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Abstract

Consider the direct product of symmetric groups Sc×Sn and its natural action on
P = C ×N , where |C| = c and |N | = n. We characterize the structure of 2-designs
with point set P admitting flag-transitive, point-imprimitive automorphism groups
H ⩽ Sc × Sn. As an example of its applications, we show that H cannot be any
subgroup of D2c×Sn or Sc×D2n. Besides, some families of 2-designs admitting flag-
transitive automorphism groups Sc×Sn are constructed by using complete bipartite
graphs and cycles. Two families of these also admit flag-transitive, point-primitive
automorphism groups Sc ≀ S2, a family of which attain the Cameron-Praeger upper
bound v = (k − 2)2.

Mathematics Subject Classifications: 05B05, 05B25, 05E18, 20B25

1 Introduction

A 2-(v, k, λ) design is an incidence structure D = (P ,B), where P is a set of v elements
(called points), B is a collection of b k-subsets of P (called blocks), such that any 2-subset
of P is contained in precisely λ blocks. The number of blocks through a given point x
is a constant, which is denoted by r. An automorphism group G of D is a permutation
group on P , preserving the block set B. An automorphism group G is said to be point (or
block)-transitive if G acts transitively on the point set P (or the block set B), and is said
to be flag-transitive if G acts transitively on the set of incident point-block pairs. The
terminology point-imprimitive and point-primitive are defined similarly. It is well known
that G is flag-transitive on D if and only if G is block-transitive and the block-stabilizer
GB is transitive on B for any block B.
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A 2-design D is said to be non-trivial if 2 < k < v − 1. The parameters of D satisfy
the two equations

λ(v − 1) = r(k − 1) and bk = vr.

For further basic facts of 2-designs, refer to [8, Section 2.1] and [2, Chapter 3], for example.
The study of flag-transitive, point-imprimitive 2-designs is a long-term project. One of

the most classic results would be due to Kantor in 1969. He gave some conditions in [10,
Section 4], under which the flag-transitive automorphism groups of 2-designs are point-
primitive. These results were also referred in [8, Section 2.3.7] by Dembowski. In 1987,
Davies proved in [6] that there exist only finitely many flag-transitive, point-imprimitive
2-designs for fixed λ. In 1989, Delandtsheer and J. Doyen proved in [7, Theorem] that a
block-transitive, point-imprimitive 2-design satisfies v ⩽ (

(
k
2

)
−1)2. In 1993, Cameron and

Praeger [4] proved that a flag-transitive, point-imprimitive 2-design satisfies v ⩽ (k − 2)2

(we call v = (k − 2)2 the Cameron-Praeger upper bound). In [4, Propositions 2.2, 3.6],
they studied constructions of 2-designs admitting a block-transitive, point-imprimitive
automorphism groups Sc ≀Sn or Sc×Sn acting on the set C×N , where C and N are sets
of size c or n, respectively. In [5], they give a construction of a family of designs with a
specified point partition, and give necessary and sufficient conditions for a design in the
family to possess a flag-transitive automorphism group preserving the point partition.

Inspired by Cameron and Praeger’s work in [4], we continue to consider flag-transitive
2-designs with the natural, imprimitive action of Sc × Sn on C × N . In Section 2, by
connecting with bipartite graphs, we characterize 2-designs admitting flag-transitive au-
tomorphism groups Sc × Sn. In Section 3, we prove that if H ⩽ Sc × Sn and H acts as
a flag-transitive automorphism group on a 2-design, then H cannot be any subgroup of
D2c × Sn or Sc ×D2n, which are special subgroups of Sc × Sn with relatively small order.
We tackle this by inspecting the projection maps ρ1 and ρ2 of H on Sc and Sn, respec-
tively. It provides an example of tackling specific subgroups of Sc × Sn and we believe
that the technique used in the proof in Section 3 could be applied to analyse other types
of subgroups of G.

In the last section, some families of 2-designs admitting flag-transitive and point-
imprimitive automorphism groups Sc × Sn are constructed using complete bipartite sub-
graphs and cycles. Two families of these also admit flag-transitive, point-primitive auto-
morphism groups Sc ≀ S2 with the product action (Corollaries 23 and 28). Among them,
a family of designs attain the Cameron-Praeger upper bound v = (k − 2)2(Corollary 28).

The first version of the current paper was finished and submitted in August, 2021.
When the paper was under review, we were aware that some papers [1, 3, 12] concerning
relevant topic appeared. In [1], the authors analyse block-transitive 2-designs and 3-
designs with automorphism groups Sc × Sn or Sc ≀ S2. In [3], the authors observe the
group Sc × Sn acting as a flag-transitive automorphism group of a block design with
4 ⩽ c ⩽ n ⩽ 70 by developing and applying several algorithms. It is also worth noting
that [12, Construction 3.2] presents a construction similar to our Construction 4.1 from
different perspectives. Our work is independent of these papers. We deal with designs
admitting flag-transitive automorphism groups Sc×Sn or their subgroups in the language
of graphs and their automorphisms, and present some more general constructions.
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2 Flag-transitive 2-designs with the action of Sc × Sn

Throughout the paper we use conventional terminology of permutation groups and group
actions, such as primitive groups, regular groups and induced action on a subset. For
these basic definitions and facts, refer to [9], for example.

In this section, we characterize the flag-transitive 2-designs under the natural imprim-
itive action of Sc × Sn. Throughout this paper, let G = Sc × Sn with c, n ⩾ 2, H ⩽ G
and P = C ×N , where C = {1, 2, . . . , c} and N = {1, 2, . . . , n}. In the following, we first
present some necessary definitions.

Definition 1. Define the action φ of G = Sc × Sn on P = C ×N :

φ : Sc × Sn −→ Sym(P) by (g, h) −→ φ(g,h)

with
(α, β)φ(g,h) = (αg, βh), (α, β) ∈ P

Clearly, the action φ described in Definition 1 is well-defined and faithful. The image
is an imprimitive permutation group on P since the stabilizer G(1,1)

∼= Sc−1 × Sn−1 is not
a maximal subgroup of G. In the current paper, the action of G = Sc×Sn on P = C×N
is always assumed to be the action defined in Definition 1.

Let D = (P ,B) be a 2-design admitting a flag-transitive automorphism group H ⩽ G.
We can regard the points of a 2-design D as the edges of a complete bipartite graph Kc,n,
whose bipartite blocks are C and N . Then regard a block of D as a set of k edges of
Kc,n. Clearly, these c + n vertices and k edges form a subgraph Γ of Kc,n. We denote
by E(Γ) the set of edges of Γ. Moreover, we have a natural permutation representation
of H on the edges of Kc,n, which is equivalent to φ|H on P . Clearly, we have the full
automorphism group Aut(Kc,n) = G if c ̸= n, and Aut(Kc,n) = G ≀ S2 if c = n.

Definition 2. Let Γ be a bipartite graph with bipartite blocks C and N , and let H ⩽
Sc×Sn. Then D(Γ, H) is defined to be the incidence structure whose points are all edges
of the complete bipartite graph Kc,n, and block set is {E(Γh) : h ∈ H}.

Clearly, the group H acts block-transitively on the incidence structure D(Γ, H).

Definition 3. Let Γ be a bipartite graph with bipartite blocks C and N . Let x =
(x1, x2, . . . , xn) and y = (y1, y2, . . . , yc), where xi is the number of vertices adjacent to
vertex i ∈ N and yj is the number of vertices adjacent to vertex j ∈ C. The tuples x, y
are called the degree sequences of vertices of Γ in N and C, respectively.

In the remaining part of the paper, we always let Γ be a bipartite graph with bipartite
blocks C = {1, 2, . . . , c} and N = {1, 2, . . . , n}. Remove all isolated vertices of Γ and then
the remaining vertices and edges of Γ form a subgraph of Γ. We denote this subgraph by
Γ. It is worth mentioning that some literature would use “Γ” to denote the complement
of the graph Γ but we still take the risk to use this notation. We use Γj(j = 1, 2, . . .) to
denote the connected components of Γ. We always let x and y be the degree sequences of
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vertices in N and C, respectively. We say a group K is an edge-transitive automorphism
group of Γ if K ⩽ Aut(Γ) and K acts transitively on the set E(Γ) of edges of Γ.

It is clear that any incidence structure D = (P ,B) with a block-transitive automor-
phism group H is isomorphic to D(Γ, H) for some bipartite graph Γ when we regard the
set P as the edges of Kc,n and a block B as the set of edges of Γ. Clearly, H has equivalent
representations on D and D(Γ, H).

If Γ∗ is a subgraph of Kc,n, then we write HΓ∗ as the subgroup of H stabilizing
the set of edges and the set of vertices of Γ∗. Clearly, the induced permutation group
HΓ∗

Γ∗ ⩽ Aut(Γ∗). For convenience, we write HΓ∗
instead of HΓ∗

Γ∗ .

Lemma 4. If a 2-design D = (P ,B) with P = C ×N admits a flag-transitive automor-
phism group H ⩽ Sc × Sn, then there exist Γ such that D ∼= D(Γ, H), and, for any two
components Γj1, Γj2 of Γ, there exists h ∈ H such that (Γj1)

h = Γj2. Moreover, H is

edge-transitive on Kc,n, and all HΓj are edge-transitive and permutationly isomorphic.

Proof. For any such 2-design D, we know that there exists a bipartite graph Γ such that
D ∼= D(Γ, H). The flag-transitivity of H on D implies that H is transitive on P , and HB

is transitive on B for any block B. Thus H is edge-transitive on Kc,n. Moreover, since

the set of edges of Γ is exactly a block of D, equivalently we have HΓ is an edge-transitive
automorphism group of Γ.

If Γ is not connected, then Γ is a union of connected components Γj. Let ℓ1, ℓ2 ∈ E(Γ).
There exists h ∈ HΓ such that ℓh1 = ℓ2. If ℓ1 and ℓ2 are edges of the same component

Γj, then h induces an automorphism of Γj, i.e., h ∈ HΓj
. Thus HΓj is edge-transitive.

If ℓ1 ∈ E(Γm1) and ℓ2 ∈ E(Γm2) with m1 ̸= m2, by the connectivity of Γm1 and Γm2 ,
we have h maps all vertices and edges of Γm1 onto Γm2 , and h−1 maps all vertices and
edges of Γm2 onto Γm1 . So h induces an isomorphism from Γm1 to Γm2 . Since h ∈ H, we

have (HΓm1
)h = H(Γm1 )

h = HΓm2
. Thus HΓm1 is permutationly isomorphic to HΓm2 . The

arbitrariness of ℓ1 and ℓ2 yields the result.

Lemma 5. Suppose that Γ is a union of isomorphic components with bipartite blocks of
size d and i, and for any two components Γj1, Γj2 there exists g ∈ G such that (Γj1)

g = Γj2.
If one of such components admits a subgroup of Sd×Si as an edge-transitive automorphism
group, then there exists a group H ⩽ G such that D(Γ, H) admits a flag-transitive auto-
morphism group H. In particular, G is a flag-transitive automorphism group of D(Γ, G).

Proof. Let Γ be a union of m isomorphic connected components Γj (j = 1, 2, . . . ,m,m ⩾
1), and Gj0 ⩽ Sd×Si be an edge-transitive automorphism group of Γj0 . Let also Gj0 be the
extension of Gj0 to the permutation group on C×N by fixing the added points. For any Γj

there exists g ∈ G such that Γj = (Γj0)
g and so Gj := g−1Gj0g induces an edge-transitive

automorphism group G
Γj

j of Γj. Now consider the induced action of G on {(Γ1)
g : g ∈ G}.

Let Θ = {Γ1,Γ2, . . . ,Γm}. By the condition, we can easily get that GΘ is transitive on Θ.
Let M be any transitive subgroup of GΘ on Θ and let L = ⟨G1, G2, . . . , Gm,M⟩. Then L
induces an edge-transitive automorphism group on Γ. If L ⩽ H ⩽ G, then the incidence
structure D(Γ, H) admits a flag-transitive automorphism group H. Since L ⩽ HΘ ⩽ GΘ,
we get that G is also flag-transitive on D(Γ, G).
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Lemma 6. [4, Proposition 1.3] Let X be a permutation group of the set Ω, having orbits
O1, . . . , Om on the set of 2-subsets of Ω, and B a k-subset of Ω. Then (Ω, BX) is a 2-
design if and only if the ratio of the number of members of Oℓ contained in B to the total
number of members of Oℓ is independent of ℓ.

In the following Theorem 7, we consider the special case that H = G = Sc × Sn.
We give equivalent conditions of the existence of a 2-design admitting a flag-transitive
automorphism group G.

Theorem 7. The incidence structure D = (P ,B) is a 2-design admitting a flag-transitive
automorphism group G = Sc × Sn if and only if there exists a bipartite graph Γ with
D ∼= D(Γ, G), and with x, y the degree sequences of vertices in N and C respectively:

x = {d, d, . . . , d, 0, 0 . . . , 0} and y = {i, i, . . . , i, 0, 0, . . . , 0},

where d(⩾ 2) has multiplicity s in x and i(⩾ 2) has multiplicity sd
i
in y, such that

(a) Γ is a union of isomorphic connected components, and for any two components Γj1,
Γj2 there exists g ∈ G such that (Γj1)

g = Γj2;

(b) every GΓj is edge-transitive;

(c) the 5-tuple (c, n, s, d, i) satisfies

{
c(i− 1) = d(s− 1),

(c− 1)(i− 1) = (d− 1)(n− 1).

Proof. By Lemma 4, for any such flag-transitive 2-design D, there exists Γ such that
D ∼= D(Γ, G), where Γ satisfies (a) and (b). Moreover, since GΓ induces transitive groups
on the two bipartite blocks of Γ respectively, every vertex in a bipartite block of Γ has the
same degree. By the multiple transitivity of symmetric groups, without loss of generality
we can assume that Γ has degree sequences

x = {d, d, . . . , d, 0, 0 . . . , 0} and y = {i, i, . . . , i, 0, 0, . . . , 0},

where d has multiplicity s in x and i has multiplicity sd
i
in y. The action φ has three orbits

on 2-subsets of P : O1 = {{(α, β), (γ, β)} : α ̸= γ}; O2 = {{(α, β), (α, γ)} : β ̸= γ}; O3 =
{{(α, β), (γ, δ)} : α ̸= γ, β ̸= δ}. Clearly, |O1| = n

(
c
2

)
, |O2| = c

(
n
2

)
and |O3| = c(c− 1)

(
n
2

)
.

Regard the 2-subsets of P as the unordered pairs of edges in Γ. From Lemma 6 we know
that d, i ⩾ 2. It is easy to count that the number of members of O1 contained in B is s

(
d
2

)
and the number of members of O2 contained in B is sd

i

(
i
2

)
. So the number of members of

O3 contained in B is
(
sd
2

)
− s

(
d
2

)
− sd

i

(
i
2

)
. By Lemma 6, D(Γ, G) is a 2-design if and only if

s
(
d
2

)
n
(
c
2

) =
sd
i

(
i
2

)
c
(
n
2

) =

(
sd
2

)
− s

(
d
2

)
− sd

i

(
i
2

)
c(c− 1)

(
n
2

) .

It is obvious that the first equation is equivalent to (c−1)(i−1) = (d−1)(n−1), and the
second equation is equivalent to c(i− 1) = d(s− 1). The “if” part follows from Lemmas
5 and 6.
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3 On the subgroups of D2c × Sn or Sc × D2n

Note that the symmetric group is the largest permutation group on a given set, with
extremely high transitivity. We may also need to consider some much “smaller” transitive
subgroups. The “smallest” transitive groups would be cyclic groups or regular groups and
the slightly “bigger” groups would be dihedral groups. It is a natural thought to ask what
may happen if H is a relatively small subgroup of G = Sc × Sn. For example, we can
start from Zc × Sn or D2c × Sn. In this section, we prove that if H is a flag-transitive
automorphism group of a non-trivial 2-design D = (P ,B), thenH cannot be any subgroup
of D2c×Sn or Sc×D2n, by showing that H cannot project into a dihedral group. Here we
define ρ1 as the left projection map from H to Sc, i.e., ρ1(H) = {h1 ∈ Sc : (h1, h2) ∈ H}
and ρ2 is defined as the right projection map similarly. We denote by V1(Γ)(⊆ C) and
V2(Γ)(⊆ N) the two bipartite blocks of Γ, respectively.

Lemma 9, Theorem 10 and their proofs provide an example of analysing specific sub-
groups of G. We believe that the technique applied in the proof could be generalised
to analyse other types of subgroups in some way. The following lemma is a well known
technique.

Lemma 8. [4, Proposition 1.1] Let X be a permutation group on Ω, and B ⊆ Ω. If D =
(Ω, BX) is a 2-(v, k, λ) design, then for any M with X ⩽ M ⩽ Sym(Ω), D = (Ω, BM) is
a 2-(v, k, λ∗) design for some λ∗.

Lemma 9. Let H ⩽ D2c × Sn where c > 3 is odd and D(Γ, H) be a non-trivial 2-design
for some Γ. If each α ∈ V2(Γ) has the same valency d and (HΓ)α acts transitively on the
neighborhood Γ(α) of α, then 1 < d < c+1

2
and d ∤ c.

Proof. The group D2c acting on C has a point-stabilizer of order 2, which is a complement
of Zc. SoD2c acts on C as its natural action on a regular n-gon. Without loss of generality,
assume that D2c = Zc : Z2 with Zc = ⟨(1 2 . . . c)⟩. Let α ∈ N and (δ, α) ∈ E(Γ). Then
δρ1((HΓ)α) are those points in C which are adjacent to α. So |δρ1((HΓ)α)| is the valency d of
α in Γ. Note that ρ1 and ρ2 are homomorphisms and so ρ1((HΓ)α) ⩽ ρ1(H) ⩽ D2c. Each
ρ1((HΓ)α) is isomorphic to either a subgroup Zc0 of Zc or a subgroup D2c0 = Zc0 : Z2 of
D2c, or a complement of Zc of order 2.

If for each α ∈ V2(Γ), |Γ(α)| = d ⩾ 3, then ρ1((HΓ)α) has order greater than or equal
to 3 and so is isomorphic to either a subgroup Zc0 of Zc or a subgroup D2c0 = Zc0 : Z2 of
D2c. If ρ1((HΓ)α)

∼= Zc0 ⩽ Zc, Γ(α) is an orbit of the unique subgroup Zc0 of Zc. Hence,
for m ∈ V1(Γ) with (m,α) ∈ E(Γ), mρ1((HΓ)α) = mZc0 = Γ(α) equals

Θm,c0 := {m,m+
c

c0
,m+ 2

c

c0
, . . . ,m+ (c0 − 1)

c

c0
},

where the addition is performed modulo c. If ρ1((HΓ)α)
∼= D2c0 < D2c, then by the action

of D2c0 < D2c on a regular n-gon (as a Frobenius group), D2c0 has an orbit Θu,c0 on C for
some u ∈ C whereas other orbits of D2c0 on C \Θu,c0 are all regular orbits of length 2c0.
Hence, Γ(α) is either the Θu,c0 or a regular orbit of D2c0 on C \Θu,c0 .
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Let H∗ := D2c × Sn and then D(Γ, H∗) is also a 2-design by Lemma 8. Consider the
action of H∗ on the 2-subsets of edges of Kc,n. Let O1 be the orbit of H∗ containing
{(1, 1), (2, 1)}, i.e., O1 := {(1, 1), (2, 1)}H∗

. By the natural action of a dihedral group on
a n-gon, the distance of any two points in C is invariant. So O1 contains all pairs of edges
of Kc,n such that the two edges in each such pair have the two coordinates in C with
difference 1 (modulo c) and the same coordinate in N . This gives

O1 = {{(ℓ, β), (ℓ+ 1, β)} : ℓ ∈ C, β ∈ N}.

Similarly, we define another orbit Oc/c0 := {(1, 1), (1 + c
c0
, 1)}H∗

:

Oc/c0 = {{(ℓ, β), (ℓ+ c

c0
, β)} : ℓ ∈ C, β ∈ N}.

It is easy to calculate that |O1| = |Oc/c0| = cn.
If d | c and d > 1, then d ⩾ 3, and for each α ∈ V2(Γ), Γ(α) = Θu,c0 for some u ∈ C,

and ρ1((HΓ)α) is isomorphic to Z0 ⩽ Zc or D2c0 ⩽ D2c. By Lemma 6, every orbit of H∗

on 2-subsets of P should have at least one member contained in a block. If c0 < c, then
every pair of edges in Γ which have a common coordinate in N have the two coordinates
in C with difference at least c

c0
(modulo c). It follows that O1 has no member contained

in E(Γ), a contradiction. Thus c0 = c and then Γ(α) = C. So Γ is then a complete
bipartite graph and we get that D(Γ, G) is a flag-transitive designs by Lemmas 5 and 8.
Apply i = s and c = d to Theorem 7(c) and we obtain i = s = n, which implies that
Γ = Γ = Kc,n. So D(Γ, H) is trivial, a contradiction. If each element α ∈ V2(Γ) has
valency d = 1, then each connected component of Γ is K1,i for some i. Again, it is easy
to see that no member of O1 is contained in E(Γ), a desired contradiction.

If d ⩾ c+1
2
, then clearly d ∤ c and d ⩾ 3 since c > 3 is odd and d ̸= c. So, for each

α ∈ V2(Γ), Γ(α) must be a regular orbit of ρ1((HΓ)α)
∼= D2c0 < D2c with d = 2c0 < c.

By our assumption, d = 2c0 ⩾ c+1
2
. Since c is odd, having a proper factor c0, there exists

t ⩾ 3 such that c = c0t. So 4c0 ⩾ c + 1 = c0t + 1, which implies that t = 3 and c = 3c0.
Now there are exactly two orbits of ρ1((HΓ)α)

∼= D2c0 on C, namely, Θu,c0 and C \ Θu,c0

for some u. Thus Γ(α) = C \ Θu,c0 . Recall that the edge set E(Γ) of Γ is a block B of
D(Γ, H∗). Let s := |V2(Γ)|. Denote by B{2} the set of 2-subsets of B and we then have
|B{2} ∩O1| = ( c

c0
− 2)c0s and |B{2} ∩Oc/c0| = ( c

c0
− 1)c0s. So

|B{2} ∩O1|
|O1|

̸=
|B{2} ∩Oc/c0|

|Oc/c0|
,

which contradicts Lemma 6.

Theorem 10. No non-trivial 2-design D = (P ,B) admits a flag-transitive automorphism
group H with H ⩽ D2c × Sn or H ⩽ Sc ×D2n.

Proof. The group D2c acting on C = {1, 2, . . . , c} has a point-stabilizer of order 2, which
is clearly not a center of D2c as D2c is faithful on C. So D2c acts on C as its natural action
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on a n-gon. By Lemma 8, we only need to deal with H = D2c × Sn and Sc ×D2n since
the non-existence of flag-transitive designs admitting D2c ×Sn or Sc ×D2n will imply the
non-existence for any subgroup of them. It suffices to assume that H = D2c × Sn with
Zc = ⟨(1 2 . . . c)⟩ and D2c = Zc : Z2. Now, by Lemma 4, suppose for the contrary that
D = D(Γ, H) is a non-trivial 2-design admitting a flag-transitive automorphism group H
with Γ a bipartite graph with bipartite blocks C = {1, 2, . . . , c} and N = {1, 2, . . . , n},
where E(Γ) is exactly a block of D(Γ, H). Without loss of generality, assume that (1, 1) ∈
E(Γ). All ρ1((HΓ)α) with α ∈ V2(Γ) are isomorphic to each other by the transitivity of

HΓ on V2(Γ). The edge-transitivity of HΓ implies that (HΓ)α acts transitively on Γ(α).
If c is even, let x := (1, 1) ∈ P , thenHx = H(1,1) stabilizes the point y := ( c

2
+1, 1) ∈ P .

Now Hx will then acts transitively on the set of blocks through x and y, which implies
that r = λ, a contradiction. Hence, in the following we assume that c is odd. If c > 3,
then the condition of Lemma 9 is clearly satisfied.

It is folklore that every orbit of Hx in P\{x} intersects non-trivially with a given block
containing x, by the two facts that Hx acts transitively on the set of blocks containing x
and that for any point y ∈ P \ {x} there exists a block containing both x and y. Note
that Hx = H(1,1) has orbits {(m, 1), (c − m + 2, 1)}, where m ∈ {2, 3, . . . , c+1

2
}. These

c−1
2

orbits are exactly all those containing elements with coordinate 1 ∈ N , excluding
the trivial orbit. It follows that there are at least c−1

2
+ 1 = c+1

2
points in C adjacent to

1 ∈ N . However, by Lemma 9, we have |Γ(α)| = d < c+1
2

when c > 3, which yields a
contradiction. Hence, c = 3.

Now, all element in V2(Γ) have valency d ∈ {2, 3} as |Γ(α)| ⩾ c+1
2

= 2. If each

connected component of Γ is a complete bipartite graph, then Γ is clearly connected and
a complete bipartite graph. By Lemma 8, since D(Γ, H) is a 2-design, D(Γ, G) is also a 2-

design. Since HΓ is edge-transitive, GΓ is also edge-transitive and thus G is flag-transitive
on D(Γ, G). It follows that Theorem 7 holds. Apply i = s to Theorem 7(c) and we get
that c = d and i = s = n, which implies that Γ = Γ = Kc,n. So D(Γ, H) is trivial, a
contradiction. If each component of Γ is not complete, then it immediately follows that
V1(Γ) = C and d = 2. Apply d = 2 to the first equation of Theorem 7(c) and we get that
2 | i − 1 since c is odd. So i is odd. Then k = ci is also odd, which contradicts the fact
that k = sd = 2s is even.

The following problem arises very naturally.

Problem 11. Characterize flag-transitive 2-designsD(Γ, H) for some specialH < Sc×Sn.

4 The constructions related to complete bipartite subgraphs
and cycles

4.1 The construction related to complete bipartite subgraphs

In this section, we construct flag-transitive 2-designs with the natural imprimitive product
action of G = Sc×Sn, by defining Γ as a graph whose non-trivial components are complete
bipartite graphs.
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Construction 4.1. Let A = (c, n, s, d, i) be a 5-tuple. Define the incidence structure
D(Γ(A), G) where Γ(A) is a bipartite graph with bipartite blocks of size c and n, satisfying
the following:

(a) Γ(A) is a union of s
i
many disjoint complete bipartite subgraphs Kd,i;

(b) n ⩾ s ⩾ 2, c ⩾ d ⩾ 2, i ⩾ 2, i | s and c ⩾ sd
i
. (∗)

Remark 12. If a 5-tuple A = (c, n, s, d, i) satisfies condition (∗), then clearly Γ(A) is
well-defined. Recall that x and y denote the degree sequences of vertices in N and C,
respectively. So, Γ(A) has degree sequences

x = {d, d, . . . , d, 0, 0 . . . , 0} and y = {i, i, . . . , i, 0, 0, . . . , 0},

where d has multiplicity s in x and i has multiplicity sd
i
in y. It is easy to see that v = nc

and k = sd.

Example 13. Here we give an example to clarify the notation better: the bipartite graph
Γ(A) with A = (9, 5, 4, 3, 2) is described in Figure 1.

Figure 1: The bipartite graph Γ(A) with A = (9, 5, 4, 3, 2)

For any component Γ(A)j of Γ(A), we have that GΓ(A)j is edge-transitive. By Lemma
5, G acts flag-transitively on the incidence structure D(Γ(A), G) and then Theorem 7(a)
and (b) hold. Moreover, if A = (c, n, s, d, i) satisfies the equations in Theorem 7(c), then
D(Γ(A), G) is a flag-transitive 2-design.

Proposition 14. The number of blocks of D(Γ(A), G) in construction 4.1 is equal to

b = |B| = n!c!

(n− s)!( s
i
)!(d!)

s
i (i!)

s
i (c− sd

i
)!
.

Proof. The result is obtained by simple counting argument. First take s many vertices on
N which will occur in a block. There are

(
n
s

)
possibilities. Then separate these s vertices

into s
i
classes each of size i. There are

(si)(
s−i
i )(

s−2i
i )···(ii)

( s
i
)!

choices. Finally, for each of these
s
i
classes, we arrange d vertices from the set C such that each of these vertices is adjacent

to every vertex of the chosen class. There are
(
c
d

)(
c−d
d

)
· · ·

(
c−( s

i
−1)d

d

)
many possibilities.

Therefore,

b =

(
n

s

)
·
(
s
i

)(
s−i
i

)(
s−2i
i

)
· · ·

(
i
i

)
( s
i
)!

·
(
c

d

)(
c− d

d

)
· · ·

(
c− ( s

i
− 1)d

d

)
.

Simplify it and we have the result.

the electronic journal of combinatorics 31(2) (2024), #P2.2 9



Proposition 15. If D(Γ(A), G) is a non-trivial 2-design, then Γ(A) is not connected.

Proof. If Γ(A) is connected, then it has only one component and so i = s. By Theorem
7(c), we have c = d and i = n = s. This implies that

A = (c, n, s, d, i) = (c, n, n, c, n).

Then Γ(A) = Kc,n and so D(Γ(A), G) is trivial.

In the following we present constructions in three special cases: (1) i = 2, (2) d = 2
and (3) i = d, since it turns out that these cases generate some infinite families of 2-
designs with very nice arithmetical properties. To be specific, for any given one or two
integers, we can construct corresponding designs, with their parameters (v, k, λ) known
explicitly.

Theorem 16. Suppose A = {c, n, s, d, 2}. The incidence structure D(Γ(A), G) is a 2-
design if and only if A = (td2 − td + d, td + 2, td − t + 2, d, 2), where d ⩾ 2, t ⩾ 0 and
t(d− 1) is even.

Proof. By Theorem 7, the structure D(Γ(A), G) is a 2-design if and only if
d(s− 1) = c,

(n− 1)(d− 1) = c− 1,

(∗) : n ⩾ s ⩾ 2, c ⩾ d ⩾ 2, 2 | s and c ⩾
sd

2
.

are satisfied. By the first two equations, we have

n =
d(s− 1)− 1

d− 1
+ 1 =

d(s− 1)− d+ d− 1

d− 1
+ 1 =

d(s− 2)

d− 1
+ 2.

By d − 1 | d(s − 2), we have d − 1 | s − 2. There exists an integer t ⩾ 0 such that
s − 2 = t(d − 1). Then the parameters n, c and s are determined by d and t in the first
two equations. Thus any solution of the equations has form (c, n, s, d) = (td(d−1)+d, td+
2, t(d − 1) + 2, d). On the other hand, it is easy to check that for any d > 1 and t ⩾ 0,
the above tuple (c, n, s, d) satisfies the first two equations. Moreover, if s = t(d − 1) + 2
is even, then i = 2 divides s and so (c, n, s, d) satisfies conditions (∗).

Theorem 17. Suppose A = {c, n, s, 2, i}. The incidence structure D(Γ(A), G) is a 2-
design if and only if A = (it+ 2, i2t− it+ i, i

2t−it+2i
2

, 2, i), where i ⩾ 2, t ⩾ 0 and t(i− 1)
is even.

Proof. By Theorem 7, the structure D(Γ(A), G) is a 2-design if and only if
c(i− 1) = 2(s− 1),

(c− 1)(i− 1) = n− 1,

(∗) : n ⩾ s ⩾ 2, c ⩾ 2, i ⩾ 2, i | s and c ⩾
2s

i
.
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are satisfied. By the first equation and i | s, we have i | c − 2. So there exists an
integer t ⩾ 0 such that it = c − 2. Then the parameters n, c and s are determined
by i and t in the first two equations. Thus any solution of the equations has form
(c, n, s, i) = (it + 2, (it + 1)(i − 1) + 1, (it+2)(i−1)

2
+ 1, i). On the other hand, it is easy to

check that for any i ⩾ 2 and t ⩾ 0, the tuple (c, n, s, i) satisfies the first two equations.
Moreover, if t(i − 1) is even, then c − t = t(i − 1) + 2 is even. By the first equation, we
have 2s = i(c− t). Then 2 | c− t implies that i | s. The condition (∗) is satisfied.

The following theorem shows an interesting fact that if D(Γ(A), G) is a 2-design with
A = (c, n, s, 2, 2), then it is flag-transitive with v = (k − 2)2. So these 2-designs attain
the Cameron-Praeger upper bound.

Theorem 18. Suppose A = (c, n, s, 2, 2). The structure D(Γ(A), G) is a 2-design if and
only if A = (c, c, c+2

2
, 2, 2) with c ≡ 2 (mod 4). The parameters of D(Γ(A), G) are

(v, k, λ) = (c2, c+ 2,
(c+ 2)(c− 1)!(c− 2)!

2
c+2
2 ( c+2

4
)!(( c−2

2
)!)2

).

Proof. This is an application of Theorem 16. Let i = d = 2. Then (c, n, s, d) = (2t +
2, 2t+ 2, t+ 2, 2) = (c, c, c+2

2
, 2). Since t is even, we have c ≡ 2 (mod 4). The parameters

v and k follow from v = nc and k = sd. By Proposition 14, the parameter λ is calculated
in the following:

λ =
bk(k − 1)

v(v − 1)
=

n!c!

(n− s)!( s
i
)!(d!)

s
i (i!)

s
i (c− sd

i
)!
· sd(sd− 1)

cn(cn− 1)
.

Reduce the equation and the result is obtained.

The next theorem deals with the case i = d. This case also gives a family of 2-
designs admitting flag-transitive automorphism groups Sc≀S2, which is a primitive group of
product action type on P . Note that all finite primitive permutation groups are classified
into several types by the O’Nan-Scott theorem and the explicit description of these types
of groups can be found in [9] and [11], for example.

Theorem 19. Suppose A = (c, n, s, d, d). The structure D(Γ(A), G) is a 2-design if and
only if A = (td2 + d, td2 + d, td2 − td+ d, d, d) with t ⩾ 0.

Proof. Let i = d. By Theorem 7, D(Γ(A), G) is a 2-design if and only if
c(d− 1) = d(s− 1),

c = n,

(∗) : n ⩾ s ⩾ 2, c ⩾ d ⩾ 2, d | s and c ⩾ s.

are satisfied. Then d− 1 | s− 1. There exists q ⩾ 0 such that (d− 1)q = s− 1. By (∗),
we also have d | s, and so d | q − 1. There exists t ⩾ 0 such that dt = q − 1. This implies
s = (d − 1)q + 1 = (d − 1)(dt + 1) + 1 = td2 − td + d and c = n = dq = td2 + d. So
(c, s) = (td2 + d, td2 − td + d). On the other hand, for given integers t ⩾ 0 and d ⩾ 2, it
is easy to verify that such (c, s) with c = n is a solution of the equations.
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Let G∗ = Sc ≀S2 = (Sc×Sc)⋊⟨π⟩, acting on P = C×C by its primitive product action,
i.e., (α, β)(g1,g2)π = (βg2 , αg1) and (α, β)(g1,g2) = (αg1 , βg2). For the designs constructed in
Theorem 19, it is easy to see that

D(Γ(A), G) = D(Γ(A), G∗)

since all components of Γ(A) are complete bipartite graphs whose bipartite blocks have
the same size. Hence, this is also a family of flag-transitive 2-designs admitting primitive
automorphism groups of product action type.

We have constructed three infinite families of flag-transitive, point-imprimitive designs:
D(Γ(A), G) with A = (c, n, s, d, 2), (c, n, s, 2, i) and (c, n, s, d, d), respectively. The family
constructed in Theorem 18 is actually a subfamily of the family constructed in Theorem
19. Corollaries 20-23 are direct corollaries of Theorems 16-19, respectively.

Corollary 20. For any given integers d ⩾ 2 and t ⩾ 0, if t(d − 1) is even, then there
exists a 2-((td2− td+ d)(td+2), td2− td+2d, λ) design admitting a flag-transitive, point-

imprimitive automorphism group Std(d−1)+d × Std+2, where λ = bsd(sd−1)
nc(nc−1)

and

b =
n!c!

2
s
2 (n− s)!( s

2
)!(d!)

s
2 (c− sd

2
)!

with (c, n, s) = (td2 − td+ d, td+ 2, td− t+ 2).

Corollary 21. For any given integers i ⩾ 2 and t ⩾ 0, if t(i−1) is even, then there exists
a 2-((it+2)(i2t−it+i), i2t−it+2i, λ) design admitting a flag-transitive, point-imprimitive

automorphism group Sit+2 × S(it+1)(i−1)+1, where λ = bsd(sd−1)
nc(nc−1)

and

b =
n!c!

2
s
i (n− s)!( s

i
)!(i!)

s
i (c− 2s

i
)!
with (c, n, s) = (it+ 2, i2t− it+ i,

i2t− it+ 2i

2
).

Corollary 22. For any given integer c > 2 with c ≡ 2 (mod 4), there exists a 2-

(c2, c+2, (c+2)(c−1)!(c−2)!

2
c+2
2 ( c+2

4
)!(( c−2

2
)!)2

) design admitting a flag-transitive, point-imprimitive automor-

phism group Sc × Sc, attaining the Cameron-Praeger upper bound.

Corollary 23. For any given integers d ⩾ 2 and t ⩾ 0, there exists a 2-((td2 + d)2, td3 −
td2 + d2, λ) design admitting a flag-transitive, point-imprimitive automorphism group
Std2+d × Std2+d, and a flag-transitive, point-primitive automorphism group Std2+d ≀ S2,

where λ = bsd(sd−1)
c2(c2−1)

and

b =
(c!)2

( s
d
)!(d!)

2s
d ((c− s)!)2

with (c, s) = (td2 + d, td2 − td+ d).

4.2 The construction related to cycles

In the following Construction 4.2, the non-trivial connected components of Γ are cy-
cles. This actually generalizes the construction in Theorem 18. We will see that if
such a construction forms a design, then it must be a flag-transitive design attaining the
Cameron-Praeger upper bound v = (k − 2)2.
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Construction 4.2. Let E = (c, n, s, e) be a 4-tuple. Define D(C(E), G) as the incidence
structure where C(E) is a bipartite graph with bipartite block of size c and n, satisfying
the following:

(a) C(E) is a union of e many disjoint cycles, and each has 2s
e
vertices;

(b) n ⩾ s ⩾ 2, c ⩾ s ⩾ 2, s > e ⩾ 1 and e | s. (∗∗)

Remark 24. If a 4-tuple E = (c, n, s, e) satisfies condition (∗∗), then clearly C(E) is well-
defined. Moreover, C(E) has degree sequences

x = {2, 2, . . . , 2, 0, 0 . . . , 0} and y = {2, 2, . . . , 2, 0, 0, . . . , 0},

where the number 2 has multiplicity s in both x and y.

Example 25. Here we give an example to clarify the notation better: the bipartite graph
C(E) with E = (9, 7, 6, 2) is described in Figure 2.

Figure 2: The bipartite graph C(E) with E = (9, 7, 6, 2)

Proposition 26. The number of blocks of D(C(E), G) in Construction 4.2 is equal to

b = |B| = n!c!

e!(n− s)!(c− s)!(2s
e
)e
.

Proof. The counting argument is similar to Proposition 26. First take s many vertices on
N which will occur in a block. There are

(
n
s

)
possibilities. Then separate these s vertices

into e classes each of size s
e
. Let u = s

e
. There are

(su)(
s−u
u )(s−2u

u )···(uu)
e!

choices. Next, for
each of these e classes, we arrange u vertices from the set C such that these u vertices and
the vertices of the chosen class form a cycle. There are

(
c
u

)(
c−u
u

)
· · ·

(
c−(e−1)u

u

)
choices. At

last, make cycles in each of these chosen pairs of u-sets. There are (1
2
u(u− 1)2 · · · 2212)e

many possibilities. Note that (1
2
u(u− 1)2 · · · 2212)e = ( (u!)

2

2u
)e. Therefore,

b =

(
n

s

)
·
(
s
u

)(
s−u
u

)(
s−2u
u

)
· · ·

(
u
u

)
e!

·
(
c

u

)(
c− u

u

)
· · ·

(
c− (e− 1)u

u

)(
(u!)2

2u

)e

.

Simplify the expression and we have the result.
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The theorem below states that if such an incidence structure D(C(E), G) forms a
2-design, then it must be a flag-transitive design attaining the Cameron-Praeger upper
bound v = (k − 2)2.

Theorem 27. The structure D(C(E), G) is a 2-design if and only if E = (c, c, c+2
2
, e) with

1 ⩽ e < c+2
2

and 2e | c+ 2.

Proof. Theorem 7(a) and (b) clearly hold since all components C(E)j are isomorphic

cycles and each GC(E)j is edge-transitive. Apply i = d = 2 to Theorem 7(c). Then
E = (c, n, s, e) = (c, c, c+2

2
, e). The condition (∗∗) gives c ⩾ 2 and e | s, we have 2e | c+ 2

and 2e < c+ 2.

Clearly, we have v = cn = c2 and k = sd = 2s = c + 2 and so these 2-designs attain
the Cameron-Praeger upper bound.

Corollary 28. For any given integers e ⩾ 1 and t ⩾ 2, there exists a 2-((2et−2)2, 2et, λ)
design admitting a flag-transitive, point-imprimitive automorphism group S2et−2 × S2et−2,
attaining the Cameron-Praeger upper bound. This design also admits a flag-transitive,
point-primitive automorphism group S2et−2 ≀ S2. Here

λ =
(2et− 3)!(2et− 4)!

(2t)e−1(e− 1)!((et− 2)!)2
.

Proof. Set t ⩾ 2, e ⩾ 1 and let c := 2et−2, s := et = c+2
2

and n := c. So E = (c, n, s, e) =
(c, c, c+2

2
, e) satisfies the sufficient condition of Theorem 27. Hence, D(C(E), G) forms

a 2-design admitting a flag-transitive automorphism group G. The parameters v and k
derive from v = cn = c2 = (2et−2)2 and k = sd = 2et. By Proposition 26, the parameter
λ is

λ =
bk(k − 1)

v(v − 1)
=

n!c!

e!(n− s)!(c− s)!(2s
e
)e

· sd(sd− 1)

cn(cn− 1)
.

Simplify the expression and we have the result.
Let G∗ := Sc ≀ S2 act on P = C × C by its primitive product action. It is easy to see

that
D(C(E), G) = D(C(E), G∗)

since all components of C(E) are isomorphic cycles. So G∗ also acts as a flag-transitive
automorphism group on the structure.
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