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Abstract
We study a Turán-type problem on edge-colored complete graphs. We show that

for any r and t, any sufficiently large r-edge-colored complete graph on n vertices
with Ω(n2−1/trr) edges in each color contains a member from a certain finite family
Fr
t of r-edge-colored complete graphs.

Next, we study a related problem where the corresponding Turán threshold is
linear. We call an edge-coloring of a path with rk edges balanced if each color ap-
pears k times in the coloring. We show that any 3-edge-coloring of a large complete
graph with kn+ o(n) edges in each color contains a balanced P3k. This is tight up
to a constant factor of 2. For more colors, the problem becomes surprisingly more
delicate. Already for r = 7, we show that even n2−o(1) edges from each color do not
guarantee the existence of a balanced path on 7k edges.
Mathematics Subject Classifications: 05C88, 05C89

1 Introduction

The basic principle behind Ramsey theory is that no matter how a system is partitioned,
there must exist an organized subsystem that is entirely contained inside one of the parts
of the partition. Recently, numerous authors have pursued a line of research investigating
the emergence of subsystems that are organized, yet meet every single part in the partition.
Of course, to do so, one needs to assume that each part in the partition is sufficiently
large. In order to state a prototypical result in this direction, we first give the following
definition (for results of a similar flavor, see [1, 11, 12, 23, 25]). Let Ft be the family of
two-edge-colored complete graphs on 2t vertices where one color forms a clique of size t,
or two disjoint cliques of size t. The following was conjectured by Bollobás, and proved
by Cutler and Montágh.
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Theorem 1 ([8]). Let 0 < ε ⩽ 1
2

be a real number and t ⩾ 1 an integer. For large enough
n, any two-edge-coloring of Kn with at least ε

(
n
2

)
edges in each color contains a member

of Ft.

Cutler and Montágh’s argument shows that one can take n ⩾ 4t/ε to find a member
of Ft. Fox and Sudakov improved their result by showing that one can take n ⩾ ε−ct

for some absolute constant c, which is tight up to the value of c [15]. In an attempt to
generalize these results to a setting where an arbitrary number of color classes are allowed,
the following definition was given in [3].

Definition 2 ([3]). Let t and r be positive integers. A complete graph H whose edges are
colored with r colors belongs to the family F r

t if there is an integer k ⩾ 1 and a partition
V (H) =

⊔
i∈[k] Vi of the vertices of H into k parts Vi with |Vi| = t such that:

1. For all i, j ∈ [k], H[Vi] and H[Vi × Vj] are monochromatic.

2. All r-colors are present in H.

3. Not all r colors are present in H \ Vi, for any i ∈ [k].

We make a couple of remarks regarding this definition. By (1), the color of any edge
in H depends only on the parts the endpoints come from. By (3), it is not hard to see
that any graph in F r

t can have at most 2r parts (see the argument in [3]). Hence, F r
t is

a finite set. Observe also that F2
t = Ft.

By a pattern, we denote a maximal subfamily of F r
t consisting of graphs colored all

the same up to permutations of their colors. There are two different patterns in F2
t and

nine different patterns in F3
t , see an illustration of the latter in Figure 1. In general,

the number of different patterns in F r
t grows exponentially with r as one can embed the

family of all non-isomorphic tournaments on r vertices into F r
t by associating to each

vertex a Kt of a different color, and giving the bipartite graphs between the Kt’s the color
of the Kt they point to in the tournament (see [24] for information regarding the number
of non-isomorphic tournaments on n vertices).

We can now state the multicolor generalization of the result of Cutler and Montágh,
due to Bowen, Lamaison, and Müyesser.

Theorem 3 ([3]). For any r ⩾ 2, there exists a constant c := c(r) such that, for any
ε > 0 and t ⩾ 2, any r-coloring of a Kn with n ⩾ ε−ct and ε

(
n
2

)
edges in each color

contains a member of F r
t .

1.1 Turán-bounds for colored unavoidable patterns

The bound in Theorem 3, up to the dependence of c on r, is optimal by a random
construction, similar to the one given in [15]. However, if one is interested in the minimum
density of edges required of each color in order to force a member of F r

t , assuming that
each color has Θ(n2) many edges is not necessary. To discuss this extremal aspect of the
problem precisely, we first define the following Turán-type parameter.
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Figure 1: The patterns from F3,t. The colored vertices represent cliques of the cor-
responding color of size t. Similarly, edges represent complete bipartite graphs of the
corresponding color between the associated cliques.

Definition 4. Let r, t, n be positive integers. Let F be a family of r-edge colored graphs.
We denote by exr(Kn,F) the minimum integer m (if it exists) such that, for any r-edge
coloring of Kn with more than m edges in each of the r colors, Kn contains a member of
F . If there is no such m, we set exr(Kn,F) = ∞.

We begin with a discussion of the case when r = 2. Caro, Hansberg and Montejano
showed that there exists a δ := δ(t) such that ex2(Kn,Ft) = Ω(n2−δ) when n is large
enough [7]. Shortly after, Girão and Narayanan [18] proved that δ = 1/t is best possible
up to the involved constants (we give a shorter proof of their result in Section 2.1),
assuming that the well-known conjecture that ex(Kt,t) = Ω(n2−1/t) for all t is true [22]. In
[4], an asymmetric version of this result is investigated. Further, in [4], a characterization
of unavoidable patterns with respect to the order of magnitude (in terms of n) of the
assumed minimum number of edges in each color is given.

For arbitrary r ⩾ 3, the structure of the graphs in F r
t is a lot more complicated

(already for r = 3 there are 9 different patterns, see Figure 1). However, it is still natural
to suspect that the existence of large bipartite graphs is the only barrier to finding the
patterns in F r

t . In particular, this would imply that Ω(n2−1/t) edges in each color class
should guarantee the existence of a member from F r

t . We conjecture that this is indeed
the case. 1

Conjecture 5. For any r ⩾ 2 and t ⩾ 1, there exists a constant C := C(r, t) such that,
for n large enough, exr(Kn,F r

t ) ⩽ Cn2−1/t.

We show that at this same density (with Ω(n2−1/t) edges) we can find a member from
F s

t , where s =
⌊

t
rr

⌋
.

1In the process of revision of this paper, this conjecture was confirmed in [17].
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Theorem 6. For any r ⩾ 2 and t ⩾ 1, there exists a constant C := C(r, t) such that, for
n large enough, exr(Kn,F r

t ) ⩽ Cn2−1/t′, where t′ = trr−1.

Observe that the result of Girão and Narayanan [18] does not follow from the above by
setting r = 2. We give a short proof of the result of Girão and Narayanan in Section 2.1.

1.2 Balanceable graphs

Next, we turn our attention to a more specific problem, concerning balanced colorings
of paths. We denote a path on k edges by Pk.. We say that an r-colored graph G is
balanced if each of the r colors appears in precisely ⌊e(G)/r⌋ or ⌈e(G)/r⌉ edges. Further,
we say that an r-coloring of E(Kn) contains a balanced copy of G if it admits a balanced
embedding of G. The following parameter for the case r = 2 was introduced by Caro,
Hansberg and Montejano [7].

Definition 7. Given a graph G and positive integers r and n, we set balr(n,G) =
exr(Kn,Fbal(G)), where Fbal(G) is the family of all r-colored copies of G in which each
of the r colors appears in either ⌊e(G)/r⌋ or ⌈e(G)/r⌉ edges. We call balr(n,G) the r-
balancing number of G and, when r = 2, we will put bal2(n,G) = bal(n,G) and call it
just the balancing number of G. A graph G with balr(n,G) < ∞ for every sufficiently
large n is called r-balanceable or, when r = 2, simply balanceable.

Caro et al. [7] characterized all balanceable graphs. It follows by this characterization
that all balanceable graphs G have bal(n,G) = o(n2). See [7, 9, 10] for several examples
and non-examples of balanceable graphs. Notably, there are many dense balanceable
graphs (like some amoebas [5, 7]) and also many graphs having linear balancing number
(in n), like trees [7], and cycles Ck with k ̸≡ 2 (mod 4) [9]. For instance, bal(n, P2k) =(⌊

k−1
2

⌋
+ o(1)

)
n, and the value was precisely determined in [7]. Surprisingly, it turns out

to be an intricate problem to determine even the order of magnitude of balr(n, Prk) for
arbitrary r and k, as the next two results show.

Theorem 8. Let k ∈ N be odd. Then there exists infinitely many r such that
balr(n, Prk) = Ω(n2). In particular, bal7(n, P7k) = Ω(n2).

We would expect that, in this scenario, balr(n, Prk) is in fact ∞, but this would require
giving a construction with exactly the same number of edges from each color class. On
the other hand, we have the following positive result:

Theorem 9. Let r ⩾ 2. Then, there exists a k0 such that for all k ⩾ k0, balr(n, P2rk) =
o(n2).

We remark that, while the dependence of k0 on r our proof gives is possibly far from
optimal, some threshold is necessary. Indeed, there exist members of F r

t , for every r,
where one color class separates all the remaining colors, thus making it impossible to
embed a balanced Pr (a rainbow path) in such graphs. As an example of such a member
from F r

t , one may start with r − 1 vertex-disjoint Kn,n’s, each colored a distinct color,
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and color all the edges that remain in the rth color. An illustration can be found for r = 3
in the bottom-right part of Figure 1.

Having established that degeneracies arise for large r, we turn our attention to the
function bal3(n, P3k). The following theorem establishes the growth of this function up to
a constant factor of 2.

Theorem 10. For k ⩾ 1, (1
2
(k − 1) + o(1))n ⩽ bal3(n, P3k) ⩽ (k + o(1))n.

We believe that the lower bound from Theorem 10 should be tight for arbitrary k
but are only able to confirm this when k ⩽ 2. When k = 1, it is not hard to show
bal3(n, P3) = 0 (Proposition 16), whereas for k = 2 some more work is needed. We state
the latter result in the following theorem.

Theorem 11. bal3(n, P6) = (1
2
+ o(1))n.

1.3 Organization of the paper

We begin by proving our general result, Theorem 6. This already implies bal3(P3k) =
o(n2), as one can check all members from F3

t in Figure 1 admit balanced embeddings of
P3k. Afterward, we prove much better bounds on this function, showing that it grows
linearly in n (Theorems 10 and 11). We proceed by proving Theorems 8 and 9, which
summarize our understanding of the function balr(n, Prk) for arbitrary r. We conclude
with some open problems in the Discussion section.

2 Proof of Theorem 6

We will use the following version of the dependent random choice lemma. Here, and in
subsequent uses, the common neighborhood of a set of vertices is the intersection of the
neighborhoods of each vertex in the set.

Lemma 12 ([14]). For all K, t ∈ N, there exists a constant C such that any graph with
at least Cn2−1/t edges contains a set S of K vertices in which each subset X ⊆ S with t
vertices has a common neighborhood of size at least K.

We will also use the following, which is essentially a consequence of iterating a bipartite
version of the dependent random choice lemma from [3] and Ramsey’s theorem.

Lemma 13 (Corollary 2.6 in [3]). Let r and t be positive integers, r ⩾ 2. There exists
N = N(r, t) such that the following holds for all n ⩾ N . Let A1, A2, . . . , At partition the
vertex set of an r-colored complete graph, where |Ai| = n for all i ∈ [t]. Then, there exist
subsets Xi ⊂ Ai, of size |Xi| = 1

2t+1r
logr n, such that every set Xi induces a monochromatic

clique and every complete bipartite graph between Xi and Xj is monochromatic.

We emphasize that the proof structure of the result in this section will be very similar
to that of the main result from [3].
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Proof of Theorem 6. Start with given integers r ⩾ 2, t ⩾ 1 and set t′ = trr−1. We
want to show that there exists a constant C := C(r, t) such that, for n large enough,
exr(Kn,F r

t ) ⩽ Cn2−1/t′ . We choose a C with the benefit of hindsight, large enough to
make sure the following calculations go through. Similarly, we choose a sufficiently large
n and consider an r-coloring of a Kn with Cn2−1/t′ edges in each color class.

First, we choose a K ′ (with hindsight) such that K ′ ≫ t′, and apply, for each color
class, Lemma 12 with parameters t′ and rK ′ to find a collection of rK ′-sized sets {Si}ri=1

such that each t′-subset of Si has rK ′ common neighbors in color i (this can be done if C
is large enough). The different sets S1, S2, · · · , Sr can intersect, but we can choose, up to
renaming, suitable subsets of each one in order to have r disjoint sets each with |Si| = K ′.

We now apply Lemma 13 to the collection {Si}ri=1, obtaining sets {Xi}ri=1 such that,
for each i ∈ [r], Xi ⊂ Si, |Xi| = 1

2t′+1r
logr(K

′), Xi induces a monochromatic clique
(of some color, not necessarily i), and the complete bipartite graph connecting vertices
between Xi and Xj, with i ̸= j, is monochromatic. Here, we make sure to select K ′ large
enough and potentially throw out vertices to ensure that |Xi| = t′.

Now, since Xi ⊂ Si, we use the property of the sets Si to find rK ′ common neighbors
of Xi in color i. Call these sets Yi and, again, choose suitable subsets (without renaming)
to ensure that we get a collection {Yi}ri=1 of disjoint sets, where |Yi| = K ′ for each i ∈ [r].

Our aim is now to find monochromatic complete bipartite graphs between Yi and Xj

for all i ̸= j. Associate to each vertex y of Yi a t′r-tuple with entries in [r] listing the color
of the edges (y, x) where x ∈

∪
Xi (recall |

∪
Xi| = t′r). As there are at most rt

′r such
tuples, there must be |Yi|/rt

′r vertices in each Yi (call them Y ′
i ) such that the associated

tuple is identical. This means that, for each x ∈ Xj, all the edges from x to vertices in
Y ′
i are of the same color.

We may now fix subsets X ′
i ⊆ Xi of size |Xi|/rr−1 so that the edges between Y ′

j

and X ′
i, for i ̸= j, are monochromatic (recall that these bipartite subgraphs are already

monochromatic in color i when i = j). In particular, to do this we associate to each
vertex x of Xi an (r − 1)-tuple with entries in [r] listing the color of the edges from x to
the sets Y ′

j for j ̸= i (recall that all edges from x to Y ′
j are monochromatic). So, for at

least |Xi|/rr−1 of the vertices, its tuples are all identical. Call these sets X ′
i and note that

|X ′
i| ⩾ t′/rr−1 = t for every i ∈ [r].
To finish, we apply Lemma 13 to the collection {Y ′

i }ri=1, obtaining sets {Y ′′
i }ri=1 such

that, for each i ∈ [r], Y ′′
i ⊂ Y ′

i , |Y ′′
i | = 1

2t′+1r
logr(K

′/rt
′r), each Y ′′

i induces a monochro-
matic clique, and the complete bipartite graph connecting vertices between Y ′′

i and Y ′′
j ,

for i ̸= j, is monochromatic. We select K ′ in advance to make sure this quantity ex-
ceeds t. Looking at the graph induced by the sets {X ′

i}ri=1 and {Y ′′
i }ri=1, we thus have a

blow-up of a complete graph of order 2r with each blow-up of size at least t, where all r
colors are used, so this structure must contain as a subgraph a member from F r

t . Hence,
exr(Kn,F r

t ) ⩽ Cn2−1/t′ .

2.1 The case of r = 2

In this subsection, in an attempt to demonstrate the relative simplicity of Conjecture 5
when r = 2, we give a very short proof of this particular case, originally proved in [18]
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using a more involved approach. Our version of the proof will essentially be an adaptation
of an argument from [7], replacing the usage of the Kővari-Sós-Turán theorem with the
dependent random choice lemma (Lemma 12).

Before we begin, we recall two definitions. Denote by R(k) the classical Ramsey
number, that is, the smallest integer for which every 2-edge-coloring of Kn with n ⩾ R(k)
contains a monochromatic Kk. Denote by BR(k) the bipartite Ramsey number, that is,
the smallest integer for which every 2-edge-coloring of Kn,n, with n ⩾ BR(k), contains
a monochromatic Kk,k. All we need in the following proof is that R(k) and BR(k) are
constants depending only on k, which is a well-known fact.

Theorem 14 ([18]). For any t ⩾ 1, there exists a constant C := C(t) such that, for n
large enough, ex2(Kn,Ft) ⩽ Cn2−1/t.

Proof. Given t, consider a 2-edge-coloring of Kn (for n large) with Cn2−1/t edges in
each color class, where C is the constant given in Lemma 12 for t and K = R(BR(t)).
By Lemma 12, we can find a red Kt,BR(t) where both parts of the bipartite graph are
monochromatic cliques. If either of these cliques is blue, we find a member of Ft. So,
we may assume that both are red and thus there is a red clique of size BR(t). Likewise,
it can be inferred that there exists another complete graph of the same order, colored
blue, which is disjoint from the previous one. Consider now the 2‐edge colored complete
bipartite graph, KBR(t),BR(t), induced by the vertices of those two cliques. By definition,
there is a monochromatic Kt,t in such a complete bipartite graph, yielding the desired
graph contained in Ft.

We remark that the proof above is quite specific to the r = 2 case. Indeed, if we
employed a similar strategy for the r = 3 case, for each monochromatic Kt,BR(t) with
both parts being monochromatic cliques, all we could conclude is that the entire structure
does not use all three colors. In particular, instead of finding three large cliques of three
different colors, we could end up with three large cliques all of the same color.

3 Proofs of Theorems 10 and 11

In this section, we focus on upper and lower bounds for the function bal3(n, P3k). For
convenience, we recall the corresponding result from the 2-color case, this time in its most
precise formulation.

Theorem 15 ([7]). Let k ⩾ 1 be even and let n ⩾ 9
8
k2 + 1

2
k + 1. Then

bal2(n, Pk) =

{
(k−2)n

4
− k2

32
+ 1

8
k ≡ 2 (mod 4)

(k−4)n
4

− k2

32
+ k

8
+ 1 k ≡ 0 (mod 4)

We remark that in [7] the extremal family of 2-edge-colored P2k-avoiding complete
graphs were explicitly characterized.
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3.1 Preliminaries

In preparation for the proofs of Theorems 10 and 11, we first collect some helpful lemmas.
In the proofs below, we always assume that the host graph has sufficiently many vertices.
We start giving the 3-balancing number for P3. Observe that a 3-balanced P3 is simply a
rainbow P3.

Proposition 16. bal3(n, P3) = 0.

Proof. Assume that we have a large 3-edge-colored complete graph with at least 1 edge
from each color. There must exist a triangle with exactly two of the colors represented,
say red and blue. Let u be a vertex on this triangle adjacent to both a red and blue
edge. No green edge can be adjacent to this triangle (otherwise we can easily construct
a rainbow P3), but there must be a green edge with end vertices v, w. We can form a
balanced P3 by walking from v to w to u and then ending on either the red or blue edge
adjacent to u, depending on the color of the edge wu.

We will use the notation P = x0x1 . . . xk to represent a k-path with edges xixi+1 for
i ∈ {0, . . . , k − 1}. We will call a 3-balanced K3 a rainbow triangle because this is the
term that is used in connection to Gallai-colorings, which we will use later.

Lemma 17. Let k ⩾ 2. If a 3-edge-colored complete graph contains a balanced P3k−3 and
a vertex-disjoint rainbow triangle, then the graph contains a balanced P3k.

Proof. Let P = x0x1 . . . x3k−3 be a balanced path which is vertex-disjoint to a rainbow
triangle {xr, xg, xb} where xgxb is red, xrxg is blue and xbxr is green. If x0xr or x3k−3xr

is blue or green, we we can easily construct a balanced P3k (take Pxrx or xxrP where
x = xb or x = xg according to the color we choose). Thus, we may assume that both
x0xr and x3k−3xr are red. Similarly, avoiding balanced P3k’s, the colors of x0xb, x3k−3xb,
x0xg and x3k−3xg are determined to be blue and green respectively. Suppose now, with-
out loss of generality, that the first edge of the path P , x0x1, is red. Then the path
x1 . . . x3k−3xbxgx0xr is a balanced P3k.

Now we show the lower bound from Theorem 10. Let k ⩾ 2 and consider a 3-edge-
coloring of Kn where we split V (Kn) into three parts A, B, and C, with |A| = k − 1,
|B| = ⌊n−k+1

2
⌋, and |C| = ⌈n−k+1

2
⌉, and we color the edges as follows: edges between A

and B are red, edges between A and C are blue, and all remaining edges are green. Since
any balanced P3k requires k red edges and k blue edges, and any such edge is incident on
A, this graph contains no balanced P3k. Further, the graph has at least (k − 1)(n− k)/2
edges in each color class, implying

bal3(n, P3k) ⩾
(
k − 1

2
+ o(1)

)
n (1)

as desired.
Before proving the upper bound of Theorem 10, we will first determine the 3-balancing

number for P6. This will show that we are able to match the lower bound (1) when k = 2.
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3.2 Proof of Theorem 11

In order to prove Theorem 11 we need the following lemmas.

Lemma 18. If a 3-edge-colored complete graph contains two vertex-disjoint balanced P3’s
whose middle edges have different colors, then the graph contains a balanced P6.

Proof. Without loss of generality, assume that the first path P = x0x1x2x3 is red-blue-
green, and the second path P ′ = x4x5x6x7 is red-green-blue. If x3x4 is blue or red, we
have a balanced P6 (take PP ′ and remove either x0 or x7 according to the color of x3x4).
Similarly, if x0x7 is green or red, we have a balanced P6. Assuming these edges are green
and blue respectively, we can see that x7x0x1x2x3x4x5 is a balanced P6.

The above lemma will allow us to conclude that all balanced P3’s in a 3-edge-colored
complete graph without balanced P6’s must be color isomorphic. This fact combined with
the next lemma will allow us to conclude that in a 3-edge-colored complete graph with
several balanced P3’s and no balanced P6, the color of the middle edge of any of the P3’s
must be dense in the complete graph.

Lemma 19. If a 3-edge-colored complete graph without a balanced P6 contains two vertex-
disjoint balanced P3’s whose middle edges are of the same color, say blue, then any other
edge between the vertices of these two paths (including edges contained within a single
path) is blue.

Proof. Let P = x0x1x2x3 and P ′ = x4x5x6x7 be two vertex-disjoint red-blue-green paths.
If x3x4 is red or green, we can easily construct a balanced P6 (take PP ′ and remove either
x0 or x7 according to the color of x3x4). Hence, x3x4 is blue. The same argument allows
us to conclude that x0x7 is blue. Observe that C = x0x1 . . . x7x0 is a red-blue-green-
blue-red-blue-green-blue cycle. If x0x2 is red then x0x2x3x4x5x6x7 is a balanced P6. Also,
by Lemma 17, x0x2 can’t be green (see triangle {x0, x1, x2} and path x4x5x6x7). Thus,
x0x2 must be blue. A similar argument allows us to prove that all edges xixi+2, with
i ∈ {0, . . . , 7} (where addition is taken modulo 8) are blue. Note now that x3x7 can’t be
red (respectively, green) by Px7x6x5 (respectively, Px7x5x4). Thus, x3x7 must be blue.
Again, by taking advantage of the symmetry of C, we can conclude that all edges of the
form xixi+4, with i ∈ {0, . . . , 7} and addition modulo 8, are blue. Finally, to conclude
that the remaining edges are blue, we consider a new cycle C ′ = x0x1x3x2x4x5x7x6x0

which is color isomorphic to C, and repeat the arguments.

We are now in a position to prove Theorem 11, which states that bal3(n, P6) = (1
2
+

o(1))n.

Proof of Theorem 11. Let ε > 0 be arbitrary, and consider a 3-edge-coloring of Kn (for
n sufficiently large) with each color class having at least (1

2
+ ε)n edges. By Proposition

16, we can find a balanced P3. Let I be the vertex set of a maximum sized family of
vertex-disjoint balanced P3’s and let D = V (Kn) \ I. Define i = |I|/4 as the number of
vertex-disjoint balanced P3’s. By Proposition 16, one of the color classes must not appear
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in D. We will handle the case where i = 1 and i ⩾ 2 separately.

Case 1: Assume i = 1.
Let P be the unique balanced 3-path in Kn. Assume without loss of generality that red is
missing in D. We first show that it cannot be the case that D is almost missing another
color as well.

Subcase 1.1: Suppose D is monochromatic except for at most one edge.
Assume, without loss of generality, that all edges in D but possibly one edge, say uv, are
blue (so uv is either blue or green). Observe that between D\{u, v} and I we have almost
all (but a constant number) of the red and the green edges. Since all color classes have at
least (1

2
+ ε)n edges, it cannot be the case that all green and red edges are incident to the

same vertex in P . Thus, there are two distinct vertices x, y ∈ I and five distinct vertices
(since n is sufficiently large) x1, x2, y1, y2, z ∈ D \ {u, v} such that xx1 and xx2 are green,
yy1 and yy2 are red, and so x1xx2zy1yy2 is a balanced P6.

Subcase 1.2: Suppose D has at least two blue edges and at least two green
edges.
By Theorem 15, the 2-color balancing number of P4 is 2, so we can find a blue-green-
balanced P4 in D, say Q. Observe that between V (P ) and D \ V (Q) we have almost all
(but a constant) of the red edges. Since all color classes have at least (1

2
+ε)n edges, there

must be two distinct vertices x, y ∈ D \ V (Q) and one vertex in z ∈ V (P ) such that zx
and zy are red. Let a and b be the end-vertices of the path Q. Consider now the cycle
C = zxQyz. We know that both edges xa and yb are either blue or green. Suppose first
that xa and yb are both of the same color, say blue. Then the path xQy has 4 blue edges
and 2 green edges. Thus, it must contain two consecutive blue edges, say rs and st. Then
C − s is a balanced 3-colored 6-path. If, on the other side, xa and yb are one blue and
one green, then we can take two consecutive edges rs and st from Q such that they have
different colors and we can see that C − s is a balanced 3-colored 6-path.

Case 2: Assume i ⩾ 2.
By Lemma 18, we may assume, without loss of generality, that all vertex disjoint balanced
paths in I are of the form red-blue-green. By Lemma 19, all remaining edges induced by
vertices in I are blue. In this case, we will conclude that either there are too few red or
green edges, or we can find a balanced P6.

Subcase 2.1: D has no red or no green edges.
Assume, without loss of generality, that red is missing in D. Since we have at least (1

2
+ε)n

red edges in Kn and amongst them only i in I and none in D, the remaining red edges are
all in E(I,D). Let uv be a red edge with u ∈ I and v ∈ D. Then u belongs to a red or a
green edge ux in I. Assume first that ux is green. Consider another green edge x1x2 and
a red edge y1y2 in I. Since all these edges form a matching and all other edges between
the vertices u, x1, x2, y1, y2 are blue, we can see easily that vuxx1x2y1y2 is a balanced P6.

the electronic journal of combinatorics 31(2) (2024), #P2.22 10



The case that ux is red is completely analogous by taking two green edges x1x2 and y1y2.

Subcase 2.2: D has at least a red edge and a green edge.
The blue has to be missing in D. Let uvw be a green-red path. Consider one red edge
x1x2 and one green edge y1y2 in I. Let z ∈ I \ {x1, x2, y1, y2}. Then all other edges
between the vertices x1, x2, y1, y2 and z are blue. Casing upon the color of the edge wx1,
it is easily seen that there is a balanced P6 within these vertices. For example, if wx1 is
red, then uvwx1y1y2z is a balanced P6. The other two cases are done similarly.

3.3 Proof of the upper bound from Theorem 10

In general, the best upper bound for bal3(n, P3k) we have is:

bal3(n, P3k) ⩽ (k + o(1))n. (2)

In order to prove (2), we will use the following theorem. Recall that the extremal number
ex(n,H) is the maximum number of edges in an H-free graph on n vertices. Erdős and
Gallai [13] determined the extremal number for paths. From their result, it follows that

ex(n, Pk) ⩽
k − 1

2
n. (3)

Given a coloring on the edges of Kn with red (r), blue (b), and green (g), we will
use the following notation: For c ∈ {r, b, g} and a set S ⊆ V (Kn), we will denote by
ec(S) the number of c-colored edges with both vertices in the set S. If S, T ⊆ V (Kn) are
two disjoint sets, we set E(S, T ) for the set of edges with one vertex in S and one in T ,
and Ec(S, T ) for the set of c-colored edges from E(S, T ). Moreover |E(S, T )| = e(S, T ),
|Ec(S, T )| = ec(S, T ), and, for a vertex v, Ec(v, S) = Ec({v}, S).

Proof of (2). Let 0 < ϵ < 1
2

be arbitrary and let n be large enough such that all inequal-
ities hold. Consider a 3-edge-coloring of Kn with at least (k + ϵ)n edges of each color
class. We proceed by induction on k to prove that there is a balanced P3k. The case
k = 2 was already done in Theorem 11. We assume that bal3(n, P3k′) ⩽ (k′ + o(1))n for
any 2 ⩽ k′ < k. Suppose now we have a complete graph on n vertices whose edges are
colored with red, blue, and green, such that there are at least (k + ε)n edges from each
color. By the induction hypothesis, there is a balanced P3(k−1), say P . Let S = V (P ) and
D = V (Kn) \ S. We will distinguish two cases.

Case 1: D has no edges from at least one color.
Assume, without loss of generality, that red is missing in D. Then er(S,D) = er(Kn) −
er(S) ⩾ kn, if n is large enough.

Subcase 1.1: Suppose that eb(D) ⩾
(
k−1
2

+ ϵ
)
n and eg(D) ⩾

(
k−1
2

+ ϵ
)
n.

Then, by Theorem 15, there is a balanced blue-green 2k-path, say Q, contained in D.
Moreover, since n is large, we still have er(S,D\V (Q)) ⩾ kn. Hence, because of (3), there
is a red k-path, say R, contained in the red graph induced by the edge set Er(S,D\V (Q)).
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Let a, b ∈ Q be the end-vertices of the path Q, and let u, v ∈ V (R) be the end-vertices of
the path R. We will show that there is a way of connecting both paths to have a balanced
3-colored P3k. Consider the cycle C formed by the two paths Q and R and the edges au
and bv. Let v′v be the last edge in path R. If the edge ua is red, we can easily see that
C−v is a balanced 3-colored 3k-path. Hence, au is either green or blue. The same occurs
with the edge bv. Suppose now au and bv are both of the same color, say blue. Then
the path consisting of the blue-green path Q together the edges au and bv has k+ 2 blue
edges and k green edges. Thus, it has to contain two consecutive blue edges, say xy and
yz. Then C − y is a balanced 3-colored 3k-path. If, on the other side, au and bv are one
blue and one green, then we can take two consecutive edges xy and yz from Q such that
they have different colors and we can see that C − y is a balanced 3-colored 3k-path.

Subcase 1.2: Suppose eb(D) <
(
k−1
2

+ ϵ
)
n or eg(D) <

(
k−1
2

+ ϵ
)
n.

Without loss of generality, we assume eb(D) <
(
k−1
2

+ ϵ
)
n. Then, since for n large enough

we have eb(Kn)− eb(S) ⩾ kn, and it follows that

eb(S,D) = eb(Kn)− eb(S)− eb(D) ⩾ kn−
(
k − 1

2
+ ϵ

)
n =

(
k + 1

2
− ϵ

)
n.

We will show first that there is a blue, a red, and a green k-path, pairwise disjoint. By the
above inequality, eb(S,D) ⩾

(
k+1
2

− ϵ
)
n. and so by (3), the graph induced by the edges

contained in Eb(S,D) contains a path of length k + 1, say B′. If k is odd, let x be one of
the two end-vertices of B′. If k is even, B′ has one end-vertex in S and one in D. In this
case, let x be the end-vertex of B′ contained in S. Now define B = B′ − x. Observe that,
for k even or odd, we have

|S ∩ V (B)| =
⌊
k + 1

2

⌋
. (4)

We will now show that er(S \ V (B), D) ⩾ k−1
2
n by using the fact that

er(S ∩ V (B), D) ⩽ |S ∩ V (B)||D| ⩽
⌊
k + 1

2

⌋
n,

which holds because of (4). Indeed,

er(S \ V (B), D) = er(S,D)− er(S ∩ V (B), D) ⩾ kn−
⌊
k + 1

2

⌋
n ⩾ k − 1

2
n.

Hence, by Erdős-Gallai (3), there is a red path on k edges, say R, contained in Er(S \
V (B), D). Finally, consider the set D′ = D \ (V (B) ∪ V (R)). Since there are only green
and blue edges in D and eb(D) <

(
k−1
2

− ϵ
)
n by hypothesis of this case, we have

eg(D
′) =

(
|D′|
2

)
− eb(D

′) ⩾
(
|D′|
2

)
− k − 1

2
n = Θ(n2).

Hence, the set D′ has Θ(n2) green edges and thus clearly it has to contain a green k-path
G, again by (3).
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We will now show that, with these three paths B, R and G, we can construct a bal-
anced 3-colored P3k. Let b, b′ be the end-vertices of B, r, r′ the end-vertices of R and g, g′

the end-vertices of G and consider the cycle Q formed by the three paths together with
the edges b′r, r′g and g′b. Suppose two of the edges b′r, r′g, g′b are of the same color, say
green. We call c the color of the third edge. Then, no matter where this c-colored edge is
situated, we can easily see that there is a 3-path wxyz contained in the cycle such that
wx and xy are green and yz has color c. Deleting the vertices x and y from Q gives a
balanced P3k and we are done. Hence we may assume that the edges b′r, r′g, and g′b have
all a different color. If b′r is green, we can consider the 3k-path that is formed by deleting
vertices b′ and r from Q. In a similar manner, a comparable situation arises if r′g is blue
or g′b is red. Hence, we may assume that the cycle Q consists of a blue, a green, and a red
Pk+1 glued together. Without loss of generality, we assume that b′r is red, r′g is green,
and g′b is blue. Let r′′ be the neighbor of r′ on the red path R and consider the edge gr′′

and the cycle Q′ = (Q− r′) + gr′′. If gr′′ is blue, then Q′ − b is a balanced P3k. If gr′′ is
red, then Q′−b′ is a balanced P3k. Finally, if gr′′ is green, then Q′−g′ is a balanced 3k-path.

Case 2: D has edges from all three colors.
If there is a rainbow triangle in D, we are done by Lemma 17. If there is no rainbow
triangle in D, then the 3-coloring in D is a Gallai coloring (see [16, 20, 21]) and, by [2] (see
also [19]), we know that the graph induced by the edges of one of the colors is spanning
in D. Without loss of generality, assume that the spanning color in D is green. Let x and
y be the end-vertices of the path P .

From here, we build the proof by contradiction, assuming that there is no 3-colored
balanced P3k.

Claim 1: There is no red-blue P2 in D.
If abc is a red-blue 2-path in D we can construct a balanced P3k as follows. Since there
are no rainbow triangles, assume without loss of generality that ac is red. Since the color
green is spanning in D, we know there are vertices d, d′ ∈ D such that da and d′b are
green (where d = d′ is possible). Observe now that, depending on the color of cx, one of
abcP , d′bcP or dacP will be a balanced P3k. ⋄

Claim 2: All edges from {x, y} to D are green.
Suppose that there is a vertex c ∈ D such that xc is not green, say, without loss of gen-
erality, it is blue. If there is a vertex b ∈ D such that bc is red, then we can easily build a
balanced 3k-path, namely abcP , where a is such that ab is green (recall that color green
is spanning in D). On the other hand, if there is no red edge in D incident to c, consider
a red edge ab in D \ {c}. By Claim 1, ac is not blue, so it has to be green and, again, we
can easily build a balanced P3k. Hence, all edges from x to D are green. By symmetry,
all edges from y to D are green, too. ⋄

For the next claims, we consider a balanced 3-path abcd in D, which exists because of
Lemma 16. By Claim 1, the middle edge is green and, moreover, all remaining edges
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induced by {a, b, c, d} are green.

Claim 3: The end-edges of P are not green.
Suppose one end-edge of P is green, say the edge incident to y. Then the path abcdP − y
is a balanced 3k-path since, according to Claim 2, dx is green. ⋄

Claim 4: There are no consecutive green edges in P .
If uvw is a green-green path in P , consider the cycle Q = abcPa. Then, Q − v is a
balanced P3k. ⋄

Claim 5: The edge xy is green.
Suppose that xy is not green, say, without loss of generality, it is red. Consider the cycle
Q = Px that has k − 1 blue edges, k − 1 green edges, and k red edges. Note that, for
any red edge uv in P , the path obtained from Q by removing the edge uv plays the same
role as P . Thus, by Claim 3, the end-edges of this new path, Q− uv, are not green. This
means that no red edge can be next to a green edge in Q. Then, since green edges form
a matching, each green edge has to be preceded and succeeded by a blue edge, implying
that there have to be more blue edges than green edges in Q, which is a contradiction. ⋄

Now that we know that the edge xy is green, we are going to work with the cycle
Q = Px, which has k− 1 blue edges, k− 1 red edges, and k green edges, where the green
edges form a matching. Recall that V (P ) = S = V (Q).

Claim 6: There are at most k − 2 vertices in S incident to a red or a blue edge from
E(S,D).
Let uv be a green edge in Q and consider the path Q − uv. Note that this new path,
Q−uv, plays the same role as P . Then, by Claim 2, all edges from {u, v} to D are green.
Since there are no adjacent green edges in Q, this leaves us (3k− 2)− 2k = k− 2 vertices
allowed to send red or blue edges to D. ⋄

By a simple counting argument, it must be that Q contains a subpath uvwz which is
green-notgreen-green. Suppose, without loss of generality, that vw is red.

Claim 7: The graph induced by the red edges in D is a matching.
If this is not the case, take a red-red path, abc, in D. Consider a blue edge de in D. By
Claim 1, we know that {d, e}∩{a, b, c} = ∅ and the edge cd is green. Let P ′ = Q−{v, w}.
Note that P ′ is a (3k − 5)-path with k − 1 blue edges, k − 2 red edges and k − 2 green
edges. Hence, abcdeP ′ is a balanced P3k, as the edges from u (or z) to D are green, by
considering Q− wz (or Q− uv). ⋄

Now by using Claims 6 and 7, we can count the maximum number of red edges in
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order to get a contradiction.

er(Kn) = er(S,D) + er(D) + er(S)

⩽ (k − 2)|D|+ |D|
2

+ o(n)

⩽
(
k − 3

2

)
n+ o(n)

=

((
k − 3

2

)
+ o(1)

)
n,

which is not possible by hypothesis. Hence, we have shown that, for any 0 < ϵ < 1
2
,

bal3(n, P3k) < (k + ϵ)n, which gives the desired bound (2).

4 Balanced paths with many colors

In this section, our goal is to prove Theorems 8 and 9. The former shows that it is
hopeless to find a straightforward generalization of our bounds on balr(n, Prk) when r = 3
to arbitrary r, since, for any odd k, there are infinitely many r with balr(n, Prk) = Ω(n2).
On the other hand, the latter will give some hope of generalizing our bounds under the
assumption that k is even and sufficiently large with respect to r.

Proof of Theorem 8. Given an odd k, we consider an r of the form r =
(
l
2

)
+ 1, with

l ⩾ 4, and l even. As there are infinitely many such r, it will be enough to construct
an r-colored complete graph on n vertices with Θ(n2) edges in each color that avoids a
balanced embedding of a Prk.

We divide the vertices of Kn into l sets of size as close to equal as possible and call
them Vi, i ∈ [l]. We color each complete bipartite graph Vi × Vj, i ̸= j, a different color.
With the remaining color, say cl, we color everything else. That is, we color all edges
contained in any of the Vi’s the same color.

Towards a contradiction, assume that we have a balanced embedding P of Prk into this
coloring. We will now define an auxiliary multi-graph H obtained from P by identifying
the vertices of P contained in each Vi with one vertex vi and contracting all edges of color
cl. Then H contains exactly k edges in each of the colors except for cl, and each vertex
has degree k(l − 1). Following the edges along the linear order given by P , we see that
these edges form an Eulerian trail in H (possibly closed). Hence, all vertices but possibly
the start and end vertices of the Eulerian trail must have even degrees in H. But this is
not possible, as k(l − 1) is odd.

We now prove Theorem 9, which says that balr(P2rk) = o(n2) for k sufficiently large
with respect to r. We mention that we make no attempt to optimize the constants
throughout the proof.

Proof of Theorem 9. Given r ⩾ 2, our goal is to find a sufficiently large k0 such that in
any r-edge-coloring of Kn with at least n2−ε edges in each color class, there is a balanced
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copy of P2rk for every k ⩾ k0 and n sufficiently large. To this aim, we will use Theorem
6. Before that, we need to prove the following.
Claim 20. Let r ⩾ 2 and let t be sufficiently large. For every K ∈ F r

t there exists
k′
0 = k′

0(K) such that K contains a balanced copy of P2rk for every k ⩾ k′
0.

To see that the claim is true, fix some K ∈ F r
t . Recall that V (K) =

∪
i∈[l] Vi where

the number of parts l ⩽ 2r−2 (by the remark in the Introduction), |Vi| = t and, for every
i ̸= j, i, j ∈ [l], both K[Vi] and K[Vi ×Vj] are monochromatic. Let ci,j be the color of the
edges between Vi and Vj and define C to be the set of colors that appear on such edges.
That is

C := {ci,j ∈ [r] : i, j ∈ [l], i ̸= j and ci,j is the color of edges in K[Vi × Vj]}.

For each c ∈ C, let t(c) be the number of pairs, i, j ∈ [l], i ̸= j, such that the edges of
K[Vi × Vj] have color c. Finally, let

k′
0 = k′

0(K) = lcm{t(c) | c ∈ C}

where lcm denotes the least common multiple of a set. Let k ⩾ k′
0 and set q = 2|C|k. We

proceed to find an embedding of Pq in K that uses only edges from the complete bipartite
graphs K[Vi × Vj], where i, j ∈ [l] and i ̸= j, and meets every part Vi. We achieve this by
associating to K an auxiliary multigraph which is Eulerian. Define a multigraph where
the vertices correspond to the cliques Vi (i ∈ [l]), and put, for every pair i, j ∈ [l], i ̸= j,
2k′

0/t(ci,j) edges between the vertices corresponding to Vi and Vj. As 2k′
0/t(c) is an even

integer for all c ∈ C, we can find an Eulerian circuit in our multigraph, which naturally
corresponds to an embedding of a balanced P2|C|k′0 in K with colors from C. Note that,
we can choose t sufficiently large so that each Vi is large enough to guarantee that the
Eulerian circuit in the auxiliary multigraph can be translated into a path (and not a walk)
in K. Moreover, if t is large enough, we can extend such balanced path of length 2|C|k′

0

to a balance path of length 2|C|k (to see this, for each color ci,j ∈ C, choose an edge
e ∈ Vi × Vj and replace it with a path containing 2(k − k′

0) + 1 edges between Vi and Vj

using vertices that are disjoint from the vertices already used in the path). So far, we
have find a balanced path Pq with edges in E(K) \

∪
i∈[l] E(Vi) (balanced with respect to

the colors in C) which meets every Vi in at least one vertex. If |C| = r we have finished
the proof of the claim. If not, we can extend Pq to a balanced path P2rk as follows. Since
|C| < r, there are colors that appear only inside one of the parts Vi. For any such color and
part Vi, consider a vertex v ∈ Vi such that v belongs to Pq = v1v2 · · · vjvvj+1 · · · vqvq+1.
Take a path P of length 2k in Vi that is vertex disjoint with Pq, noting that there is
space to do this if t is sufficiently large. Now v1v2 · · · vjPvj+1 · · · vq+1 is a balanced path
including this missing color. Repeating this operation for each missing color shows that
the claim is true.

Note that we are not interested in estimating how large t should be for the arguments
in the previous proof to be valid; we only want to ensure that if t is sufficiently large, then
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the arguments work. Since the family of graphs F r
t is finite (regardless of the value of t),

we can set
k0 := max{k′

0(K) : K ∈ F r
t }.

Let k ⩾ k0 and let C1 be a sufficiently large constant such that, by Claim 20, every
element of F r

C1rk
contains a balanced copy of P2rk. Finally, by Theorem 6, there existe a

constant C2 = C2(r, t), where t = C1rk, such that, for n large enough, any r-edge-coloring
of Kn with at least C2n

2−1/C1rrk = o(n2) edges in each color class contains a member K
from F r

C1rk
, which contains a balanced copy of P2rk, by Claim 20.

5 Discussion

We remark that, during the process of revision of this paper, Conjecture 5 was proved in
[17].

Closing the gap from Theorem 10 is an open problem. We conjecture that the lower
bound should be the truth, but new ideas are needed to improve on our upper bound.

A perhaps more elementary question that remains is determining for which graphs G
we have balr(n,G) < ∞. We call an embedding of G into an r-edge-colored Kn a balanced
embedding if all r color classes are almost equally represented as in Definition 7. We have
the following abstract characterization.
Proposition 21. Let G be any graph of order q, and r ⩾ 2 an integer. Then balr(n,G) =
o(n2) if and only if there exists a balanced embedding of G into all patterns from F r

q .
Proof. If G admits a balanceable embedding into all patterns from F r

q , by Theorem 6
we will be able to find balanced copies of G in sufficiently large complete graphs with
Θ(n2−1/v(G)) edges in each color. On the other hand, if G does not admit a balanced
embedding into a particular pattern from F r

q , we can use this pattern to construct a Kn

with Θ(n2) edges in each color class, hence it cannot be that balr(n,G) = o(n2).

This characterization does not rule out the possibility that there might be balanceable
graphs with balr(n,G) = Θ(n2). We find this to be unlikely, but we are unable to prove
it for r ⩾ 3, in contrast to the case r = 2, where it was shown that balanceable graphs
always satisfy bal(n,G) = o(n2) [7]. For example, by investigating Figure 1, one can verify
that bal3(n,C6k) = o(n2), and bal3(n,C6k+3) = Ω(n2). We leave it as an open problem to
determine whether bal3(n,C6k+3) = ∞.

It would in general be interesting to obtain results for cycles for r ⩾ 3 (see [9] for the
case r = 2).
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