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Abstract
We establish the threshold function for the property that the line graph of a
random r—uniform hypergraph has a Hamilton cycle. The main result gives also the
threshold function for Hamiltonicity of uniform random intersection graphs with
a bounded number of attributes assigned to each vertex. The problem is closely
related to Berge Hamilton cycles in random r—uniform hypergraphs.

Mathematics Subject Classifications: 05C88, 05C89

1 Introduction

A hypergraph is a pair H = (V, FE) where V = V(H) is a non—empty vertex set and
E = E(H), called the edge set, is a collection of subsets of V. We will allow subsets to
repeat in a collection E. A hypergraph is r—uniform (is an r—graph) if all of its edges are
r—sets of V' (subsets of V' of cardinality r). If » = 2 then an r—graph is called simply a
graph. We will study properties of a line graph of a random hypergraph. By H,(n, M)
we denote a random r—graph chosen uniformly at random from all r—graphs on n vertices
(V ={1,2,...,n}) with exactly M distinct edges (chosen without replacement). Given
a hypergraph H = (V, E), a line graph of H (denoted by L(H)) is a graph with the
vertex set F in which {e, ¢’} is an edge whenever e and ¢’ intersect in H. We will study
Hamilton cycles in L(#H,(n, M)). A cycle in a graph is an alternating sequence of distinct
vertices and edges (vy, €1, Vg, . .., Uy, €,) in which e; = {v;, v; 11}, for i = 1,2, ... n (indices
considered modulo n). A Hamilton cycle is a cycle which contains all vertices of the graph.

The problem of Hamilton cycles in random graphs has been one of the most inspiring
problems in random graph theory. After a groundbreaking introduction of the rotation
method by Pésa [15], numerous results concerning threshold functions for hamiltonicity
of various random graphs have been obtained, starting with those by Ajtai, Komlés and
Szemerédi [1], Bollobés [7], and Komlds and Szemerédi [12].

In this article we will be concentrating on the threshold function for Hamilton cycles
in the line graph of random hypergraphs. This problem was studied before in the context
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of random intersection graphs by Bloznelis and Radavicius [5] and Nikoletseas et al. [13].
Some partial results were obtained also by Rybarczyk in [17]. In the main theorem we
generalise a result from [17] to the case of the line graph of a random hypergraph H..(n, M)
with r > 3. This result is particularly interesting, as the following theorem answers the
questions raised in [5] and [13]. We explain it in more detail in Section 2.

Before formulating our result we mention that all limits in the paper are taken as
n — oo. All inequalities are valid for n large enough. Throughout the paper we use
standard asymptotic notation a,, = o(b,) for a,/b, — 0 and a, = O(b,) if |a,| < C|by|
for all n and some constant C' > 0. We also use a phrase with high probability to say
that an event occurs with probability tending to 1 as n — oo.

Theorem 1. Let r > 2 be an integer and H,(n, M) be a random r-graph with

n(lnn+2Inlnn —2Inr + ¢,)

M = = ,and ¢, = o(lnn). (1)
Then
0 for ¢, = —oc;
Pr{L(H,(n,M)) has a Hamilton cycle} =< e™® " for ¢, — ¢
1 for ¢, — .

We should note here that Theorem 1 is not a hitting time result similar to those
obtained in [2] or [7]. A hitting time result is not straight forwardly obtainable from the
presented method of the proof, because hamiltonicity of the line graph is not a monotone
property.

In the proof we will be studying subhypergraphs of H,.(n, M) and Hamilton cycles in
them. A hypergraph H' = (V' E') is a subhypergraph of H = (V, E) (denoted H' C H)
if VCVand ' C ENV':={enV':e € E}. Here E' is a collection of sets with possible
repetitions. In what follows we will distinguish between the edges in H’ which contain
the same vertices, however are obtained from different edges of H. For any V' C V,
H' = (V' E') is the subhypergraph induced by V', if E' ={enV':e € E, |lenV’| > 2}.
H' = (V' E') is a spanning subhypergraph of H = (V. E) it V' = V.

There is a vast literature concerning threshold functions for Hamilton cycles in random
hypergraphs. The subject is particularly intriguing due to the fact that there are various
ways to define a cycle in a hypergraph: tight, loose, l-overlapping, Berge, weak Berge
(see for example [2, 8, 9, 14]). We will be interested in Berge cycles. A Begre cycle
is an alternating sequence of distinct vertices and distinct edges (v, e1,vs. .., vk, €;) in
which {v;,v;1} C e, for i = 1,2,... k (indices considered modulo k). A Berge cycle
in a hypergraph is Hamilton if it contains all vertices of the hypergraph. A hypergraph
with such a cycle is called Berge Hamiltonian. Berge Hamilton cycles in H,(n, M) were
studied by Bal, Berkowitz, Devlin, and Schacht [2]. In some parts of our reasoning we
will rely on ideas from [2].

In the context of random graphs and hypergraphs, the minimum degree is crucial in
considerations concerning Hamilton cycles. Let the degree of a vertex v, denoted by degwv,
be the number of edges containing v in a hypergraph. An obvious necessary condition
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for a hypergraph H to be Berge Hamiltonian is that each vertex has to have degree at
least 2, i.e. minimum degree of H, 6(H) := min, deg v, should be at least 2.

The proof of Theorem 1 will proceed as follows. First for any H, instance of H,.(n, M),
we will construct a subset of V' denoted by V’. Then we will define H' to be the subhy-
pergraph of #H,(n, M) induced by V’. We will show that with high probability H,.(n, M)
is such that H,(n, M) and H' have some anticipated properties.

In the next step we will use a modified technique from [2] to show that with high
probability in H,(n, M) either 6(L(H,(n, M))) < 2 or H' (constructed based on H,.(n, M))
has a Berge Hamilton cycle. Let H be an instance of H,.(n, M) with some anticipated
properties. We will need to define some other subhypergraphs of H. First we will define I,
a random subhypergraph of H. Then based on I'y we will introduce I';, the subhypergraph
of I'y induced by V', and I}, an auxiliary hypergraph. We will show that for H with some
anticipated properties with high probability I'j has good expansion properties (for that
we will introduce the notion of an almost expander in which we will use I'f}). Moreover we
will show that any subhypergraph of H’ with good expansion properties is either Berge
Hamiltonian itself or has a long path that may be lengthen by adding one edge from
H'. By definition H' will have far more than n extra edges comparing to I'j and adding
edges does not disrupt expansion properties. Therefore with high probability H' is Berge
Hamiltonian for any instance H of H,(n, M) with anticipated properties.

A Berge Hamilton cycle C'in H' has its counterpart cycle C" in L(#H,(n, M)). However
(" is not necessarily a Hamilton cycle in L(#,(n, M)). The construction of H" will be
such that with high probability each edge of H,(n, M) intersects the vertex set of H'. All
edges containing a common vertex in H,(n, M) form a complete graph in L(H,(n, M)).
Therefore an edge ee¢’ in C’ which is a counterpart of a fragment - - - eve’ - - - of C' may be
replaced in C’ by any path eejes - - - e’ such that v € eq, eq, ..., . In this way, based on
C and €', we may construct a Hamilton cycle in L(H,(n, M)).

Now it will be enough to determine the probability of the event {§(L(H..(n, M))) < 2}.
For that we will use known results concerning random intersection graphs.

The article is organised as follows. In the following section we discuss the relation
between Hamilton cycles in L(H,.(n, M)) and Hamilton cycles in a random intersection
graph. In particular, using known results concerning random intersection graphs, we
state results concerning 6(L(H,(n, M))). Moreover in that section we present a theorem
concerning Hamilton cycles in random intersection graphs that is derived from Theorem 1.
Then, in Section 3, we present a lemma stating useful properties of H,(n, M). Finally in
Section 4 we show the constructions of subhypergraphs H’, I, I and hypergraph I'*. We
show how to find a Hamilton Berge cycle in H’. Last but not least, in the last section,
we present some technical details of the remaining proofs, omitted earlier from the main
text for the clarity of presentation.

2 Random intersection graphs

Random intersection graphs have been attracting attention lately, mostly due to their
numerous applications in theoretical computer science. For more on the subject of ran-
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dom intersection graphs we refer to survey papers [3, 4, 19] and references therein. The
best studied random intersection graph model is binomial random intersection graph.
Hamilton cycles in this model were studied by Efthymiou and Spirakis [10] and Rybar-
czyk [16, 18]. However in most cases those results are not transferable to other random
intersection graph models.

Here we are discussing the problem of Hamilton cycles in uniform random intersection
graph model G(M,n,r). In the uniform random intersection graph model G(M, n,r)
there is a vertex set V (|V| = M) and auxiliary attribute set W (W = {1,2,...,n}).
Each vertex v € V is attributed an r—set W,,, a random r—set of YW chosen uniformly at
random from all r—sets of W, independently for each vertex from V. Two vertices v, v’
form an edge if their r—sets intersect, i.e. when W, N W, # ().

The problem of Hamilton cycles in G(M,n,r) was first studied by Nikoletseas et. al.
[13] however only very rough results were obtained. Already the result of Bloznelis and
Radavicius [5] gave a far sharper result. They showed that if

1
M = én(lnn—l—lnlnn—i-w) and w — oo,

then with high probability G(M,n,r) has a Hamilton cycle. Later Rybarczyk [17] man-
aged to strengthen the result and showed that G(M,n,r) has Hamilton cycle with high
probability if

1
M = Zn(lnn+21nlnn—2ln2+w) and w — 00,

which was tight for » = 2. We will show that Theorem 1 with the result from [17] gives
a sharp threshold function for the property of containing a Hamilton cycle in G(M,n, )
for r = O(1).

Note that G(M,n,r) is in fact the line graph of an r-graph with n vertices and M
edges chosen one by one with repetition from all r—sets of WW. We denote by H(n, M)
such a random r—graph with M edges chosen with repetition and we allow the edge set of
H!P(n, M) to be a collection of sets with possible repetitions. In the range of parameters
considered in Theorem 1 the expected number of pairs of edges in H*’(n, M) which have
chosen the same r—set is

(]\4)L =o(1), forr>3
2/ () |

Moreover, given the fact that edges are distinct in H."(n, M), each choice of possible set
of M edges is equiprobable in both models #,(n, M) and H]*’(n, M). Therefore, in the
case r > 3, the two models are asymptotically equivalent as far as M = o(n") (here it
is true on the threshold). Thus G(M,n,r) and L(H[®(n, M)) are the same models and,
under assumptions of Theorem 1, H!?(n, M) and H,(n, M) have the same asymptotic
properties. Therefore in the proofs we can use interchangeably H,(n, M) and H[?(n, M)
if it facilitates the argument. Thus using Theorem 1 and the main result from [17] we get
the following result.
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Theorem 2. Let G(M,n,r) be a uniform random intersection graph withr > 2, r = O(1),
and

1 2Inlnn — 21 n
M:n(nn—i— 1111721 nree ), and ¢, = o(lnn). (2)
r
Then
0 for ¢,, = —o0;
Pr{G(M,n,r) has a Hamilton cycle} =< e ¢ "  forc, — c;
1 for ¢,, — oc.

This gives the final answer to the problems considered in [5] and [13].

Now we may state the result concerning the necessary minimum degree condition for
a Hamilton cycle in L(H,(n,M)). For that we use results concerning G(M,n,r). By
Theorem 2 from [6] and the above discussion, we get the following lemma.

Lemma 3. Let H,(n, M) be a random r—graph with M given by (1). Then

0 for ¢, = —oc;
Pr{6(L(H,(n,M))) =2} =<e " forc, —c;
1 for ¢, — .

3 Properties of H,.(n, M)

Before we proceed with presenting the most important properties of H,.(n, M) we need
to introduce some additional notations.

Let H be an instance of H,(n,M). We call a vertex small if its degree is at most
e-Inn in H (where ¢, = ¢/r for a small constant € > 0 to be determined later), tiny if
its degree is exactly 2 in H, and insignificant if its degree is at most 1 in H. All vertices
which are not small we call large. For convenience we will denote by V the set of small
vertices. We will say that sets (or edges) meet if they have a non—empty intersection.
They meet t times if they intersect on at least t vertices. For any edge e, its degree dege
is the number of edges (except e) meeting e. We call an edge e in H slim if dege < elnn.
We call an edge irrelevant if it has at most one large vertex.

We define a path in a hypergraph to be a sequence of alternating distinct edges and
distinct vertices

€1,V1,€2,V2,...,€1_1,V1—1, €, or Vo, €1,V1,...,U1—1, €1, 7y,

such that vy € ey, v; € ¢, and v; € e; Ne;yq, for all i =1,2,....,1 — 1. A path is called an
edge path (or a vertex path, resp.) if it starts and ends with an edge (or a vertex, resp).
The length of the path is the number of edges contained in it. Two vertices or edges are
at distance [ if the shortest path which connects them is of length [.

For a hypergraph H we define the following properties

Al max,cy(g)degv < 8lnn.

o
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A2 For some constant a,., depending on r, 0 < a, < 1 we have |V,| <n

A3 No two irrelevant edges meet at a large vertex.

A4 No two slim edges are at distance at most 6 and there is no edge path eve’v’e” such

that e is slim and |/ Ne"| > 2.

A5 If U C V has size at most [U| < n/In'/?n, then there are at most 0.9|U]log**n
edges of H that meet U more than once.

A6 For every pair of disjoint vertex sets U of size [U| < n/In*?n and W of size
0.9|U|In**n < |W| < |U|In'/* n, there are at most 0.4 Inn|U| edges of H meeting
U exactly once and also meeting W.

A7 For every pair of disjoint vertex sets U, W of sizes |U| = 0.9n/ In"? n and |W| = n/5,
there are at least n1n'/? n edges of H meeting U exactly once and meeting W exactly
r — 1 times.

Lemma 4. Let H,.(n, M) be a random r—graph with M given by (1). Then with high
probability H,(n, M) has properties A1-A7.

The proof of Lemma 4 is standard. It is very similar to the proof of Lemma 2.3 [2],
therefore we defer it to the Appendix.

4 Subhypergraphs of H,(n, M)

Now we will define H’ — an induced subhypergraph of H,(n, M). If H = H,(n, M) does
not have properties A1-A7 or has an edge of degree smaller than 2 then we set H' to be
H.

Now let H = (V, E) be an instance of H,(n, M) with properties A1-A7 and each edge
with degree at least 2. We will construct H' based on H. Given H, we first define V' C V,
the vertex set of H'. First we add to V' all large vertices from V. Now we consider all
edges which are irrelevant and do not meet any large vertex. These edges consist only
of small vertices and, by consequence, they are slim. For each such edge, if it contains a
vertex which is neither tiny nor insignificant, we pick one such vertex and add it to V' (in
order for H' to be uniquely defined by H we may choose based on an ordering of V). Note
that by A4 no slim edges meet, thus we will not add two small vertices from the same
slim edge. If an edge contains only tiny and insignificant vertices then we add to V' two
tiny vertices from this edge. Recall that each edge has degree at least two thus there are
always such two tiny vertices in an edge with only tiny and insignificant vertices. Now we
set H' to be an induced spanning subhypergraph of H, with the vertex set V’ and edge
collection

E'={enV':ee€ Fand |enV’| > 2}.

We recall here that in H' we distinguish between the edges coming from different edges
of H, even if they consist of the same vertices.
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Note that, by the construction, for each e € E we have |e N V'] > 1. Moreover
le N V’| =1 only for irrelevant edges e with at least one vertex which is neither tiny nor
insignificant. Therefore by properties A3 and A4 in H' (compared to H) the degree of
each vertex drops at most by one. Moreover each vertex has degree at least 2, because no
insignificant vertex has been added and no tiny vertex from V' has changed its degree.
We recall that the definitions of small, tiny and large refer to the degrees of these vertices
in H (not in H').

Let H be an instance of H,(n, M) such that H has properties A1-A7 and §(L(H)) >
2. Now we will prove that H' based on H with high probability has a Berge Hamilton
cycle. To this end we will use a similar technique to this utilised in [2]. First, for H we
define Ty, a random spanning subhypergraph of H. In Ty every v ¢ V; chooses E,, a
subset of €, Inn many edges uniformly at random from the set of all edges incident to v.
Moreover, for every v € V,, we set F, to be the set of all edges incident to v. Then the
edge set of [y is

E(Ty) = | J E..
veV
In what follows we will consider I'j;, which is the subhypergraph of I'y induced by V.
By definition, I'j is a random spanning subhypergraph of H' with the edge collection
{enV':eec E(Ty),lenV’'| > 2}.
We define expander and booster as they were defined in [2].

Definition 5. A hypergraph is a (k, a)—expander if and only if, for all disjoint sets of
vertices X and Y, if |Y| < o|X| and | X| < k, then there is an edge, e, such that [enX| =1
and eNY = 0.

Definition 6. For a hypergraph H, a booster is a non-edge of H such that either H Ue
has a longer path than H or H U e is Berge Hamiltonian.

We note that I') is not (k,2)—expander for any k& > 2. Let X = {vy,v,} be the set
of two tiny vertices contained in the same edge in I'). Let e; (resp. es) by the edge in
[y, containing vy (resp. vy) different from edge {vy,v9}. Define a set Y that contains one
vertex from e; \ X and one vertex from e; \ X. Obviously |Y| < 4 and there is no edge e
in I'{, such that [eN X| =1 and eNY = (. Therefore with high probability I'; does not
fit the definition of (k,2)—expander for any k > 2. However we may use other properties
of 'y to show that with high probability I either is Berge Hamiltonian or has many
boosters.

Recall that we consider the case of H with properties A1-A7 and the minimum edge
degree at least 2. Then the edges constituted of two vertices of degree 2 in I'j and in
H' are at distance at least 6. This follows by A4 and the fact that these edges were
obtained from a slim edge by adding two tiny vertices from it to V’/. For any spanning
subhypergraph IV of H', I" C H’', we define ['* = I"*(I"") which is obtained in the following
manner: any edge consisting of two vertices of degree 2 (in this case tiny) is contracted
into one vertex. We denote by Vi(I'*) the set of all vertices from I'* which are small in
H plus all contracted ones.
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Now we are ready to define a notion which will be helpful in describing hypergraphs
with many boosters.

Definition 7. A hypergraph IV on n’ vertices with no trivial edges we call an almost
expander if

(i) there are at most o(n') edges consisting of pairs of adjacent vertices of degree 2 in
['" and they are at distance at least 6 from each other;

(ii) T* obtained from I is (n./4,2)—expander, where n, is the cardinality of the vertex
set of I'.

Now we may state the main lemmas which will lead us to the result concerning the
Berge Hamiltonicity of H'.

Lemma 8. For H,.(n, M) with parameters given by (1), with high probability either
S(L(H,(n,M))) <2 or Ty is a connected almost expander.

Lemma 9. Let H' be constructed based on H.(n,M). With high probability, for any
spanning subhypergraph I, TV C H' = H’, which is a connected almost expander with at
most e,n1nn+n edges, either I is Berge Hamiltonian or it has at least one booster edge
in H'.

We defer the proofs of Lemmas 8 and 9 to the next section. Now we will show how
Theorem 1 is derived from the lemmas and previously presented results.

Let B be the event that I'), obtained from H,.(n, M), is a connected almost expander
and H' satisfies the conclusions of Lemma 9. Note that, by Lemmas 8 and 9

Pr{BN{6(L(H:(n, M))) = 2}} = Pr{o(L(H,(n, M))) > 2} — o(1)

Now we show that, if for an instance H of H,(n, M) event BN {d(L(H,(n,M))) > 2}
is satisfied, then H’ (an instance of H' derived from H) has a Berge Hamilton cycle.

First consider any I' which is obtained from I'y by adding some edges from H, i.e.
'y C T" C H. Note that, by definition of I'g, none of the added edges contains any tiny
(or small) vertex since these edges were added by default to I'y. Moreover they have the
same edges consisting of two tiny vertices. Thus ['j has the same vertex set as I'* (related
to I'" — the subhypergraph of I' induced by V') and [}y is a spanning subhypergraph of
I'*. Therefore if I'§ is (n./4,2)-expander then I'* is also (n./4,2)-expander. Hence, if I,
is a connected almost expander then I' (a subhypergraph of I" induced by V' ) is also a
connected almost expander. Now we start with [, and iteratively step by step, if it is
possible, add booster edges from H’ to almost expanders obtained in this way. Note that
we cannot add more than n edges without obtaining a Berge Hamilton cycle. I', did not
have more that £,nInn edges, therefore obtained almost expanders do not have more that
g;nlnn+n edges. Therefore, as event B is satisfied, at some point of adding boosters we
will get an almost expander I, I'y C I'" C H’, which is Berge Hamiltonian.

In conclusion, the probability that L(#,(n, M)) is Hamiltonian is at least the probabil-
ity that H' is Berge Hamiltonian, which is at least Pr {0 (L(#,.(n, M))) = 2} —o(1). Recall
that {0(L(H,(n,M))) > 2} is a necessary condition for L(H,(n, M)) to be Hamiltonian.
Therefore Theorem 1 follows by applying Lemma 3.
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5 Proofs of Lemmas 8 and 9

In view of Lemma 4 and by the construction of H’, in order to prove Lemma 8, it is
enough to prove the following lemma.

Lemma 10. If H has properties A1-A7 and each edge in H has degree at least 2 then
with high probability TS is (n./4,2)—expander, where n, is the cardinality of the vertex set
of I'.

Proof of Lemma 10. We will use the following lemma from [2](we have kept the numbering
in line with [2]).

Lemma 11 (Lemma 2.4 from [2]). If I'™* on n, vertices has the following properties
PO All vertices in I'* have degree at least 2.

P3 Let N = {v € V*: JecprmweeVs(I*) Ne # 0}, No edge meets Vi(I'*) more than
once, and no u ¢ Vy(I'*) lies in more than one edge meeting N \ {u}.

P4 IfU C V* has size at most |U| < n,/In'?n,, then there are at most |U|log®* n,
edges of I'* that meet U more than once.

P5 For every pair of disjoint vertex sets U, W of sizes |U| < n*/hrll/2 n. and
\W| < |U|InY*n,, there are at most elnn,|U|/2 edges of T* meeting U exactly
once and also meeting W'

P7 For every pair of disjoint vertex sets U, W of sizes |U| = n./In'?*n, and
|W| = n./4, there is at least one edge of I'* meeting U exactly once and not meeting
V*\ (WuU).

then I'* is a connected (n*/4,2)—expander.

The lemma in [2] concerns r—graphs. However, after rephrasing P7, the lemma and
the proof from [2] stay valid for non—uniform hypergraphs.

Assume that H has properties A1-A7 and each edge in H has degree at least 2. We
will show that then with high probability I'j has properties listed in Lemma 11. First of
all, vertices from V which were not included in V' or were contracted in V* are small in
H. Therefore by A2

nzn,=n—n"=(1+o(1))n.

PO Follows by the following facts:

— the minimum edge degree in H is 2;

— no insignificant vertex has been added to H’;

— all tiny vertices in H' and contracted tiny vertices in I'j have degree 2 in H', I and,
by consequence, in I';

— the degree of any vertex, that is not tiny, have decreased in H' (I'y, I'{) by at most one
compared to H (by A3 and A4).
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P3 Recall that small vertices were included in H’ only if they were in slim edges. From
each slim edge we have included in H’ either only large vertices or exactly one small
vertex or exactly two tiny ones which were contracted into one in I'j. No two slim edges
in H were at distance at most 6 (A4) therefore no two vertices from V,(I'§) in [}y are at
distance at most 4. Thus in I'{ no edge meets two vertices from V(I'§) and no u ¢ N lies
in more than one edge meeting N (otherwise there would be a path of length at most 4
between two vertices). Similarly, for any u € N\ V4(I'}), if there were two edges meeting
wand N\ {u} then it would contradict either the first or the second part of A4.

P4 and P5 follow easily by A5 and A6 and the fact that n. = (1 + o(1))n.

P7 Let U,V C V* be disjoint sets in I'j. Sets U and W have been obtained from
U, W' C V' in T. We note that |U’| > n,/In"?n* > 0.9n/In"?*n and |[W'| > n,/4 >
n/5. Therefore by A7 there are at least n1n'/®n edges in H' (and also in H) meeting U’
once and W' exactly r — 1 times (i.e. not meeting V' \ (U’ UW’)). Therefore it is enough
to prove that with high probability for every such U’ and W’ at least one of these edges
remains in I (i.e. also for U and W in I'j). This can be proved using exactly the same
calculations as in the proof of P7 in [2] (in these calculations we use A1). O

Now we are going towards proving Lemma 9.

Let H' be constructed based on H,.(n, M). Let I'' C H' be spanning subhypergraph of
H’ which is a connected almost expander. Let n’ be the number of vertices of H'. Let P
be the longest path in IV and let P* be its counterpart in I'*. Note that if P is a longest
path, then by properties of tiny vertices in a connected almost expander and definition of
['*, there is no longer path containing V' (P*) than P* in I'* (otherwise there would be a
longer path in I").

For P* we will use a consequence of a part of the proof of Lemma 2.1 [2] which we
state as the following lemma.

Lemma 12. Let G be a connected (k,2)-expander and P be a path in G such that there
is no path containing V (P) longer than P. Then G is Berge Hamiltonian or there are at
least k? distinct pairs of vertices (v,w) which are the ends of the paths (in G) with the
vertex set V(P).

We will use Lemma 12 in the proof of the following Lemma.

Lemma 13. Let I be a subhypergraph of a complete hypergraph K,(n) with n vertices
and all its r-sets as edges. If T is a connected almost expander then either it is Berge
Hamiltonian or it has at least c.(n')?>n"~! booster edges in K,.(n), where n’ is the number
of vertices in I".

Proof. Assume that I is not Hamiltonian. Let P be a longest path in [V and let P* be
the path corresponding to P in I'*. I" is a connected almost expander therefore I'* has
n* = n/(1+ o(1)) vertices and is (n./4,2)-expander. By Lemma 12 there are (in I'*) at
least n2/16 = (1 + o(1))(n’)?/16 pairs of ends of paths with the vertex set V' (P*). Thus
there are at least (1 4 o(1))(n')?/16 pairs of ends of paths with the vertex set V(P') in
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I (if a contracted vertex is the end in a path in I'* then exactly one vertex from the
contracted vertices of degree two is the end in a corresponding path in I”). Now we will
show that these paths give rise to many boosters.

Let (u,v) be a pair of vertices which are ends of a longest path P in IV C H'. Let e
be an r—set in V' such that {u,v} Ce. If ¢ =e NV’ is contained in I' then it must be
a part of P. Otherwise it would be closing a cycle P U¢€’. If P contains all vertices of I
then this cycle is a Hamilton cycle. If not, then there is a vertex w outside P connected
by a path with the cycle (as I is connected). Therefore we may construct a path longer
than P using: the second last vertex of this path (i.e. the first one outside the cycle), an
edge between it and the cycle, and the edges and vertices of the cycle. Therefore either I
has a Hamilton cycle or ¢/ = eN V" is a booster edge. Note that e C V and I has vertex
set V’. However while constructing H" we have distinguished between the edges if they
came from different r—sets of V. Therefore for any pair of ends (u,v) of a longest path P
in I, each r—set e of V, such that {u,v} C e and eN V" is not an edge in P, is a booster

edge in K, (n). Therefore there are at least ("~]) — (n — 1) booster edges in V' containing

(u,v) (and at most ("~}) — 2 booster edges for r = 3, as there might be at most 2 edges
on the path that also contain {u,v}). Therefore, by Lemma 12 the number of boosters of
a connected almost expander with no Berge Hamilton cycle is at least

1 (14 0(1)(n)? ((n - 2> —(n— 1)) > ()2, forr > 3

r(r—1) 16 r—2 "
e L (L o()() ( (2
+o0 n n—
-9 > NAVN S f =3
r(r—1) 16 ((r—2> > ()", dor
for some constant ¢, > 0 depending only on r. O]

Now we can conclude the proof of Lemma 9 using the following auxiliary result.

Lemma 14. Let M be given by (1) and let ¢, be a constant depending only on r. Then
with high probability for any subhypergraph IV C H' = H' with at least ¢,n" boosters and
at most e,nlnn + n edges, H' contains at least one of the booster edges of .

The proof of Lemma 14 is analogous to that of Lemma 2.2 from [2]. We give it for
completeness in the Appendix.

By definition of H’, Lemma 4 and A2, with high probability H' has (1 + o(1))n
vertices. Therefore by Lemma 13 with high probability any spanning subhypergraph
[V C H' which is a connected almost expander has at least ¢,n” boosters for some ¢, > 0.
This and Lemma 14 imply Lemma 9.
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Appendix

A Proof of Lemma 4

In the proofs we will use Chernoff’s bound (see for example Theorem 2.1 in [11]). Let X
be a random variable with a binomial distribution and let ¢(z) = zlnz + 1 — 2. Then

Pr{X <zEX} <exp(—p(z)EX), forz <1
and
Pr{X > 2EX} < exp (—p(z)EX) for z > 1.

Note that ¢(z,) = (1 + o(1))z, Inx, for z,, - oo and ¢(x,) — 1 if z,, — 0.
We will set 0 < e < 1 to be a constant such such that p(e) > 0.8 and e < 1/(2r).

A1 1In H(n, M) deg v has the binomial distribution with parameters M and ("_})/(") =
r/n. Therefore

M 8lnn M 8lnn 8lnn
Pr{ﬂvdegv>81nn}<n( )(£> gn( ¢ r) <n(€) =o(1).

lnn n nlnn r

A2 We recall that, in H]*?(n, M), deg v has binomial distribution with the expected value

r Inn
M—-=1 1) —.
L= (1 o(1)
Therefore, by Chernoft’s bound, the expected value of the number of small vertices is

(recall that p(e) > 0.8 is a constant)
nPr{degv < elnn/r} <nexp(—0.8Inn/r) =n!"0%" (3)

Therefore with high probability |Vi| < n®, for some constant 0 < a, < 1 depending on r.
A3 Let e and €’ be two irrelevant edges such that |e N e’| =4 > 1 which meet at a large
vertex. There are 2r — i — 1 small vertices in e U €, i.e. there are at most

+ 1
€T(2r—i—1)lnn:5-2<1—Z;— >lnn
r

edges meeting these 2r — i — 1 small vertices from (e U e’) N V;. Moreover the number of
edges meeting these vertices (not counting e and €’) in H/(n, M) is binomial with the
expected value

(11— 2) (1_ (n—2r+i+1)/<7;)> s oy =iz

r n

— (14 0(1))2 (1 - 2;1) Inn.
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Using Chernoff’s bound (recall that ¢(¢) > 0.8 is a constant) we get that probability that
such a configuration of irrelevant edges exists in H[?(n, M) (for r > 3) is at most

e Z:; % exp (—(1 +0(1))26(c) (1 - ’;1) lnn)

r 20
2 —1.6(1—(i+1)/(2r))
<>

i=1
r 2i+1
r _ _ —1y .. -1
<§ :MQ _n 1.6(1—(2r) )nzO.ST
, n'
=1

r M2 7’2 7
S Zrnms (n0-73) = o(1).
i=1

A4 First we will prove that no two slim edges meet. The proof is analogous to this of
A3. Let e and €' be slim and |e Ne'| =i > 1. Then the number of edges (not counting
e and €') meeting e U ¢’ is at most 2¢Inn. Moreover in H!’(n, M) the number of edges
(not counting e and e’) meeting e U ¢’ has binomial distribution with the expected value

n—|eUe’| . .
o —
(M —2) (1 - %) = (14 oM DT _ (14 o(1))2 (1 - 2i> Inn. (4)
n r
Using Chernoff’s bound we get that the probability that there are two slim edges that
meet is at most (as in A3)

e ; % oxp (—(1 +0(1))20(c) (1 - %) In n) — o(1)

Now we will determine the expected number of edge paths
e1,v1,€,...0_1,6 withl=23,4,5,6; esNe; =0; e, e € V.

The number of edges meeting both e; and e; (not counting ey, es, ..., ¢) is binomially
distributed with the expected value (1 + o(1))2Inn (similarly as in (4))). Moreover if
e1,e; € Vi then the number of edges meeting both e; and e; (not counting eq, es, ..., €)
is at most 2¢Inn. Therefore, using Chernoff’s bound as before, the expected number of
considered paths in H]?(n, M) is at most

ZMlnl_1 <(En;)> <(T(n§)> exp (—p(e)(1+0(1))21nn)

T 7

6
Z AP S In’n
< (TL In n)lnl IWTL L6 — E W = 0(1)
=2 =2
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Now we prove the second part of A4. Note that in the path eve’v'e” considered in

A4, edge e is slim, thus it meets at most € lnn other edges. In H?(n, M) the number of
edges (not counting e,e’, and €”) meeting e is binomial with the expected value

Therefore, using standard counting and Chernoff’s bound (recall that ¢(¢) > 0.8 is a

constant), we get that in H.’(n, M) the expected number of edge paths eve'v'e” with
e € Vs and |¢ Ne’| > 2 is at most

2

(M - 3) (1— ):(1+o(1))MT = (14 o(1))In M.

n

N3 08InM,, (2:11) (72“> (Z:;) < M2.27’_6 = o(1).

() (") n?

A5 Given U, |U| = u, the number of edges in H?(n, M) which meet U at least two times
is dominated by the binomial random variable Y, with the expected value

(007
()
for some bounded C,.

We will use the fact that for u < n/In'/?n we have In(n/(uIn"*n)) > (In(n/u))/2. Thus
by Chernoff’s bound

0.9n uw?lnn
Pr {Yu > 0.9u ln3/4n} <ex <— ( ) C, )
PAT? Couln'/*n n

S exp <—(1 +0(1))0.9uIn** nln (0.96’;1%>)
uln'/*n

wrir—1) (1+0(1))u_2r—1Mr2 _ Cru21nn’

2n r n n

EY, =M

In2
< exp (—(1 + 0(1))0.9u In®/* n%)

n
< exp (—O.4u In**nln —) .
u
Thus the expected number of sets U such that many edges meet more than two vertices
from U is at most

n/In'/2n

Z <Z) exp (—0.4u In**nln 2)

u
u=2

n/In'/?n

en\v n
< e —0.4uln®4nl —)
Z <u> exp( vl nln

u=2
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n/In'/2n

< Z exp (u (—0.41113/4nhﬁE +1 —i—lnﬁ))

u u
u=2
n/In'/?n n
< ~03m* nin ) ) = o(1).
; exp (u( n*"nln o(1)

A6 This proof is almost identical to the proof of A5. Given disjoint U and W (|U| = u
and |WW| = w), the number of edges in H!’(n, M) which meet U exactly once and meet
W is dominated by the binomial random variable Y,,, with the expected value

EY,, — pell) C’TuwlnTn.

Thus for u < n/ In'/? n, 0.9uln"*n <w<K ulnt/* n, we get

0.4eulnn

EYuw - CT,E Y for some boundend CT’E > 0

g3

Moreover, similarly as in A5, we have In(C,.2) > (1 + 0(1))5In2 for any w such that
0.9uIn"*n < w < uln'*n. Therefore by Chernoff’s bound we have

|
Pr{Y,, = 04culnn} < exp (—gp (C’T7€£> C’ruwﬂ>
w

n

<o (4o e (6,2

< exp (—Angulnnln <E>> ,

u

for some constat A, . > 0. Thus the expected number of disjoint sets U and W (|U| = u

and |WW| = w) with the small number of edges meeting both of them is at most (note that
(W <n/2)

n/In'/2n  yInl/4

> () (1) exp (~Avcutnin (%)

u=1" »=0.9uln

n/1n1/2n wlnl/4

Z Z y (u ln?/4 n) 2 exp (—Amulnnln <%>>

< Z n exp (u (—0.9Ar7E Innln <g>>> =o(1).
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AT Let Yy, be the number of edges in H](n, M) meeting U at one vertex and W at
r — 1 vertices (U and W disjoint, |U| = u := 0.9n/In"*n and |W| = w :=n/5). Yy, is a
binomial random variable with

w r—1
o)) ruw

=(14o0(1)M
B (1+o0(1))

= C’ﬂllrll/2 n.

EY,w =M

nT
Therefore

Pr {]EYW < nln'/? n} < exp (—(p((Cr In*n)~HC,pn In'/? n> < exp (—C’,',’n In'/2 n)

and the expected number of pairs of sets U and W with small number of intersecting
edges is at most

0.9n/In'/2n
(n) <n) exp <_C,/!n Int/? n> < <0.9_161n1/2 n> (56)71/5 exp (—C’;’n Int/2 n)
u w

< exp (An Inlnnin™"?n 4+ A'n — C"nln*/? n)
=o(1).

B Proof of Lemma 14

Let N = (") and v = gnlnn + n. Recall that € is such that &, < 1/(2r?), thus
M —~ > M/3.

Probability that there is a subhypergraph I C H’ with v edges and such that none
of its ¢,n" = ¢/ N boosters is present in H' is at most

> (7) (J(Vié),_?N) . ;exp (—c;(%%— z‘)) (7 )(%_9
< e (=M ~) () (%)
< e (-9 (ﬂ)
<emp(-a3) (2) =o)
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