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Abstract

An ordered matching of size n is a graph on a linearly ordered vertex set V ,
|V | = 2n, consisting of n pairwise disjoint edges. There are three different ordered
matchings of size two on V = {1, 2, 3, 4}: an alignment {1, 2}, {3, 4}, a nesting
{1, 4}, {2, 3}, and a crossing {1, 3}, {2, 4}. Accordingly, there are three basic homo-
geneous types of ordered matchings (with all pairs of edges arranged in the same
way) which we call, respectively, lines, stacks, and waves.

We prove an Erdős–Szekeres type result guaranteeing in every ordered matching
of size n the presence of one of the three basic sub-structures of a given size. In
particular, one of them must be of size at least n1/3. We also investigate the size of
each of the three sub-structures in a random ordered matching. Additionally, the
former result is generalized to 3-uniform ordered matchings.

Another type of unavoidable patterns we study are twins, that is, pairs of order-
isomorphic, disjoint sub-matchings. By relating to a similar problem for permuta-
tions, we prove that the maximum size of twins that occur in every ordered matching
of size n is O

(
n2/3

)
and Ω

(
n3/5

)
. We conjecture that the upper bound is the correct

order of magnitude and confirm it for almost all matchings. In fact, our results for
twins are proved more generally for r-multiple twins, r > 2. 1
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(rucinski@amu.edu.pl).

1An extended abstract of this paper appears in [11].

the electronic journal of combinatorics 31(2) (2024), #P2.15 https://doi.org/10.37236/11932

https://doi.org/10.37236/11932


1 Introduction

1.1 Background

A graph G is said to be ordered if its vertex set is linearly ordered. Let G and H be two
ordered graphs with vertex sets V (G) = {v1, . . . , vm} and V (H) = {w1, . . . , wm}, and the
respective linear orders v1 < · · · < vm and w1 < · · · < wm, for some integer m > 1. We
say that G and H are order-isomorphic if for all 1 6 i < j 6 m, vivj ∈ E(G) if and
only if wiwj ∈ E(H). Note that every pair of order-isomorphic graphs is isomorphic, but
not vice-versa. Also, if G and H are distinct graphs on the same linearly ordered vertex

set V , then G and H are never order-isomorphic, and so all 2(|V |2 ) labeled graphs on V
are pairwise non-order-isomorphic. It shows that the notion of order-isomorphism makes
sense only for pairs of graphs on distinct vertex sets.

One context in which order-isomorphism makes quite a difference is that of subgraph
containment. If G is an ordered graph, then any subgraph G′ of G can be also treated as
an ordered graph with the ordering of V (G′) inherited from the ordering of V (G). Given
two ordered graphs, (a “large” one) G and (a “small” one) H, we say that a subgraph
G′ ⊂ G is an ordered copy of H in G if G′ and H are order-isomorphic. We will sometimes
denote this fact by writing G′ � G.

All kinds of questions concerning subgraphs in unordered graphs can be posed for
ordered graphs as well (see, e.g., [32] and [5]). For example, in [3] and [9] the authors
studied Turán and Ramsey type problems for ordered graphs. In particular, they showed
independently that there exists an ordered matching on n vertices for which the (ordered)
Ramsey number is super-polynomial in n, a sharp contrast with the linearity of the
Ramsey number for ordinary (i.e., unordered) matchings. This shows that it makes sense
to study even such seemingly simple structures as ordered matchings. In fact, Jeĺınek [22]
counted the number of matchings avoiding (i.e., not containing) a given small ordered
matching.

1.2 Topics and organization

In this paper we focus exclusively on ordered matchings, that is, ordered graphs which con-
sist of vertex-disjoint edges (and have no isolated vertices). For example, in Figure 1, we
depict two ordered matchings, M = {{1, 3}, {2, 4}, {5, 6}} and N = {{1, 5}, {2, 3}, {4, 6}}
on vertex set {1, 2, 3, 4, 5, 6} with the natural linear ordering. Unlike in [22], we study
what sub-structures are unavoidable in ordered matchings. A frequent theme in both
fields, the theory of ordered graphs as well as enumerative combinatorics, are unavoidable
sub-structures, that is, patterns that appear in every member of a prescribed family of
structures. A flagship example providing everlasting inspiration is the famous theorem of
Erdős and Szekeres [14] on monotone subsequences (see [4, 6, 7, 13, 15, 26, 31] for some
recent extensions and generalizations). In its diagonal form it states that any sequence
x1, x2, . . . , xn of distinct real numbers contains an increasing or decreasing subsequence
of length at least

√
n.

And, indeed, our first goal is to prove its analog for ordered matchings. The reason why
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Figure 1: Exemplary matchings M and N .

the original Erdős–Szekeres Theorem lists only two types of subsequences is, obviously,
that for any two elements xi and xj with i < j there are just two possible relations:
xi < xj or xi > xj. For matchings, however, for every two edges {x, y} and {u,w} with
x < y, u < w, and x < u, there are three possibilities: y < u, w < y, or u < y < w
(see Figure 2). In other words, every two edges form either an alignment, a nesting, or a
crossing (the first term introduced by Kasraoui and Zeng in [24], the last two terms coined
in by Stanley [29]). These three possibilities give rise, respectively, to three “unavoidable”
ordered sub-matchings (lines, stacks, and waves) which play an analogous role to the
monotone subsequences in the classical Erdős–Szekeres Theorem. (In [29], stacks and
waves consisting of k edges were called, respectively, k-nestings and k-crossings.)

Figure 2: An alignment, a nesting, and a crossing of a pair of edges.

Informally, lines, stacks, and waves are defined by demanding that every pair of edges
in a sub-matching forms, respectively, an alignment, a nesting, or a crossing (see Figure 5).
In Subsection 2.1 we show, in particular, that every ordered matching of size n contains
one of these structures of size at least n1/3. This special case was also proved by Huynh,
Joos and Wollan (see Lemma 25 in [21]). In the remainder of Section 2, we first extend
this result to 3-uniform ordered matchings and then study the size of the largest lines,
stacks, and waves in random matchings.

Our second goal is to estimate the size of the largest (ordered) twins in ordered match-
ings. The problem of twins has been widely studied for other combinatorial structures,
including words, permutations, and graphs (see, e.g., [1, 25]). For an integer r > 2, we
say that r edge-disjoint (ordered) subgraphs G1, G2, . . . , Gr of an (ordered) graph G form
(ordered) twins in G if they are pairwise (order-)isomorphic. The size of the (ordered)
twins is defined as |E(G1)| = · · · = |E(Gr)|. For ordinary matchings, the notion of r-
twins becomes trivial, as every matching of size n contains twins of size bn/rc – just split
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the matching into r as equal as possible parts. But for ordered matchings the problem
becomes interesting. The above mentioned analog of the Erdős–Szekeres Theorem imme-
diately yields (again by splitting into r equal parts) ordered r-twins of length bn1/3/rc.
We provide much better estimates on the size of largest r-twins in ordered matchings
(Subsection 3.1) and random matchings (Subsection 3.2) which, not so surprisingly, are
of the same order of magnitude as those for r-twins in permutations (see [8, 10]).

1.3 Random matchings

As indicated above, we examine both questions, of unavoidable sub-matchings and of
twins, also for random matchings. A random (ordered) matching RMn is selected uni-
formly at random from all

αn :=
(2n)!

n!2n

ordered matchings on vertex set [2n]. Among other results, we show that with probability
tending to 1, as n→∞, or asymptotically almost surely (a.a.s.), there are in RMn lines,
stacks, and waves of size, roughly,

√
n, as well as (ordered) twins of size Θ(n2/3).

There are two other ways of generating RMn which we are going to utilize in the
proofs. Besides the above defined uniform scheme, we define the online scheme as follows.
For an arbitrary ordering of the vertices u1, . . . , u2n one selects uniformly at random a
match, say uj1 , for u1 (in 2n − 1 ways), then, after crossing out u1 and uj1 from the
list, one selects uniformly at random a match for the first uncrossed vertex (in 2n − 3
ways), and so on. Note that the total number of ways to select a matching this way
is (2n − 1)(2n − 3) · . . . · 3 · 1 = (2n − 1)!! which equals αn. A third equivalent way
to generate RMn is particularly convenient when one intends to apply concentration
inequalities available for random permutations. The permutation based scheme boils down
to just generating a random permutation Π := Πn of [2n] and “chopping it off” into a
matching {Π(1)Π(2), Π(3)Π(4), . . . ,Π(2n− 1)Π(2n)}. Note that this way each matching
corresponds, as it should, to exactly n!2n permutations. We will stick mostly to the
uniform scheme, applying the other two only occasionally.

1.4 Gauss codes

A convenient representation of ordered matchings can be obtained in terms of double
occurrence words over an n-letter alphabet, in which every letter occurs exactly twice
as the label of the ends of the corresponding edge in the matching. For instance, our
two exemplary matchings can be written as M = ABABCC and N = ABBCAC (see
Figure 3). In fact, this is a special case of an elementary combinatorial bijection between
ordered partitions of a set and permutations with repetitions. A minor nuisance here is
that ordered matchings correspond to unordered partitions, so every permutation of the
letters yields the same matching. Nevertheless, we will sometimes use this representation
to better illustrate some notions and ideas.

Interestingly, this type of words was introduced and studied already by Gauss [18] as
a way of encoding closed self-intersecting curves on the plane (with points of multiplicity
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Figure 3: Exemplary matchings M = ABABCC and N = ABBCAC.

at most two). Indeed, denoting the self-crossing points by letters and traversing the curve
in a fixed direction gives a (cyclic) word in which every letter occurs exactly twice (by
the multiplicity assumption) (see Figure 4). A general problem studied by Gauss was to
characterize those words that correspond to such curves. He found himself a necessary
condition, but a full solution (in terms of some quite involved constraints on an auxiliary
graph of crossing pairs) was obtained much later (see [28] for a brief history and further
references).

It is, perhaps, also worthwhile to mention that ordered matchings constitute a special
case of structures, known as Puttenham diagrams, that found an early application in the
theory of poetry (see [27, 33]). A basic idea is simple: a rhyme scheme of a poem can
be encoded by a word in which same letters correspond to rhyming verses. Of particular
interest here are planar rhyme schemes which are nothing else but ordered matchings
without crossings, or more generally, noncrossing partitions (see [30]).

Figure 4: A curve with Gauss code ABCCBDDA.

2 Unavoidable sub-matchings

Let us start with formal definitions. Let M be an ordered matching on the vertex set
[2n], with edges denoted as ei = {ai, bi} so that ai < bi, for all i = 1, 2, . . . , n, and
a1 < · · · < an. We say that an edge ei is to the left of ej and write ei < ej if ai < aj. That
is, in ordering the edges of a matching we ignore the positions of the right endpoints.

We now define the three basic types of ordered matchings:
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• Line: a1 < b1 < a2 < b2 < · · · < an < bn,

• Stack: a1 < a2 < · · · < an < bn < bn−1 < · · · < b1,

• Wave: a1 < a2 < · · · < an < b1 < b2 < · · · < bn.

Assigning letter Ai to edge {ai, bi}, their corresponding double occurrence words look as
follows:

• Line: A1A1A2A2 · · ·AnAn,

• Stack: A1A2 · · ·An−1AnAnAn−1 · · ·A1.

• Wave: A1A2 · · ·AnA1A2 · · ·An.

Each of these three types of ordered matchings can be equivalently characterized as follows.
Let us consider all possible ordered matchings with just two edges. In the double occur-
rence word notation these are AABB (an alignment), ABBA (a nesting), and ABAB (a
crossing). Now a line, a stack, and a wave is an ordered matching in which every pair of
edges forms, respectively, an alignment, a nesting, and a crossing (see Figure 5).

Note that alignments, crossings and nestings are just special instances (the smallest
non-trivial) of, resp., lines, stacks, and waves, and throughout we will use these names
interchangeably.

Figure 5: A line, a stack, and a wave of size three.

2.1 In arbitrary matchings

Consider a sub-matching M ′ of M and an edge e ∈ M \M ′, which is to the left of the
left-most edge f of M ′. Note that if M ′ is a line and e and f form a line, then M ′∪{e} is
a line too. Similarly, if M ′ is a stack and {e, f} form a nesting, then M ′ ∪ {e} is a stack
too. However, an analogous statement fails to be true for waves, as e, though crossing
f , may not necessarily cross all other edges of the wave M ′. Due to this observation, in
the proof of our first result we will need another type of ordered matchings combining
lines and waves. We call a matching M = {{ai, bi} : i = 1, . . . , n} with ai < bi, for all
i = 1, 2, . . . , n, and a1 < · · · < an, a landscape if b1 < b2 < · · · < bn, that is, the right-ends
of the edges of M are also linearly ordered (a first-come-first-serve pattern). Notice that
there are no non-trivial stacks in a landscape. In the double occurrence word notation, a
landscape is just a word obtained by a shuffle of the two copies of the word A1A2 · · ·An.
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Figure 6: A landscape of size four.

Examples of landscapes for n = 4 are, among others, ABCDABCD, AABCBCDD,
ABCABDCD (the last one is depicted in Figure 6).

The following is an Erdős–Szekeres type result for ordered matchings.

Theorem 1. Let `, s, w be arbitrary positive integers and let n = `sw + 1. Then, every
ordered matching on 2n vertices contains a line of size `+ 1, or a stack of size s + 1, or
a wave of size w + 1.

Proof. Let M be any ordered matching with edges {ai, bi}, i = 1, 2, . . . , n. Let si denote
the size of a largest stack whose left-most edge is {ai, bi}. Similarly, let λi be the largest
size of a landscape whose left-most edge is {ai, bi}. Consider the sequence of pairs (si, λi),
i = 1, 2, . . . , n. We argue that no two pairs of this sequence may be equal. Indeed, let
i < j and consider the two edges {ai, bi} and {aj, bj}. These two edges may form a
nesting, an alignment, or a crossing. In the first case we get si > sj, since the edge {ai, bi}
enlarges the largest stack starting at {aj, bj}. In the two other cases, we have λi > λj by
the same argument. Since the number of pairs (si, λi) is n > s · `w, it follows that either
si > s for some i, or λj > `w for some j. In the first case we are done, as there is a stack
of size s+ 1 in M .

In the second case, assume that L is a landscape in M of size at least p = `w+ 1. Let
us order the edges of L as e1 < e2 < · · · < ep, accordingly to the linear order of their left
ends. Decompose L into edge-disjoint waves, W1,W2, . . . ,Wk, in the following way. For
the first wave W1, pick e1 and all edges whose left ends are between the two ends of e1, say,
W1 = {e1 < e2 < . . . < ei1}, for some i1 > 1. Clearly, W1 is a true wave since there are no
nesting pairs in L. Also notice that the edges e1 and ei1+1 are non-crossing since otherwise
the latter edge would be included in W1. Now, we may remove the wave W1 from L and
repeat this step for L − W1 to get the next wave W2 = {ei1+1 < ei1+2 < . . . < ei2},
for some i2 > i1 + 1. And so on, until exhausting all edges of L, while forming the last
wave Wk = {eik−1+1 < eik−1+2 < . . . < eik}, with ik > ik−1 + 1. Clearly, the sequence
e1 < ei1+1 < . . . < eik−1+1 of the leftmost edges of the waves Wi must form a line (see
Figure 7). So, if k > `+1, we are done. Otherwise, we have k 6 `, and because p = `w+1,
some wave Wi must have at least w + 1 edges. This completes the proof.

It is not hard to see that the above result is optimal. For example, consider the
case ` = 5, s = 3, w = 4. Take 3 copies of the wave of size w = 4: ABCDABCD,
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Figure 7: Greedy decomposition of a landscape into waves. The left-most edges of the
waves (in bold) form a line.

PQRSPQRS, XY ZTXY ZT . Arrange them into a stack-like structure (see Figure 8):

ABCDPQRSXY ZTXY ZTPQRSABCD.

Now, concatenate ` = 5 copies of this structure. Clearly, we obtain a matching of size

Figure 8: A stack of waves.

`sw = 5 ·3 ·4 with no line of size 6, no stack of size 4, and no wave of size 5. This example
can be easily generalized to get the following fact.

Proposition 2. For every positive integers `, s and w there exists a matching of size
n = `sw with all lines, waves, and stacks of size at most `, s and w, respectively.

By forbidding one of the three basic structures to be present in M and setting the
corresponding parameter, `, s, or w to 1, we immediately deduce from Theorem 1 that
one of the other two structures of an appropriately large size must be present in M . For
example, in a landscape (i.e., no nestings) of size n > `w + 1 one can find either a line
of size ` + 1 or a wave of size w + 1. More interestingly, forbidding an alignment we
obtain what we define in Section 3.1 as permutational matchings which are in a one-to-
one correspondence with permutations of order n. Moreover, under this bijection waves
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and stacks in a permutational matching M correspond to, respectively, increasing and
decreasing subsequences of the permutation which is the image of M . Thus, we recover
the original Erdős–Szekeres Theorem as a special case of our Theorem 1.

Finally, we formulate separately the diagonal case of Theorem 1.

Corollary 3. Every ordered matching on 2n vertices contains a line, a stack, or a wave
of size at least n1/3.

Proof. Given n. Clearly, dn1/3e − 1 < n1/3. Hence, (dn1/3e − 1)3 < n and so (dn1/3e −
1)3 + 1 6 n. Applying Theorem 1 with ` = s = w = dn1/3e − 1 implies one of the three
structures of size (dn1/3e − 1) + 1 > n1/3.

2.2 3-uniform matchings

It is perhaps natural and interesting to try to generalize Theorem 1 to r-uniform ordered
matchings, that is, families of n disjoint r-element subsets of the linearly ordered set [rn].
Here we make the first step by showing that the case r = 3 follows relatively easily from
Theorem 1 itself.

At the start the problem seems a bit overwhelming, as there are 1
2

(
6
3

)
= 10 differ-

ent ways in which two triples may intertwine. Using the triple occurrence words, they
are AAABBB, AABABB, AABBBA, AABBAB, ABBBAA, ABBAAB, ABBABA,
ABAABB, ABABBA, ABABAB. We will call them patterns or relations since these
words describe a way in which any two edges are interwoven with each other. What is
worse, one of them, AABABB, stands out as a culprit who spoils the otherwise nice
picture. To see it through, call an ordered pair of triples (e, f) collectable if for each k > 1
there exists a collection of k triples such that every pair of them is order-isomorphic to
the pair (e, f).

For instance, the relation AAABBB, which we may call, as before, an alignment, is col-
lectable, as for any k one can take A1A1A1A2A2A2 . . . AkAkAk. Similarly, for AABBBA,
say, one may take (A1A1A2A2 . . . AkAk)(Ak . . . A2A1). In fact, all nine relations but
AABABB are collectable. However, for AABABB, which we may call an engagement,
one cannot even add a third triple CCC. Indeed, if it were possible, then there should
be a C between the second and third A, but after the first B, which makes the relation
between B’s and C’s not an engagement, as it would begin with BC. (Here we assumed
w.l.o.g. that the first A precedes the first B which precedes the first C.)

Due to this annoying exception, the Erdős–Szekeres type result we are going to prove
is not as clean as its predecessors for singletons and pairs. For reasons, which will become
clear once we reveal our proof strategy, we “give names to all the animals” as presented
in the first two columns of Table 1.

To explain this encoding, let us denote the three basic graph configurations as L =
AABB, S = ABBA, and W = ABAB, accordingly to their (alternative) names, that is,
line, stack, and wave. Now, each of the ten pairwise relations of triples can be uniquely
decomposed into a pair of pairs consisting, resp., of the first two vertices in both triples and
the last two vertices in both triples. For example, the relation AABBAB decomposes
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into a line AABB and a wave ABAB. We express this fact by writing AABBAB =
AABB ⊕ ABAB and denoting relation AABBAB by RLW.

Obviously, for a given 3-uniform relation this decomposition is unique. However, this
mapping is not one-to-one as there are only nine different ordered pairs made of three
elements. And, indeed, the alignment AAABBB and the engagement AABABB both
decompose into the same the pair AABB, AABB. To distinguish between them, we add
asterisk for the latter, that is, we denote AAABBB by RLL while AABABB by R∗LL.

The last column of Table 1 displays this mapping using, again, the words with un-
derlined and overlined letters. The three relations with the first subscript S differ in that
the letters in the second component of the decomposition ⊕ are reversed; indeed, if the
pairs of the first two elements of two triples form the sequence ABBA, then the pairs of
the last two elements can only form sequences BBAA,BABA, or BAAB. But, let us
emphasize that as Gauss words BBAA = AABB, etc.

relation in words decomposition ⊕
RLL AAABBB AABB ⊕ AABB = AAABBB

R∗LL AABABB AABB ⊕ AABB = AABABB

RLS AABBBA AABB ⊕ ABBA = AABBBA

RLW AABBAB AABB ⊕ ABAB = AABBAB

RSL ABBBAA ABBA⊕BBAA = ABBBAA

RSS ABBAAB ABBA⊕BAAB = ABBAAB

RSW ABBABA ABBA⊕BABA = ABBABA

RWL ABAABB ABAB ⊕ AABB = ABAABB

RWS ABABBA ABAB ⊕ ABBA = ABABBA

RWW ABABAB ABAB ⊕ ABAB = ABABAB

Table 1: Possible relations of two triples and their corresponding decompositions ⊕.

To cope with engagements, we will “marry” them with alignments by combining re-
lations RLL and R∗LL together. First, as in the case of pairs, define a line as an ordered
3-uniform matching M such that all pairs of triples of M are in relation RLL, that is, each
pair forms an alignment. Call M a semi-line if all pairs of triples are in either relation
RLL or R∗LL, that is, they form an alignment or an engagement.

Proposition 4. Every semi-line of size k contains a line of size at least k/2.

Proof. Let e1, . . . , ek be a semi-line. Define an auxiliary graph G on vertex set [k] where
ij ∈ E(G) if ei and ej form an engagement. It turns out that G is a linear forest. To prove
it, assume w.l.o.g. that for all i < j the left-most vertex of ei is to the left of the left-most
vertex of ej. We claim that every vertex i has at most one neighbor j > i. Indeed, if
there were edges ij and ih, i < j < h, then, identifying ei, ej and eh, respectively, with
letters A,B and C, we would have a sequence AABCA . . . , where the last 4 positions are
occupied by 2 letters B and 2 letters C in an arbitrary order. This means, however, that
B’s and C’s, or equivalently ej and eh, form neither an alignment nor an engagement, a
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contradiction with the definition of a semi-line. By symmetry, any vertex i has also at
most one neighbor j < i. So, G is, indeed, a linear forest and as such has an independent
number at least k/2. This completes the proof.

We are now ready to formulate an Erdős–Szekeres type result for 3-uniform matchings.

Theorem 5. Let aXY , where X, Y ∈ {L, S, W}, be arbitrary positive integers and let

n =
∏
X,Y

aXY + 1.

Then, every ordered 3-uniform matching M on 3n vertices either contains a semi-line
of size aLL + 1, or there exists (X, Y ) 6= (L, L) such that M contains a sub-matching of
aXY + 1 triples every two of which are in relation RXY (as defined in Table 1).

Remark 6. As in Corollary 3 one can show that every 3-uniform ordered matching of size
n contains one of the nine sub-structures listed in Theorem 5 of size at least n1/9.

Remark 7. At the moment we are not able to find a construction showing optimality of
Theorem 5. It was relatively easy in the graph case, as both, stacks and waves, had the
interval chromatic number equal to 2, which enabled one to superimpose one into another
by blowing up the vertices of one of them and filling its edges with copies of the other (see
Figure 8 for the superimposition of a wave of size 4 upon a stack of size 3). Following,
e.g., [17], we say that an ordered r-uniform hypergraph has interval chromatic number r
if it is r-partite with the partition sets forming consecutive blocks of the linearly ordered
vertex set.

Now, out of the eight 3-uniform relations, alignments and engagements aside, only four
have interval chromatic number 3, namely those not having L within their indices: RSS =
ABBAAB, RSW = ABBABA, RWS = ABABBA, and RWW = ABABAB. Thus, we can
provide a counterexample showing optimality of Theorem 5 only in the special case when
aLS = aLW = aSL = aWL = 1. We do so by superimposing the four “no-L” relations and then
taking aLL disjoint copies of the obtained construction. The superimposition is done by
carefully replacing each triple of the current matching with a matching obeying mutually
the new relation. E.g., replacing ABABAB (relation RWW) with CD EF CD EF DC FE
results in a matching where four pairs of triples retain relationRWW, while two pairs (C−D
and E−F ) enjoy the new relation RWS. It is crucial here that consecutive blocks of size 2
in CD CD EF each contain both letters W and Z, which is equivalent to having interval
chromatic number 3.

For the case when aSS = aSW = aWS = aWW = 2 (and all other parameters set to 1) see
Figure 9, where the pairwise relations between all 16 triples can be described as follows.
Let us first focus on the 8 triples drawn with solid colored lines (A, . . . , H). Among them,
all 4 monochromatic pairs of triples (like A− B) are in relation RSS, the 8 red-blue and
orange-green pairs of triples (like A−C) obey relation RSW, while the remaining 16 pairs
(like A−E) satisfy relationRWS. The very same is true for the 8 triples drawn with dashed
colored lines (I, . . . , P ). Finally, each solid-dashed pair (like A− I) satisfies relation RWW.
Note that, viewing this construction as a complete graph K16, each relation corresponds to
a bipartite subgraph, and so, crucially, no three triples are mutually in the same relation.
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Figure 9: A matching of 24 = 16 triples illustrating optimality of Theorem 5 with aSS =
aSW = aWS = aWW = 2 (and all other parameters set to 1).

Remark 8. As in the case of graph matchings it is impossible to employ directly the
original Erdős–Szekeres proof idea. To see this, call a relation R extendable if, given a
collection M of disjoint triples which are mutually in relation R, every triple to the left
of M which is in relation R with the left-most triple of M , is in relation R with all triples
in M . For graphs, lines and stacks were extendable, while waves were not, which forced
us to come up with the notion of a landscape. Now, only RLL, RLS, RSW, and RSL are
extendable, so any direct proof of Theorem 5 would require more sophisticated analogs
of landscapes. Fortunately, we deduce Theorem 5 directly from Theorem 1.

Proof of Theorem 5. Let M be a matching (of triples) as in the assumptions of the the-
orem. Our proof strategy is to apply Theorem 1 twice, first to the (graph) matching
M1 composed of pairs consisting of the first two elements of the triples in M , then to a
suitably chosen sub-matching of the (graph) matching M1 composed of pairs of the last
two elements of the triples in M .

Set bL = aLLaLSaLW, bS = aSLaSSaSW, and bW = aWLaWSaWW and apply Theorem 1 to M1

with ` := bL, s := bS, and w := bW. We will now examine the three alternatives of the
conclusion.

Case (L). M1 contains a (graph) line L of size bL + 1. Let ML be the sub-matching
of M2 composed of pairs of the last two elements of those triples in M whose first two
elements form a pair belonging to L. Formally,

ML = {{j, k} : i < j < k, {i, j, k} ∈M, and {i, j} ∈ L}.

the electronic journal of combinatorics 31(2) (2024), #P2.15 12



We apply Theorem 1 to ML with ` := aLL, s := aLS, and w := aLW and examine the three
possible outcomes.

Subcase (LL). ML contains a line  L of size aLL + 1. This is the troublesome case.
Let MLL be the sub-matching of M consisting of all triples in M whose first pair of
elements belongs to L, while the last pair belongs to  L. Consider any two triples in
MLL. There are two possible relations they may be in: the alignment AAABBB and the
engagement AABABB. Indeed, in both cases the first pairs and the last pairs, underlined
and overlined, resp., form (graph) alignments. This shows that MLL is a semi-line.

Subcase (LS). ML contains a stack S of size aLS + 1. Let MLS be the sub-matching of
M consisting of all triples in M whose first pair of elements belongs to L, while the last
pair belongs to S. Consider any two triples in MLS. Then they necessarily are in relation
RLS, that is, they form the word AABBBA.

Subcase (LW). ML contains a wave W of size aLW + 1. Let MLW be the sub-matching
of M consisting of all triples in M whose first pair of elements belongs to L, while the
last pair belongs to W . Consider any two triples in MLW. Then they necessarily are in
relation RLW, that is, they form the word AABBAB.

Cases (S) and (W). Each case splits further, as before, into three subcases. It
is straightforward to check that these altogether six subcases lead to the remaining six
relations RSL, RSS, RSW, RWL, RWS, RWW, yielding each time the required size of the collec-
tion.

2.3 In random matchings

In this section we shall investigate the size of unavoidable structures one can find in
random ordered matchings with the emphasis on the three canonical patterns: lines,
stacks, and waves. Recall that RMn is a random (ordered) matching of size n, that is, a
matching picked uniformly at random out of the set of all αn := (2n)!/(n!2n) matchings
on the set [2n].

Baik and Rains in [2] (see also [29, Theorem 17]) determined the asymptotic distribu-
tion of the maximum size of two of the three canonical patterns contained in a random
ordered matching. As a consequence, their values can be pinpointed very precisely.

Theorem 9 ([2]). The sizes of the largest stack and the largest wave contained in RMn

are a.a.s. equal to (1 + o(1))
√

2n.

A similar result for lines was proved by Justicz, Scheinerman, and Winkler in [23].
Note, however, that the constant is different.

Theorem 10 ([23]). The size of the largest line contained in RMn is a.a.s. equal to
(2 + o(1))

√
n/π.

In this section we provide simpler, purely combinatorial proofs of weaker versions of
Theorems 9 and 10, with the asymptotic coefficient, resp.,

√
2 and 2/

√
π replaced by pairs

of constants setting lower and upper bounds only. The proof of the upper bounds is quite
straightforward and provides a more general result.
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Proposition 11. Let (Mk)
∞
1 be a sequence of ordered matchings of size k, k = 1, 2, . . . .

Then, a.a.s.
max{k : Mk � RMn} 6 (1 + o(1))e

√
n/2.

Proof. Set k0 = b
(
1 + n−1/3

)
e
√
n/2c, and let Xk be a random variable counting the

number of ordered copies of Mk in RMn. Our goal is to show, via the first moment
method, that a.a.s. Xk = 0 for all k > k0. Note that it is not enough to show that a.a.s.
Xk0 = 0, as the sequence (Mk)

∞
1 may not be ascending.

To compute the expectation of Xk, one has to first choose the 2k vertices of a copy
of Mk (the copy itself is placed in just one way), then count the number of extensions
of that copy to an entire matching of size n, and, finally, divide by the total number of
matchings. Thus,

EXk =

(
2n

2k

)
· 1 · αn−k

αn
=

2k

(2k)!
· n!

(n− k)!
6

2k

(2k)!
· nk 6 2k

(2k/e)2k
· nk =

(
e2n

2k2

)k
,

and, by the union bound applied together with Markov’s inequality,

Pr(∃k > k0 : Xk > 0) 6
n∑

k=k0

Pr(Xk > 1)

6
n∑

k=k0

EXk 6
n∑

k=k0

(
e2n

2k2

)k
6 n(1 + n−1/3)−2k0 = o(1).

Owing to the very homogeneous structure of lines, stacks, and waves, we are able to
establish corresponding lower bounds for their maximum sizes in RMn. It is, perhaps,
interesting to note that, unlike for permutations, the size of the sub-structures guaranteed
by the of Erdős–Szekeres-type result (cf. Corollary 3) grows substantially in the random
setting.

Theorem 12. A random matching RMn contains a.a.s. stacks and waves of size at least
1−o(1)
e
√
2

√
n each, as well as lines of size at least 1

8

√
n.

The proof for stacks and waves is very simple and relies mostly on Theorem 1. For lines
we will make use of the following lemma which might be of some independent interest.
For that reason we state it in a more general setting than what we actually need. The
length of an edge {i, j} in a matching on [2n] is defined as |j − i|.

Lemma 13. Let a sequence f(n) be such that f(n) → ∞ and f(n) = o(n). Then,
a.a.s. the number of edges of length at most f(n) in RMn is (1 + o(1))f(n).

Proof. For each pair of vertices 1 6 u < v 6 2n, let Xuv be the indicator random variable
equal to one if {u, v} ∈ RMn and 0 otherwise. Clearly, Pr(Xuv = 1) = 1/(2n− 1). Let us
write for simplicity m = f(n). The sum X =

∑
16v−u6mXuv counts all edges in RMn of
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length at most m. As the number of summands is (2n− 1) + (2n− 2) + · · ·+ (2n−m) =
2nm−

(
m+1
2

)
, we have

EX =
2nm−

(
m+1
2

)
2n− 1

= m(1−O(m/n)).

In particular, by the assumptions on f(n), we get EX = m(1− o(1))→∞. To estimate
the second moment, observe that

Pr(Xu1v1 = Xu2v2 = 1) =

{
1

(2n−1)(2n−3) , if {u1, v1} ∩ {u2, v2} = ∅,
0, otherwise.

Hence, estimating quite crudely,

E(X(X − 1)) 6

(
2nm−

(
m+1
2

))2
(2n− 1)(2n− 3)

,

and consequently, by Chebyshev’s inequality

Pr(|X − EX| > εEX) 6
E(X(X − 1)) + EX − (EX)2

ε2(EX)2

6
1

ε2

(
(2n− 1)2

(2n− 1)(2n− 3)
+

1

EX
− 1

)
=

1

ε2

(
2

2n− 3
+

1

EX

)
→ 0,

provided that ε2m→∞. This implies that a.a.s. 1− ε−m/(2n) < X/m 6 1 + ε.

Proof of Theorem 12. We split the proof into two uneven parts.
Stacks and waves: Fix ε > 0 and choose ε′ > 0 such that 1−2ε′

1+ε′
= 1 − ε. Let M

be the sub-matching of RMn consisting of all edges with one end in [n] and the other in
[2n] \ [n]. Set X := |M |. We have EX = n2/(2n− 1) ∼ n/2 and

E(X(X − 1)) =
n2(n− 1)2

(2n− 1)(2n− 3)
∼ (EX)2,

so, using Chebyshev’s inequality, it follows that a.a.s. |X − n/2| = o(n).
Observe that there are no lines in M longer than 1. By Proposition 11, a.a.s. there are

no stacks or waves in RMn of size k0 = b(1+o(1))e
√
n/2c. Hence, by applying Theorem 1

to M with ` = 1, s = k0 − 1, and w = bX−1
k0−1c, we conclude that a.a.s. there is a wave in

M , and thus in RMn, of size at least

w + 1 =
1− o(1)

e
√

2

√
n.

By swapping the roles of waves and stacks in the above argument, we deduce that a.a.s.
there is also a stack in M , and thus in RMn, of size 1−o(1)

e
√
2

√
n.
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Lines: Let m = b
√
n/2c. By Lemma 13, a.a.s. the number of edges of length at

most m in RMn is at least
√
n/4. We will show that among the edges of length at most k,

there are a.a.s. at most
√
n/8 pairs forming crossings or nestings. After removing one edge

from each crossing and nesting we obtain a line of size at least
√
n/4−

√
n/8 =

√
n/8.

For a 4-element subset S = {u1, u2, v1, v2} ⊂ [2n] with u1 < v1 < u2 < v2, let XS be
an indicator random variable equal to 1 if both {u1, u2} ∈ RMn and {v1, v2} ∈ RMn, that
is, if S spans a crossing in RMn. Clearly,

Pr(XS = 1) =
1

(2n− 1)(2n− 3)
.

Let X =
∑
XS, where the summation is taken over all sets S as above and such that

u2 − u1 6 m and v2 − v1 6 m. Note that this implies that v1 − u1 6 m− 1. Let f(n,m)
denote the number of terms in this sum. We have

f(n,m) 6

(
2n(m− 1)−

(
m

2

))(
m

2

)
6

(
nm− 1

2

(
m

2

))
m2,

as we have at most 2n(m−1)−
(
m
2

)
choices for u1 and v1 (see the proof of Lemma 13 with

m replaced by m−1) and, once u1, v1 have been selected, at most
(
m
2

)
choices of u2, and v2.

It is easy to see that f(n,m) = Ω(nm3). (In fact, one could show that f(n,m) ∼ 2
3
nm3,

but we do not care about optimal constants here.) Hence, EX = Ω(m3/n)→∞, while

EX =
∑
S

EXS =
f(n,m)

(2n− 1)(2n− 3)
6
m3

4n
=

1

32

√
n.

To apply Chebyshev’s inequality, we need to estimate E(X(X − 1)), which can be
written as

E(X(X − 1)) =
∑
S,S′

Pr ({{u1, v1}, {u2, v2}, {u′1, v′1}, {u′2, v′2}} ⊂ RMn) ,

where the summation is taken over all (ordered) pairs of sets S = {u1, u2, v1, v2} ⊂ [2n]
with u1 < v1 < u2 < v2 and S ′ = {u′1, u′2, v′1, v′2} ⊂ [2n] with u′1 < v′1 < u′2 < v′2 such that
u2 − u1 6 m, v2 − v1 6 m, u′2 − u′1 6 m, and v′2 − v′1 6 m. We split the above sum into
two sub-sums Σ1 and Σ2 according to whether S ∩ S ′ = ∅ or |S ∩ S ′| = 2 (for all other
options the above probability is zero). In the former case,

Σ1 6
f(n,m)2

(2n− 1)(2n− 3)(2n− 5)(2n− 7)
= (EX)2(1 +O(1/n)).

In the latter case, the number of such pairs (S, S ′) is at most f(n,m) · 4m2, as given S,
there are four ways to select the common pair and at most m2 ways to select the remaining
two vertices of S ′. Thus,

Σ2 6
f(n,m) · 4m2

(2n− 1)(2n− 3)(2n− 5)
= O(m5/n2) = O(

√
n)
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and, altogether,

E(X(X − 1)) 6 (EX)2(1 +O(1/n)) +O(
√
n) = (EX)2 +O(

√
n).

By Chebyshev’s inequality,

Pr(|X − EX| > EX) 6
E(X(X − 1)) + EX − (EX)2

(EX)2

6 1 +O(1/
√
n) +

1

EX
− 1 = O(1/

√
n)→ 0.

Thus, a.a.s. X 6 2EX 6
√
n/16.

We deal with nestings in a similar way. For a 4-element subset S = {u1, u2, v1, v2} ⊂
[2n] with u1 < v1 < v2 < u2, let YS be an indicator random variable equal to 1 if both
{u1, u2} ∈ RMn and {v1, v2} ∈ RMn, that is, if S spans a nesting in RMn. Further,
let Y =

∑
YS, where the summation is taken over all sets S as above and such that

u2 − u1 6 m and (consequently) v2 − v1 6 m − 2. It is crucial to observe that, again,
EY 6 m3/n =

√
n/32. Indeed, this time there are at most 2nm −

(
m+1
2

)
choices for u1

and u2 and, once u1, u2 have been selected, at most
(
m−2
2

)
choices of v1, and v2, while the

probability of both pairs appearing in RMn remains the same as before. The remainder
of the proof goes mutatis mutandis.

We conclude that a.a.s. the number of crossings and nestings of length at most m in
RMn is at most

√
n/8 as was required.

We close this section with a straightforward generalization of Proposition 11 to random
r-uniform ordered matchings, r > 2. Let RM(r)

n be a random (ordered) r-matching of

size n, that is, a matching picked uniformly at random out of the set of all α
(r)
n :=

(rn)!/(n!(r!)n) matchings on the set [rn].

Proposition 14. Let (M
(r)
k )∞1 be a sequence of ordered r-matchings of size k, k = 1, 2, . . . .

Then, a.a.s.

max{k : M
(r)
k � RM(r)

n } 6 (1 + o(1))
e

r
(r!n)1/r.

Proof. Let k0 = b(1 +n−1/(r+1)) e
r
(r!n)1/rc and, for each k > k0, let X

(r)
k be the number of

ordered copies of M
(r)
k of size k in RM(r)

n . Then

EX
(r)
k =

(
rn

rk

)
· 1 ·

α
(r)
n−k

α
(r)
n

=
(r!)k

(rk)!
· n!

(n− k)!
6

(r!)k

(rk)!
· nk 6 (r!)k

(rk/e)rk
· nk =

(
err!n

(rk)r

)k
,

which implies that

Pr(∃k > k0 : X
(r)
k > 0) 6

n∑
k=k0

(
err!n

(rk)r

)k
6 n(1 + n−1/(r+1))−rk0 = o(1).

In particular, the above statement yields that in RM(3)
n a.a.s. none of the nine col-

lectable sub-matchings (as defined in Subsection 2.2) has size bigger than 2n1/3. It is,
at the moment, an open problem to match it with a fair lower bound (see discussion in
Section 4).
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3 Twins

Recall that for r > 2, by r-twins in a matching M we mean any collection of disjoint, pair-
wise order-isomorphic sub-matchings M1,M2, . . . ,Mr. For instance, the matching M =
AABCDDEBCFGHIHEGFI contains 3-twins formed by the triple M1 = BDDB,
M2 = EHHE, and M3 = FGGF (see Figure 10).

Recall also that by the size of r-twins we mean the size (the number of edges) in
just one of them. Let tr(M) denote the maximum size of r-twins in a matching M and
tmatch
r (n) – the minimum of tr(M) over all matchings M on [2n].

Figure 10: 3-twins of size two.

3.1 In arbitrary matchings

Let us first point to a direct connection between twins in permutations and ordered twins
in a certain kind of matchings. By a permutation we mean any finite sequence of pairwise
distinct positive integers. We say that two permutations (x1, . . . , xk) and (y1, . . . , yk) are
similar if their entries preserve the same relative order, that is, xi < xj if and only if yi < yj
for all 1 6 i < j 6 k. For r > 2, any r pairwise similar and disjoint sub-permutations of
a permutation π are called r-twins. For example, in permutation

(6, 1 , 4 , 7, 3 , 9, 8 , 2 , 5 ),

the red and blue subsequences form a pair of twins, or 2-twins, of length 3, both similar
to the permutation (1, 3, 2).

Let tr(π) denote the maximum length of r-twins in a permutation π and tpermr (n) – the
minimum of tr(π) over all permutations π of [n]. Gawron [19] proved that tperm2 (n) 6 cn2/3

for some constant c > 0. This was easily generalized to tpermr (n) 6 crn
r/(2r−1) (see [10]).

As for a lower bound, notice that by the Erdős–Szekeres Theorem, we have
tpermr (n) >

⌊
1
r
n1/2

⌋
. For r = 2, this bound was substantially improved by Bukh and

Rudenko [8].

Theorem 15 (Bukh and Rudenko [8]). For all n, tperm2 (n) > 1
8
n3/5.

Using their approach, in [12], we generalized this bound to arbitrary r > 3.

Theorem 16 ([12]). For all n and r > 3, tpermr (n) > 1
3r
n

R
2R−1 , where R =

(
2r−1
r

)
.
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We call an ordered matchingM on the set [2n] permutational if the left end of each edge
ofM lies in the set [n] (and so, the right end of each edge lies in [n+1, 2n]. In the double oc-
currence word notation such a matching can be written as M = A1A2 . . . AnAi1Ai2 . . . Ain ,
where πM = (i1, i2, . . . , in) is a permutation of [n]. There are only n! permutational match-
ings, nevertheless this connection to permutations turned out to be quite fruitful. Indeed,
it is not hard to see that ordered r-twins in a permutational matching M are in one-to-
one correspondence with r-twins in πM . In particular, we have tr(M) = tr(πM) for such
matchings and, consequently, tmatch

r (n) 6 tpermr (n). In particular, by the above mentioned
result of Gawron, tmatch

2 (n) = O(n2/3).
More subtle is the opposite relation.

Proposition 17. For all r > 2 and 1 6 m 6 n, where n−m is even,

tmatch
r (n) > min

{
tpermr (m), 2tmatch

r

(
n−m+ 2

2

)}
.

Proof. Let M be a matching on [2n]. Split the set of vertices of M into two halves, A = [n]
and B = [n + 1, 2n] and let M ′ := M(A,B) denote the set of edges of M with one end
in A and the other end in B. Note that M ′ is a permutational matching. We distinguish
two cases. If |M ′| > m, then

tr(M) > tr(M
′) = tr(πM ′) > tpermr (|M ′|) > tpermr (m).

If, on the other hand, |M ′| < m, that means, |M ′| 6 m−2, due to the assumption of n−m
being even, then we have sub-matchings MA and MB of M of size at least (n−m+ 2)/2
in sets, respectively, A and B. Thus, in this case, by concatenation,

tr(M) > tr(MA) + tr(MB) > 2tmatch
r

(
n−m+ 2

2

)
.

Proposition 17 allows, under some mild conditions, to “carry over” any lower bound
on tpermr (n) to one on tmatch

r (n). In view of Theorems 15 and 16, as well as the upper bound
on tpermr (n) from [10] mentioned above, we may assume that the parameter α introduced
in the lemma below falls between R/(2R− 1) and r/(2r − 1).

Lemma 18. For all r > 2, R/(2R − 1) 6 α 6 r/(2r − 1), and β > 0, if tpermr (n) > βnα

for all n > r, then tmatch
r (n) > β(n/4)α for all n > r.

Proof. Assume that for some r > 2 and α, β as above, tpermr (n) > βnα, for all n > r. We

will prove that tmatch
r (n) > β(n/4)α by induction on n. For n 6 4

(
1
β

)1/α
the claimed

bound is at most 1, so it is trivially true. Assume then that n >
(

1
β

)1/α
and that

tmatch
r (n′) > β(γn′)α for all r 6 n′ < n. Let n′ ∈ {dn/4e, dn/4e+ 1} have the same parity

as n. Then, by Proposition 17 with m = n′,

tmatch
r (n) > min

{
tpermr (n′), 2tmatch

r

(
n− n′ + 2

2

)}
.
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Now, by the assumption of the lemma applied to n = r, noticing that tmatch
r (r) = 1, we

have that 1 > βrα, or β 6 r−α, so n′ > n/4 > r. Thus, by the assumption of the lemma
applied to n′, tpermr (n′) > β(n/4)α. Further, noticing that n−n′+ 2 > 3n/4, again by the
induction assumption, we also have

2tmatch
r

(
n− n′ + 2

2

)
> 2β

(
1

4
· 3

8
n

)α
> β(n/4)α,

where the last inequality is equivalent to 3 > 23−1/α which, in turn, follows by estimating
the R-H-S by 23−(2r−1)/r 6 23−3/2 = 23/2.

In particular, Theorem 15 and Lemma 18 with β = 1/8, α = 3/5, and γ = 1/4 imply
immediately the following result.

Corollary 19. For every n, tmatch
2 (n) > 1

8

(
n
4

)3/5
.

Moreover, any future improvement of the bound in Theorem 15 would automatically
yield a corresponding improvement of the lower bound on tmatch

2 (n).

3.2 In random matchings

In this section we study the size of the largest r-twins in a random (ordered) matching
RMn, which is, recall, selected uniformly at random from all αn := (2n)!/(n!2n) matchings
on vertex set [2n]. The first moment method yields that

a.a.s. tr(RMn) < cnr/(2r−1) for any c > e2−(r−1)/(2r−1). (1)

Indeed, the expected number of r-twins of size k in RMn is

1

r!

(
2n

2k, . . . , 2k︸ ︷︷ ︸
r times

, 2n− 2kr

)
αk · 1r−1 · αn−rk

αn
=

2(r−1)kn!

r!(2k)!r−1k!(n− rk)!
<

(
e2r−1nr

2r−1k2r−1

)k
,

where we used inequalities n!/(n− rk)! 6 nrk, (2k)! > (2k/e)2k, k! > (k/e)k, and r! > 1.
Thus, it converges to 0, as n→∞, provided k > cnr/(2r−1), for any c as in (1).

It turns out that the a.a.s. the lower bound on tr(RMn) is of the same order.

Theorem 20. For every r > 2, a.a.s.,

tr(RMn) = Θ
(
nr/(2r−1)

)
.

In the proof of the lower bound we are going to use the Azuma-Hoeffding inequality
for random permutations (see, e.g., Lemma 11 in [16] or Section 3.2 in [20]). Let us recall
that Πn stands for a random permutation selected uniformly from all (2n)! permutations
of the set [2n].
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Theorem 21. Let h(π) be a function defined on the set of all permutations of order 2n
such that, for some constant c > 0, if a permutation π2 is obtained from a permutation
π1 by swapping two elements, then |h(π1)− h(π2)| 6 c. Then, for every η > 0,

Pr(|h(Πn)− E[h(Πn)]| > η) 6 2 exp(−η2/(4c2n)).

Proof of Theorem 20. In view of (1), it suffices to prove a lower bound, that is, to show
that a.a.s. RMn contains r-twins of size Ω(nr/(2r−1)). In doing so we are following the
proof scheme applied in [12, Theorem 1.2]. Set

a := r!1/(2r−1)(2n)(r−1)/(2r−1)

and assume for simplicity that both, a and N := 2n/a = r!−1/(2r−1)(2n)r/(2r−1), are
integers. Partition [2n] = A1 ∪ · · · ∪ AN , where Ai’s are consecutive blocks of a integers
each, and define, for every 1 6 i < j 6 N , a random variable Xij which counts the number
of edges of RMn with one endpoint in Ai and the other in Aj. Consider an auxiliary graph
G := G(RMn) on vertex set [N ] where {i, j} ∈ G if and only if Xij > r.

A crucial observation is that a matching of size t in G corresponds to r-twins in RMn

of size t. Indeed, let M = {i1j1, . . . , itjt}, i1 < · · · < it, be a matching in G. For every
1 6 s 6 t, let ush ∈ Ais and vsh ∈ Ajs , h = 1, . . . , r, be such that esh := {ush, vsh} ∈ RMn.
Then, the sub-matchings {e11, . . . , et1}, . . . , {e1r, . . . , etr}, owing to the sequential choice of
Ai’s form r-twins in RMn. Thus, our ultimate goal is to show that a.a.s. G contains a
matching of size Θ(nr/(2r−1)).

Let ν(G) be the largest size (as the number of edges) of a matching in G. We will
first show that ν(G) is sharply concentrated around its expectation. For this we appeal
to the permutation scheme of generating RMn and apply Theorem 21. For a permutation
π of [2n], let M(π) = {π(1)π(2), . . . , π(2n − 1)π(2n)} be the corresponding matching.
Further, let h(π) = ν(G(M(π))). Observe that if π2 is obtained from a permutation π1
by swapping some two of its elements, then at most two edges of M(π1) can be destroyed
and at most two edges of M(π1) can be created, and thus the same can be said about the
edges of G(M(π1)). This, in turn, implies that the size of the largest matching has been
altered by at most two, that is, |h(π1)− h(π2)| 6 2. Hence, Theorem 21 applied to h(π),
with c = 2, and, say, η = n2r/(4r−1) implies that

Pr
(
|ν(G)− E[ν(G)]| > n2r/(4r−1)) = Pr

(
|h(Πn)− E[h(Πn)]| > n2r/(4r−1)) = o(1). (2)

Note that, crucially, n2r/(4r−1) = o(nr/(2r−1)), and it thus remains to show that E(ν(G)) =
Ω(nr/(2r−1)).

Let us first estimate from below the probability of an edge in G, that is, Pr(Xij > r).
Trivially, Pr(Xij > r) > Pr(Xij = r). We are going to further bound Pr(Xij = r)
from below by counting matchings on [2n] with precisely r edges between the sets Ai
and Aj, but with no edges within Ai or Aj (the latter is a simplifying restriction). To
build such a matching one has to first select subsets Si, Sj, Ti, Tj such that Si ⊂ Ai,
Sj ⊂ Aj, |Si| = |Sj| = r, while Ti ∩ (Ai ∪ Aj) = ∅, Tj ∩ (Ai ∪ Aj) = ∅, Ti ∩ Tj = ∅, and
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|Ti| = |Tj| = a− r. The total number of these selections is(
a

r

)2(
2n− 2a

a− r

)(
2n− 3a+ r

a− r

)
.

Then one has to match Si with Sj, Ai \Si with Ti, and Aj \Sj with Tj, and find a perfect
matching on the set [2n]\ (Ai∪Aj ∪Ti∪Tj) of the remaining n−4a+ 2r elements. There
are

r!(a− r)!(a− r)!αn−2a+r
ways of doing so.

Multiplying the two products together and dividing by αn, we obtain the inequality

Pr(Xij = r) >
a!24a(2n− 2a)!n!

r!2r(a− r)!2(2n)!(n− 2a+ r)!
.

Since a = o(
√
n), we have

(2n)!/(2n− 2a)! = (1 + o(1))(2n)2a and n!/(n− 2a+ r)! = (1 + o(1))n2a−r,

and so the R-H-S above equals

(1 + o(1))

r!

(
a2

2n

)r
.

Consequently, for n large enough,

Pr(Xij > r) > Pr(Xij = r) >
1

2r!

(
a2

2n

)r
.

Having estimated the probability of an edge in G, we are now in position to estimate
the degree of a vertex. For each i ∈ [N ], let Yi = degG(i) be the degree of vertex i in G.
Then

E(Yi) = (N − 1) Pr(Xij > r) >
N

4r!

(
a2

2n

)r
=

2n

4r!a

(
a2

2n

)r
=

1

4
. (3)

There is an obvious bound on the size of the largest matching ν(G) in G = (V,E) in
terms of the vertex degrees, namely

ν(G) >
|E(G)|
2∆G

=

∑N
i=1 Yi

4∆G

,

where ∆G is the maximum degree in G. Note that, trivially, ∆G 6 min{a/r,N−1} = a/r.
Unfortunately, since the expected degrees E(Yi) are (bounded by) constants – cf. (3), in
this form the bound on ν(G) is of no use, as one cannot show concentration of all degrees Yi
simultaneously. Instead, we resort to an even weaker, but more manageable bound.
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For an integer D > 0, let GD be a subgraph of G induced by the set VD of all vertices
of degrees at most D in G, that is, GD = G[VD]. Then, clearly, ∆(GD) 6 D and

|E(GD)| = |E(G)| − |{e ∈ E(G) : e ∩ (V \ VD) 6= ∅}| > 1

2

N∑
i=1

Yi −
ba/rc∑
k=D+1

kZk,

where Zk = |{i ∈ [N ] : Yi = k}|, and thus,

ν(G) > ν(GD) >
|E(GD)|

2D
>

1

2D

(
1

2

N∑
i=1

Yi −
∑
k>D

kZk

)
.

Hence, recalling (3) and noticing that EZk = N Pr(Y1 = k), we have

E(ν(G)) >
N

2D

(
1

8
−
∑
k>D

k Pr(Y1 = k)

)
.

It remains to estimate Pr(Y1 = k) from above. Very crudely, to create a matching
satisfying Y1 = k, one has to select k other sets Ai, choose r vertices from each of them,
and match them with some kr vertices of A1. In the estimates below, we ignore the
demand that Y1 is precisely k, so, in fact, we estimate from above Pr(Y1 > k). We thus
have

Pr(Y1 = k) 6 Pr(Y1 > k) 6

(
N

k

)(
a

r

)k(
a

rk

)
(rk)!

αn−rk
αn

6
Nka2rk2rknrk

k!r!k
· (2n− 2rk)!

(2n)!
.

Using the inequality 1− x > e−2x valid for x 6 1/2, the last fraction can be estimated as

(2n− 2rk)!

(2n)!
=

1

(2n)2rk
(
1− 1

2n

)
· . . . ·

(
1− 2rk−1

2n

) 6
e2r

2k2/n

(2n)2rk
.

Since a2r−1 = r!nr−1 and k 6 a/r, we have k2 = o(n) and can bound, roughly, e2r
2k2/n 6 2.

Consequently, recalling that N = 2n/a and using the bound (k− 1)! > ((k− 1)/3)k−1, we
infer that

k Pr(Y1 = k) 6
2a2rk−k

(k − 1)!r!k(2n)rk−k
=

2

(k − 1)!
6 2

(
3

k − 1

)k−1
6 2

(
1

2

)k−1
for k > 7. Setting D = 6 and summing over all k > D, we thus obtain the bound

ba/rc∑
k>D

k Pr(Y1 = k) 6 2
∞∑
k>6

(
1

2

)k−1
= 2

∞∑
k>6

(
1

2

)k
= 4 · 2−6 =

1

16
.

Finally,

E(ν(G)) >
N

12

(
1

8
− 1

16

)
>

N

200
= Θ

(
nr/(2r−1)

)
which, together with (2), completes the proof.
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4 Final remarks

Let us conclude the paper with some suggestions for future studies. The first natural goal
is to extend our Erdős–Szekers-type results to r-uniform ordered matchings for arbitrary
r > 4. We have inspected more carefully the case of r = 4 observing some similar
phenomena as in the two smaller cases, r = 2 and r = 3. In particular, among the
35 possible relations between pairs of ordered quadruples there are exactly 27 that are
collectable. This boosts some hope that by cleverly handling the remaining 8 relations,
one can, indeed, generalize Theorem 5 with the exponents 1/9 replaced by 1/27.

Returning to the case r = 3, we are not yet completely done, as we were unable to
construct a general counterexample showing the optimality of Theorem 5 for arbitrary
values of all 9 parameters (c.f. Remark 7).

Problem 22. For all positive integers aXY , where X, Y ∈ {L, S, W}, (X, Y ) 6= (L, L),
construct a matching M of size n =

∏
X,Y axy such that neither M contains a semi-line

of size 2, nor for any pair (X, Y ) does it contain a sub-matching of aXY + 1 triples every
two of which are in relation RXY .

As mentioned earlier, setting aLL = 1 is not a restriction at all, as in the general case one
may simply concatenate aLL disjoint copies of the matching described in Problem 22

A related problem is to estimate the size of unavoidable patterns in random r-matchings
RM(r)

n with r > 3. For r = 2, we have established (c.f. Theorem 12) that it is a.a.s. of the
order Θ(

√
n). As it was already mentioned at the end of Section 2.3, as a consequence

of Proposition 14, for r = 3 a.a.s. none of the nine collectable sub-matchings (as defined
in Subsection 2.2) has size bigger than 2n1/3. It would be nice to prove a complementary
lower bound. Although for 3-uniform lines this does not seem to be difficult (as, likely,
Lemma 13 can be extended for hyperedges), showing that a.a.s. RM(3)

n contains every
collectable sub-matching of size Ω(n1/3) will require some new ideas.

For arbitrary r, it too seems natural to expect that, as in the case r = 2, all homoge-
neous substructures (corresponding to collectable relations) of RM(r)

n should a.a.s. have
size Θ(ncr), for some constant 0 < cr < 1. By Theorem 12 we know that c2 = 1/2, while
guided by Proposition 14, we suspect that cr = 1/r.

Other open problems can be formulated for twins in ordered matchings. Based on
what we proved here we state the following conjecture.

Conjecture 23. For every fixed r > 2, we have tmatch
r (n) = Θ

(
n

r
2r−1

)
.

The same statement is conjectured for twins in permutations (see [12]), and, by our
results, we know that both conjectures are actually equivalent.

One could also study the size of twins in r-uniform ordered matchings or, more gen-
erally, in arbitrary ordered graphs or hypergraphs. For ordinary unordered graphs there
is a result of Lee, Loh, and Sudakov [25] giving an asymptotically exact answer of order
Θ(n log n)2/3. It would be nice to have an analogue of this result for ordered graphs.
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arrays, J. Eur. Math. Soc. (JEMS) 25 (2023), no. 8, 2927–2947.
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