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Abstract
We show that very simple continued fractions can be obtained for the ordinary

generating functions enumerating permutations or D-permutations with a large num-
ber of independent statistics, when each cycle is given a weight −1. The proof is
based on a simple lemma relating the number of cycles modulo 2 to the numbers of
fixed points, cycle peaks (or cycle valleys), and crossings.
Mathematics Subject Classifications: 05A19 (Primary); 05A05, 05A15, 05A30,
30B70

1 Introduction

If (an)n>0 is a sequence of combinatorial numbers or polynomials with a0 = 1, it is often
fruitful to seek to express its ordinary generating function as a continued fraction of either
Stieltjes type (S-fraction),

∞∑
n=0

ant
n =

1

1−
α1t

1−
α2t

1− · · ·

, (1)

Thron type (T-fraction),
∞∑
n=0

ant
n =

1

1− δ1t−
α1t

1− δ2t−
α2t

1− · · ·

, (2)
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or Jacobi type (J-fraction),

∞∑
n=0

ant
n =

1

1− γ0t−
β1t

2

1− γ1t−
β2t

2

1− · · ·

. (3)

(Both sides of these expressions are to be interpreted as formal power series in the inde-
terminate t.) This line of investigation goes back at least to Euler [9, 10], but it gained
impetus following Flajolet’s [11] seminal discovery that any S-fraction (resp. J-fraction)
can be interpreted combinatorially as a generating function for Dyck (resp. Motzkin) paths
with suitable weights for each rise and fall (resp. each rise, fall and level step). More re-
cently, several authors [8,12,13,18,20] have found a similar combinatorial interpretation of
the general T-fraction: namely, as a generating function for Schröder paths with suitable
weights for each rise, fall and long level step. There are now literally dozens of sequences
(an)n>0 of combinatorial numbers or polynomials for which a continued-fraction expansion
of the type (1), (2) or (3) is explicitly known.

In a recent paper, Zeng and one of us [21] ran this program in reverse: starting from
a continued fraction in which the coefficients α (or β and γ) contain indeterminates in
a nice pattern, we sought a combinatorial interpretation for the resulting polynomials an
— namely, as enumerating permutations, set partitions or perfect matchings according
to some natural multivariate statistics. As a consequence, our results contained many
previously obtained identities as special cases, providing a common refinement of all of
them. In particular, we proved J-fractions enumerating permutations with 10, 18 or
infinitely many statistics that implement the cycle classification of indices (cycle peak,
cycle valley, cycle double rise, cycle double fall, fixed point) together with an index-refined
count of crossings and nestings (these statistics will be defined in Section 2).

Subsequently, the two present authors [3] proved analogous results for D-permuta-
tions [14–16], which are a subclass of permutations of [2n] (defined in Section 5) that
are counted by the Genocchi and median Genocchi numbers: our T-fractions enumerated
D-permutations with 12, 22 or infinitely many statistics that implement the parity-refined
cycle classification of indices (cycle peak, cycle valley, cycle double rise, cycle double fall,
even fixed point, odd fixed point) together with an index-refined count of crossings and
nestings. In both papers, we called these results our “first” continued fractions.

In both cases, it was natural to try to extend these results by taking account also
of the number of cycles: that is, by including an additional weight λcyc(σ). However, it
turned out that it was possible to do so only by renouncing some of the other statistics:
for instance, by counting cycle valleys only with respect to crossings + nestings, rather
than to crossings and nestings separately. We called these results our “second” continued
fractions [21, Theorems 2.1(b), 2.4, 2.12, 2.14, 2.15] [3, Theorems 4.2, 4.7, 4.10].

Our purpose here is to make a simple but previously overlooked remark: that in
addition to the trivial case λ = 1, there is one other case where one need not renounce
counting any other statistics, namely, λ = −1. The reason for this is the following simple
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lemma, which relates the number of cycles modulo 2 to the number of fixed points, cycle
peaks (or cycle valleys), and crossings:

Lemma 1. Let σ ∈ Sn be a permutation. Then the following identity holds:

cyc = fix + cpeak + ucross + lcross (mod 2) (4a)

= fix + cval + ucross + lcross (mod 2) . (4b)

We will give a precise definition of ucross (number of upper crossings) and lcross (number
of lower crossings) in Section 2.2, and then a proof of this lemma in Section 3.

Using Lemma 1, it is easy to obtain continued fractions for the case λ = −1 as simple
corollaries of those for λ = 1. That is what we shall do in this paper.

The plan of this paper is as follows: In Section 2 we give some preliminary definitions
concerning permutation statistics. In Section 3 we give two proofs of Lemma 1: one
topological, and one combinatorial. Then, in Sections 4 and 5, we give our results for
permutations and D-permutations, respectively.

Throughout this paper, we shall use two running examples. The first is the permuta-
tion

σ = 9 3 7 4 6 11 2 8 10 1 5 = (1, 9, 10) (2, 3, 7) (4) (5, 6, 11) (8) ∈ S11; (5)

the second is the permutation

σ = 7 1 9 2 5 4 8 6 10 3 11 12 14 13

= (1, 7, 8, 6, 4, 2) (3, 9, 10) (5) (11) (12) (13, 14) ∈ S14. (6)

We will see later that our second example is a D-permutation.
We remark that since Lemma 1 is a general fact concerning permutations, it can be

applied to any result concerning any subclass of permutations in which the statistics fix,
cpeak and ucross + lcross are handled.

As the reader will have noticed, the present paper builds directly on the ideas, tech-
niques and intuitions of references [21] and [3]. Some readers may therefore find it useful
to consult those papers first.

2 Preliminaries

We use the standard notation [n]
def
= {1, . . . , n}.

2.1 Permutation statistics: The record-and-cycle classification

Given a permutation σ ∈ SN , an index i ∈ [N ] is called an

• excedance (exc) if i < σ(i);

• anti-excedance (aexc) if i > σ(i);

• fixed point (fix) if i = σ(i).
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Clearly every index i belongs to exactly one of these three types; we call this the ex-
cedance classification . We also say that i is a weak excedance if i 6 σ(i), and a weak
anti-excedance if i > σ(i).

A more refined classification is as follows: an index i ∈ [N ] is called a

• cycle peak (cpeak) if σ−1(i) < i > σ(i);

• cycle valley (cval) if σ−1(i) > i < σ(i);

• cycle double rise (cdrise) if σ−1(i) < i < σ(i);

• cycle double fall (cdfall) if σ−1(i) > i > σ(i);

• fixed point (fix) if σ−1(i) = i = σ(i).

Clearly every index i belongs to exactly one of these five types; we refer to this classification
as the cycle classification . Obviously, excedance = cycle valley or cycle double rise,
and anti-excedance = cycle peak or cycle double fall. We write

Cpeak(σ) = {i : σ−1(i) < i > σ(i)} (7)

for the set of cycle peaks and

cpeak(σ) = |Cpeak(σ)| (8)

for its cardinality, and likewise for the others.
On the other hand, an index i ∈ [N ] is called a

• record (rec) (or left-to-right maximum) if σ(j) < σ(i) for all j < i [note in particular
that the indices 1 and σ−1(N) are always records];

• antirecord (arec) (or right-to-left minimum) if σ(j) > σ(i) for all j > i [note in
particular that the indices N and σ−1(1) are always antirecords];

• exclusive record (erec) if it is a record and not also an antirecord;

• exclusive antirecord (earec) if it is an antirecord and not also a record;

• record-antirecord (rar) (or pivot) if it is both a record and an antirecord;

• neither-record-antirecord (nrar) if it is neither a record nor an antirecord.

Every index i thus belongs to exactly one of the latter four types; we refer to this clas-
sification as the record classification . We stress that our records and antirecords are
positions , not values.

The record and cycle classifications of indices are related as follows:

(a) Every record is a weak excedance, and every exclusive record is an ex-
cedance.
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(b) Every antirecord is a weak anti-excedance, and every exclusive antirecord
is an anti-excedance.

(c) Every record-antirecord is a fixed point.

Therefore, by applying the record and cycle classifications simultaneously, we obtain 10
(not 20) disjoint categories [21]:

cpeak cval cdrise cdfall fix
erec ereccval ereccdrise
earec eareccpeak eareccdfall
rar rar
nrar nrcpeak nrcval nrcdrise nrcdfall nrfix

Clearly every index i belongs to exactly one of these 10 types; we call this the record-
and-cycle classification .

When studying D-permutations, we will use the parity-refined record-and-cycle
classification , in which we distinguish even and odd fixed points.

2.1.1 Running example 1

We consider our first running example in its cycle notation,
σ = (1, 9, 10) (2, 3, 7) (4) (5, 6, 11) (8) ∈ S11. The excedance classification of σ partitions
the index set [11]

def
= {1, . . . , 11} as follows:

Exc = {1, 2, 3, 5, 6, 9}, Aexc = {7, 10, 11}, Fix = {4, 8} . (9)

Thus, exc(σ) = 6, aexc(σ) = 3 and fix(σ) = 2.
Next, we write out the cycle classification of σ:

Cpeak(σ) = {7, 10, 11} Cval(σ) = {1, 2, 5} (10a)
Cdrise(σ) = {3, 6, 9} Cdfall(σ) = ∅ (10b)

Fix(σ) = {4, 8} (10c)

The statistics cpeak, cval, cdrise, cdfall and fix are simply the cardinalities of these sets,
respectively.

For the record classification, we write σ as a word, i.e., σ = 9374611281015. The record
and antirecord positions are therefore Rec(σ) = {1, 6} and Arec(σ) = {10, 11}. The full
record classification is

Erec(σ) = {1, 6} Earec(σ) = {10, 11} (11a)
Rar(σ) = ∅ Nrar(σ) = {2, 3, 4, 5, 7, 8, 9} (11b)
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Finally, the record-and-cycle classification gives us

Eareccpeak(σ) = {10, 11} Nrcpeak(σ) = {7} (12a)
Ereccval(σ) = {1} Nrcval(σ) = {2, 5} (12b)

Erecdrise(σ) = {6} Nrcdrise(σ) = {3, 9} (12c)
Earecdfall(σ) = ∅ Nrcdfall(σ) = ∅ (12d)

Rar(σ) = ∅ Nrfix(σ) = {4, 8} (12e)

2.1.2 Running example 2

We now consider our second running example in its cycle notation,
σ = (1, 7, 8, 6, 4, 2) (3, 9, 10) (5) (11) (12) (13, 14) ∈ S14. The excedance classification of σ
partitions the index set [14]

def
= {1, . . . , 14} as follows:

Exc = {1, 3, 7, 9, 13}, Aexc = {2, 4, 6, 8, 10, 14}, Fix = {5, 11, 12} . (13)

Thus, exc(σ) = 5, aexc(σ) = 6 and fix(σ) = 3.
Next, we write out the cycle classification of σ:

Cpeak(σ) = {8, 10, 14} Cval(σ) = {1, 3, 13} (14a)
Cdrise(σ) = {7, 9} Cdfall(σ) = {2, 4, 6} (14b)

Fix(σ) = {5, 11, 12} (14c)

Once again, the statistics cpeak, cval, cdrise, cdfall and fix are simply the cardinalities of
these sets.

For the record classification, we write σ as a word, σ = 7192548610311121413. The
record and antirecord positions are therefore Rec(σ) = {1, 3, 9, 11, 12, 13} and Arec(σ) =
{2, 4, 10, 11, 12, 14}. The full record classification is

Erec(σ) = {1, 3, 9, 13} Earec(σ) = {2, 4, 10, 14} (15a)
Rar(σ) = {11, 12} Nrar(σ) = {5, 6, 7, 8} (15b)

Finally, the record-and-cycle classification gives us

Eareccpeak(σ) = {10, 14} Nrcpeak(σ) = {8} (16a)
Ereccval(σ) = {1, 3, 13} Nrcval(σ) = ∅ (16b)

Erecdrise(σ) = {9} Nrcdrise(σ) = {7} (16c)
Earecdfall(σ) = {2, 4} Nrcdfall(σ) = {6} (16d)

Rar(σ) = {11, 12} Nrfix(σ) = {5} (16e)

2.2 Permutation statistics: Crossings and nestings

We now define (following [21]) some permutation statistics that count crossings and
nestings .
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Figure 1: Pictorial representation of the permutation σ = 9 3 7 4 6 11 2 8 10 1 5 =
(1, 9, 10) (2, 3, 7) (4) (5, 6, 11) (8) ∈ S11.
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Figure 2: Pictorial representation of the permutation σ = 7 1 9 2 5 4 8 6 10 3 11 12 14 13 =
(1, 7, 8, 6, 4, 2) (3, 9, 10) (5) (11) (12) (13, 14) ∈ S14. This σ is a D-permutation.

First we associate to each permutation σ ∈ SN a pictorial representation by placing
vertices 1, 2, . . . , N along a horizontal axis and then drawing an arc from i to σ(i) above
(resp. below) the horizontal axis in case σ(i) > i [resp. σ(i) < i]; if σ(i) = i we do not
draw any arc. Each vertex thus has either out-degree = in-degree = 1 (if it is not a fixed
point) or out-degree = in-degree = 0 (if it is a fixed point). Of course, the arrows on
the arcs are redundant, because the arrow on an arc above (resp. below) the axis always
points to the right (resp. left); we therefore omit the arrows for simplicity. See Figures 1
and 2 for our two running examples.

We then say that a quadruplet i < j < k < l forms an

• upper crossing (ucross) if k = σ(i) and l = σ(j);

• lower crossing (lcross) if i = σ(k) and j = σ(l);

• upper nesting (unest) if l = σ(i) and k = σ(j);

• lower nesting (lnest) if i = σ(l) and j = σ(k).
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We also consider some “degenerate” cases with j = k, by saying that a triplet i < j < l
forms an

• upper joining (ujoin) if j = σ(i) and l = σ(j) [i.e. the index j is a cycle double
rise];

• lower joining (ljoin) if i = σ(j) and j = σ(l) [i.e. the index j is a cycle double
fall];

• upper pseudo-nesting (upsnest) if l = σ(i) and j = σ(j);

• lower pseudo-nesting (lpsnest) if i = σ(l) and j = σ(j).

These are clearly degenerate cases of crossings and nestings, respectively. See Figure 3.
Note that upsnest(σ) = lpsnest(σ) for all σ, since for each fixed point j, the number of
pairs (i, l) with i < j < l such that l = σ(i) has to equal the number of such pairs with
i = σ(l); we therefore write these two statistics simply as

psnest(σ)
def
= upsnest(σ) = lpsnest(σ) . (17)

And of course ujoin = cdrise and ljoin = cdfall.
We can further refine the four crossing/nesting categories by examining more closely

the status of the inner index (j or k) whose outgoing arc belongs to the crossing or nesting:
that is, j for an upper crossing or nesting, and k for a lower crossing or nesting:

ucross unest lcross lnest
j ∈ Cval ucrosscval unestcval
j ∈ Cdrise ucrosscdrise unestcdrise
k ∈ Cpeak lcrosscpeak lnestcpeak
k ∈ Cdfall lcrosscdfall lnestcdfall

See Figure 4. Please note that for the “upper” quantities the distinguished index (i.e. the
one for which we examine both σ and σ−1) is in second position (j), while for the “lower”
quantities the distinguished index is in third position (k).

In fact, a central role in our work will be played (just as in [3, 21]) by a yet further
refinement of these statistics: rather than counting the total numbers of quadruplets
i < j < k < l that form upper (resp. lower) crossings or nestings of the foregoing types,
we will count the number of upper (resp. lower) crossings or nestings that use a particular
vertex j (resp. k) in second (resp. third) position. More precisely, we define the index-
refined crossing and nesting statistics

ucross(j, σ) = #{i < j < k < l : k = σ(i) and l = σ(j)} (18a)

unest(j, σ) = #{i < j < k < l : k = σ(j) and l = σ(i)} (18b)

lcross(k, σ) = #{i < j < k < l : i = σ(k) and j = σ(l)} (18c)

lnest(k, σ) = #{i < j < k < l : i = σ(l) and j = σ(k)} (18d)
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Figure 3: Crossing, nesting, joining and pseudo-nesting.
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Figure 4: Refined categories of crossing and nesting.
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Note that ucross(j, σ) and unest(j, σ) can be nonzero only when j is an excedance (that
is, a cycle valley or a cycle double rise), while lcross(k, σ) and lnest(k, σ) can be nonzero
only when k is an anti-excedance (that is, a cycle peak or a cycle double fall).

When j is a fixed point, we also define the analogous quantity for pseudo-nestings:

psnest(j, σ)
def
= #{i < j : σ(i) > j} = #{i > j : σ(i) < j} . (19)

(Here the two expressions are equal because σ is a bijection from [1, j) ∪ (j, n] to itself.)
In [21, eq. (2.20)] this quantity was called the level of the fixed point j and was denoted
lev(j, σ).

2.2.1 Running example 1

We first consider our first running example σ = 9 3 7 4 6 11 2 8 10 1 5
= (1, 9, 10) (2, 3, 7) (4) (5, 6, 11) (8) ∈ S11 and from Figure 1 write out the quadruplets
i < j < k < l corresponding to crossings and nestings:

Ucross(σ) = {1 < 6 < 9 < 11, 3 < 6 < 7 < 11} (20a)
Lcross(σ) = {1 < 5 < 10 < 11, 2 < 5 < 7 < 11} (20b)
Unest(σ) = {1 < 2 < 3 < 9, 1 < 3 < 7 < 9, 1 < 5 < 6 < 9, (20c)

3 < 5 < 6 < 7, 6 < 9 < 10 < 11} (20d)
Lnest(σ) = {1 < 2 < 7 < 10} (20e)

We now write out the degenerate cases when j = k but we skip the upper and lower
joinings. The upper and lower pseudo-nestings are:

Upsnest(σ) = {1 < 4 < 9, 3 < 4 < 7, 1 < 8 < 9, 6 < 8 < 11} (21a)
Lpsnest(σ) = {1 < 4 < 10, 2 < 4 < 7, 1 < 8 < 10, 5 < 8 < 11} (21b)

Next, we write out the crossings and nestings of σ but refined according to the cycle
classification (which we have already noted down in equation (10)) of index j for upper
crossing or nesting, and index k for lower crossing or nesting:

Ucrosscval(σ) = ∅ (22a)
Ucrosscdrise(σ) = {1 < 6 < 9 < 11, 3 < 6 < 7 < 11} (22b)
Lcrosscpeak(σ) = {1 < 5 < 10 < 11, 2 < 5 < 7 < 11} (22c)
Lcrosscdfall(σ) = ∅ (22d)

Unestcval(σ) = {1 < 2 < 3 < 9, 1 < 5 < 6 < 9, 3 < 5 < 6 < 7} (22e)
Unestcdrise(σ) = {1 < 3 < 7 < 9, 6 < 9 < 10 < 11} (22f)
Lnestcpeak(σ) = {1 < 2 < 7 < 10} (22g)
Lnestcdfall(σ) = ∅ (22h)

Finally, we write out the index-refined crossing and nesting statistics for σ. We make
separate tables for the three excedance classes of σ [cf. (9)]: see Table 1.
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j ∈ Exc(σ) 1 2 3 5 6 9
ucross(j, σ) 0 0 0 0 2 0
unest(j, σ) 0 1 1 2 0 1

k ∈ Aexc(σ) 7 10 11
lcross(k, σ) 1 1 0
lnest(k, σ) 1 0 0

j ∈ Fix(σ) 4 8
psnest(j, σ) 2 2

Table 1: Index-refined crossing and nesting statistics for the permutation
σ = 9 3 7 4 6 11 2 8 10 1 5 = (1, 9, 10) (2, 3, 7) (4) (5, 6, 11) (8) ∈ S11.

2.2.2 Running example 2

We now consider our second running example σ = 7 1 9 2 5 4 8 6 10 3 11 12 14 13
= (1, 7, 8, 6, 4, 2) (3, 9, 10) (5) (11) (12) (13, 14) ∈ S14 and from Figure 2 write out the
quadruplets i < j < k < l corresponding to crossings and nestings:

Ucross(σ) = {1 < 3 < 7 < 9} (23a)
Lcross(σ) = {2 < 3 < 4 < 10} (23b)
Unest(σ) = {3 < 7 < 8 < 9} (23c)
Lnest(σ) = {3 < 4 < 6 < 10, 3 < 6 < 8 < 10} (23d)

The upper and lower pseudo-nestings are:

Upsnest(σ) = {1 < 5 < 7, 3 < 5 < 9} (24a)
Lpsnest(σ) = {3 < 5 < 10, 4 < 5 < 6} (24b)

Next, we write out the crossings and nestings of σ but refined according to the cycle
classification (which we have already noted down in equation (14)) of index j for upper
crossing or nesting, and index k for lower crossing or nesting:

Ucrosscval(σ) = {1 < 3 < 7 < 9} (25a)
Ucrosscdrise(σ) = ∅ (25b)
Lcrosscpeak(σ) = ∅ (25c)
Lcrosscdfall(σ) = {2 < 3 < 4 < 10} (25d)

Unestcval(σ) = ∅ (25e)
Unestcdrise(σ) = {3 < 7 < 8 < 9} (25f)
Lnestcpeak(σ) = {3 < 6 < 8 < 10} (25g)
Lnestcdfall(σ) = {3 < 4 < 6 < 10} (25h)

Finally, we write out the index-refined crossing and nesting statistics for σ. Again we
make separate tables for the three excedance classes of σ [cf. (13)): see Table 2.
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j ∈ Exc(σ) 1 3 7 9 13
ucross(j, σ) 0 1 0 0 0
unest(j, σ) 0 0 1 0 0

k ∈ Aexc(σ) 2 4 6 8 10 14
lcross(k, σ) 0 1 0 0 0 0
lnest(k, σ) 0 0 1 1 0 0

j ∈ Fix(σ) 5 11 12
psnest(j, σ) 2 0 0

Table 2: Index-refined crossing and nesting statistics for the permutation
σ = 7 1 9 2 5 4 8 6 10 3 11 12 14 13 = (1, 7, 8, 6, 4, 2) (3, 9, 10) (5) (11) (12) (13, 14) ∈ S14.

3 Proof of Lemma 1

We will give two proofs of Lemma 1: one topological, and one combinatorial. The topo-
logical proof is extremely satisfying from an intuitive point of view, but it requires some
nontrivial results on the topology of the plane to make it rigorous. The combinatorial
proof is simple and manifestly rigorous, but it relies on an identity for the number of
inversions [5, Lemme 3.1] [19, eq. (40)] [21, Proposition 2.24] whose proof is elementary
but not entirely trivial.

Proof. [Topological proof] Draw the diagram representing the permutation σ (Figures 1
and 2) such that each arc is a C1 non-self-intersecting curve that has a vertical tangent
at each cycle peak and cycle valley and a horizontal tangent at each cycle double rise
and cycle double fall, and such that each pair of arcs intersects either zero times (if they
do not represent a crossing) or once transversally (if they do represent a crossing), and
also such that each intersection point involves only two arcs (see Figures 5 and 6 for the
examples of Figures 1 and 2, respectively, redrawn according to these rules). Then each
cycle becomes a C1 closed curve with a finite number of self-intersections, all of which
are transversal double points; following Whitney [26, pp. 280–281], we call such a curve
normal . The total number of intersections in the diagram is ucross + lcross.

Each fixed point is of course a cycle. So we focus henceforth on cycles of length > 2.
We will prove the following two facts:

(a) The number of self-intersections in a cycle is equal modulo 2 to the number of cycle
peaks (or alternatively, cycle valleys) in that cycle, plus 1.

(b) The number of intersections between two distinct cycles is equal modulo 2 to zero.

Together these facts will prove Lemma 1.

Proof of (a). The rotation angle (or tangent winding angle) of a C1 closed curve is the
total angle through which the tangent vector turns while traversing the curve.1 With the

1In [25, Section 3] and [1, Chapter 3], the rotation angle divided by 2π is called the rotation index .
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1 2 3 4 5 6 7 8 9 10 11

Figure 5: Diagram of the permutation
σ = 9 3 7 4 6 11 2 8 10 1 5 = (1, 9, 10) (2, 3, 7) (4) (5, 6, 11) (8) ∈ S11 shown in Figure 1,
drawn according to the rules stated in the text.
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Figure 6: Diagram of the permutation
σ = 7 1 9 2 5 4 8 6 10 3 11 12 14 13 = (1, 7, 8, 6, 4, 2) (3, 9, 10) (5) (11) (12) (13, 14) ∈ S14

shown in Figure 2, drawn according to the rules stated in the text.
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above conventions for the arc diagram (with arcs traversed in the direction of the arrows,
i.e. clockwise) it is easy to see that the tangent turns by an angle −π from each cycle
valley to the next cycle peak, and again by an angle −π from each cycle peak to the next
cycle valley. Therefore, a cycle containing M cycle peaks (and hence M cycle valleys) has
a rotation angle −2πM . On the other hand, Whitney [26, Theorem 2] proved that the
rotation angle for a C1 normal closed curve f is

γ(f) = 2π(µ+N+ −N−) (26)

where N+ (resp. N−) is the number of positive (resp. negative) crossings, and µ is either
+1 or −1.2 It follows that the number of self-intersections in this cycle, namely N+ +N−,
equals M + 1 modulo 2.

Proof of (b). This is a general property of C1 normal closed curves in the plane that
have finitely many mutual intersections, all of which are transversal double points: in this
situation the number of mutual intersections is even. This intuitively obvious fact goes
back at least to Tait [23, statement III]. For completeness we give a proof:

Let C1 and C2 be C1 normal closed curves in the plane; and suppose that C1 and C2

have finitely many intersections, all of which are all transversal double points. Consider
first the case in which C1 is a simple closed curve, i.e. has no self-intersections. Then the
Jordan Curve Theorem tells us that R2 \ C1 has two connected components, an interior
and an exterior.3 We put an orientation on C2 and traverse C2 from some starting point.
Each time C2 intersects C1, it must either go from the interior to the exterior of C1 or vice
versa (because the intersections are transversal). Since C2 returns to its starting point,
the number of intersections between C2 and C1 must be even.

When C1 is not a simple closed curve but has finitely many self-intersections, we
can write it as a union of finitely many simple closed curves Ci1 that are disjoint except
for intersections at the self-intersection points of C1. (The graph whose vertices are the
self-intersection points and whose edges are the arcs of C1 between two successive self-
intersections is an Eulerian graph; and an Eulerian graph can be written as the edge-
disjoint union of cycles.) Then C2 has an even number of intersections with each Ci1, hence
also with C1 (since by hypothesis none of those intersections occur at the self-intersection
points of C1).4 This completes the proof.

This completes the proof of Lemma 1.
2 The definition of positive and negative crossings [26, p. 281] depends on the choice of a starting point
on the curve; if the crossing point is visited first with tangent vector v1 and then with tangent vector v2,
the crossing point is called positive if v1×v2 < 0 using the right-hand rule, and negative if v1×v2 > 0
using the right-hand rule. The hypotheses of [26, Theorem 2] require that the starting point be an
outside starting point, i.e. the whole curve must lie on one side of the tangent line to the curve at
the starting point. That requirement is easily fulfilled here, e.g. by taking the starting point to be
the smallest or largest element of the cycle. In this situation, [26, Theorem 2] also specifies explicitly
whether µ is +1 or −1; in the present case it is µ = −1.
See also Umehara and Yamada [25, pp. 34–38] for an exposition of Whitney’s proof. They use the term
“generic” for what Whitney calls “normal”.

3See e.g. [24] or [22, Section 0.3] for proofs of the Jordan Curve Theorem.
4Equivalently, the graph G whose vertices are the self-intersection points and whose edges are the arcs
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Proof. [Combinatorial proof] Let cyc(σ) = k, and let p1, . . . , pk be the sizes of the k
cycles of σ. Then

n+ k =
k∑
i=1

(pi + 1) ≡ #(cycles of σ of even length) (mod 2) . (27)

Therefore
(−1)n+k = (−1)#(cycles of σ of even length) . (28)

Here the right-hand side is simply the parity of σ, usually denoted sgn(σ). As is well
known (e.g. [17, section 7.4]), the parity of σ is also given by

sgn(σ) = (−1)inv(σ) , (29)

where
inv(σ)

def
= #{(i, j) : i < j and σ(i) > σ(j)} (30)

is the number of inversions in σ. We therefore have

n+ k ≡ inv(σ) (mod 2) . (31)

On the other hand, we recall a formula [21, Proposition 2.24] for the number of inver-
sions in terms of cycle, crossing and nesting statistics:

inv = cval + cdrise + cdfall + ucross + lcross + 2(unest + lnest + psnest) . (32)

Combining (31) and (32) yields

n+ k ≡ (cval + cdrise + cdfall) + (ucross + lcross) (mod 2) , (33)

which can be rewritten as

k ≡ (cpeak + fix) + (ucross + lcross) (mod 2) (34)

since n = cpeak + cval + cdrise + cdfall + fix. This proves (4a). Then (4b) follows because
cpeak = cval.

3.1 Illustration with examples

We will verify the various components used in the combinatorial proof of Lemma 1 for
both of our running examples.

of C1 between two successive self-intersections is Eulerian; so its dual G∗ is bipartite. Then the closed
curve C2 must intersect the edges of G an even number of times.
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3.1.1 Running example 1

First we consider σ = 9 3 7 4 6 11 2 8 10 1 5 = (1, 9, 10) (2, 3, 7) (4) (5, 6, 11) (8) ∈ S11, which
was depicted in Figure 1. Here n = 11 and there are k = 5 cycles, none of which are of
even length. This confirms (27) and (28).

Next we count the number of inversions of σ. We record the numbers
ξi = #{j < i : σ(j) > σ(i)}, which are sometimes called the inversion table of σ:

i 1 2 3 4 5 6 7 8 9 10 11
σ(i) 9 3 7 4 6 11 2 8 10 1 5
ξi 0 1 1 2 2 0 6 2 1 9 6

Thus we have inv(σ) =
11∑
i=1

ξi = 30. So (31) is also clearly true.

Finally, we will verify equation (32). From (10) we obtain the values

cval(σ) = 3, cdrise(σ) = 3, cdfall(σ) = 0 ; (35)

and from (20)/(21) we obtain the values

ucross(σ) = 2, lcross(σ) = 2, unest(σ) = 5, lnest(σ) = 1, psnest(σ) = 4 . (36)

Using these values we verify (32).

3.1.2 Running example 2

Next we consider our second running example σ = 7 1 9 2 5 4 8 6 10 3 11 12 14 13 =
(1, 7, 8, 6, 4, 2) (3, 9, 10) (5) (11) (12) (13, 14) ∈ S14, which was depicted in Figure 2. Here
n = 14 and there are k = 6 cycles, of which two are of even length. This confirms (27)
and (28).

Next we count the number of inversions of σ. We record again the numbers ξi =
#{j < i : σ(j) > σ(i)}:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14
σ(i) 7 1 9 2 5 4 8 6 10 3 11 12 14 13
ξi 0 1 0 2 2 3 1 3 0 7 0 0 0 1

Thus we have inv(σ) =
14∑
i=1

ξi = 20. So (31) is also clearly true.

Finally, we will verify equation (32). From (14) we obtain the values

cval(σ) = 3, cdrise(σ) = 2, cdfall(σ) = 3 ; (37)

and from (23)/(24) we obtain the values

ucross(σ) = 1, lcross(σ) = 1, unest(σ) = 1, lnest(σ) = 2, psnest(σ) = 2 . (38)

Using these values we verify (32).
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4 Results for permutations

We find it convenient to start from the first “master” J-fraction for permutations [21,
Theorem 2.9] and then to specialize.

4.1 Master J-fraction

Following [21, Section 2.7], we introduce five infinite families of indeterminates a =
(a`,`′)`,`′>0, b = (b`,`′)`,`′>0, c = (c`,`′)`,`′>0, d = (d`,`′)`,`′>0, e = (e`)`>0 and then define the
polynomials

Pn(a,b, c,d, e, λ) =∑
σ∈Sn

λcyc(σ)
∏

i∈Cval(σ)

aucross(i,σ),unest(i,σ)

∏
i∈Cpeak(σ)

blcross(i,σ), lnest(i,σ) ×

∏
i∈Cdfall(σ)

clcross(i,σ), lnest(i,σ)

∏
i∈Cdrise(σ)

ducross(i,σ), unest(i,σ)

∏
i∈Fix(σ)

epsnest(i,σ) .

(39)

(This is [21, eq. (2.77)] with a factor λcyc(σ) included.) Then the first master J-fraction
for permutations [21, Theorem 2.9] handles the case λ = 1: it states that the ordinary
generating function of the polynomials Pn(a,b, c,d, e, 1) has the J-type continued fraction

∞∑
n=0

Pn(a,b, c,d, e, 1) tn =

1

1− e0t−
a00b00t

2

1− (c00 + d00 + e1)t−
(a01 + a10)(b01 + b10)t2

1− (c01 + c10 + d01 + d10 + e2)t−
(a02 + a11 + a20)(b02 + b11 + b20)t2

1− · · ·

(40)

with coefficients

γn =

(n−1∑
`=0

c`,n−1−`

)
+

(n−1∑
`=0

d`,n−1−`

)
+ en (41a)

βn =

(n−1∑
`=0

a`,n−1−`

) (n−1∑
`=0

b`,n−1−`

)
(41b)

By Lemma 1, we obtain the case λ = −1 by inserting a factor −1 for each fixed point,
for each cycle peak (or alternatively, cycle valley), and for each lower or upper crossing.
We therefore have:
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Proposition 2 (Master J-fraction for permutations, λ = −1). The ordinary generating
function of the polynomials Pn(a,b, c,d, e,−1) has the J-type continued fraction
∞∑
n=0

Pn(a,b, c,d, e,−1) tn =

1

1 + e0t+
a00b00t

2

1− (c00 + d00 − e1)t+
(a01 − a10)(b01 − b10)t2

1− (c01 − c10 + d01 − d10 − e2)t+
(a02 − a11 + a20)(b02 − b11 + b20)t2

1− · · ·

(42)

with coefficients

γn =

(n−1∑
`=0

(−1)` c`,n−1−`

)
+

(n−1∑
`=0

(−1)` d`,n−1−`

)
− en (43a)

βn = −
(n−1∑
`=0

(−1)` a`,n−1−`

) (n−1∑
`=0

(−1)` b`,n−1−`

)
(43b)

We now write out the monomials contributed by our running examples to the polyno-
mial Pn(a,b, c,d, e, λ) in equation (39) for n = 11 and n = 14, respectively.

4.1.1 Running example 1

First let us take σ = 9 3 7 4 6 11 2 8 10 1 5 = (1, 9, 10) (2, 3, 7) (4) (5, 6, 11) (8) ∈ S11, which
was depicted in Figure 1. Here n = 11 and cyc(σ) = 5.

To obtain the monomial contributed by σ in (39), we require the following data for
each index i ∈ [11]:

• The cycle type of i as per the cycle classification. This determines the letter a, b,
c, d or e. We have already recorded this information in (10).

• The index-refined crossing and nesting statistics for i. This determines the sub-
scripts ` and `′. We have already recorded this information in Table 1.

We copy these data into the following table:

1 2 3 4 5 6 7 8 9 10 11
Letter a a d e a d b e d b b

First subscript 0 0 0 2 0 2 1 2 0 1 0
Second subscript 0 1 1 2 0 1 1 0 0

We therefore see that the monomial contributed to Pn(a,b, c,d, e, λ) by this particular
permutation σ is

λ5 a0,0 a0,1 a0,2 b0,0 b1,0 b1,1 d
2
0,1 d2,0 e

2
2 . (44)
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4.1.2 Running example 2

We now consider our second running example σ = 7 1 9 2 5 4 8 6 10 3 11 12 14 13
= (1, 7, 8, 6, 4, 2) (3, 9, 10) (5) (11) (12) (13, 14) ∈ S14, which was depicted in Figure 2.
Here n = 14 and cyc(σ) = 6.

To obtain the monomial contributed by σ in (39), we again copy the required data
from equation (14) and Table 2:

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Letter a c a c e c d b d b e e a b

First subscript 0 0 1 1 2 0 0 0 0 0 0 0 0 0
Second subscript 0 0 0 0 1 1 1 0 0 0 0

We therefore see that the monomial contributed to Pn(a,b, c,d, e, λ) by this particular
permutation σ is

λ6 a2
0,0 a1,0 b

2
0,0 b0,1 c0,0 c0,1 c1,0 d0,0 d0,1 e

2
0 e2 . (45)

4.2 p, q J-fraction

Consider now the polynomial [21, eq. (2.92)]

Pn(x1, x2, y1, y2, u1, u2, v1, v2,w, p+1, p+2, p−1, p−2, q+1, q+2, q−1, q−2, s, λ) =∑
σ∈Sn

x
eareccpeak(σ)
1 x

eareccdfall(σ)
2 y

ereccval(σ)
1 y

ereccdrise(σ)
2 ×

u
nrcpeak(σ)
1 u

nrcdfall(σ)
2 v

nrcval(σ)
1 v

nrcdrise(σ)
2 wfix(σ) ×

p
ucrosscval(σ)
+1 p

ucrosscdrise(σ)
+2 p

lcrosscpeak(σ)
−1 p

lcrosscdfall(σ)
−2 ×

q
unestcval(σ)
+1 q

unestcdrise(σ)
+2 q

lnestcpeak(σ)
−1 q

lnestcdfall(σ)
−2 spsnest(σ)λcyc(σ) , (46)

where the various statistics have been defined in [21, Sections 2.3 and 2.5]. In order to
distinguish records and antirecords, we use the following general fact about permutations
[21, Lemma 2.10]:

(a) If i is a cycle valley or cycle double rise, then i is a record if and only if unest(i, σ) = 0;
and in this case it is an exclusive record.

(b) If i is a cycle peak or cycle double fall, then i is an antirecord if and only if
lnest(i, σ) = 0; and in this case it is an exclusive antirecord.

the electronic journal of combinatorics 31(2) (2024), #P2.14 20



It follows that the polynomial (46) is obtained from (39) by making the specializations [21,
eq. (2.81)]

a`,`′ = p`+1q
`′

+1 ×

{
y1 if `′ = 0

v1 if `′ > 1
(47a)

b`,`′ = p`−1q
`′

−1 ×

{
x1 if `′ = 0

u1 if `′ > 1
(47b)

c`,`′ = p`−2q
`′

−2 ×

{
x2 if `′ = 0

u2 if `′ > 1
(47c)

d`,`′ = p`+2q
`′

+2 ×

{
y2 if `′ = 0

v2 if `′ > 1
(47d)

e` = s`w` (47e)

Making these specializations in Proposition 2 — or equivalently, attaching a minus sign
to the variables x1, u1, p+1, p+2, p−1, p−2, wi in [21, Theorem 2.7] — we obtain:

Proposition 3 (p, q J-fraction for permutations, λ = −1). The ordinary generating
function of the polynomials (46) at λ = −1 has the J-type continued fraction

∞∑
n=0

Pn(x1, x2, y1, y2, u1, u2, v1, v2,w, p+1, p+2, p−1, p−2, q+1, q+2, q−1, q−2, s,−1) tn =

1

1 + w0t+
x1y1t

2

1− (x2+y2−sw1)t+
(−p−1x1+q−1u1)(−p+1y1+q+1v1)t2

1− (−p−2x2+q−2u2−p+2y2+q+2v2−s2w2)t+
(p2
−1x1+q−1[2]−p−1,q−1u1)(p2

+1y1+q+1[2]−p+1,q+1v1)t2

1− · · ·

(48)

with coefficients

γ0 = −w0 (49a)

γn = ((−p−2)n−1x2 + q−2 [n− 1]−p−2,q−2u2) + ((−p+2)n−1y2 + q+2 [n− 1]−p+2,q+2v2) − snwn

for n > 1 (49b)
βn = − ((−p−1)n−1x1 + q−1 [n− 1]−p−1,q−1u1) ((−p+1)n−1y1 + q+1 [n− 1]−p+1,q+1v1) (49c)

We now write out the monomials contributed by our running examples to the poly-
nomial Pn(x1, x2, y1, y2, u1, u2, v1, v2,w, p+1, p+2, p−1, p−2, q+1, q+2, q−1, q−2, s, λ) in equa-
tion (46) for n = 11 and n = 14, respectively.
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4.2.1 Running example 1

First let us take σ = 9 3 7 4 6 11 2 8 10 1 5 = (1, 9, 10) (2, 3, 7) (4) (5, 6, 11) (8) ∈ S11, which
was depicted in Figure 1. Here n = 11 and cyc(σ) = 5.

To obtain the monomial contributed to (46) by σ, we require the following data for
each index i ∈ [11]:

• The cycle-and-record type of i as per the cycle-and-record classification. This de-
termines the letter x, y, u or v along with the subscript 1 or 2. We have already
recorded this information in (12).

We also require the total numbers of crossings and nestings refined according to cycle
type. We have already recorded this information in (21)/(22). Copying all these data
together, we find that the monomial contributed to (46) by the permutation σ is

λ5 x2
1 y1 y2 u1 v

2
1 v

2
2 w

2
2 p

2
+2 p

2
−1 q

3
+1 q

2
+2 q−1 s

4 . (50)

4.2.2 Running example 2

We now consider our second running example σ = 7 1 9 2 5 4 8 6 10 3 11 12 14 13
= (1, 7, 8, 6, 4, 2) (3, 9, 10) (5) (11) (12) (13, 14) ∈ S14, which was depicted in Figure 2.
Here n = 14 and cyc(σ) = 6.

Copying the required data from (16)/(24)/(25), we find that the monomial contributed
to (46) by the permutation σ is

λ6 x2
1 x

2
2 y

3
1 y2 u1 u2 v2 w

2
0 w2 p+1 p−2 q+2 q−1 q−2 s

2 . (51)

4.3 Simple J-fraction

And finally, we can obtain the polynomials without crossing and nesting statistics,

Pn(x1, x2, y1, y2, u1, u2, v1, v2,w, λ) =∑
σ∈Sn

x
eareccpeak(σ)
1 x

eareccdfall(σ)
2 y

ereccval(σ)
1 y

ereccdrise(σ)
2 ×

u
nrcpeak(σ)
1 u

nrcdfall(σ)
2 v

nrcval(σ)
1 v

nrcdrise(σ)
2 wfix(σ)λcyc(σ) , (52)

by setting p+1 = p+2 = p−1 = p−2 = q+1 = q+2 = q−1 = q−2 = s = 1 in (46). Making this
same specialization in Proposition 3 and observing that

[n− 1]−1,1 =

{
1 if n is even
0 if n is odd

(53)

we obtain:
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Proposition 4 (Simple J-fraction for permutations, λ = −1). The ordinary generating
function of the polynomials (52) at λ = −1 has the J-type continued fraction

∞∑
n=0

Pn(x1, x2, y1, y2, u1, u2, v1, v2,w,−1) tn =

1

1 + w0t+
x1y1t

2

1− (x2+y2−w1)t+
(x1−u1)(y1−v1)t2

1− (−x2+u2−y2+v2−w2)t+
x1y1t

2

1− · · ·
(54)

with coefficients

γ0 = −w0 (55a)

γn =

{
x2 + y2 − wn if n is odd
−x2 + u2 − y2 + v2 − wn if n is even and > 2

(55b)

βn =

{
−x1y1 if n is odd
−(x1 − u1)(y1 − v1) if n is even

(55c)

4.4 Corollary for cycle-alternating permutations

We recall [4,6,21] that a cycle-alternating permutation is a permutation of [2n] that
has no cycle double rises, cycle double falls, or fixed points; Deutsch and Elizalde [6,
Proposition 2.2] showed that the number of cycle-alternating permutations of [2n] is the
secant number E2n (see also Dumont [7, pp. 37, 40] and Biane [2, section 6]). In this
subsection, we will obtain continued fractions for cycle-alternating permutations at λ =
−1 by specializing our master J-fraction (Proposition 2) to suppress cycle double rises,
cycle double falls and fixed points, and then using [4, Lemma 4.2] to interpret the parity
of cycle peaks and cycle valleys in terms of crossings and nestings.

Let Pn(a,b, λ) denote the polynomial (39) specialized to c = d = e = 0; it enumerates
cycle-alternating permutations according to the index-refined crossing and nesting statis-
tics associated to its cycle peaks and cycle valleys. Note that Pn is nonvanishing only for
even n. The J-fraction of Proposition 2 then becomes an S-fraction in the variable t2;
after changing t2 to t, we have:

Proposition 5 (Master S-fraction for cycle-alternating permutations, λ = −1). The
ordinary generating function of the polynomials P2n(a,b,−1) has the S-type continued
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fraction

∞∑
n=0

P2n(a,b,−1) tn =
1

1 +
a00b00t

1 +
(a01 − a10)(b01 − b10)t

1 +
(a02 − a11 + a20)(b02 − b11 + b20)t

1− · · ·
(56)

with coefficients

αn = −
(n−1∑
`=0

(−1)` a`,n−1−`

) (n−1∑
`=0

(−1)` b`,n−1−`

)
. (57)

We can use this master S-fraction to obtain a continued fraction that distinguishes
cycle peaks and cycle valleys according to their parity. To do this, we use [4, Lemma 4.2]:

Lemma 6 (Key lemma from [4]). If σ is a cycle-alternating permutation of [2n], then

cycle valleys: ucross(i, σ) + unest(i, σ) = i− 1 (mod 2) (58a)

cycle peaks: lcross(i, σ) + lnest(i, σ) = i (mod 2) (58b)

for all i ∈ [2n].

Consider now the polynomials

Qn(xe, ye, ue, ve, xo, yo, uo, vo, p−1, p−2, p+1, p+2, q−1, q−2, q+1, q+2, λ) =∑
σ∈Sca

2n

xeareccpeakeven(σ)
e yereccvaleven(σ)

e unrcpeakeven(σ)
e vnrcvaleven(σ)

e ×

xeareccpeakodd(σ)
o yereccvalodd(σ)

o unrcpeakodd(σ)
o vnrcvalodd(σ)

o ×

p
lcrosscpeakeven(σ)
−1 p

lcrosscpeakodd(σ)
−2 p

ucrosscvalodd(σ)
+1 p

ucrosscvaleven(σ)
+2 ×

q
lnestcpeakeven(σ)
−1 q

lnestcpeakodd(σ)
−2 q

unestcvalodd(σ)
+1 q

unestcvaleven(σ)
+2 λcyc(σ) , (59)

where the various statistics are defined as

eareccpeakeven(σ) = |Eareccpeakeven(σ)| = |Arec(σ) ∩ Cpeak(σ) ∩ Even| (60)

lcrosscpeakeven(σ) =
∑

k∈Cpeak(σ)∩Even

lcross(k, σ) (61)

and likewise for the others. These polynomials are the same as the polynomials [4,
eq. (4.29)] except for the extra factor λcyc(σ). As before, we use [21, Lemma 2.10] to
distinguish records and antirecords; we also use Lemma 6 to distinguish cycle peaks and
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cycle valleys according to their parity. It follows that the polynomials (59) can be obtained
from the master polynomials Pn(a,b, λ) by making the specializations [4, eq. (4.33)]

a`,`′ =


p`+1yo if `′ = 0 and `+ `′ is even
p`+1q

`′
+1vo if `′ > 1 and `+ `′ is even

p`+2ye if `′ = 0 and `+ `′ is odd
p`+2q

`′
+2ve if `′ > 1 and `+ `′ is odd

(62a)

b`,`′ =


p`−1xe if `′ = 0 and `+ `′ is even
p`−1q

`′
−1ue if `′ > 1 and `+ `′ is even

p`−2xo if `′ = 0 and `+ `′ is odd
p`−2q

`′
−2uo if `′ > 1 and `+ `′ is odd

(62b)

Inserting these specializations into Proposition 5, we obtain:
Proposition 7 (p, q S-fraction for cycle-alternating permutations, λ = −1). The or-
dinary generating function of the polynomials (59) at λ = −1 has the S-type continued
fraction

∞∑
n=0

Qn(xe, ye, ue, ve, xo, yo, uo, vo, p−1, p−2, p+1, p+2, q−1, q−2, q+1, q+2,−1) tn

=
1

1 +
xeyot

1 +
(−p−2xo+q−2uo)(−p+2ye+q+2ve)t

1 +
(p2
−1xe+q−1[2]−p−1,q−1ue)(p

2
+1yo+q+1[2]−p+1,q+1vo)t

1− · · ·

(63a)

with coefficients

α2k−1 = −(p2k−2
−1 xe + q−1[2k − 2]−p−1,q−1ue) (p2k−2

+1 yo + q+1[2k − 2]−p+1,q+1vo)

(64a)
α2k = −(−p2k−1

−2 xo + q−2[2k − 1]−p−2,q−2uo) (−p2k−1
+2 ye + q+2[2k − 1]−p+2,q+2ve)

(64b)

Finally, denote by Qn(xe, ye, ue, ve, xo, yo, uo, vo, λ) the polynomial (59) specialized to
p+1 = p+2 = p−1 = p−2 = q+1 = q+2 = q−1 = q−2 = 1. Setting λ = −1, we obtain:
Proposition 8 (Simple S-fraction for cycle-alternating permutations, λ = −1). The
ordinary generating function of the polynomials Qn(xe, ye, ue, ve, xo, yo, uo, vo,−1) has the
S-type continued fraction

∞∑
n=0

Qn(xe, ye, ue, ve, xo, yo, uo, vo,−1) tn =
1

1 +
xeyot

1 +
(xo−uo)(ye−ve)t

1 +
xeyot

1− · · ·

(65)
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with coefficients

α2k−1 = −xeyo (66a)

α2k = −(xo − uo) (ye − ve) (66b)

This proves the continued fraction that was conjectured in [4, eq. (A.6)].

5 Results for D-permutations

We recall [3, 14–16] that a D-permutation is a permutation of [2n] satisfying
2k − 1 6 σ(2k − 1) and 2k > σ(2k) for all k; D-permutations provide a combinatorial
model for the Genocchi and median Genocchi numbers. We write D2n for the set of
D-permutations of [2n]. Our running example 2,

σ = 7 1 9 2 5 4 8 6 10 3 11 12 14 13

= (1, 7, 8, 6, 4, 2) (3, 9, 10) (5) (11) (12) (13, 14) ∈ S14 , (67)

is an example of a D-permutation.
We proceed in the same way as in the preceding section, beginning with the “master”

T-fraction and then obtaining the others by specialization.

5.1 Master T-fraction

Following [3, Section 3.4], we introduce six infinite families of indeterminates
a = (a`,`′)`,`′>0, b = (b`,`′)`,`′>0, c = (c`,`′)`,`′>0, d = (d`,`′)`,`′>0, e = (e`)`>0, f = (f`)`>0 and
then define the polynomials

Qn(a,b, c,d, e, f, λ) =∑
σ∈D2n

λcyc(σ)
∏

i∈Cval(σ)

aucross(i,σ), unest(i,σ)

∏
i∈Cpeak(σ)

blcross(i,σ), lnest(i,σ) ×

∏
i∈Cdfall(σ)

clcross(i,σ), lnest(i,σ)

∏
i∈Cdrise(σ)

ducross(i,σ),unest(i,σ) ×

∏
i∈Evenfix(σ)

epsnest(i,σ)

∏
i∈Oddfix(σ)

fpsnest(i,σ) . (68)

(This is [3, eq. (3.30)] with a factor λcyc(σ) included.) Then the first master T-fraction
for D-permutations [3, Theorem 3.11] handles the case λ = 1: it states that the ordinary
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generating function of the polynomialsQn(a,b, c,d, e, 1) has the T-type continued fraction
∞∑
n=0

Qn(a,b, c,d, e, f, 1)tn =
1

1− e0f0t−
a00b00t

1−
(c00 + e1)(d00 + f1)t

1−
(a01 + a10)(b01 + b10)t

1−
(c01 + c10 + e2)(d01 + d10 + f2)t

1− · · ·

(69)

with coefficients

α2k−1 =

(k−1∑
`=0

a`,k−1−`

)(k−1∑
`=0

b`,k−1−`

)
(70a)

α2k =

(
ek +

k−1∑
`=0

c`,k−1−`

)(
fk +

k−1∑
`=0

d`,k−1−`

)
(70b)

δ1 = e0f0 (70c)

δn = 0 for n > 2 (70d)

By Lemma 1, we obtain the case λ = −1 by inserting a factor −1 for each even or odd
fixed point, for each cycle peak (or alternatively, cycle valley), and for each lower or upper
crossing. We therefore have:

Proposition 9 (Master T-fraction for D-permutations, λ = −1). The ordinary gener-
ating function of the polynomials Qn(a,b, c,d, e, f,−1) has the T-type continued fraction

∞∑
n=0

Qn(a,b, c,d, e, f,−1) tn =
1

1− e0f0t+
a00b00t

1−
(c00 − e1)(d00 − f1)t

1 +
(a01 − a10)(b01 − b10)t

1−
(c01 − c10 − e2)(d01 − d10 − f2)t

1− · · ·
(71)

with coefficients

α2k−1 = −
(k−1∑
`=0

(−1)` a`,k−1−`

)(k−1∑
`=0

(−1)` b`,k−1−`

)
(72a)

α2k =

(
−ek +

k−1∑
`=0

(−1)` c`,k−1−`

)(
−fk +

k−1∑
`=0

(−1)` d`,k−1−`

)
(72b)

δ1 = e0f0 (72c)

δn = 0 for n > 2 (72d)
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5.1.1 Running example 2

We now write out the monomial contributed by our running example 2 to the polynomial
Qn(a,b, c,d, e, f, λ) in (68). We have σ = 7 1 9 2 5 4 8 6 10 3 11 12 14 13
= (1, 7, 8, 6, 4, 2) (3, 9, 10) (5) (11) (12) (13, 14) ∈ D14, which was depicted in Figure 2.
Here n = 7 and cyc(σ) = 6.

The monomial contributed by σ in (68) is almost the same as the monomial in (45);
only the contribution of the fixed points is slightly different because we treat even and
odd fixed points separately. Instead of

λ6 a2
0,0 a1,0 b

2
0,0 b0,1 c0,0 c0,1 c1,0 d0,0 d0,1 e

2
0 e2 (73)

as in (45), here the contribution is

λ6 a2
0,0 a1,0 b

2
0,0 b0,1 c0,0 c0,1 c1,0 d0,0 d0,1 e0 f0 f2 . (74)

5.2 p, q T-fraction

Consider now the polynomial

Pn(x1, x2, y1, y2, u1, u2, v1, v2, we, wo, ze, zo, p−1, p−2, p+1, p+2, q−1, q−2, q+1, q+2, se, so, λ) =∑
σ∈D2n

x
eareccpeak(σ)
1 x

eareccdfall(σ)
2 y

ereccval(σ)
1 y

ereccdrise(σ)
2 ×

u
nrcpeak(σ)
1 u

nrcdfall(σ)
2 v

nrcval(σ)
1 v

nrcdrise(σ)
2 ×

wevennrfix(σ)
e woddnrfix(σ)

o zevenrar(σ)
e zoddrar(σ)

o ×

p
lcrosscpeak(σ)
−1 p

lcrosscdfall(σ)
−2 p

ucrosscval(σ)
+1 p

ucrosscdrise(σ)
+2 ×

q
lnestcpeak(σ)
−1 q

lnestcdfall(σ)
−2 q

unestcval(σ)
+1 q

unestcdrise(σ)
+2 ×

sepsnest(σ)
e sopsnest(σ)

o λcyc(σ) . (75)

(This is [3, eq. (3.22)] with a factor λcyc(σ) included.) The various statistics have been
defined in [3, Sections 2.7 and 2.8 and eq. (3.22)]. This polynomial is obtained from (68)
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by making the specializations [3, eqs. (6.40)-(6.45)]

a`,`′ = p`+1q
`′

+1 ×

{
y1 if `′ = 0

v1 if `′ > 1
(76a)

b`,`′ = p`−1q
`′

−1 ×

{
x1 if `′ = 0

u1 if `′ > 1
(76b)

c`,`′ = p`−2q
`′

−2 ×

{
x2 if `′ = 0

u2 if `′ > 1
(76c)

d`,`′ = p`+2q
`′

+2 ×

{
y2 if `′ = 0

v2 if `′ > 1
(76d)

ek =

{
ze if k = 0

skewe if k > 1
(76e)

fk =

{
zo if k = 0

skowo if k > 1
(76f)

Making these specializations in Proposition 9 — or equivalently, attaching a minus sign
to the variables x1, u1, p+1, p+2, p−1, p−2, we, wo, ze, zo in [3, Theorem 3.9] — we obtain:

Proposition 10 (p, q T-fraction for D-permutations, λ = −1). The ordinary generating
function of the polynomials (75) at λ = −1 has the T-type continued fraction

∞∑
n=0

Pn(x1, x2, y1, y2, u1, u2, v1, v2, we, wo, ze, zo, p−1, p−2, p+1, p+2, q−1, q−2, q+1, q+2, se, so,−1) tn =

1

1− zezo t+
x1y1 t

1−
(x2−sewe)(y2−sowo) t

1 +
(−p−1x1+q−1u1)(−p+1y1+q+1v1) t

1−
(−p−2x2+q−2u2−s2

ewe)(−p+2y2+q+2v2−s2
owo) t

1 +
(p2
−1x1+q−1[2]−p−1,q−1u1)(p2

+1y1+q+1[2]−p+1,q+1v1) t

1−
(p2
−2x2+q−2[2]−p−2,q−2u2−s3

ewe)(p
2
+2y2+q+2[2]−p+2,q+2v2−s3

owo) t

1− · · ·
(77)
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with coefficients

α2k−1 = −
(
(−p−1)k−1x1 + q−1[k − 1]−p−1,q−1u1

) (
(−p+1)k−1y1 + q+1[k − 1]−p+1,q+1v1

)
(78a)

α2k =
(
(−p−2)k−1x2 + q−2[k − 1]−p−2,q−2u2 − skewe

) (
(−p+2)k−1y2 + q+2[k − 1]−p+2,q+2v2 − skowo

)
(78b)

δ1 = zezo (78c)

δn = 0 for n > 2 (78d)

5.2.1 Running example 2

We now write out the monomial contributed by our running example 2 to the polynomial
(75) for n = 7. We have σ = 7 1 9 2 5 4 8 6 10 3 11 12 14 13
= (1, 7, 8, 6, 4, 2) (3, 9, 10) (5) (11) (12) (13, 14) ∈ D14, which was depicted in Figure 2.
Here n = 7 and cyc(σ) = 6.

The monomial contributed by σ in (75) is almost the same as the monomial in (51);
the contribution of the fixed points is slightly different because we treat even and odd
fixed points separately, and because (46) distinguished fixed points by level (subscripts
on w), which we do not do here except to distinguish level 0 (rar) from level > 0 (nrfix).
Therefore, instead of

λ6 x2
1 x

2
2 y

3
1 y2 u1 u2 v2 w

2
0 w2 p+1 p−2 q+2 q−1 q−2 s

2 (79)

as in (51), here the contribution is

λ6 x2
1 x

2
2 y

3
1 y2 u1 u2 v2 wo ze zo p+1 p−2 q+2 q−1 q−2 s

2
o . (80)

5.3 Simple T-fraction

Finally, denote by Pn(x1, x2, y1, y2, u1, u2, v1, v2, we, wo, ze, zo, λ) the polynomial (75) spe-
cialized to p+1 = p+2 = p−1 = p−2 = q+1 = q+2 = q−1 = q−2 = se = so = 1. This
polynomial was introduced in [3, eq. (4.2)]. Making this same specialization in Proposi-
tion 10 and using (53), we obtain:

Proposition 11 (Simple T-fraction for D-permutations, λ = −1). The ordinary gen-
erating function of the polynomials Pn(x1, x2, y1, y2, u1, u2, v1, v2, we, wo, ze, zo,−1) has the
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T-type continued fraction
∞∑
n=0

Pn(x1, x2, y1, y2, u1, u2, v1, v2, we, wo, ze, zo,−1) tn =

1

1− zezo t+
x1y1 t

1−
(x2−we)(y2−wo) t

1 +
(x1−u1)(y1−v1) t

1−
(x2−u2+we)(y2−v2+wo) t

1 +
x1y1 t

1−
(x2−we)(y2−wo) t

1− · · ·
(81)

with coefficients

α2k−1 =

{
−x1y1 if k is odd
−(x1 − u1)(y1 − v1) if k is even

(82a)

α2k =

{
(x2 − we)(y2 − wo) if k is odd
(x2 − u2 + we)(y2 − v2 + wo) if k is even

(82b)

δ1 = zezo (82c)

δn = 0 for n > 2 (82d)

Finally, as a special case of Proposition 11, we can obtain a J-fraction that was
conjectured in [3, Appendix, case λ = −1]. It suffices to specialize the polynomi-
als Pn(x1, x2, y1, y2, u1, u2, v1, v2, we, wo, ze, zo, λ) by setting x1 = x2 = ze = zo = x,
y1 = y2 = y, and u1 = u2 = v1 = v2 = we = wo = 1; this yields the polynomials

Pn(x, y, λ) =
∑
σ∈D2n

xarec(σ)yerec(σ)λcyc(σ) (83)

that were introduced in [3, eqs. (4.1) and (A.1)]. Inserting this specialization in Proposi-
tion 11 gives, for λ = −1, a T-fraction with coefficients

α2k−1 =

{
−xy if k is odd
−(x− 1)(y − 1) if k is even

(84a)

α2k =

{
(x− 1)(y − 1) if k is odd
xy if k is even

(84b)

δ1 = x2 (84c)

δn = 0 for n > 2 (84d)
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Using the even contraction for T-fractions with δ2 = δ4 = δ6 = . . . = 0 [3, Proposition 2.1],
we can rewrite this as a J-fraction:

Corollary 12. The ordinary generating function of the polynomials (83) has the J-type
continued fraction

∞∑
n=0

Pn(x, y,−1) =
1

1− x(x−y) t+
xy (x− 1)(y − 1) t2

1 +
xy (x− 1)(y − 1) t2

1 +
xy (x− 1)(y − 1) t2

1 + · · ·

(85)

with coefficients

γ0 = x(x− y) (86a)

γn = 0 for n > 1 (86b)

βn = −xy(x− 1)(y − 1) (86c)

This J-fraction was conjectured in [3, Appendix, case λ = −1].

Acknowledgments

One of us (B.D.) is partially supported by the DIMERS project ANR-18-CE40-0033. He
also wishes to thank Jakob Stein for helpful discussions concerning the topology of the
plane.

References

[1] H. Alencar, W. Santos and G. Silva Neto, Differential Geometry of Plane Curves ,
Student Mathematical Library, vol. 96 (Providence RI, American Mathematical
Society, 2022).

[2] P. Biane, Permutations suivant le type d’excédance et le nombre d’inversions et
interprétation combinatoire d’une fraction continue de Heine, European J. Combin.
14, 277–284 (1993).

[3] B. Deb and A.D. Sokal, Classical continued fractions for some multivariate polyno-
mials generalizing the Genocchi and median Genocchi numbers, preprint (December
2022), arXiv:2212.07232.

[4] B. Deb and A.D. Sokal, Continued fractions for cycle-alternating permutations
preprint (April 2023), arXiv:2304.06545.

[5] A. de Médicis and X.G. Viennot, Moments des q-polynômes de Laguerre et la bi-
jection de Foata–Zeilberger, Adv. Appl. Math. 15, 262–304 (1994).

[6] E. Deutsch and S. Elizalde, Cycle-up-down permutations, Australas. J. Combin. 50,
187–199 (2011).

the electronic journal of combinatorics 31(2) (2024), #P2.14 32

https://arxiv.org/abs/2212.07232
https://arxiv.org/abs/2304.06545


[7] D. Dumont, Pics de cycle et dérivées partielles, Séminaire Lotharingien de Combi-
natoire 13, article B13a (1986).

[8] A. Elvey Price and A.D. Sokal, Phylogenetic trees, augmented perfect matchings,
and a Thron-type continued fraction (T-fraction) for the Ward polynomials, Elec-
tron. J. Combin. 27(4), #P4.6 (2020).

[9] L. Euler, De seriebus divergentibus, Novi Commentarii Academiae Scientiarum
Petropolitanae 5, 205–237 (1760); reprinted in Opera Omnia, ser. 1, vol. 14,
pp. 585–617. [Latin original and English and German translations available at
http://eulerarchive.maa.org/pages/E247.html].

[10] L. Euler, De transformatione seriei divergentis 1 − mx + m(m + n)x2 − m(m +
n)(m + 2n)x3 + etc. in fractionem continuam, Nova Acta Academiae Scientarum
Imperialis Petropolitanae 2, 36–45 (1788); reprinted in Opera Omnia, ser. 1, vol. 16,
pp. 34–46. [Latin original and English and German translations available at http:
//eulerarchive.maa.org/pages/E616.html].

[11] P. Flajolet, Combinatorial aspects of continued fractions, Discrete Math. 32, 125–
161 (1980).

[12] E. Fusy and E. Guitter, Comparing two statistical ensembles of quadrangulations:
A continued fraction approach, Ann. Inst. Henri Poincaré D 4, 125–176 (2017).

[13] M. Josuat-Vergès, A q-analog of Schläfli and Gould identities on Stirling numbers,
Ramanujan J. 46, 483–507 (2018).

[14] A.L. Lazar, The homogenized Linial arrangement and its consequences in enumer-
ative combinatorics, Ph.D. thesis, University of Miami (August 2020),
https://scholarship.miami.edu/discovery/delivery/01UOML_INST:
ResearchRepository/12367619000002976?l#13367618990002976.

[15] A. Lazar, Ferrers graphs, D-permutations, and surjective staircases, Ramanujan J.
60, 391–426 (2023).

[16] A. Lazar and M.L. Wachs, The homogenized Linial arrangement and Genocchi
numbers, Combin. Theory 2, issue 1, paper no. 2 (2022), 34 pp.

[17] N.A. Loehr, Combinatorics , 2nd ed. (CRC Press, Boca Raton, FL, 2018).
[18] R. Oste and J. Van der Jeugt, Motzkin paths, Motzkin polynomials and recurrence

relations, Electron. J. Combin. 22, no. 2, #P2.8 (2015).
[19] H. Shin and J. Zeng, The q-tangent and q-secant numbers via continued fractions,

European J. Combin. 31, 1689–1705 (2010).
[20] A.D. Sokal, Coefficientwise Hankel-total positivity, monograph in preparation.
[21] A.D. Sokal and J. Zeng, Some multivariate master polynomials for permutations, set

partitions, and perfect matchings, and their continued fractions, Adv. Appl. Math.
138, 102341 (2022).

[22] J. Stillwell, Classical Topology and Combinatorial Group Theory , 2nd ed. (Springer-
Verlag, New York, 1993).

the electronic journal of combinatorics 31(2) (2024), #P2.14 33

http://eulerarchive.maa.org/pages/E247.html
http://eulerarchive.maa.org/pages/E616.html
http://eulerarchive.maa.org/pages/E616.html
https://scholarship.miami.edu/discovery/delivery/01UOML_INST:ResearchRepository/12367619000002976?l#13367618990002976
https://scholarship.miami.edu/discovery/delivery/01UOML_INST:ResearchRepository/12367619000002976?l#13367618990002976


[23] P.G. Tait, Some elementary properties of closed plane curves, Messenger of
Mathematics (2) 6, 132–133 (1877). [Reprinted in P.G. Tait, Scientific Papers ,
vol. 1 (University Press, Cambridge, 1898), pp. 270–272. Available on-line at
http://visualiseur.bnf.fr/CadresFenetre?O=NUMM-99438 or https://babel.
hathitrust.org/cgi/pt?id=hvd.32044080804735&view=1up&seq=298].

[24] H. Tverberg, A proof of the Jordan curve theorem, Bull. London Math. Soc. 12,
34–38 (1980).

[25] M. Umehara and K. Yamada, Differential Geometry of Curves and Surfaces , trans-
lated from the Japanese by W. Rossman (World Scientific, Singapore, 2017).

[26] H. Whitney, On regular closed curves in the plane, Compositio Math. 4, 276–284
(1937).

the electronic journal of combinatorics 31(2) (2024), #P2.14 34

http://visualiseur.bnf.fr/CadresFenetre?O=NUMM-99438
https://babel.hathitrust.org/cgi/pt?id=hvd.32044080804735&view=1up&seq=298
https://babel.hathitrust.org/cgi/pt?id=hvd.32044080804735&view=1up&seq=298

	Introduction
	Preliminaries
	Permutation statistics: The record-and-cycle classification
	Running example 1
	Running example 2

	Permutation statistics: Crossings and nestings
	Running example 1
	Running example 2


	Proof of Lemma 1
	Illustration with examples
	Running example 1
	Running example 2


	Results for permutations
	Master J-fraction
	Running example 1
	Running example 2

	p,q J-fraction
	Running example 1
	Running example 2

	Simple J-fraction
	Corollary for cycle-alternating permutations

	Results for D-permutations
	Master T-fraction
	Running example 2

	p,q T-fraction
	Running example 2

	Simple T-fraction

	Bibliography

