
We are unaware of any results that give the metric dimension of these graphs, so that
will be the focus of the remainder of the paper. In Section 2, we find a lower bound
for the metric dimension. In Section 3, we focus our attention on the diagonal family
HG(n, n, n; 3) ∼= Kn ×Kn ×Kn and develop a characterization of resolving sets in terms
of forbidden edge-colored subgraphs of an auxiliary hypergraph. In Section 4, we apply
the theorems from Section 3 to construct minimum resolving sets for diagonal Hamming
graphs. We end with the comprehensive Theorem 17 for the metric dimension of the
Hamming graphs HG(n, n, n; 3) ∼= Kn×Kn×Kn for n > 3 and indicate further research
directions with connections to unitary Cayley graphs.

Throughout the paper, let N = {(n1, n2, n3) ∈ N3 | n1, n2, n3 > 3} and let the
diagonal be diag(N ) = {(n, n, n) | n > 3}. We commonly denote an element of N as
n = (n1, n2, n3) and increment each coordinate to get n + 1 = (n1 + 1, n2 + 1, n3 + 1). For
n ∈ N, we let [n] = {1, 2, . . . , n}.

2 Lower Bound

In this section, we prove a lower bound for the metric dimension of the Hamming graphs
HG(n1, n2, n3; 3).

Given n ∈ N and a subset of vertices W of the Hamming graph HG(n; 3), let Wi,a be
the set of landmarks in the plane xi = a, i.e.,

Wi,a = {(x1, x2, x3) ∈ W | xi = a}

for 1 6 i 6 3 and a ∈ [ni]. We call the sets Wi,a blocks of color i.
We begin with a constraint on the minimum number of landmarks in the blocks of a

given color. Namely, if W is a resolving set, then the absence of landmarks in a block
forces the other blocks of that color to each contain at least three landmarks. Additionally,
if a block has only one landmark in it, then the other blocks of that color are forced to
each contain at least two landmarks.

Lemma 1. If W is a resolving set for the Hamming graph G = HG(n1, n2, n3; 3) (each
ni > 3), then

|Wi,a|+ |Wi,b| > 3

for all 1 6 i 6 3 and distinct a, b ∈ [ni].

Proof. Let W be a subset of the vertex set of G and let i = 1 (the proofs for i = 2, 3
are analogous). First suppose |W1,a| = 0 and |W1,b| = 2 for some a, b ∈ [n1]. Say the
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two landmarks in W1,b are (b, x1, y1) and (b, x2, y2). Now, since n2, n3 > 3, we can choose
x3 ∈ [n2]− {x1, x2} and y3 ∈ [n3]− {y1, y2} and define (x, y) as follows:

(x, y) =


(x1, y2) if x1 6= x2 and y1 6= y2

(x1, y3) if x1 = x2

(x3, y1) if y1 = y2.

To resolve the vertices (a, x, y) and (b, x, y), we would need a landmark that has a co-
ordinate in common with one of the vertices but not the other, i.e., a landmark from
W1,a ∪W1,b. But W1,a is empty, and, by construction, (x, y) has exactly one coordinate
in common with (x1, y1) and exactly one coordinate in common with (x2, y2), which im-
plies (a, x, y) and (b, x, y) are distance two from the elements of W1,b. Hence (a, x, y) and
(b, x, y) are unresolved.

Next suppose |W1,a| = 1 and |W1,b| = 1. Say the landmarks in W1,a∪W1,b are (a, x1, y1)
and (b, x2, y2). Defining (x, y) as in the previous case, we can similarly show that (a, x, y)
and (b, x, y) are distance two to the landmarks in W1,a ∪W1,b and are hence unresolved.

Finally, if |W1,a| + |W1,b| < 2, the case is all the worse, for if W was resolving, then
we could add another landmark to W1,a ∪W1,b to create a resolving set W ′ with |W ′

1,a|+
|W ′

1,b| = 2, a contradiction.

We next use the pairwise bound from Lemma 1 to determine a lower bound on the
total number of landmarks required to resolve Hamming graphs HG(n; 3).

Theorem 2. For n3 > n2 > n1 > 3, the Hamming graph G = HG(n1, n2, n3; 3) cannot
be resolved with fewer than 2n3 − 1 landmarks.

Proof. Suppose W resolves G. For 1 6 i 6 3, the sum |Wi,1| + |Wi,2| + · · · + |Wi,ni
| is

the total number of landmarks in W . If the minimum term in this sum is zero, Lemma 1
says the remaining terms are greater than or equal to three, giving at least 3(ni − 1)
landmarks. If the minimum term is one, Lemma 1 says the remaining terms are greater
than or equal to two, giving at least 1 + 2(ni − 1) landmarks. If the minimum term is
two, we have at least 2ni landmarks. Note that, under the assumption ni > 3, we have

2ni − 1 < 2ni 6 3(ni − 1).

So, regardless of the minimum term in the sum, we have 2ni − 1 as a lower bound on
the number of landmarks in W . In particular, 2n3 − 1 is a lower bound (and with the
assumption n3 > n2 > n1, it is the greatest of the lower bounds 2ni − 1).

In Section 4, we will show the bound in Theorem 2 is sharp by resolving the Hamming
graphs HG(n, n, n; 3) for n > 5 in 2n − 1 landmarks. In preparation, we develop an
equivalent characterization of resolving sets.
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3 Landmark Graphs and Forbidden Configurations

A priori, determining whether a subset of vertices W is a resolving set for a Hamming
graph HG(n; 3) involves checking whether all pairs of vertices are resolved. Instead of
doing this directly, we shift our focus to relationships between the elements of W . We
define an edge-colored hypergraph based on W and then characterize whether W is re-
solving in terms of forbidden edge-colored subgraphs. This characterization will be used
in Section 4 to construct minimum resolving sets for the diagonal family HG(n, n, n; 3).
First, we establish terminology regarding hypergraphs.

3.1 Hypergraphs

A hypergraph consists of a nonempty set of vertices, say W , and a (multi)set of hyper-
edges, each of which is a nonempty subset of W . A loop is a hyperedge with only one
vertex. A plain edge is a hyperedge with exactly two vertices. In this paper, we consider
the collection of hyperedges as a multiset, so it is possible to have multiple hyperedges
with the same set of vertices. In particular, we will encounter triple loops (three loops
with the same vertex), double loops (two loops with the same vertex), and double
edges (two plain edges with the same pair of vertices).

3.2 Landmark graphs and systems

As in Section 2, given a subset of vertices W in a Hamming graph HG(n; 3), let Wi,a be
the set of elements in W whose i-th coordinate is a. To highlight relationships between
the coordinates of elements of W , we define the landmark graph G(W ) to be the
hypergraph with vertex set W and hyperedges those Wi,a that are nonempty. We often
refer to G(W ) as the graph of W . The graph of W is 3-regular and has a proper 3-edge-
coloring obtained by assigning color i to the sets Wi,a. Note that the hyperedges of color
i form a partition of W . In practice, we will think of the first color as blue, second color
as green, and third color as pink. As an example, Figure 1 shows the landmark graph of
a resolving set for HG(3, 3, 3; 3).

The following lemma tells us a necessary condition on the structure of the landmark
graph if a diagonal Hamming graph is to be resolved with the lower bound of 2n − 1
landmarks. We use the phrase “plain edge” to emphasize an edge with two endpoints (as
opposed to a loop or larger hyperedge).

Lemma 3. Let n > 3. If W is a resolving set of HG(n, n, n; 3) of size 2n − 1, then the
landmark graph G(W ) has exactly one loop of each color and exactly (n − 1) plain edges
of each color.

Proof. Suppose W is a resolving set of HG(n, n, n; 3) of size 2n−1. First, note that if the
n blocks of color i all have size 2 or greater, then |W | > 2n, a contradiction. Hence there
must be at least one block of size 0 or 1. But if there is a block of color i that has size
0, then, by Lemma 1, the other blocks of color i all have size 3 or greater, which implies
|W | > 3(n− 1) > 2n− 1, also a contradiction. Thus there must be a block Wi,a of size 1.
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(1, 1, 1) (1, 2, 2) (1, 3, 3)

(2, 2, 1) (2, 3, 2) (2, 1, 3)

Figure 1: Landmark graph G(W ) of a resolving set for HG(3, 3, 3; 3). The six landmarks
in W are (1, 1, 1), (1, 2, 2), (1, 3, 3), (2, 2, 1), (2, 3, 2), and (2, 1, 3). Landmarks in the
same blue (solid) hyperedge have the same first coordinate; landmarks connected by a
green (dotted) edge have the same second coordinate; and landmarks connected by a pink
(dashed) edge have the same third coordinate.

Then, by Lemma 1, all other blocks Wi,b with b 6= a have size at least 2. Moreover, to get
exactly 2n− 1 elements in W , the sizes of Wi,b for b 6= a cannot exceed 2.

To optimally resolve the graphs in the diagonal family, we are interested in subsets W
that will produce a graph G(W ) with the structure given in Lemma 3. Our strategy is
to start with graphs that produce an equal number of plain edges of each color and then
add on loops. Though not necessary, we attempt to put all loops at the same vertex to
make the analysis and constructions easier. This leads us to the following definition.

Definition 4. Let n > 3 and n = (n, n, n). For W a subset of vertices of the graph
HG(n; 3), we say W is a 2-basic landmark system provided that:

1. |Wi,a| = 2 for all 1 6 i 6 3 and a ∈ [n]; and

2. |Wi,a ∩Wj,b| 6 1 for all 1 6 i < j 6 3 and a, b ∈ [n].

Letting u = (n+ 1, n+ 1, n+ 1), we can extend a 2-basic landmark system for HG(n; 3)
to a triple-looped landmark system W ∪ {u} for HG(n + 1; 3).

Condition (1) ensures that G(W ) only has edges with two endpoints, and condition
(2) ensures that G(W ) has no double edges. Thus, when W is a 2-basic landmark system,
G(W ) is a simple graph with n edges of each color. Note that the definition of a landmark
system makes no assertion as to whether W is a resolving set. Our goal is to find further
conditions, based on subgraphs of G(W ), which will allow us to determine if W is a
resolving set.

3.3 Subgraphs

Before continuing, we establish notation and definitions for subgraphs. We denote a path
with n vertices as Pn, a cycle with n vertices as Cn, and a complete bipartite graph with
parts of size m and n as Km,n. Some of our graphs will have loops and multiple edges, so
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Figure 2: If W is a 2-basic landmark system, then there are four possible footprints for
a non-landmark: rainbow C3, P4, P3 ∪ P2, and 3P2. If W is a triple-looped landmark
system, then there are three additional possible footprints: rainbow L2 ∪P2, P3 ∪L1, and
2P2 ∪ L1. Different line styles correspond to different edge colors.

we denote a vertex with n loops as Ln and a double edge between the same two vertices
as D2. We write G ∪H for the disjoint union of graphs G and H.

We say edge e covers vertex u if u ∈ e. A subset of edges E ′ determines an edge-
induced subgraph consisting of the edges in E ′ and the vertices they cover. In a graph
with an edge-coloring, a rainbow subgraph is a subgraph whose edges are all different
colors. We can identify (almost) every vertex in a Hamming graph with an edge-induced
rainbow subgraph of a landmark graph.

Definition 5. Let n ∈ N and let W be a subset of vertices of the Hamming graph
HG(n; 3). Given a vertex α = (a1, a2, a3) of the Hamming graph, define the footprint of
α (relative to W ) to be the subgraph of G(W ) induced by the edges Wi,ai . If Wi,ai = ∅
for all 1 6 i 6 3, then there is no edge-induced subgraph and α has no footprint.

In Figure 2, we show the possible footprints of a non-landmark vertex in a Hamming
graph HG(n; 3). There are four possible footprints assuming that W is a 2-basic landmark
system, and three additional footprints assuming W is a triple-looped landmark system.
The vertices of the footprint of α are the landmarks that have a coordinate in common
with α, i.e., the vertices in W that have distance 2 from α in HG(n; 3). Notice that the
footprint of a landmark has three edges/loops that share a common vertex, which in the
case of a triple-looped landmark system can either be a K1,3 or an L3. We omit these
from Figure 2 since landmarks are automatically resolved.

Because we are working with Hamming graphs of diameter two, the following straight-
forward but important observation allows us to determine whether W is resolving by
examining how footprints overlap.

Remark 6. Let W be a subset of vertices of a Hamming graph HG(n; 3). Note that
in the Hamming graph, a vertex (a1, a2, a3) /∈ W has distance two to the landmarks in
W1,a1 ∪W2,a2 ∪W3,a3 and distance one to the remaining landmarks in W . It follows that
distinct vertices α = (a1, a2, a3) and β = (b1, b2, b3) not in W are resolved if and only if

W1,a1 ∪W2,a2 ∪W3,a3 6= W1,b1 ∪W2,b2 ∪W3,b3 ,
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i.e., the footprints of α and β cover different sets of vertices.

3.4 Forbidden configurations for two-basic landmark systems

We are now ready to characterize whether W is resolving based on properties of the
landmark graph of W . In particular, we will find necessary and sufficient conditions in
terms of forbidden edge-colored subgraphs. We begin with two examples of configurations
that cannot occur in the landmark graph of a resolving set.

Lemma 7 (Forbidden 4-cycle). Let n ∈ N and let W be a subset of vertices of the graph
HG(n; 3). If the hypergraph G(W ) contains a cycle C4 with edge color pattern blue-green-
blue-pink (or colors permuted), then W is not a resolving set.

Proof. Suppose the graph of W contains a 4-cycle, as illustrated in Figure 3, with opposite
blue edges W1,a1 = {w1, w2} and W1,b1 = {w3, w4}, a green edge W2,a2 = {w2, w3}, and a
pink edge W3,a3 = {w1, w4}. Then the vertices (a1, a2, a3) and (b1, a2, a3) are unresolved
in HG(n; 3) since neither is a landmark and

W1,a1 ∪W2,a2 ∪W3,a3 = {w1, w2, w3, w4} = W1,b1 ∪W2,a2 ∪W3,a3 .

Similarly, if edge colors are permuted, there will be an unresolved pair of vertices.

Lemma 8 (Forbidden 6-cycle). Let n ∈ N and let W be a subset of vertices of the graph
HG(n; 3). If the hypergraph G(W ) contains a cycle C6 with edge color pattern blue-green-
pink-blue-green-pink, then W is not a resolving set.

Proof. Suppose the graph of W contains a 6-cycle, as illustrated in Figure 3, with opposite
blue edges W1,a1 = {w1, w2} and W1,b1 = {w4, w5}; opposite green edges W2,a2 = {w5, w6}
and W2,b2 = {w2, w3}; and opposite pink edges W3,a3 = {w3, w4} and W3,b3 = {w1, w6}.
Then the vertices (a1, a2, a3) and (b1, b2, b3) are unresolved in HG(n; 3) since neither is a
landmark and

W1,a1 ∪W2,a2 ∪W3,a3 = {w1, w2, w3, w4, w5, w6} = W1,b1 ∪W2,b2 ∪Wb3 .

Hence W is not a resolving set.

When either the 4-cycle from Lemma 7 (possibly with colors permuted) or the 6-cycle
from Lemma 8 appear in a landmark graph, the Hamming graph HG(n; 3) is unresolved.
We next show that when W is a 2-basic landmark system, these are in fact the only
configurations we must avoid to guarantee W is a resolving set.

Theorem 9. Let n ∈ diag(N ). If W is a 2-basic landmark system for the Hamming
graph HG(n; 3), then W is a resolving set if and only if the landmark graph G(W ) avoids
the following forbidden subgraphs:

1. a 4-cycle that contains all three colors of edges

2. a 6-cycle with opposite edges of the same color.
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Figure 3: The landmark graph of a resolving set must avoid forbidden 4-cycles and for-
bidden 6-cycles. The landmark graph of a resolving triple-looped landmark system must
also avoid rainbow triangles. Solid edges are blue, dashed edges are pink, and dotted
edges are green.

Proof. Using Lemma 7 and Lemma 8, we can see that W is not resolving when the
landmark graph G(W ) contains a 4-cycle that contains all three colors of edges or a
6-cycle with opposite edges of the same color.

Conversely, suppose W is a 2-basic landmark system whose graph G(W ) avoids forbid-
den 4-cycles and 6-cycles. We will show that W is a resolving set. Suppose α = (a1, a2, a3)
and β = (b1, b2, b3) are distinct vertices in HG(n; 3) and that neither is a landmark. We
will show the edges Wi,ai cannot cover the same set of vertices as the edges Wi,bi . We
consider cases based on the number of vertices covered. Throughout, we use the fact that
G(W ) is a simple graph with a proper 3-edge coloring.

Case 1 (3 vertices). If the edges Wi,ai and the edges Wi,bi cover the same set of three
vertices, then we must have Wi,ai = Wi,bi for i = 1, 2, 3 since it is not possible to have
two different edges of the same color in a subgraph with only three vertices. But this
contradicts our assumption that α and β are distinct.

Case 2 (4 vertices). Suppose the edges Wi,ai and the edges Wi,bi cover the same set of
four vertices. Since α is not a landmark, the edges Wi,ai cannot induce a K1,3 and hence
must induce a rainbow path P4. Likewise, the edges Wi,bi induce a rainbow path P4. The
only way for two different rainbow paths to cover all four vertices is to make a 4-cycle
with one set of opposite edges the same color and the other two edges different colors,
but we are assuming that G(W ) avoids this forbidden configuration.

Case 3 (5 vertices). Suppose the edges Wi,ai and the edges Wi,bi cover the same set of
five vertices. Then each set of edges induces a rainbow P2 ∪ P3. Up to permuting colors,
suppose the first P2 ∪ P3 has blue edge W1,a1 = {x, y}, green edge W2,a2 = {u, v}, and
pink edge W3,a3 = {u,w}, as in Figure 4[A]. If the second rainbow P2 ∪ P3 also has blue
edge {x, y}, then since there are no double edges, the green and pink edges must also
coincide, i.e., W2,a2 = W2,b2 and W3,a3 = W3,b3 , contradicting α and β being distinct. The
only other option is for the second rainbow P2∪P3 to have blue edge W1,b1 = {v, w} as in
Figure 4[B]. If the blue edge vw is the P2, then the edges W2,b2 and W3,b3 would have to
create a green-pink path xuy or yux, but this is not possible with a proper edge coloring.
If the blue edge vw is part of the P3, then the P2 would have to create a double edge
between x and y, which is not allowed.

Case 4 (6 vertices). Suppose the edges Wi,ai and the edges Wi,bi cover the same set
of six vertices. Then each set of edges creates a rainbow matching 3P2. We will show
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Figure 4: Illustrations for Cases 3 and 4 in the proof of Theorem 9. Line styles correspond
to the edge colors blue (solid), green (dotted), and pink (dashed). (A) and (B) It is not
possible for two different rainbow P2∪P3 graphs to cover the same set of five vertices. (C)
and (D) If two different rainbow matchings cover the same set of six vertices, the edges
together form a forbidden 6-cycle.

the only way this can happen is if the edges of the matchings together form a forbidden
6-cycle. Suppose the first rainbow matching has blue edge W1,a1 = {u, v}, green edge
W2,a2 = {w, x}, and pink edge W3,a3 = {y, z}, as in Figure 4[C and D]. The two matchings
must differ by at least one edge, so up to permuting colors, suppose they have different
pink edges. Then W3,b3 must connect a vertex from the blue edge W1,a1 to a vertex from
the green edge W2,a2 . Without loss of generality, say W3,b3 = {v, w}. Now, the blue edge
W1,b1 and green edge W2,b2 must cover the vertices u, x, y, and z. There are two ways to do
this, leading to either the 6-cycle uvwxyzu or uvwxzyu. Either way, the pattern of edge
colors around the cycle is blue, pink, green, blue, pink, green. But this is a contradiction
since we assumed that the graph of W has no forbidden 6-cycles.

Thus, in all cases, the edges Wi,ai and the edges Wi,bi cannot cover the same set of
vertices and so α and β are resolved. Hence W is a resolving set.

3.5 Forbidden configurations for triple-looped landmark systems

We next investigate conditions for when a triple-looped landmark system will resolve a
Hamming graph. We will use these conditions in Section 4 to construct resolving sets for
most of the Hamming graphs HG(n, n, n; 3) in 2n− 1 landmarks.

Recall that the graph of a triple-looped landmark system is obtained from the graph
of a 2-basic landmark system by adding a vertex with a triple loop. The next lemma
shows that if there is a rainbow triangle in the graph of a 2-basic landmark system, then
the extension to a triple-looped landmark system will not be a resolving set.

Lemma 10 (Triangle union triple loop). Let n ∈ N and let W be a subset of vertices
of the graph HG(n; 3). If the hypergraph G(W ) contains a rainbow triangle and a triple
loop, then W is not a resolving set.

Proof. Suppose the graph of W contains a rainbow triangle with blue edge W1,a1 =
{w1, w2}, green edge W2,a2 = {w2, w3}, and pink edge W3,a3 = {w3, w1}, as in Figure 3.
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Suppose the graph of W also contains a triple loop, say W1,b1 = W2,b2 = W3,b3 = {w4}.
Note that since the graph of W is properly colored, w4 /∈ {w1, w2, w3}. Now, the vertices
(a1, a2, b3) and (a1, b2, a3) in HG(n; 3) are unresolved since neither is a landmark and

W1,a1 ∪W2,a2 ∪W3,b3 = {w1, w2, w3, w4} = W1,a1 ∪W2,b2 ∪W3,a3 .

Hence W is not a resolving set.

The next theorem is analogous to Theorem 9, but allows for a triple loop at a single
vertex. Furthermore this theorem allows us to construct minimum resolving sets in the
next section.

Theorem 11. Let n ∈ diag(N ), and suppose W is a 2-basic landmark system for
HG(n; 3). Let u = (n+1, n+1, n+1). Then the triple-looped landmark system W∪{u} re-
solves HG(n+1; 3) if and only if the landmark graph G(W ) avoids the following forbidden
subgraphs:

1. a 4-cycle that contains all three colors of edges,

2. a 6-cycle with opposite edges of the same color, and

3. a rainbow triangle.

Proof. Let Vn and Vn+1 be the vertex sets of the Hamming graphs HG(n; 3) and HG(n+
1; 3), respectively. If a forbidden 4-cycle or 6-cycle exists in the graph of W , then W does
not resolve HG(n; 3), and so W ∪ {u} does not resolve HG(n + 1; 3). This is because
the new landmark u is adjacent to all of the vertices in Vn, so vertices in Vn can only be
resolved using a landmark from W . If a rainbow triangle exists in the graph of W , then a
rainbow triangle and triple loop exist in the graph of W ∪{u}, so by Lemma 10, W ∪{u}
does not resolve HG(n + 1; 3).

Conversely, suppose W is a 2-basic landmark system such that G(W ) avoids forbidden
4-cycles, forbidden 6-cycles, and rainbow triangles. We will show that W ∪ {u} is a
resolving set for HG(n + 1; 3).

Suppose α = (a1, a2, a3) and β = (b1, b2, b3) are distinct vertices in HG(n + 1; 3) and
that neither is a landmark. Note that, by Theorem 9, W is a resolving set for HG(n; 3),
so if α and β are both in Vn, then they are resolved by some landmark in W . If one
vertex, say α, is in Vn and the other vertex, β, is in Vn+1 − Vn, then u resolves α and β,
as u sees β but not α. The remaining case, where α and β are both in Vn+1−Vn, requires
the most work. We will show the edges Wi,ai cannot cover the same set of vertices as the
edges Wi,bi . We consider cases based on the number of vertices covered.

Note that the edges Wi,ai (likewise, Wi,bi) must consist of either a loop and two plain
edges, or a double loop and a plain edge. Thus the number of vertices covered ranges
between three and five.

Case 1 (3 vertices). If the edges Wi,ai and the edges Wi,bi cover the same set of three
vertices, then each set of edges induces a rainbow P2 ∪ L2, where the L2 must be at the
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same vertex. And then we must have Wi,ai = Wi,bi for i = 1, 2, 3 since there are no double
edges. But this contradicts our assumption that α and β are distinct.

Case 2 (4 vertices). Suppose the edges Wi,ai and the edges Wi,bi cover the same set
of four vertices. Both edge sets induce a rainbow P3 ∪ L1. Since the loops occur at the
same vertex, the only way for two different rainbow P3 ∪ L1 subgraphs to cover all four
vertices is if they together make a C3∪L2, but we are assuming that G(W ) avoids rainbow
triangles.

Case 3 (5 vertices). Suppose the edges Wi,ai and the edges Wi,bi cover the same set of
five vertices. Both edge sets induce a rainbow P2 ∪ P2 ∪ L1. Both sets must have their
L1 at the same vertex (although possibly different colors). There is no way to make two
different rainbow 2P2’s cover the same set of 4 vertices since once the first rainbow 2P2 is
placed, the only other possible 2P2 would have edges of the same color instead of different
colors. Hence we must have Wi,ai = Wi,bi for i = 1, 2, 3, which contradicts α and β being
distinct.

Thus in all cases, the edges Wi,ai and the edges Wi,bi cannot cover the same set of
vertices and so α and β are resolved. Hence W ∪ {u} is a resolving set.

4 Metric Bases for the Diagonal Family

Now that we know which configurations must be avoided in the landmark graph, we are
able to construct minimum resolving sets for the diagonal family of Hamming graphs
HG(n, n, n; 3). The graphs with n > 5 achieve the metric dimension lower bound of
2n− 1, while the graphs for n = 3 and n = 4 require 2n landmarks.

4.1 Construction of metric bases

For the main case of n > 5, our strategy will be to construct an order 2(n− 1) graph G
that avoids the configurations from Theorem 11 and define a 2-basic landmark system W
with G(W ) = G. We then extend W to a triple-looped landmark system that resolves
HG(n, n, n; 3) in 2n− 1 landmarks.

Lemma 12. For k > 6, there exists a cubic graph on 2k vertices with a proper 3-edge-
coloring that avoids the forbidden edge-colored subgraphs from Theorem 11:

1. a 4-cycle that contains all three colors of edges,

2. a 6-cycle with opposite edges of the same color, and

3. a rainbow triangle.

Proof. To construct a graph with the desired properties (see Figure 5), we let k > 6 and
start with an order 2k Hamiltonian cycle whose edge colors alternate, say blue and pink.
Next, we label the vertices of the cycle in a way that helps us define green edges and avoid
the forbidden configurations. Let m = k − 4. If k is even, label the vertices of the cycle
in the order

(p1, p2, p3, p4, q1, . . . , qm, p
′
1, p
′
3, p
′
2, p
′
4, q
′
m, . . . , q

′
1),
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Figure 5: Cubic graph on 2k vertices with a proper 3-edge-coloring for even k > 6 (top
row images) and odd k > 7 (bottom row images). Edges of outer Hamiltonian cycle
alternate blue (solid) and pink (dashed). All other edges are green (dotted). Forbidden
4-cycles, forbidden 6-cycles, and rainbow triangles are avoided.
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and if k is odd, label the vertices in the order

(p1, p2, p3, p4, q1, . . . , qm, p
′
2, p
′
4, p
′
1, p
′
3, q
′
m, . . . , q

′
1).

To finish the graph, add green edges pip
′
i (for i = 1, 2, 3, 4) and qiq

′
i (for i = 1, . . . ,m).

For notational convenience, we let (p′i)
′ = pi and (q′i)

′ = qi so that for any vertex u in the
graph, the vertex u′ is the other endpoint of the green edge containing u. We claim these
graphs avoid the forbidden triangles, 4-cycles, and 6-cycles of Theorem 11.

If there was a rainbow triangle, the outer Hamiltonian cycle would contain a sequence
of vertices u, v, u′, which we don’t have.

If there was a forbidden 4-cycle with two blue edges or two pink edges, then we would
have a path uvwu′ along the outer Hamiltonian cycle, but this does not occur (u and
u′ are always at least five edges apart). If there was a forbidden 4-cycle with two green
edges, then there would exist edges uv and u′v′ of different colors, but this does not occur
in our construction.

Lastly, if there was a forbidden 6-cycle, then it would include a path uvw on the outer
Hamiltonian cycle such that u′ and w′ are distance two apart on the Hamiltonian cycle.
This would imply u and w are both q’s, but then we see that the coloring of the 6-cycle
is not a forbidden coloring.

Remark 13. Note that Lemma 12 is not true for k = 5. Using GraphData in Mathematica
[7], we find that, of the 21 cubic graphs with 10 vertices (19 of which are connected [2]),
there are only five that are triangle-free and have edge-chromatic number 3. Moreover, it
can be verified that all possible proper edge-colorings of these graphs lead to a forbidden
configuration.

In Proposition 14, we show that for n > 5, the diagonal family HG(n, n, n; 3) achieves
the metric dimension lower bound 2n − 1. To prove the cases n > 7, we make use of
the graphs from Lemma 12, and to prove the cases n = 5 and n = 6 we use ad hoc
constructions.

Proposition 14. For n > 5, the Hamming graph HG(n, n, n; 3) has metric dimension
2n− 1.

Proof. For n > 7, let k = n − 1 and let G be the graph constructed as in Lemma 12.
Label the blue edges 1, . . . , n − 1 and likewise for the green and pink edges. If the blue,
green, and pink edges incident to a vertex are labeled a1, a2, and a3, respectively, then we
create a landmark (a1, a2, a3). Do this for each vertex in G to get a landmark set W with
graph G(W ) = G. The order 2(n− 1) graph G avoids forbidden 4-cycles and 6-cycles and
rainbow triangles, so by Theorem 11, if we let u = (n, n, n), then the set W ∪ {u} is a
resolving set of size 2n−1 for HG(n, n, n; 3). By the lower bound in Theorem 2, W ∪{u}
is a minimum resolving set.

For n = 5, note that Lemma 12 is also true for k = 4. As illustrated in Figure 6, there
is a proper 3-edge coloring of the order 8 Möbius ladder that avoids rainbow triangles,
forbidden 4-cycles, and forbidden 6-cycles. Thus we can resolve HG(5, 5, 5; 3) in the style
of the previous paragraph, taking G to be the colored Möbius ladder.
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Figure 6: Proper 3-edge coloring of the order eight Möbius ladder M4. Edges of outer
Hamiltonian cycle alternate blue (solid) and pink (dashed), while green (dotted) edges
join antipodal points on the cycle. All forbidden configurations are avoided.

For n = 6, we take a different approach, as Lemma 12 is not true for k = 5 (see
Remark 13). In this case, rather than concentrating all loops at the same vertex, we spread
them throughout the landmark graph. Letting symbol k in row i, column j correspond
to a landmark (i, j, k), we can verify by computer that the partial Latin square

1
1 2

2 3
3 4

4 5
5 6

represents a resolving set of size 11 for HG(6, 6, 6; 3).1

4.2 Small exceptions

In contrast to the diagonal cases n > 5, which can be resolved in 2n − 1 landmarks, we
will show that for n = 3 and n = 4, the metric dimension of HG(n, n, n; 3) is 2n.

To show that HG(n, n, n; 3) cannot be resolved in 2n − 1 landmarks for n = 3, 4, we
need to consider all possible subsets of 2n − 1 vertices, not only triple-looped landmark
systems. With fewer constraints on W , there are more possible footprints than shown in
Figure 2—in general, a footprint may have double edges, and loops do not all have to
be at the same vertex. In turn, there are more ways for two different footprints to cover
the same set of vertices in the landmark graph, and such configurations indicate pairs of
unresolved vertices in the Hamming graph.

In addition to the forbidden 4-cycles and 6-cycles in Figure 3, the landmark graph
of a resolving set has to avoid the configurations in Table 1. If any of the graphs in the
“Forbidden Subgraph” column of Table 1 appear as subgraphs of the landmark graph
G(W ), then we can find two footprints that cover the same set of vertices, as illustrated

1Incidentally, our approach to constructing this resolving set of size 11 was to attempt to prove there
was none. We failed and found this one! Our code for checking resolving sets with SageMath [17] is
available at https://github.com/fostergreenwood/metric-dimension.
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Forbidden Subgraph Footprint 1 Footprint 2

Snake

Short Two-Headed Snake

Long Two-Headed Snake

Triangle ∪ Double Loop

C3 ∪ L2

Loopy Triangle

Two Double Edges

2D2

OR OR OR

Triangle ∪ Double Edge

C3 ∪D2

Double Edge ∪ Double Loop

D2 ∪ L2

OR OR OR

Table 1: Forbidden subgraphs and two different footprints covering the same set of ver-
tices. Different line styles correspond to different edge colors. Configurations with only
two colors imply the addition of any edge of the third color will cause an issue.
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in the “Footprint” columns of Table 1. In view of Remark 6, this would mean there is an
unresolved pair of vertices in the graph HG(n, n, n; 3).

Note that the table is not exhaustive but includes what we need in order to prove
Lemma 15 and Lemma 16. Of the configurations we require, we only show one repre-
sentative coloring, with the understanding that the colors may be permuted. Note that
which edges are the same color is significant; for example, in the long two-headed snake,
it is important that the middle two colors match the loop colors on the end, but in the
opposite order.

Lemma 15. The Hamming graph HG(3, 3, 3; 3) has metric dimension 6.

Proof. Letting symbol k in row i, column j correspond to a landmark (i, j, k), we can
verify by computer that the partial Latin square

1 2 3
3 1 2

represents a resolving set of size 6 (whose landmark graph is in Figure 1).
To show there is no smaller resolving set, suppose, towards a contradiction, that we

have a resolving set W with only 5 vertices. Then by Lemma 3, the graph of W has 2
plain edges and a loop for each of three colors (say blue, green, pink). We will show that
all possible placements of the edges and loops lead to a forbidden configuration.

Case 1 (no double edges). First suppose the graph of W has no double edges.
Case 1.1 (blue and green loop on same vertex). If the blue and green loops are on the

same vertex, say u, then the remaining two blue edges and two green edges are forced to
create an alternating 4-cycle. Note that distinct vertices in the 4-cycle cannot be joined
by a pink edge since that would create either a double edge or a forbidden C3 ∪L2. Thus
every pink plain edge must have u as one of its endpoints. But this means we can only
have one pink plain edge instead of the two required.

Case 1.2 (blue and green loop on different vertices). Suppose the graph of W has a
blue loop at vertex b and a green loop at vertex g. Now there must be a green edge, say
bu, and a blue edge, say gv. Note that if we had u = v, then the remaining blue and green
edges would create a double edge. Thus we have u 6= v. Now, if the remaining vertex is
labeled w, we are forced to have a blue edge wu and a green edge wv. We claim there is
no way to place a pink at w. A loop at w gives short two-headed snakes (buw and gvw).
A plain pink edge from w causes a double edge (uw or vw) or a snake (buwg or gvwb).

Case 2 (double edge exists). Next, suppose the graph of W has a double edge. Without
loss of generality, say it is a blue-green double edge between vertices u and v. Then, to
avoid a forbidden D2 ∪ L2, the blue and green loops must be on different vertices, say b
and g. If we label the final vertex as w, the only way to place the remaining blue and
green edges is with a green edge bw and a blue edge gw. We claim there is no way to
place a pink at b. A plain pink edge bu or bv give us a snake with head g. A pink edge bw
creates a second double edge. A pink loop at b creates a D2 ∪L2. A pink edge bg creates
a forbidden D2 ∪ C3.
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Since all possibilities lead to forbidden configurations, there is no way to resolve the
Hamming graph HG(3, 3, 3; 3) using only five landmarks.

Lemma 16. The Hamming graph HG(4, 4, 4; 3) has metric dimension 8.

Proof. To construct a resolving set, let M4 be the order 8 edge-colored Möbius ladder in
Figure 6. Number the blue (likewise, green and pink) edges 1, . . . , 4. If the blue, green,
and pink edges incident to a vertex are labeled a1, a2, and a3, respectively, then we create
a landmark (a1, a2, a3). Do this for each vertex in M4 to get a landmark set W with graph
G(W ) = M4. By Theorem 9, the set W is a resolving set of size 8 for HG(4, 4, 4; 3).

To show there is no smaller resolving set, suppose, towards a contradiction, that we
have a resolving set W with only 7 vertices. Then by Lemma 3, the graph of W has for
each color three plain edges and a loop.

Case 1 (no double edges). First suppose the graph of W has no double edges.
Case 1.1 (blue and green loop on same vertex). Suppose the blue and green loops are

on the same vertex, say u. Covering the six remaining vertices, we have three blue edges
that make a perfect matching and three green edges that make a perfect matching. Since
we are in the case of no double edges, it is straightforward to verify that the edges of the
two matchings must combine to create an alternating blue-green 6-cycle.

Now we try to determine the pink edges. Note that distinct vertices in the 6-cycle
cannot be joined by a pink edge since that would create either a double edge, a C3 ∪ L2,
or a forbidden 4-cycle. Thus every pink plain edge must have u as one of its endpoints.
But this means we can only have one pink plain edge instead of the three required.

Case 1.2 (blue and green loops on different vertices). Suppose the graph of W has a
blue loop at vertex b and a green loop at vertex g. Now there must be a green edge, say
bu, and a blue edge, say gv.

Case 1.2.1 (u = v). If u = v, then the remaining blue and green edges create an
alternating 4-cycle. Note that we cannot have a pink edge from b or g to a vertex on the
4-cycle, since that would create a snake with head g or b. We also cannot have a pink
loop at b or g since that creates a short two-headed snake with underlying path bug. To
avoid double edges, the only remaining option is a pink edge bg. Now, we cannot have
a pink loop at u (since it would create a triangle with a loop at each vertex), so there
must be a pink edge from u to a vertex, say w, on the blue-green 4-cycle. Since we can’t
have a double edge, the pink loop is forced to be at the vertex w′ on the 4-cycle that is
nonadjacent to w. But now there is a long two-headed snake (with heads b and w′).

Case 1.2.2 (u 6= v). If u 6= v, then we have a blue edge, say uu′ and a green edge vv′.
Note that u′ 6= v′ since u′ = v′ would force a double edge with the remaining blue and
green edges. There is only one vertex remaining, call it w, and we are forced to have a
green edge wu′ and a blue edge wv′.

Now we consider pink edges at u′ and v′. Due to the path buu′, we cannot have a pink
loop at u′ (would create a short two-headed snake), and the only way to avoid a double
edge or a snake with head b is to put a pink edge u′b. Similarly, we must have a pink edge
v′g. But now we have a long two-headed snake bu′wv′g.
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Case 2 (there exists a double edge). By symmetry of permuting colors, it suffices to
consider the case of a blue-green double edge, say between vertices u and v. Then the blue
and green loops must be at distinct vertices, say b and g (otherwise we obtain D2 ∪ L2).
Now, there is a green edge from b to some vertex u′ and a blue edge from g to some vertex
v′. If u′ = v′, we would be forced to make a blue-green double edge on the remaining
two vertices which gives two double edges which is forbidden, so it must be that u′ 6= v′.
Similar to Case 1.2.2, there is only one vertex remaining, call it w, and we are forced to
create a blue edge u′w and a green edge v′w.

Now we consider pink edges. Note that at w, we cannot have a pink loop since we
would get a short two-headed snake bu′w. We also cannot have a pink edge wu or wv
since that would create a snake with head b or g. A pink edge wu′ or wv′ would create
two double edges. Lastly, a pink edge wb or wg would create a C3 ∪D2. Thus there is no
way to place a pink at w. This completes the case where the graph of W has a double
edge.

Since all possibilities lead to forbidden configurations, there is no way to resolve the
Hamming graph HG(4, 4, 4; 3) using only seven landmarks.

4.3 Conclusion and further directions

Compiling the results of the previous two subsections, we now have the metric dimension
for all graphs in the diagonal family HG(n, n, n; 3) for n > 3.

Theorem 17. For n > 3, the metric dimension of the Hamming graph HG(n, n, n; 3) is

dimHG(n, n, n; 3) =

{
2n if n ∈ {3, 4}
2n− 1 if n > 5.

Proof. This is a corollary of Proposition 14, Lemma 15, and Lemma 16.

We are currently working to generalize the results of Section 3 and construct minimum
resolving sets for non-diagonal graphs HG(n1, n2, n3; 3). These graphs are of special
interest because when the ni’s are distinct odd primes, the graphs are isomorphic to
unitary Cayley graphs [15]. We know that at least some of these graphs also achieve the
lower bound of Theorem 2, as illustrated in our final example.

Example 18. Letting symbol k in row i, column j correspond to a landmark (i, j, k), we
can check by computer that the partial Latin rectangle

1 2 3 10
4 5 6 1 2 3
7 8 9 4 5 6
10 7 8 9

11

represents a minimum resolving set of size 21 for the graph HG(5, 7, 11; 3).
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[6] Frank Harary and Robert A. Melter. On the metric dimension of a graph. Ars
Combin., 2:191–195, 1976.

[7] Wolfram Research, Inc. Mathematica, Version 12.0. Champaign, IL, 2019.

[8] Zilin Jiang and Nikita Polyanskii. On the metric dimension of cartesian powers of a
graph. Journal of Combinatorial Theory, Series A, 165:1–14, 2019.

[9] Ville Junnila, Tero Laihonen, and Tuomo Lehtilä. On a conjecture regarding identi-
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