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Abstract

Chern plethysm, introduced by Billey, Rhoades, and Tewari, is a geometric way
to produce Schur positive symmetric polynomials. We present combinatorial inter-
pretations for the Schur expansions of special cases of Chern plethysm. We also
exhibit a symmetric group module whose Frobenius characteristic is a symmetric
function analog of one of these cases, generalizing a result of Reiner and Webb.

Mathematics Subject Classifications: 05E05, 05E10

1 Introduction

Schur polynomials, and more generally Schur positive symmetric polynomials, are ubiqui-
tous in algebraic combinatorics and representation theory. The Schur polynomials are the
characters of the irreducible polynomial representations of the general linear group, and
they are explicitly defined in terms of semistandard Young tableaux. They form a basis of
the complex vector space of symmetric polynomials in n variables. A symmetric polyno-
mial is Schur positive if it can be written as a nonnegative integer linear combination of
Schur polynomials.

A Schur polynomial is determined by a partition λ = (λ1, λ2, . . . , λl) and a positive
integer n, the number of variables. When λ = (m), the corresponding Schur polynomial
sλ is called the homogeneous symmetric polynomial, and when λ = (1m) := (1, 1, . . . , 1),
the corresponding Schur polynomial is called the elementary symmetric polynomial. In
these cases, we say that λ is a single row or single column, respectively. For example, if
n = 3 and λ = (1, 1), the corresponding Schur polynomial is

s(1,1)(x1, x2, x3) = x1x2 + x2x3 + x3x1.

Chern plethysm is a geometric way to produce Schur positive symmetric polynomi-
als. It is related to the notion of classical plethysm of Schur polynomials; it involves a
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composition operation which appears simple in principle, but produces very complex re-
sults. The Schur positivity of Chern plethysm follows from work of Pragacz ([4]) and
Fulton-Lazarsfeld ([2]). In [11], Billey–Rhoades–Tewari explored a particular case of
Chern plethysm: the Boolean product polynomials, defined as follows.

Definition 1. For 1 6 k 6 n, let

Bn,k :=
∏

16i1<i2<···<ik6n

(xi1 + · · ·+ xik).

Of particular interest in that paper is the case k = n − 1. In that case, the work
by Reiner and Webb in [7] gives a combinatorial interpretation for the Schur coefficients
in terms of descents of standard Young tableaux. That work also gives a representation-
theoretic interpretation of this case in terms of poset homology.

Expanding on [7], in this paper we consider a more general class of Chern plethysms
for which Bn,n−1 is just one example. In general, the result of Chern plethysm depends
on two partitions, an inner partition µ and an outer partition λ, and n, the number of
variables involved. This paper concerns the case µ = (1n−1). We can think of the resulting
Chern plethysm as plugging in the sums of all but one of the variables at a time into a
Schur polynomial. For example, if λ = (1n), we recover the Boolean product polynomial
Bn,n−1.

Our first results (Theorems 8 and 10) give combinatorial expansions for this case of
Chern plethysm when λ is a single column or single row. Both results give tableaux-
theoretic interpretations for the coefficients: in the column case, the coefficients count
certain standard tableaux we call parity tableaux ; in the row case the coefficients count
standard tableaux of a given modified shape.

We then turn to finding combinatorial interpretations for the coefficients of specific
terms in the Schur expansions of Chern plethysm with µ = (1n−1) and general λ. We are
able to find compact combinatorial descriptions for the coefficients indexed by one row,
two rows, or a column (17, 18, and 19). The coefficient indexed by one row is simply
counted by a set of semistandard tableaux, while the coefficients indexed by two rows are
counted by a certain sum of pairs of skew tableaux with conditions. The computation
of the coefficient of a column uses the well-known Lindström-Gessel-Viennot lemma for
counting lattice paths ([3]), and gives a formula in terms of fillings of Young diagrams
which are not quite semistandard. Finding a complete combinatorial description of all of
the coefficients for general λ remains open.

We conclude with Theorem 25, which gives a representation-theoretic interpretation
of the case when λ is a column. We are no longer able to use homology of posets as in
[7], but we are able to use spectral sequences and a result in [9] to relate Chern plethysm
to the homology of a certain algebraic complex.

2 Definitions and preliminary results

A partition λ = (λ1, λ2, . . . , λl) is a weakly decreasing sequence of nonnegative integers.
Each positive λi is called a part of the partition λ, and length `(λ) of λ is the number of
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parts. We use the notation λ = (λ1, λ2, . . . , λl) ` n to mean that λ1 + · · · + λl = n. A
Young diagram for the partition λ is an upper left justified series of boxes with λi boxes
in each row. Given two partitions λ and µ with µi 6 λi for all i, the skew shape λ/µ is
the Young diagram for λ with the Young diagram for µ deleted from it.

For integers a 6 b, we let [a, b] := {a, a+1, . . . , b−1, b}, and we write [1, n] as [n]. For a
set of integers S and a skew partition λ/µ, we define the corresponding set of semistandard
Young tableaux, denoted SSYT(λ/µ, S), to be the set of all fillings of the skew shape λ/µ
with the numbers S such that the entries of each filling are weakly increasing along rows
and strictly increasing along columns. When S = [n], the brackets are omitted, and when
S = N the argument is omitted entirely. Given T ∈ SSYT(λ/µ, S) and integers r, c such
that µr < c 6 λr, let T (r, c) denote the label in row r and column c of T .

We define SYT(λ/µ, n) ⊆ SSYT(λ/µ, n) to be the elements of SSYT(λ/µ, n) that use
each value at most once and are strictly increasing along rows. Note that we allow entries
larger than the number of boxes in this definition. Let fλ/µ,n = |SYT(λ/µ, n)|. When
µ = (0) it is omitted, and when n = |λ|−|µ|, n is occasionally omitted from the argument
of SYT and fλ/µ,n as well. Finally, when α is not a skew partition, we define fα to be
zero.

Given an element T ∈ SSYT(λ, n), we define wt(T ) = (wt1(T ), . . . , wtn(T )), where
wti(T ) is the number of i’s that appear in T . For a tuple a = (a1, . . . , an), define xa :=
xa11 . . . xann . The Schur polynomial indexed by λ is defined as follows.

Definition 2.
sλ(x1, . . . , xn) :=

∑
T∈SSYT(λ,n)

xwt(T ).

Let ε :=
∑

w∈Sn sign(w) ·w denote the antisymmetrizing element of the group algebra
C[Sn] of the symmetric group on n letters. The group Sn acts on the polynomial ring
C[x1, . . . , xn] by permuting variable indices and the group algebra acts by linear extension.
We have the following useful formula for the Schur polynomial sλ(x1, . . . , xn). This is the
bialternant formula, which is actually the original definition dating back to 1841; see [1].

sλ(x1, . . . , xn) =
ε · xλ+δ

ε · xδ
(1)

where δ = (n− 1, n− 2, . . . , 1, 0).
Next, we recall the definition of the Frobenius characteristic map (see e.g. [8]). This

definition will be used in Section 6 when we give a representation-theoretic interpretation
of the column case. We recall some basic facts about symmetric functions. The power
sum symmetric function is defined by

pr(x1, x2, . . . ) := xr1 + xr2 + . . .

as a formal power series. For a partition ρ = (ρ1, ρ2, . . . , ρl) ` n, define pρ := pρ1pρ2 . . . pρl
to be the power sum symmetric function corresponding to ρ.

the electronic journal of combinatorics 31(2) (2024), #P2.20 3



Next, we have the Schur function

sρ(x1, x2, . . . ) :=
∑

T∈SSYT(ρ)

xwt(T ).

The cycle type of a permutation w ∈ Sn is the partition (ρ1, . . . ρl) ` n denoting the
lengths of the cycles in a disjoint cycle decomposition of w. Let zρ = n!

kρ
, where kρ is the

number of permutations in Sn of cycle type ρ.

Definition 3. Let f be the character of a finite-dimensional complex representation V
of Sn. Then the Frobenius characteristic of f , written ch(f) is defined as

ch(f) :=
∑
ρ`n

z−1
ρ f(ρ)pρ

where f(ρ) denotes the value of f on any element of the conjugacy class corresponding to
ρ. We also use the notation ch(V ) to denote the same symmetric function.

It is important to note that if V λ is the irreducible representation of Sn corresponding
to the partition λ, then

ch(V λ) = sλ(x1, x2, . . . ).

Let X = P∞×· · ·×P∞ be the n-fold product of infinite-dimensional complex projective
space, and let E = `1⊕· · ·⊕ `n be the direct sum of the tautological line bundles over the
n factors of X. Then we have the presentation H•(X) = Z[x1, . . . , xn], where the Chern
roots of E are the variables x1, . . . , xn.

Let V = Cn be the standard n-dimensional complex vector space. We refer the reader
to Chapter 8 of [5] for the definition of the Schur functor Sµ(V ) (therein referred to as
a Schur module V µ). Let p ∈ X and let Ep denote the fiber of E over p. We also define
Sµ(E) to be the new bundle with fibers Sµ(E)p := Sµ(Ep). We note that the Chern roots
of Sµ(E) are the sums

∑
�∈T x�, where T ranges over all elements of SSYT(µ, n).

In [11], the authors defined the notion of Chern plethysm F (E), where F is a symmetric
function. In that paper, and in [4] (using work of Fulton-Lazarsfeld in [2]), the authors
showed that if λ and µ are partitions, then sλ(Sµ(E)) is always Schur positive. We restate
the definition of Chern plethysm in this case here:

Definition 4. Given two partitions λ and µ, and a positive integer n, we have

sλ(Sµ(E)) = sλ

(
. . . ,

∑
�∈T

x�, . . .

)

where the alphabet on which we are evaluating sλ is indexed by all semistandard Young
tableaux T of shape µ and maximum entry n, and � ∈ T refers to the multiset of labels
in the tableau T .
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The problem of determining combinatorial or representation-theoretic interpretations
for this Schur positivity remains open in general.

In this paper, we consider the symmetric polynomials sλ(Sµ(E)) in the special case
where µ = (1n−1). Fixing µ = (1n−1), the Chern roots of Sµ(E) are {(x1 + · · ·+ xn)− xi :
1 6 i 6 n}. We will denote sλ(Sµ(E)) by

sλ(x1, . . . , xn) := sλ((x1 + · · ·+ xn)− x1, . . . , (x1 + · · ·+ xn)− xn).

For example,

s(1)(x1, . . . , xn) =
n∑
i=1

(x1 + · · ·+ xn)− xi = (n− 1)s(1)(x1, . . . , xn).

We also use the notation
[sµ]sλ(x1, . . . xn)

to denote the coefficient of sµ in the Schur expansion of sλ(x1, . . . , xn). We record the
simple observation that

[sµ]sλ(x1, . . . xn) = 0

unless |λ| = |µ|.
Note that by Pieri’s rule ([8, Equation 5.16]), for any partition µ and positive integer

k,

sµ(x1, . . . , xn)sk(1)(x1, . . . , xn) =
∑

|λ|=|µ|+k

fλ/µsλ(x1, . . . , xn). (2)

For a skew partition λ/µ, let λ/µ− ej (respectively λ/µ− e′j) represent λ/µ with the
rightmost box in the jth row (respectively the lowest box in the jth column) removed if
such a box exists, or λ/µ otherwise. Note that this may no longer be a skew partition.
Recall our convention that fα = 0 unless α is a valid skew partition. For any skew
partition λ/µ,

fλ/µ =
∑
j

fλ/µ−ej =
∑
j

fλ/µ−e
′
j , (3)

because the largest number in a skew tableau can only appear in one of the corner boxes.

3 The Column and Row Cases

3.1 An alternating formula

We begin with a lemma which allows us to express the Schur coefficients of sλ as an
alternating sum. Let Parn denote the set of partitions with at most n parts.

Lemma 5. For n ∈ N and λ ∈ Parn,

sλ(x1, . . . , xn) =
∑
ν⊆λ

(−1)|ν|sν(x1, . . . , xn)s
|λ/ν|
(1) (x1, . . . , xn)fλ/ν

∏
(r,c)∈λ/ν(n− r + c)

|λ/ν|!

where (r, c) ∈ λ/ν refers to the ordered pair denoting the row and column index of a box
in the skew shape λ/ν.
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Proof. First consider sλ(t+x1, t+x2, . . . , t+xn), where t is a new indeterminate. Taking
the Taylor series of this function with respect to t about t = 0, and grouping terms by
power of t, we get

sλ(t+ x1, . . . , t+ xn) =
n∑
k=0

tk
∇k

k!
(sλ(x1, . . . , xn))

where we define ∇f(x1, . . . , xn) :=
∑n

i=1
∂f
∂xi

, and ∇k indicates the operator ∇ applied k
times. The following sub-lemma follows from Proposition 1 in [10].

Lemma 6. For any partition λ and positive integer k,

∇k

k!
(sλ(x1, . . . , xn)) =

∑
ν⊆λ

|ν|=|λ|−k

sν(x1, . . . , xn)fλ/ν
∏

(r,c)∈λ/ν(n− r + c)

|λ/ν|!
.

The proof of the lemma follows by substituting t = −s(1)(x1, . . . , xn) and multiplying
through by (−1)|λ|.

We have the following corollary, which will prove useful in the next two subsections.

Corollary 7. For n ∈ N and λ, µ ∈ Parn,

[sµ]sλ(x1, . . . , xn) =
∑
ν⊆λ∩µ

(−1)|ν|
fλ/νfµ/ν

∏
(r,c)∈λ/ν(n− r + c)

|λ/ν|!

=
∑
ν⊆λ∩µ

(−1)|ν|
(
|λ|
|ν|

)
fµ/ν

f νfλ/ν

fλ
|SSYT(λ, n)|
|SSYT(ν, n)|

.

Proof. The first equality follows from Equation 2 applied to each term in Lemma 5. The
second equality follows from applying both the hook length formula for standard Young
tableaux and the hook content formula for semistandard Young tableaux (see [6, Theorem
7.21.2, Corollary 7.21.6]).

3.2 The column case

Denote by P (λ, n) the set of elements of SYT(λ, n) such that the smallest label not
appearing in the first column is odd. We call the elements of P (λ, n) parity tableaux.
The following theorem gives a combinatorial interpretation for the Schur coefficients of
s(1k)(x1, . . . , xn), generalizing [7, Proposition 2.3] to the cases k 6 n.

Theorem 8. For any positive integer k,

s(1k)(x1, . . . , xn) =
∑
|µ|=k

|P (µ, n)|sµ(x1, . . . , xn).
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Proof. We first apply Corollary 7. Note that if ν ⊆ λ ∩ µ, then ν is a column, say of
length i. Then the terms fλ/ν , f ν , and fλ are all equal to 1.

Next, we have |SSYT(λ, n)| =
(
n
k

)
, |SSYT(ν, n)| =

(
n
i

)
, and

(|λ|
|ν|

)
=
(
k
i

)
. So we have(

k
i

)
·
(
n
k

)
/
(
n
i

)
=
(
n−i
n−k

)
. We conclude that

[sµ]s(1)k(x1, . . . , xn) =
k∑
i=0

(−1)i
(
n− i
k − i

)
fµ/(1

i).

Note that
(
n−i
k−i

)
fµ/(1

i) counts the elements of SYT(µ/(1i), n − i) - or equivalently,
elements of SYT(µ, n) such that the numbers from 1 through i are all in the leftmost
column.

This implies that
(
n−2j
k−2j

)
fµ/(1

2j) −
(
n−2j
k−2j

)
fµ/(1

2j+1) counts the number of elements of

SYT(µ, n) such that the numbers from 1 through 2j are all in the first column, but 2j+ 1
is not, so 2j + 1 is the smallest number not appearing in the first column.

As a result, summing over all i, we get that
∑k

i=0(−1)i
(
n−i
k−i

)
fµ/(1

i) is the number of
elements of SYT(µ, n) such that the smallest number number not appearing in the first
column is odd. This recovers the definition of P (µ, n), so we are done.

3.3 The row case

We now turn to examining the case s(k)(x1, . . . , xn). This case will prove to be somewhat
more complex. Given a partition µ and an integer p such that p + |µ| > 0, we define a
new partition µ(p) as follows: Let

a = min{i ∈ N : p > µ′i − i}.

Then the ith column of µ(p) is given by:

(µ(p))′i =


µ′i − 1 i < a,

p+ a− 1 i = a,

µ′i−1 i > a.

We proceed with the following lemma:

Lemma 9. Fix a partition µ and p ∈ Z such that p+ |µ| > 0. Then

(−1)a+1fµ
(p)

=

|µ|∑
i=0

(−1)i
(
p+ |µ|
p+ i

)
fµ/(i).

In particular, if p = µ′a − a, then

0 =

|µ|∑
i=0

(−1)i
(
p+ |µ|
p+ i

)
fµ/(i).
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Proof. By the definition of a, we have that the sequence (µ′i− i)i∈N is strictly decreasing,
and µ(p) is a partition if and only if p > µ′a − a. We proceed by induction on |µ| + p. In
the base case, |µ|+ p = 0, which implies that

|µ|∑
i=0

(−1)i
(
p+ |µ|
p+ i

)
fµ/(i) = (−1)|µ|fµ/(|µ|).

If µ 6= (|µ|), then µ′|µ| = 0 so we have that p = −|µ| = −|µ| + 0 = −|µ| + µ′|µ| which

implies that a = |µ|, and so (µ(−|µ|))′|µ| = p + a − 1 = −1, so µ(−|µ|) is not a partition,

so fµ
(−|µ|)

= 0. Similarly, if µ 6= (|µ|), then fµ/(|µ|) = 0, so
∑|µ|

i=0(−1)i
(
p+|µ|
p+i

)
fµ/(i) = 0 =

fµ
(−|µ|)

, completing the base case in this case.
On the other hand, if µ = (|µ|), then µ′|µ| − |µ| = 1 − |µ| > p > −|µ| − 1 = µ′|µ|+1 −

(|µ|+ 1), so a = |µ|+ 1. Therefore, (|µ|)(−|µ|) = (0), and indeed

|µ|∑
i=0

(−1)i
(
p+ |µ|
p+ i

)
f (|µ|)/(i) = (−1)|µ|f (|µ|)/(|µ|)

= (−1)|µ|

= (−1)|µ|f (0)

= (−1)−|µ|−1+1f (|µ|)(−|µ|)

which completes the proof of the base case.
For the induction step, assume p + |µ| > 0, and assume for our inductive hypothesis

that the statement is true for smaller values of p+ |µ|. Using Equation 3 and a well-known
identity of binomial coefficients, we have that

|µ|∑
i=0

(−1)i
(
p+ |µ|
p+ i

)
fµ/(i) =

|µ|∑
i=0

(−1)i
((

p+ |µ| − 1

p+ i− 1

)
+

(
p+ |µ| − 1

p+ i

))
fµ/(i)

=

|µ|∑
i=0

(−1)i
(
p+ |µ| − 1

p+ i− 1

)
fµ/(i) +

|µ|∑
i=0

(−1)i
(
p+ |µ| − 1

p+ i

)
fµ/(i)

=

|µ|∑
i=0

(−1)i
(

(p− 1) + |µ|
(p− 1) + i

)
fµ/(i)

+

|µ|−1∑
i=0

(−1)i
(
p+ (|µ| − 1)

p+ i

)
fµ/(i)

=

|µ|∑
i=0

(−1)i
(

(p− 1) + |µ|
(p− 1) + i

)
fµ/(i)

+

|µ|−1∑
i=0

(−1)i
(
p+ (|µ| − 1)

p+ i

)( ∞∑
j=1

f (µ/(i))−e′j

)
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=

|µ|∑
i=0

(−1)i
(

(p− 1) + |µ|
(p− 1) + i

)
fµ/(i)

+
∞∑
j=1

|µ|−1∑
i=0

(−1)i
(
p+ (|µ| − 1)

p+ i

)
f (µ/(i))−e′j

= (−1)a(µ,p−1)+1fµ
(p−1)

+
∞∑
j=1

(−1)a(µ−ej ,p)+1f (µ−e′j)(p)

where we define a(µ, p) = min{i ∈ N : p > µ′i − i}, and in the last step we have used
the inductive hypothesis. We break this up into two cases, depending on whether or not
p = µ′a(µ,p) − a(µ, p).

If p = µ′a(µ,p) − a(µ, p), then by construction a(µ, p − 1) = a(µ, p) + 1, and for all j

such that µ − e′j is a partition, a(µ − e′j, p) = a(µ, p). Additionally, observe that for all

j 6= a(µ, p), fµ
(p)

= f (µ−e′j)(p) = 0, and µ(p−1) = (µ− e′a(µ,p))
(p). As a result, we have that

|µ|∑
i=0

(−1)i
(
p+ |µ|
p+ i

)
fµ/(i) = (−1)a(µ,p−1)+1fµ

(p−1)

+
∞∑
j=1

(−1)a(µ−e′j ,p)+1f (µ−e′j)(p)

= (−1)a(µ,p)(fµ
(p−1) − f (µ−e′

a(µ,p)
)(p))

= (−1)a(µ,p)(fµ
(p−1) − fµ(p−1)

)

= 0

= (−1)a(µ,p)+1fµ
(p)

,

completing the induction in this case.
Finally, we consider the case where p 6= µ′a(µ,p) − a(µ, p). This means that

p > µ′a(µ,p) − a(µ, p), and in particular a(µ, p − 1) = a(µ, p), with µ(p−1) = µ(p) − e′a(µ,p).

For all j, either a(µ − e′j, p) = a(µ, p), or a(µ − e′j, p) = a(µ, p) − 1. In the former case,

(µ− e′j)(p) = µ(p) − e′j for j < a(µ, p) and (µ− e′j)(p) = µ(p) − e′j+1 for j > a(µ, p). On the
other hand, if a(µ− e′j, p) = a(µ, p)− 1, then j = a(µ, p)− 1, with p = µ′j − j − 1, so in

this case (µ − e′j)(p) is not a partition, so f (µ−e′j)(p) = 0 = fµ
(p)−e′j . Combining these two

cases, we see that
∑

j f
(µ−e′j)(p) =

∑
j 6=a(µ,p) f

µ(p)−e′j . As a result,

|µ|∑
i=0

(−1)i
(
p+ |µ|
p+ i

)
fµ/(i) = (−1)a(µ,p−1)+1fµ

(p−1)

+
∞∑
j=1

(−1)a(µ−ej ,p)+1f (µ−e′j)(p)

= (−1)a(µ,p)+1fµ
(p−1)

+
∞∑
j=1

(−1)a(µ,p)+1f (µ−e′j)(p)

= (−1)a(µ,p)+1fµ
(p)−e′

a(µ,p) +
∑

j 6=a(µ,p)

(−1)a(µ,p)+1fµ
(p)−e′j
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=
∑
j

(−1)a(µ,p)+1fµ
(p)−e′j

= (−1)a(µ,p)+1fµ
(p)

completing the proof by induction in this case.

We now have the tools we need to provide a combinatorial interpretation for the Schur
expansion in the row case.

Theorem 10. For any positive integer k,

s(k)(x1, . . . , xn) =
∑
|µ|=k
`(µ)<n

fµ+(1n−1)sµ(x1, . . . , xn).

Proof. We again use Corollary 7. Note that if ν ⊆ λ∩ µ, then ν is a row, say of length i.
Then we have that fλ/ν , f ν , and fλ are all equal to 1, and

(|λ|
|ν|

)
=
(
k
i

)
, |SSYT(λ, n)| =(

n+k−1
k

)
, and |SSYT(ν, n)| =

(
n+i−1

i

)
. We conclude that

[sµ]s(k)(x1, . . . , xn) =
k∑
i=0

(−1)i
(
n+ k − 1

n+ i− 1

)
fµ/(i). (4)

By Theorem 9, letting p = n − 1, when `(µ) = n the right-hand side of 4 is zero, and
when `(µ) < n the right-hand side of 4 is equal to fµ+(1n−1), and so we are done.

The following definition will be used in Corollary 18. There, we will consider general
λ. For now, we note that this definition gives us another combinatorial interpretation of
the row case.

Definition 11. For λ, µ, n, with |λ| = |µ|, define G(λ, µ, n) to be the set of pairs of
tableaux (S, T ) ∈ SSYT(λ, n)× SYT(µ) such that if i appears in row r of T , then the ith

smallest value in S is greater than r. Here, ties for ith smallest value are broken by first
declaring identical entries in a lower row to be larger, and then declaring identical entries
in a further-right column to be larger. This definition extends to the case where λ and/or
µ are replaced with skew partitions.

Example 12. Let λ = (4), µ = (2, 2), and n = 3. The G(λ, µ, n) consists of the following
five pairs of tableaux: 2 2 3 3 , 1 2

3 4

  2 3 3 3 , 1 2

3 4


 3 3 3 3 , 1 2

3 4

  2 3 3 3 , 1 3

2 4


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 3 3 3 3 , 1 3

2 4

 .

An alternative interpretation of the row case is given by the following corollary.

Corollary 13. For any positive integers k and n, and any partition µ with |µ| = k,

[sµ]s(k)(x1, . . . , xn) = |G((k), µ, n)|.

Proof. We construct a bijection from SYT(µ+ (1n−1)) to G((k), µ, n) to prove this state-
ment. Fix an element S ∈ SYT(µ+ (1n−1)), and let 1 = a1 < · · · < an−1 be the values in
the leftmost column of S, and let an = n+ |µ| = n+ k. Let S ′ be the unique element of
SSYT((k), n) such that, for each 2 6 i 6 n, S ′ has exactly ai − ai−1 − 1 i’s. Define T to
be the unique element of SYT(µ) such that the labels of T are in the same relative order
as S with the first column deleted. This transformation from S to (S ′, T ) is clearly an
injection, and the inverse transformation is also an injection, so this is a bijection.

For example, the pairs in Example 12 correspond respectively to the standard Young
tableaux

1 2 3

4 5 6

1 2 4

3 5 6

1 3 4

2 5 6

1 2 5

3 4 6

1 3 5

2 4 6

of shape (2, 2) + (1, 1) = (3, 3).

The following corollary will be used in the proof of Theorem 19.

Corollary 14. For any k 6 n and 1 6 p 6 n− k + 1,

[s(1k)]s(k)(x1, . . . , xn)

= |{S ∈ SSYT((k), n) : S(1, 1) > 1, (S(1, i), S(1, i+ 1)) 6= (p+ i, p+ i)}|.

Proof. We construct a bijection from the desired set to G((k), (1k), n). Let
S ∈ SSYT((k), n) be such that S(1, 1) > 1 and (S(1, i), S(1, i+ 1)) 6= (p+ i, p+ i) for any
1 6 i < k. Break the bijection into two cases depending on whether there exists some i
for which S(1, i) 6 p+ i− 1.
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If S(1, i) > p+i−1 for all i, then the bijection maps S to (S, T ), where T is the unique
element of SYT((1k)). To show that it is well-defined, observe that since S(1, i) > p+i−1
for all i, in particular S(1, i) > i, so (S, T ) ∈ G((k), (1k), n).

On the other hand, if there exists some i for which S(1, i) 6 p+ i− 1, let a = max{i :
S(1, i) 6 p+ i− 1}. Let S ′ ∈ SSYT((k), n) be defined as S ′(1, i) = S(1, i) for i > a, and
S ′(1, i) = p+ a+ 1− S(1, a+ 1− i) for i 6 a. The bijection will map S to (S ′, T ), where
T is the unique element of SYT((1k)).

For example, suppose k = 3 and n = 4. First let p = 1, so the elements of the set in
question are

2 3 4 2 4 4 3 3 4

3 4 4 4 4 4

For each of these tableau S, we have S(1, i) > p + i− 1 = i, so the bijection will map S
to (S, T ), where T is the unique element of SYT((1k)). Now suppose instead that p = 2.
Then the mapping of S to S ′ looks as follows:

S S ′

2 2 2 4 4 4

2 2 3 3 4 4

2 2 4 2 4 4

2 3 3 3 3 4

2 3 4 2 3 4

We can see that the elements (S ′, T ) are again the elements of G((3), (13), 4), and so the
bijection will map the tableau S to the pair (S ′, T ). We proceed by proving that this map
is indeed a bijection. We start with a lemma.

Lemma 15. For all i 6 a, S(1, i) 6 p+ i− 1.

Proof. Assume for the sake of contradiction that there exists i 6 a such that S(1, i) >
p+ i− 1, and let j be the maximal such i. By the definition of a, j < a, and so

p+ j > S(1, j + 1) > S(1, j) > p+ j − 1

so S(1, j) = S(1, j + 1) = p+ j, which contradicts the construction of S.

Next, we show that the map is well-defined in this case. Since S is weakly increasing
along the row, the only cells where it is not obvious that S ′ is weakly increasing is from
S ′(1, a) to S ′(1, a+ 1). For here, observe that since S(1, 1) > 2 and S ′(1, a+ 1) > p + a,
that S ′(1, a) 6 p+a+1−2 = p+a−1 < p+a+1 < S ′(1, a+1). By Lemma 15, for all i 6 a
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we have that S ′(1, i) = p+a+1−S(1, a+1−i) > p+a+1−(p+(a+1−i)−1) = i+1 > i.
Also, for i > a, S ′(1, i) > p+ i > i. As a result, this map is well-defined.

To show that this map is a bijection, it suffices to show that it is invertible. The inverse
map is defined as follows: given (S ′, T ) ∈ G((k), (1k), n), return S if S ′(1, i) > p+ i−1 for
all i. If there exists some i such that S ′(1, i) 6 p + i− 1, then let a = max{i : S ′(1, i) 6
p+ i− 1}. In this case, the map returns S ∈ SSYT((k)) such that S(1, i) = S ′(1, i) for all
i > a, and S(1, i) = p+ a+ 1−S ′(1, a+ 1− i). In the first case, since S ′(1, i) > p+ i− 1,
in particular S ′(1, i + 1) 6= p + i for any i, so (S(1, i), S(1, i + 1)) 6= (p + i, p + i), so this
map is well defined.

For the second case, since S ′ is weakly increasing, the only place where it is not obvious
that S is weakly increasing is from S(1, a) to S(1, a+ 1). However, here

S(1, a+ 1) > p+ (a+ 1)− 1 = p+ a = p+ a+ 2− 2 > p+ a+ 1− S ′(1, a) = S(1, a)

so it is weakly increasing everywhere. Also, notice that for all i > a, S ′(1, i) > p+ i− 1,
so in particular S ′(1, i) 6= p+ i− 1 for any i, so (S(1, i− 1), S(1, i)) 6= (p+ i− 1, p+ i− 1).
Similarly, for all i 6 a, S ′(1, i) > i, so

S(1, i) = p+ a+ 1− S ′(1, a+ 1− i) < p+ a+ 1− (a+ 1− i) = p+ i

so in particular S ′(1, i) 6= p+ i. so (S(1, i), S(1, i+ 1)) 6= (p+ i, p+ i). This implies that
the reverse map is well-defined.

The fact that these two maps are inverses of each other follows from the observation
that the two a-values in the maps will be the same, so the map is a bijection. So the two
sets in question are the same size, completing the proof.

4 Multiplicity of one or two rows

This section and the next provide some partial results on the Schur expansion of sλ for
general λ. In particular, we compute the coefficients of s(a,b) and s1|λ| .

For a T ∈ SSYT(λ), let wt>i(T ) =
∑

j>iwti(T ). We start with the following lemma.

Lemma 16. For a > b > 0 such that a+ b = |λ|,

[xa1x
b
2]sλ(x1, . . . , xn) =

∑
ν∈Par2
|ν|6a+b

|SSYT(λ/ν, [3, n])|
ν1∑
d=ν2

(
a+ b− |ν|
a− d

)
.

Proof. By the definition of sλ and the binomial theorem, we have

[xa1x
b
2]sλ(x1, . . . , xn) = [xa1x

b
2]

∑
T∈SSYT(λ)

n∏
i=1

(x1 + · · ·+ xi−1 + xi+1 + · · ·+ xn)wti(T )

=
∑

T∈SSYT(λ)

[xa1x
b
2]x

wt1(T )
2 x

wt2(T )
1 (x1 + x2)wt>2(T )
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=
∑

T∈SSYT(λ)

[x
a−wt2(T )
1 x

b−wt1(T )
2 ](x1 + x2)wt>2(T )

=
∑

T∈SSYT(λ)

(
wt>2(T )

a− wt2(T )

)

=
a+b∑
c+d=0

∑
T∈SSYT(λ)

wt1(T )=c,wt2(T )=d

(
wt>2(T )

a− wt2(T )

)

=
a+b∑
c+d=0

(
a+ b− c− d

a− d

)
|{T ∈ SSYT(λ) : wt1(T ) = c, wt2(T ) = d}|.

For c, d, an element T ∈ SSYT(λ) with wt1(T ) = c, wt2(T ) = d must have all 1’s in the
first row, and can have at most min(c, d) 2’s in the second row, with the rest in the first
row to the right of the 1’s. Beyond that, the numbers larger than 2 can be arranged in
any way, so

|{T ∈ SSYT(λ) : wt1(T ) = c, wt2(T ) = d}| =
c+d∑

i=max(c,d)

|SSYT(λ/(i, c+ d− i), [3, n])|.

As a result,

[xa1x
b
2]sλ(x1, . . . , xn) =

a+b∑
c+d=0

(
a+ b− c− d

a− d

)
|{T ∈ SSYT(λ) : wt1(T ) = c, wt2(T ) = d}|

=
a+b∑
c+d=0

(
a+ b− c− d

a− d

) c+d∑
i=max(c,d)

|SSYT(λ/(i, c+ d− i), [3, n])|

=
a+b∑
k=0

k∑
d=0

(
a+ b− k
a− d

) k∑
i=max(k−d,d)

|SSYT(λ/(i, k − i), [3, n])|

=
a+b∑
k=0

k∑
d=0

k∑
i=max(k−d,d)

(
a+ b− k
a− d

)
|SSYT(λ/(i, k − i), [3, n])|

=
a+b∑
k=0

k∑
i=dk/2e

i∑
d=k−i

(
a+ b− k
a− d

)
|SSYT(λ/(i, k − i), [3, n])|

=
a+b∑
k=0

k∑
i=dk/2e

|SSYT(λ/(i, k − i), [3, n])|
i∑

d=k−i

(
a+ b− k
a− d

)

=
∑
ν∈Par2
|ν|6a+b

|SSYT(λ/ν, [3, n])|
ν1∑
d=ν2

(
a+ b− |ν|
a− d

)
,

completing the proof.
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As a corollary, we can express the coefficient indexed by a row in the expansion of sλ
as a simple count of semistandard Young tableaux.

Corollary 17. For any partition λ and any positive integer n > 2,

[s(|λ|)]sλ(x1, . . . , xn) = |SSYT(λ, [2, n])|.

Proof. By Lemma 16,

[s(|λ|)(x1, . . . , xn)]sλ(x1, . . . , xn) = [x
|λ|
1 x0

2]sλ(x1, . . . , xn)

=
∑
ν∈Par2
|ν|6|λ|

|SSYT(λ/ν, [3, n])|
ν1∑
d=ν2

(
|λ| − |ν|
|λ| − d

)

=
∑
ν∈Par2
|ν|6|λ|

|SSYT(λ/ν, [3, n])|
ν1∑
d=ν2

(
|λ| − |ν|
d− |ν|

)

=
∑
ν∈Par1
|ν|6|λ|

|SSYT(λ/ν, [3, n])|

= |SSYT(λ, [2, n])|,

completing the proof.

We are finally able to give a combinatorial expression for the coefficeints indexed by
two rows in the expansion of sλ. Recall the definition of G(λ, µ, n) (Definition 11).

Corollary 18. For a > b > 0,

[s(a,b)]sλ(x1, . . . , xn) =
∑
p

G(λ/(p, p), (a, b)/(p, p), n).

Proof. By Lemma 16,

[s(a,b)]sλ(x1, . . . , xn) =[xa1x
b
2]sλ(x1, . . . , xn)− [xa+1

1 xb−1
2 ]sλ(x1, . . . , xn)

=
∑
ν∈Par2
|ν|6a+b

|SSYT(λ/ν, [3, n])|
ν1∑
d=ν2

(
a+ b− |ν|
a− d

)

−
∑
ν∈Par2
|ν|6a+b

|SSYT(λ/ν, [3, n])|
ν1∑
d=ν2

(
a+ b− |ν|
a+ 1− d

)

=
∑
ν∈Par2
|ν|6a+b

|SSYT(λ/ν, [3, n])|
ν1∑
d=ν2

((
a+ b− |ν|
a− d

)
−
(
a+ b− |ν|
a+ 1− d

))
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=
∑
ν∈Par2
|ν|6a+b

|SSYT(λ/ν, [3, n])|
((

a+ b− |ν|
a− ν1

)
−
(
a+ b− |ν|
a+ 1− ν2

))

=
∑
ν∈Par2
|ν|6a+b

|SSYT(λ/ν, [3, n])|f (a,b)/ν

=
∑
ν⊆(a,b)

|SSYT(λ/ν, [3, n])|f (a,b)/ν .

One can think of |SSYT(λ/ν, [3, n])| as the number of elements of SSYT(λ/(ν2, ν2), [2, n])
that have ν1−ν2 2’s, all in the first row. Similarly, one can think of f (a,b)/ν as the number
of elements of SYT((a, b)/(ν2, ν2)) such that 1, . . . , ν1 − ν2 all appear in the first row. As
a result, for a fixed p 6 b,

∑
ν:ν2=p |SSYT(λ/ν, [3, n])|f (a,b)/ν equals the number of pairs

(S, T ) ∈ SSYT(λ/(p, p), [2, n])× SYT((a, b)/(p, p)) such that all of the 2’s in S are in the
first row, and if i is in the second row of T , then the ith smallest element of S is at least
3. Summing over all p gives us the desired answer.

We note that this computation relied on the relatively simple relationship between
the Schur coefficients indexed by two rows and the monomial coefficients indexed by
corresponding powers of x1 and x2 (see the first line of the proof of Corollary 18). We
were not able to use the same method to compute the coefficients corresponding to µ for
µ having more than two rows.

5 Multiplicity of a Column

In this section we compute the coefficient of s(1|λ|) in the expansion of sλ. This proof uses
the Lindström-Gessel-Viennot lemma for counting lattice paths, (see e.g. [3]).

Theorem 19. For any `(λ) 6 p 6 n − λ1, [s(1|λ|)]sλ(x1, . . . , xn) equals the number of
fillings T of λ with numbers in [2, n] such that for all (r, c) ∈ λ:

1. T (r, c) 6 T (r + 1, c), and they are not both equal to p− r + c

2. Either T (r − 1, c) < T (r, c) or T (r − 1, c) = T (r, c) = p− r + c.

Proof. By the Jacobi-Trudi formula,

sλ(x1, . . . , xn) = det(s(λi−i+j)(x1, . . . , xn))16i,j6`(λ),

so

sλ(x1, . . . , xn) = det(s(λi−i+j)(x1, . . . , xn))16i,j6`(λ),

and so in particular

[s(1|λ|)]sλ(x1, . . . , xn) = det([s(1λi−i+j)]s(λi−i+j)(x1, . . . , xn))16i,j6`(λ). (5)
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Consider the directed graph with vertex set V = [n] × [n], with directed edges from
(x, y) to (x, y+ 1) for all x, y, from (x, x) to (x+ 1, x+ 1) for each x > 1, and from (x, y)
to (x+ 1, y) for y 6= 1 and x 6= y. Here is a picture of this planar network when n = 4:

Let Pa,b be the number of directed paths from (a, 1) to (b, n).

Lemma 20. For any 1 6 p 6 n− k,

[s(1k)]s(k)(x1, . . . , xn) = Pp,p+k.

Proof. For each path counted by Pp,p+k, consider the sequence of y-coordinates at which
the non-vertical steps in the path begin. Because there are no down-steps, this sequence
will be unique among all paths counted by Pa,b, and will be weakly increasing. Ad-
ditionally, after performing a non-vertical step starting at point (x, y), the next non-
vertical step can start at any y-coordinate strictly larger than y, or can start at y-
coordinate y as long as the last step performed was not a diagonal step i.e., x 6= y.
As a result, each path counted by Pp,p+k corresponds to a weakly increasing sequence
1 < c1 6 . . . 6 ck 6 n such that for all i, ci and ci+1 do not both equal p + i − 1.
If we fill the partition (k) with the sequence c1, . . . , ck, we get exactly the elements of
{T ∈ SSYT((k), n) : T (1, 1) > 1, (T (1, i), T (1, i + 1) 6= (p + i, p + i)}, which by Corol-
lary 14 has [s(1k)]s(k)(x1, . . . , xn) elements, proving the lemma.

Using Lemma 20 and Equation 5, we have that for any `(λ) 6 p 6 n− λ1

[s(1|λ|)]sλ(x1, . . . , xn) = det(Pp+1−j,p+1+λi−i)16i,j6`(λ).

By Lindström-Gessel-Viennot ([3]), and the fact that the graph is planar, this de-
terminant is equal to the number of tuples of non-intersecting paths that connect each
(p+ 1− j, 1) to (p+ 1 +λi− i, n) for 1 6 i 6 `(λ). Consider one such tuple, and construct
a filling T of shape λ such that T (r, c) equals the y-coordinate of the cth non-vertical step
of the path that goes from (p+1−r, 1) to (p+1+λr−r, n). From Lemma 20, this means
that the content of each row of T will be a weakly increasing sequence, except that T (r, c)
and T (r, c+1) cannot both be p+c−r. Similarly, two adjacent paths will intersect if and
only if there is some c such that the the endpoint of cth non-vertical step of the left path
is weakly below the start point of the cth non-vertical step of the right path. As a result,
the paths are non-intersecting if and only if for all (r, c) ∈ λ, either T (r − 1, c) < T (r, c)
or T (r − 1, c) = T (r, c) = p+ c− r. As a result, the number of tuples of non-intersecting
lattice paths will be equal to the number of such fillings, completing the proof.
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6 A representation-theoretic interpretation of the column case

We first introduce the concepts of chain complexes and homology. Suppose we have
a collection of Sk-modules Ci, for 0 6 i 6 k. A sequence of Sk-equivariant maps
∂i : Ci → Ci−1 is called a chain complex of Sk-modules if ∂i ◦ ∂i+1 = 0 for 1 6 i 6 k − 1.
The data of a chain complex will typically be denoted C∗.The ith homology group Hi of a
chain complex is defined to be the quotient

Hi := ker(∂i)/im(∂i+1).

The main tool in this discussion will be the Hopf trace formula. Suppose we have a chain
complex

Ck Ck−1 . . . C1 C0
∂k ∂k−1 ∂2 ∂1

of Sk-modules, and suppose we know the Frobenius images ch(Ci) for each i. Note that
each respective homology group Hi will also be an Sk-module, since the chain maps are
Sk-equivariant. Then from the Hopf trace formula, we have the equation

k∑
i=0

(−1)k−ich(Ci) =
k∑
i=0

(−1)k−ich(Hi).

This formula becomes particularly useful when paired with a vanishing result on the
homology groups of the right side.

We proceed by passing to infinitely many variables in order to view s(1k) as a symmetric
function, instead of a symmetric polynomial. In doing so, we allow the integers n and
k to remain as parameters in our definition. We use the expression in Lemma 5 above,
replacing i with k− i in order to more clearly interpret the binomial coefficient appearing
the definition.

Definition 21. Let n > k be positive integers. Let cn,k(x) = cn,k(x1, x2, . . . ) be the
symmetric function

cn,k(x) =
k∑
i=0

(−1)k−i
(
n− k + i

i

)
s(1(k−i))s

i
(1).

Note that cn,k(x1, . . . , xn, 0, 0, . . . ) = s(1k)(x1, . . . , xn). We proceed by exhibiting an
Sk-module whose Frobenius characteristic is exactly cn,k (recall Definition 3).

The following discussion generalizes Theorem 2.4 in [7]. The appearance of the bino-
mial coefficient in Definition 21 precludes the use of poset techniques in what follows.

Let A and M be finite nonempty sets of integers. Let ∆i(A,M) denote the set of
pairs (w, S), where w is an injective word of length i on the alphabet A, and S is a
nondecreasing sequence of length i of elements of the set M . Here by injective word of
length i on the alphabet A, we mean a sequence of elements of A where no element is
repeated. We write such a sequence by simply concatenating its elements. Let Ci(A,M)
denote the C-vector space with basis ∆i(A,M).
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Example 22. Let A = [2] and M = [2]. Then the elements of ∆2(A,M) are

{(12, (1, 1)), (12, (1, 2)), (12, (2, 2)), (21, (1, 1)), (21, (1, 2)), (21, (2, 2))}.

We define an Sk action on Ci([k], [n− k + 1]) by letting

σ · (w1 . . . wi, S) = sign(σ)(σ(w1) . . . σ(wi), S).

Note that Sk acts trivially on S. This action has a familiar-looking Frobenius character-
istic:

Proposition 23. The Frobenius characteristic of the Sk-module Ci([k], [n − k + 1]) is
given by

ch(Ci([k], [n− k + 1])) =

(
n− k + i

i

)
s(1(k−i))s

i
(1).

Proof. Let Γ denote the collection of nondecreasing sequences of elements of the set [n−
k + 1], and note that |Γ| =

(
n−k+i

i

)
. As Sk-modules, we have that

Ci([k], [n− k + 1]) ∼=
⊕
S∈Γ

(signk−i ⊗ C[Si])↑SkSk−i×Si

where signk−i is the sign representation of Sk−i, and C[Si] is the regular representation
of Si. The Frobenius image of each summand of the right-hand side is the product

ch(signk−i)ch(C[Si]) = s(1(k−i))s
i
(1).

Taking the direct sum indexed by Γ gives the factor
(
n−k+i

i

)
.

We proceed to define an algebraic chain complex and study its homology. For 1 6 i 6
k, let ∂i : Ci(A,M)→ Ci−1(A,M) be defined by

∂i(w1 . . . wi, (j1, . . . , ji)) =
i∑
l=1

(−1)l−1(w1 . . . ŵl . . . wi, (j1, . . . , ĵl, . . . , ji)).

Looking at the case A = [k],M = [n− k + 1], the maps ∂i are Sk-equivariant and for
1 6 i 6 k−1, ∂i ◦∂i+1 = 0, so the modules Ci([k], [n−k+1]) form a chain complex of Sk-
modules. For arbitrary nonempty sets A,M , we let C∗(A,M) denote the corresponding
chain complex of vector spaces.

The following lemma is an adaptation of Theorem 3 in [9].

Lemma 24. Let Hi = Hi(C∗(A,M)) denote the homology of the chain complex C∗(A,M)
in degree i. Then Hi = 0 for 0 6 i < k.
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Proof. The proof is essentially the same as that of Theorem 3 in [9]: We use induction on
|A|, and modify the induction hypothesis so that the set M is not fixed. We define the
same filtration and now have that

FpC∗(A,M)/Fp−1C∗(A,M) ∼=⊕
(w1...wp−1 max(A),(j1,...,ji))∈∆p(A,M)

C∗−p(A \ {w1, . . . , wp−1,max(A)},M \ [jp − 1])

and we can apply the induction hypothesis to the right-hand side.
Continuing as in [9], we have that the map

(w1 . . . wr, (j1, . . . , jr)) 7→ (max(A)w1 . . . wr, (1, j1, . . . , jr))

gives a null-homotopy for the inclusion map C∗(A \ max(A),M) → C∗(A,M). So the
edge map E1

0,k−1 → E∞0,k−1 ⊂ Hk−1(C∗(A,M)) is zero, and hence E∞0,k−1 = 0. Here we
have used the theory of spectral sequences in the same way as [9].

We are now able to state the main result of this section.

Theorem 25. For any positive integers n and k,

cn,k(x) =
k∑
i=0

(−1)k−ich(Ci) = ch(Hk).

Proof. The first equality is given by Definition 21, and the second equality follows from
Lemma 24 and the Hopf trace formula.

Also, one can see that the Schur function expansion of cn,k is the same as the Schur
polynomial expansion of s(1k)(x1, . . . , xn), so Theorem 25 gives a representation-theoretic
proof of the Schur positivity of s(1k)(x1, . . . , xn).

7 Conclusion and open problems

We conclude with some explicit open problems related to this work. We have found
combinatorial expressions for [sµ]sλ(x1, . . . , xn) for µ being a single column, or one or two
rows, and for λ being a single row or single column. This naturally leads to

Problem 26. Find a combinatorial expression for [sµ]sλ(x1, . . . , xn) for general µ and λ.

There is also a natural approach to the representation theory of the case when λ is
a single row. Again let A and M denote finite nonempty sets of integers. Let ∆′i(A,M)
be the set of pairs (w, S) of injective words of length i on the alphabet A and increasing
sequences S of length i of elements of the set M . Let C ′i(A,M) denote the C-vector space
with basis ∆′i(A,M).
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Now define an Sk action on C ′i([k], [n+ k − 1]) by letting

σ · (w1 . . . wk, S) = (σ(w1) . . . σ(wk), S).

Note that we no longer have a “sign” term in this action.
By a similar argument as in Proposition 23, we have that the Frobenius characteristic

of C ′i([k], [n+ k − 1]) is given by

ch(C ′i([k], [n+ k − 1]) =

(
n+ k − 1

i

)
s(k−i)s

i
(1).

Finally, we define the symmetric function

rn,k(x1, x2, . . . ) =
k∑
i=0

(−1)k−i
(
n+ k − 1

i

)
s(k−i)s

i
(1).

Then using Lemma 5, we see that rn,k(x1, . . . xn, 0, 0, . . . ) = s(k)(x1, . . . , xn). And so the
Schur function expansion of rn,k will be the same as the Schur polynomial expansion of s(k)

as long as n > k (since otherwise the Schur functions appearing in the former expansion
may contain terms indexed by partitions of length greater than n). We can define a chain
complex in the same way as above, with the exact same chain maps. Attempting to follow
the same argument as in Section 6, we are led to the following

Problem 27. Let Hi denote the ith homology group in this chain complex. Prove that
Hi = 0 for i < k, as long as |M | > 2|A| − 1.

We have some computational evidence for this conjecture, but were not able to use
the same filtration and spectral sequence method to prove it. A proof of this conjecture
would give a homological model for the row case.
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