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Abstract

The juxtaposition of permutation classes C and D is the class of all permutations
formed by concatenations στ , such that σ is order isomorphic to a permutation in
C, and τ to a permutation in D.

We give simple necessary and sufficient conditions on the classes C and D for
their juxtaposition to be labelled well-quasi-ordered (lwqo): namely that both C
and D must themselves be lwqo, and at most one of C or D can contain arbitrar-
ily long zigzag permutations. We also show that every class without long zigzag
permutations has a growth rate which must be integral.

Mathematics Subject Classifications: 05A05, 06A07

For Sophie

1 Introduction

Let C and D be permutation classes. The juxtaposition C D is the permutation class
comprising all permutations formed by concatenations στ , where σ is order isomorphic
to a permutation in C and τ is order isomorphic to a permutation in D.

A zigzag permutation (or just zigzag) is a permutation π = π(1) · · · π(n) with the
property that there is no index i ∈ [n−2] such that π(i)π(i+1)π(i+2) forms a monotone
increasing or decreasing pattern.1 The main purpose of this note is to establish the
following theorem.

Theorem 1. The juxtaposition C D is labelled-well-quasi-ordered if and only if both C and
D are lwqo, and at least one of C or D contains only finitely many zigzag permutations.

aSchool of Mathematics and Statistics, The Open University, U.K. (rbrignall@gmail.com).
1Zigzag permutations (sometimes called alternating permutations, but we reserve the term ‘alternating’
for other purposes) have been widely studied in relation to enumerative problems, and are strongly
related to the Euler numbers (sequence A000111 of the OEIS [1]) – for a survey, see Stanley [16].
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The juxtaposition of permutations was first introduced in Atkinson’s foundational
work [2], and has since been studied in terms of enumeration (see, for example, [8]) since
it represents a natural yet non-trivial way to combine two permutation classes. Indeed,
juxtapositions are a special case of grid classes, which we define in the next section.

The study of well-quasi-ordering and infinite antichains in permutation classes dates
back to the 1970s in the work of Tarjan [17] and Pratt [15], and rose to prominence in
the 2000s as a result of works such as Atkinson, Murphy and Ruškuc [3] and Murphy and
Vatter [12]. The stronger notion of labelled well-quasi-ordering dates back to Pouzet [14],
but received little attention in the context of permutation classes until the current author’s
recent work with Vatter [9].

The rest of this paper is organised as follows. In Section 2 we briefly cover the req-
uisite terminology. In Section 3 we provide a necessary and sufficient characterisation of
permutation classes without long zigzags. As a by-product of this characterisation, we
show that every permutation class without long zigzags has an integral growth rate. In
Section 4 we prove that the juxtaposition of a labelled well-quasi-ordered permutation
class with Av(21) or Av(12) is again labelled well-quasi-ordered, and this, together with
the characterisation from Section 3, enables us to complete our proof of Theorem 1. We
finish with some concluding remarks in Section 5.

2 Preliminaries

Permutation classes We provide here only the minimum terminology required for our
purposes, and refer the reader to [5] for fuller details.

A permutation of length n, typically denoted π = π(1) · · · π(n), is an ordering of the
symbols in [n] = {1, . . . , n}. We say that σ = σ(1) · · ·σ(k) is contained in π, and write
σ 6 π, if there exists a subsequence 1 6 i1 < · · · < ik 6 n such that the relative ordering
of the points in π(i1) · · · π(ik) is the same as that of σ. That is, π contains a subsequence
that is order isomorphic to σ.

A permutation class C is a set of permutations closed downwards under containment.
Every such class can be described by its set of minimal forbidden elements, but for our
purposes it suffices to record that Av(21) = {1, 12, 123, . . . } is the class of increasing
permutations, and Av(21) = {1, 21, 321, . . . } is the class of decreasing permutations. Two
other classes we will require are as follows

⊕21 = {finite subpermutations of 21436587 · · · } = Av(231, 312, 321),

	21 = {finite subpermutations of · · · 78563412} = Av(123, 132, 213).

One important family of permutation classes in the structural study of permutations
are grid classes. These are defined by a gridding matrix M of permutation classes, and
each permutation in Grid(M) has the property that its plot can be divided using horizontal
and vertical lines into a grid of cells, of the same dimensions as M, and such that the
entries in each cell of the plot are order isomorphic to a permutation that belongs to a
class in the corresponding cell of M.
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Of particular note are monotone grid classes, where each cell of M is Av(21), Av(12)
or empty, and we say that a permutation class C is monotone griddable if it is the subclass
of some monotone grid class. We need the following characterisation.

Theorem 2 (Huczynska and Vatter [11, Theorem 2.5]). A permutation class is monotone
griddable if and only if it has finite intersection with ⊕21 and 	12.

The juxtaposition C D can alternatively be considered as Grid(M) whereM =
[
C D

]
.

Also of interest to us is the class of gridded permutations in a juxtaposition – denoted
C |D – whose members comprise the permutations of C D together with a vertical line that
witnesses the permutation’s membership of the juxtaposition. Note that each permutation
in C D can correspond to more than one gridded permutation in C |D. The same notion
exists for grid classes defined by larger matrices: if C ⊆ Grid(M) then C] denotes the set of
permutations in C equipped with horizontal and vertical lines to witness their membership
of Grid(M).

Well-quasi-ordering A quasi-order (P,6) is well-quasi-ordered (wqo) if it contains no
infinite descending chain, and no infinite antichain – that is, a set of pairwise incompa-
rable elements. For quasi-ordered classes of combinatorial objects (such as permutation
classes or gridded permutation classes), this condition typically reduces to checking for
the presence of infinite antichains.

Given a quasi-order (P,6), let P ∗ denote the set of finite sequences of P . The set P ∗

can be ordered using the generalised subword order : for v = v1 · · · vm and w = w1 · · ·wn
in P ∗, we say that v � w if there exists a subsequence 1 6 i1 6 · · · 6 im 6 n such that
vj 6 wij for all 1 6 j 6 m. One celebrated result that we will need is Higman’s lemma:

Lemma 3 (Higman [10]). If (P,6) is a wqo set, then so is (P ∗,�).

Another way to combine wqo sets and obtain another wqo set is by taking products:

Proposition 4 (See [9, Proposition 1.2]). Let (P,6P ) and (Q,6Q) be wqo sets. Then
P × Q is wqo under the product order, (p1, q1) 6 (p2, q2) if and only if p1 6P p2 and
q1 6Q q2.

The final piece of core wqo machinery we require is as follows. We say that a mapping
Φ : P → Q between two quasi-orders is order preserving if p1 6P p2 implies Φ(p1) 6Q

Φ(p2). We have:

Proposition 5 (See [9, Proposition 1.10]). Let (P,6P ) and (Q,6Q) be quasi-orders, and
suppose that Φ : (P,6P )→ (Q,6Q) is an order-preserving surjection. If (P,6P ) is wqo,
then so is (Q,6Q).

Labelled well-quasi-ordering Let (L,6L) be any quasi-order. An L-labelling of a
permutation π of length n (or of a gridded permutation of length n) is a mapping `π from
the indices of π to elements of L. We write the resulting L-labelled permutation as (π, `π),
and the set of all L-labelled permutations from some set (or class) C is denoted C o L.
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The set C o L induces a natural ordering: Let σ, π ∈ C be of lengths m and n, respec-
tively. We say that (σ, `σ) is contained in (π, `π) if there exists a subsequence 1 6 i1 <
· · · < im 6 n such that π(i1) · · · π(im) is order isomorphic to σ, and `σ(j) 6L `π(ij) for all
j ∈ [m].

Finally, a set or class C is labelled well-quasi-ordered (lwqo) if C o L is a wqo set for
every wqo set (L,6L). We refer the reader to [9] for a complete treatment of lwqo in
permutation classes.

3 Zigzags

A peak of a permutation π is a position i such that π(i− 1) < π(i) > π(i+ 1). The peak
set of π is

Peaks(π) = {i : π(i− 1) < π(i) > π(i+ 1)}.

The peak set has been much studied in enumerative and algebraic combinatorics, see, for
example, Nyman [13] and Billey, Burdzy and Sagan [6], although here it simply provides
convenient terminology to prove the following result.

Following Bevan [4], a skinny grid class is a class Grid(M) in which the matrix M
comprises a single row, and in which each entry is Av(21) or Av(12).2

Proposition 6. Let C be a permutation class that contains only finitely many zigzags.
Then C is contained in a skinny grid class.

Proof. Suppose that the longest zigzag in C has length k. For any π ∈ C of length n
consider the peak set Peaks(π) and let i and j be two consecutive peaks (that is, there
is no h ∈ Peaks(π) such that i < h < j). Since there are no peaks between i and j,
the sequence π(i) · · · π(j) must be a valley : that is, it is formed of a decreasing sequence,
followed by an increasing sequence. Let vi be the index such that i < vi < j for which
π(vi) is minimal (the ‘bottom of the valley’). Similarly, if ` is the leftmost peak in π, then
π(1) · · · π(`) is a valley, and if r is the rightmost peak in π, then π(r) · · · π(n) is a valley.
In particular, we set vr to be the index in [r, n] for which π(vr) is minimal.

Since the entries between consecutive peaks (and before the first, and after the last
peak) form valleys, we see that the entries of π can be partitioned into a sequence of
2(|Peaks(π)| + 1) (possibly empty) intervals of entries, that alternately form decreasing
and increasing permutations. By construction, the subpermutation formed on the indices
Peaks(π)∪ {vi : i ∈ Peaks(π)} is a zigzag of length 2|Peaks(π)|. Thus, 2|Peaks(π)| 6 k for
every π ∈ C, and hence π belongs to the grid class whose matrix is[

Av(12) Av(21) Av(12) Av(21) · · · Av(12) Av(21)
]

comprising k + 2 cells (if k is even), or k + 1 cells (if k is odd).

2Skinny grid classes were originally introduced by Atkinson, Murphy and Ruškuc [3] under the term
‘W -classes’.
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Figure 1: From left to right: a vertical alternation, a parallel alternation, and a wedge
alternation.

Our next result establishes a more precise characterisation of classes without long
zigzags. A vertical alternation is a permutation in which every odd-indexed entry lies
above every even-indexed entry, or vice-versa. Some simple applications of the Erdős-
Szekeres Theorem shows that every sufficiently long vertical alternation contains a long
parallel or wedge alternation – see Figure 1.

Lemma 7. The permutation class C contains only finitely many zigzags if and only if C
is monotone griddable and does not contain arbitrarily long vertical alternations.

Proof. If C is not monotone griddable then it contains ⊕21 or 	12 by Theorem 2. In
particular, for every n > 1, C contains either 2143 · · · (2n)(2n− 1) or (2n− 1)(2n) · · · 12,
both of which are zigzags. Similarly, if C contains arbitrarily long vertical alternations
then for every n > 1 it contains a permutation of the form a1b1a2b2 · · · anbn where
{a1, . . . , an} = {n+ 1, . . . , 2n} and {b1, . . . , bn} = {1, . . . , n}, all of which are zigzags.

Conversely, Proposition 6 shows that a class C with bounded length zigzags is contained
in a skinny grid class, and this demonstrates both that C is monotone griddable and that
it cannot contain arbitrarily long vertical alternations.

We finish this section by recording an interesting consequence of the above theorem.
The growth rate of a permutation class C (or gridded permutation class C]), if it exists, is
limn→∞

n
√
|Cn|, where Cn denotes the set of permutations in C of length n. The existence

of the growth rate of a class in general depends upon whether the upper and lower growth
rates coincide, that is, whether lim supn→∞

n
√
|Cn| = lim infn→∞

n
√
|Cn|.

Corollary 8. Let C be a class that contains only finitely many zigzags. Then gr(C) exists
and is integral.

We need two auxiliary results. The first tells us that when a class is M-griddable,
then it suffices to consider the upper and lower growth rates of the gridded permutations.

Proposition 9 (Vatter [18, Proposition 2.1]). For a matrix of permutation classes M
and a class C ⊆ Grid(M), the upper or lower growth rate of C is equal, respectively, to the
upper or lower growth rate of C].

The second result is attributed to Albert in one of Vatter’s seminal works regarding
the growth rates of permutation classes.
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Proposition 10 (Attributed to Albert – see Vatter [19, Proposition 7.4]). The growth
rate of every subword-closed language exists and is integral.

Proof of Corollary 8. By Proposition 6, we may suppose that C is contained in a skinny
grid class Grid(M) whose defining matrix comprises (say) m cells.

The set C] of all M-gridded permutations in C is in bijection with a subword-closed
language over an alphabet of size m (see, for example, the description in Section 7 of
Vatter [19]), and in this bijection, the set of words corresponding to C is also subword-
closed. By Proposition 10, the growth rate of C] exists and is integral, and thus by
Proposition 9 the same is true of the growth rate of C.

4 Juxtapositions and lwqo

Since a class that contains only finitely many zigzags is contained in a skinny grid class,
we now want to understand what happens when we juxtapose an arbitrary lwqo class C
with such a grid class. The bulk of the remaining work lies in the next theorem, which
establishes that lwqo is preserved whenever we juxtapose an lwqo class with Av(21) or
Av(12).

Theorem 11. Let C be an arbitrary lwqo class, and let D be a monotone class. Then C D
is lwqo.

Proof. By symmetry, we can assume that D = Av(21). Furthermore, it suffices to show
that the gridded permutations, C |D, are lwqo, since for any quasi-order L, the mapping
Φ : C |D o L → CD o L that removes the gridline is an order-preserving surjection, and
thus by Proposition 5, if C |D o L is wqo then so is C D o L.

Let (L,6L) be an arbitrary wqo set of labels. By Higman’s lemma, (L∗,�) is wqo.
Furthermore, by Proposition 4 the product L×L∗ is also wqo, and thus C o(L×L∗) is wqo
since C is lwqo. Finally, another application of Proposition 4 shows that C o (L×L∗)×L∗
is wqo.

A typical element of C o (L×L∗)×L∗ has the form P = ((π, kπ), z1 · · · zq) where π ∈ C
(of length n, say), z1, . . . , zq ∈ L, where kπ : [n]→ L× L∗ is given by

kπ(i) = (`(i), λi1 · · ·λini)

for all i ∈ [n], in which ` : [n]→ L, λij ∈ L, and ni > 0.
We now construct an order-preserving surjection Ψ from C o (L×L∗)×L∗ to C |D oL.

This mapping takes an object P = ((π, kπ), z1 · · · zq) and outputs an L-labelled permuta-
tion in C |D o L of length n+

∑n
i=1 ni + q. Specifically, in Ψ(P):

• There are n points to the left of the gridline, order isomorphic to π.

• For i ∈ [n], the ith point from the left is labelled by `(i).

• There are
∑n

i=1 ni + q points to the right of the gridline, forming an increasing
sequence.
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(`(1), λ11λ12λ13)

(`(2), λ21λ22)

(`(3), λ31λ32λ33)

(`(4), λ41λ42λ43)

(`(5), λ51)

(`(6), λ61λ62)

z1z2
Ψ−→ `(1)

λ31
λ32
λ33

`(2)

λ51

λ52

`(3)

λ11
λ12
λ13

`(4)

λ61
λ62
λ63

`(5)

λ21

`(6)

λ41

λ42

z1
z2

Figure 2: The mapping Ψ : C o (L× L∗)× L∗ → C |D o L.

• For i ∈ [n], there are ni points to the right of the gridline that lie below the ith
entry on the left, and above the next highest entry on the left (if this exists). These
ni points are labelled λi1, . . . , λini from bottom to top.

• Above the highest entry on the left of the gridline, there are q points to the right of
the gridline, labeled z1, . . . , zq from bottom to top.

See Figure 2. The proof will be completed by showing that Ψ is an order-preserving
surjection.

First, any labelled gridded permutation in C |D o L comprises a set of points to the
left of the gridline (that form a permutation from C with labels from L), interleaved by
sequences of points to the right of the gridline (that form an increasing permutation,
also with labels from L). With this in mind, for any specified element of C |D o L it is
straightforward to identify a suitable preimage in C o (L× L∗)× L∗, which shows that Ψ
is surjective.

Now consider S = ((σ, kσ), w1 · · ·wp) and P = ((π, kπ), z1 · · · zq) in C o (L× L∗)× L∗,
such that S 6 P. This means that there is an embedding of the underlying permutation
σ of S into the underlying permutation π of P, such that the labels of each point of S
precede the labels of the corresponding point of P. Before we proceed, let us fix some
notation for the various components of S and P.

Let σ have length m and π length n. Since σ 6 π as labelled permutations, there
exists a subsequence 1 6 i1 < · · · < im 6 n such that π(i1) · · · π(im) is order isomorphic to
σ, and kσ(j) 6 kπ(ij) for all j ∈ [m]. If we write kσ(j) = (`σ(j), λj1 · · ·λjmj) and kπ(i) =
(`π(i), κi1 · · ·κini), then kσ(j) 6 kπ(ij) means that `σ(j) 6L `π(ij) and λj1 · · ·λjmj �
κij1 · · ·κijnij in generalised subword order. Finally, we also require w1 · · ·wp � z1 · · · zq.

To complete the proof, we show that Ψ(S) 6 Ψ(P) as L-labelled gridded permuta-
tions. Intuitively, this is simply a matter of demonstrating that the embedding of S into
P witnesses a copy of Ψ(S) in Ψ(P), according to the following commutative diagram
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(we use the symbol ↪→ to denote an embedding).

S = ((σ, kσ), w1 · · ·wp) ↪→ ((π, kπ), z1 · · · zq) = PyΨ
yΨ

Ψ(S) ↪→ Ψ(P)

The points to the left of the gridline in Ψ(S) and Ψ(P) form the L-labelled permutations
(σ, `σ) and (π, `π), respectively. The subsequence 1 6 i1 < · · · < im 6 n witnesses both
that σ 6 π, and that `σ(j) 6L `π(ij), and hence (σ, `σ) 6 (π, `π). We now consider the
points to the right of the gridline. In Ψ(S), for each j ∈ [m] the points immediately
below the entry on the left corresponding to σ(j) form an increasing sequence of length
mj labelled by λj1, . . . , λjmj . Similarly, in Ψ(P), the points immediately below the entry
corresponding to π(ij) form an increasing sequence of length nij labelled by κij1, . . . , κijnij .

Since λj1 · · ·λjmj � κij1 · · ·κijnij , we can embed these mj labelled points of Ψ(S) in the

nij labelled points of Ψ(P).
Finally, in Ψ(S), there are p labelled entries to the right of the gridline that lie above

all entries to the left of the grid line. Since w1 · · ·wp � z1 · · · zq, these p entries can be
embedded in the q entries of Ψ(P) in the top-right. We have now embedded every labelled
entry of Ψ(S) in Ψ(P), and the proof is complete.

Our approach to resolve one direction of Theorem 1 will be to apply the preceding
theorem iteratively. For the other direction, we appeal to pre-existing antichain construc-
tions, which are succinctly summarised by the following theorem.

The cell graph of a matrix M is the graph whose vertices are {(i, j) : Mij 6= ∅}
(corresponding to the non-empty cells of M), and (i, j) ∼ (k, `) if and only if i = k or
j = `, and there are no non-empty cells between these Mij and Mk` in their common row
or column.

Theorem 12 (See Brignall [7, Theorem 1.1]). Let M be a gridding matrix where every
non-empty cell is an infinite permutation class. Then Grid(M) is not well-quasi-ordered
whenever the cell graph of M has a cycle, or a component containing two or more cells
that are not monotone griddable.

Note that the ‘cyclic’ case of the above theorem is originally due to Murphy and
Vatter [12].

Proof of Theorem 1. If one of C or D is not lwqo, then clearly neither is C D since it
contains both C and D as subclasses. So now suppose both C and D are lwqo, but contain
arbitrarily long zigzags. By Lemma 7 each of C and D either is not monotone griddable,
or contains arbitrarily long vertical alternations (or both).

If neither C nor D is monotone griddable, then C D is not wqo (and thus also not lwqo)
by Theorem 12. (See Figure 3 (left) for a typical antichain element in this case.)

Now suppose, without loss of generality, that C is monotone griddable but contains
long vertical alternations, and D is not monotone griddable. By Theorem 2, the class
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Figure 3: Typical labelled antichain elements arising in juxtaposition classes. Here, we
may take L = {•, ◦} to be an antichain of size 2.

D contains ⊕21 or 	12. Consequently, C D contains Grid(M) for a matrix M of the
following form:

M =

[
E1 ⊕21
E2 ⊕21

]
or

[
E1 	12
E2 	12

]
where E1 and E2 are each either Av(21) or Av(12). In any case, the cell graph of M
comprises a component containing two cells that are not monotone griddable (again by
Theorem 2), and hence Grid(M) is not wqo by Theorem 12. (See Figure 3 (middle) for a
typical antichain element in this case.)

Finally for this direction, suppose that both C and D are monotone griddable, but
both contain arbitrarily long vertical alternations. In this case, C D contains Grid(M) for
a matrix M of the following form

M =

[
E1 E2

E3 E4

]
where E1, E2, E3 and E4 are each either Av(21) or Av(12). In any case, the cell graph ofM
comprises a component that is a cycle, so Grid(M) is once again not wqo by Theorem 12,
and hence neither is C D. (See Figure 3 (right) for a typical antichain element in this
case.)

For the other direction, suppose (without loss of generality) that C is lwqo, and D
contains only bounded length zigzags. By Proposition 6, there exists a skinny grid class
E such that D ⊆ E . We claim that C E is lwqo.

Write E = Grid(M) where M =
[
E1 E2 · · · Ek

]
for classes Ei each equal to Av(21)

or Av(12) (1 6 i 6 k). Let C0 = C, and for 1 6 i 6 k set

Ci = Grid(
[
C E1 · · · Ei

]
).

Now C0 = C is lwqo, and it follows by induction and Theorem 11 that Ci = Ci−1 Ei is
lwqo for each i = 1, . . . , k. In particular Ck = C E is lwqo. The result now follows since
C D ⊆ C E .
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5 Concluding remarks

The methods and ideas in this note can almost certainly be adapted to a characterisation
of lwqo in grid classes, although it would likely be technically and notationally awkward
to do so.

A more interesting future direction is to consider lwqo in subclasses of these grid
classes. For example, while the juxtaposition of 	12 with ⊕21 contains the infinite
antichain comprising elements of the form shown on the left of Figure 3, there exist
subclasses of this juxtaposition that are lwqo. Individual cases such as this are relatively
easy to characterise, but a general answer seems further out of reach.

Can a similar characterisation can be achieved for (unlabelled) wqo? Although the
antichain elements depicted in Figure 3 use two labels, the proof of Theorem 1 in fact uses
only unlabelled antichains, so aspects of this question already have an answer. However,
if C is a wqo-but-not-lwqo class, then it is sometimes possible to break wqo by juxtaposing
C with the class containing just the singleton permutation, while in other cases, C must
be juxtaposed with two entries. In general, we cannot hope to make progress on this
question without a significantly deeper understanding of wqo in permutation classes.
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