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Abstract
Erdős and Fishburn studied the maximum number of points in the plane that

span exactly k distances (i.e. the set of pairwise distances between points has
cardinality k) and classified these configurations, as an inverse problem of the Erdős
distinct distances problem. We consider the analogous problem for triangles. Past
work has obtained the optimal sets for one and two distinct triangles in the plane.
In this paper, we resolve a conjecture that at most six points in the plane can span
exactly three distinct triangles, and obtain the hexagon as the unique configuration
that achieves this. We also provide evidence that optimal sets cannot be on the
square lattice in the general case.
Mathematics Subject Classifications: 52C10,52C05

1 Introduction

A famous open problem in combinatorial geometry is Erdős’ distinct distances problem,
which asks for the minimum number of distinct distances between pairs of points in an
n-point subset of the Euclidean plane. Erdős conjectured [5] that any set of n points spans
Ω
(

n√
logn

)
distinct distances; this was essentially resolved by Guth and Katz [7], whose

work implies a bound of Ω
(

n
logn

)
. In higher dimensions Rd (d ⩾ 3), it is conjectured

that the maximum number of distinct distances is asymptotic to n2/d, with the current
best-known results due to Solymosi and Vu [11].

The inverse problem to Erdős’ distinct distances problem is to determine the maximum
number of points in the plane that span only a fixed number of distinct distances. This
problem was first studied by Erdős and Fishburn [6], who found the maximum number of
points in a subset of the plane spanning k distances, and also determined all associated
extremal configurations, for k ⩽ 4. This work was extended by Shinohara [10], who
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determined the maximal 5-distance sets, and Wei [12], who found the maximum size of
6-distance sets, though the optimal configurations remain unknown.

In this paper, we consider the analogue of the Erdős-Fishburn and Erdős distinct-
distances problems for triangles. This is a problem previously studied by Epstein et.
al. [4], finding the maximal number of points in a set determining k distinct triangles and
characterizing the optimal configurations for k = 1, 2. Optimal point sets for one and two
distinct triangles in higher-dimensional Euclidean spaces have since been characterized [3,
2].

To avoid ambiguity regarding degenerate triangles, we can formalize this as counting
the number of triples of distinct points in a point set, up to the equivalence relation
defined by rigid plane isometries (hence, the three vertices of the triangle are allowed to
be collinear, but must be distinct). This is equivalent to characterizing a “triangle” by
its side lengths, up to permutation.

In this paper, we extend the results of [4] to the k = 3 case:

Theorem 1. Any set of points in the plane that span at most 3 distinct triangles contains
at most 6 points, and the only configuration that achieves this is the regular hexagon.

In addition, we consider the density of distinct triangles in the square lattice. The
square lattice gave rise to the original asymptotic conjecture for the Erdős distinct distance
problems, while trianglular lattices have slightly fewer distinct distances [1]; Erdős and
Fishburn [6] conjectured that optimal configurations for any sufficiently large number of
distinct distances exist on the triangular lattice.

It has been shown in [9] that an n-point set spans at least Ω(n2) distinct triangles; the
true constant is unknown. Epstein et. al. [4] conjectured that the asymptotic is at least
1
12
n2, which is achieved by the regular n-gon, but it is unknown if other optimal configu-

rations exist. A natural place to search for such configurations are lattices. However, we
show that the square lattice cannot give rise to optimal configurations.

Theorem 2. The
√
n×

√
n square grid contains between 0.1558n2+o(n2) and 0.1875n2+

o(n2) distinct triangles.

This suggests that the trend where structures with lattice symmetry have fewer distinct
distances than structures with rotational symmetry is reversed for the distinct triangles
problem: the regular n-gon has roughly half the number of distinct triangles as the square
grid.

2 Proof of Theorem 1

Notation. For two points p, q of a subset P of the plane, we say that segment pq is a
diameter of P if no other segment with both endpoints in P has length greater than that
of pq. It is well-known that, by the triangle inequality, any two diameters of a point set
must intersect or share an endpoint.

For point P and line ℓ, we use dist(P, ℓ) to denote the distance from P to ℓ. We
will let [A1A2A3] denote the (unsigned) area of triangle A1A2A3. For distinct points

the electronic journal of combinatorics 31(2) (2024), #P2.24 2



A1, A2, A3 and B1, B2, B3, we will use A1A2A3
∼= B1B2B3 to imply that there exists a

rigid plane isometry mapping Ai to Bi for i = 1, 2, 3. On the other hand, we will use
{A1A2A3} ∼= {B1B2B3} to denote triangle congruence ignoring vertex order—that there
exists a permutation σ : {1, 2, 3} → {1, 2, 3} such that A1A2A3

∼= Bσ(1)Bσ(2)Bσ(3) for
i = 1, 2, 3.

We first prove a simple lemma that will be used repeatedly later on, characterizing
congruent triangles sharing a side length.

Lemma 3. If A, B, C, D are four distinct points such that {ABC} ∼= {ABD}, then
either ABC ∼= ABD or ABC ∼= BAD, and (at least) one of the following conditions are
met:

• D is the reflection of C across AB;

• D is the reflection of C across the midpoint of AB;

• D is the reflection of C across the perpendicular bisector of AB.

A B

CD1

D2D3

Figure 1: The possible positions of D in
Lemma 3.

A B

C

D

E

F

Figure 2: Labeling of hexagon vertices in
proof of Lemma 4.

Proof. We first show that either ABC ∼= ABD or ABC ∼= BAD. Casework on the true
point order of the congruence:

• If ABC ∼= ABD or ABC ∼= BAD, then we are already done.

• If ABC ∼= ADB then AB = AD = AC, so ABC ∼= ABD.

• If ABC ∼= BDA then AC = AB = BD, so ABC ∼= BAD.

• If ABC ∼= DAB then AB = AD = BC, so ABC ∼= BAD.

• If ABC ∼= DBA then AB = BD = BC, so ABC ∼= ABD.

When ABC ∼= ABD, the only non-identity rigid isometry preserving A and B is the
reflection over the line AB. On the other hand, when ABC ∼= BAD, the only rigid
isometries swapping A and B are the reflection across the midpoint of AB (i.e., 180◦

rotation about the midpoint) and the reflection across the perpendicular bisector of AB.
Hence C and D must be related via one of these three isometries.
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We now prove a highly useful lemma that, roughly speaking, enables us to convert
information about distances and triangle congruences into a regular hexagon.

Lemma 4. If ACEBDF is a convex hexagon with vertices in that order (where consecutive
vertices are allowed to be collinear) spanning at most three distinct triangles such that AB
is a diameter length and {ABC} ∼= {ABD} ∼= {ABE} ∼= {ABF}, then ACEBDF must
be a regular hexagon.

Proof. Note that C, D, E, F must be related as dictated by Lemma 3, so CEDF is a
rectangle with center at the midpoint of AB, with CE ∥ AB ∥ DF . Note that AD ∥ BC
and E is on the opposite side of BC as A, so dist(E,AD) > dist(B,AD). This implies
[ADE] > [ABD], so {ADE} ̸∼= {ABD}. Also, dist(E,AD) > dist(E,BC), so [ADE] >
[BCE] which implies {ADE} ̸∼= {BCE}. Since ABFD is an isosceles trapezoid with
DF < AB, we also have {ABD} ̸∼= {AFD} ∼= {BCE}. This means the three distinct
triangles must be {ADE}, {BCE}, and {ABD}.

Now, {BDE} ̸∼= {ADE} because they are both isosceles, but their legs BD ̸= AD.
Also {BDE} ̸∼= {ABD} because neither AD or AB can be equal in length to BE = BD,
This means {BED} ∼= {BCE}. This implies BE = CE, and it follows by a symmetry
argument that the hexagon is equilateral. It also implies that ∠EBD = ∠CEB, and it
follows that the hexagon is equiangular, so it is regular.

We are now ready to prove Theorem 1. Roughly speaking, we approach the proof by
repeatedly identifying congruency classes of triangles, until we either derive a contradic-
tion or arrive at the premises of Lemma 4.

Proof of Theorem 1. We prove that if six distinct points in the plane span at most three
congruency classes of triangles, then these six points must be a regular hexagon. This
implies Theorem 1, since for any seven points in the plane, we can find a subset of six
points that do not form a regular hexagon, and therefore span at least four congruency
classes of triangles.

Label the six points ABCDEF such that AB is a diameter length. By the Pigeonhole
principle, at least two of the triangles ABC, ABD, ABE, ABF are congruent. Without
loss of generality assume {ABC} ∼= {ABD}; by Lemma 3 we have three cases: either
ABCD is an isosceles trapezoid, with bases AB,CD (and AB > CD), or ABCD is a kite
with perpendicular diagonals AB and CD, or ABCD is a parallelogram with diagonals
AB and CD.

This can be further split into four cases, which we will deal with in turn:

1. ACBD is a rhombus;

2. ACBD is a kite but not a rhombus;

3. ACBD is a parallelogram but not a rhombus;

4. ACBD is an isosceles trapezoid.
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Case 1: ACBD is a rhombus (possibly square): At least one of E,F is not the
center of the rhombus; without loss of generality, assume it is E. Note that dist(E,AB),
dist(E,BC), dist(E,CD), dist(E,DA) cannot all be distinct, else the four triangles EAB,
EBC, ECD, EDA (which have identical bases AB = BC = CD = DA) have different
areas and are therefore pairwise noncongruent. It follows that E is either on line AB,
line CD, one of the external angle bisectors of the rhombus, or one of the midlines of the
rhombus (as shown in the subcases below).

A B

C

D

Figure 3: Case 1

A B

C

D

E

Figure 4: Subcase 1a

A B

C

D

E

Figure 5: Subcase 1b

Subcase 1a: E ∈ AB (and E ∈ CD is analogous—no statements in this subcase rely
on the fact that AB is the diameter). We claim that triangles {ACE}, {CBE}, {ACD},
and {ABE} are pairwise noncongruent:

• {ABE} is not congruent to any of the other triangles because it is degenerate and
the others are not.

• {CBE} ̸∼= {ACE} because if E is not the center of ACBD then AEC ̸∼= BEC.

• {CBE} ̸∼= {ACD}, because othwerise CBE is isosceles. If CE = EB, then CBE ∼=
CDA, and CD = BC = AC = AD implies the rhombus is composed of two
equilateral triangles, so that ∠CBE = 30◦ ̸= ∠ADC = 60◦, contradiction; if
CB = CE then E = A, contradiction; if CB = BE then its vertex angle is either
∠CAD

2
or 180◦ − ∠CAD

2
, while the vertex angle of ACD is ∠ACD. Since they are

equal, ∠CAD = 120◦, which implies the rhombus is composed of two equilateral
triangles and E = A, contradiction.

• {ACE} ̸∼= {ACD} by the same reasoning as above.

Thus we have found four noncongruent triangles among the six points, contradiction.
Subcase 1b: E lies on the external angle bisector of A (and that of B is analogous) is

impossible because BE > AB, but AB is a diameter.
Subcase 1c: E lies on the external angle bisector of C (and that of D is analogous). We

may assume CD < AB, else this reduces to the previous case. Without loss of generality,
assume E and B are on the same side of line CD. We claim {ABC}, {ACD}, {ECD},
{EAC} are pairwise noncongruent:

• {ABC}, {ACD}. and {ECD} are pairwise noncongruent because they are obtuse,
acute, and right, respectively.
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E

Figure 6: Subcase 1c

A B

C

D

E

Figure 7: Subcase 1d

• {EAC} ̸∼= {ABC} because both are obtuse, while the obtuse angle ∠ECA is greater
than the obtuse angle ∠ACB.

• {EAC} ̸∼= {ACD} or {ECD} because {EAC} is obtuse, while {ACD} and {ECD}
are acute and right, respectively.

Thus we have found four noncongruent triangles among the six points, contradiction.
Subcase 1d: E lies on the midline parallel to AC (and the midline parallel to BC follows

analogously). We claim {EBC}, {EDA}, {EAC}, {ABC} are pairwise noncongruent:

• {EBC} ̸∼= {EDA} because E is not the center of the rhombus, hence dist(E,BC) ̸=
dist(E,AD), so the two triangles have different areas.

• {EBC} ̸∼= {EAC} because otherwise, by Lemma 3 either EBC ∼= EAC, implying
EB = EA and forcing E to be the center of the rhombus, or EBC ∼= CAE,
implying BC = AE and AC = BE, which is impossible.

• {EDA} ̸∼= {EAC} by symmetry with above.

• {EBC} ̸∼= {ABC} because by Lemma 3 the only points P such that {PBC} ∼=
{ABC} are the reflection of A over BC, which is not E because ∠ACB ⩾ 90◦, so
it lies on the opposite side of line AC from E; the reflection of A over the midpoint
of BC, which is not E because it lies on line BD; and the reflection of A over the
perpendicular bisector of BC, which is not E because it lies on line AD and cannot
be the midpoint of AD.

• {EDA} ̸∼= {ABC} by symmetry with above.

• {EAC} ̸∼= {ABC} because dist(E,AC) = 1
2
dist(B,AC), so the two triangles have

different areas.

Thus we have found four noncongruent triangles among the six points, contradiction.
This completes all cases when ACBD is a rhombus.
Case 2: ACBD is a kite but not a rhombus. Then {ABC}, {ACD}, and {BCD}

are pairwise noncongruent, which implies these are the only three congruency classes of
triangles. Without loss of generality assume AC < BC.
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A B

C

D

Figure 8: Subcase 2a

A B

C

D

Figure 9: Subcase 2b

Subcase 2a: CD ̸= AB and BC ̸= AB. Then there is only one congruency class of
triangle possessing a side of length AB, so {EAB} ∼= {FAB} ∼= {ABC}, and Lemma 4
implies that the six points form a regular hexagon.

Subcase 2b: CD ̸= AB and BC = AB. Then A,C,D are equally-spaced on a circle
with center B. The only two congruency classes of triangles possessing a side of length AB
are {ABC} and {BCD}. If triangles {EAB} and {FAB} are congruent to {ABC} then
we are again done by Lemma 4 (and this is in fact impossible, because here BC ̸= AB).
Without loss of generality assume that it is {ABE} which is noncongruent to {ABC}, so
{ABE} ∼= {BCD}. Since CD < AB we have ∠CBD < 60◦, so ∠CBA = ∠ABD < 30◦;
it follows that AC < CD < AB = BC. If ABE ∼= CBD then without loss of generality
assume that C,A,D,E lie on the circle with center B in that order; then {BCE} is
a fourth distinct triangle. On the other hand, if ABE ∼= BCD, then without loss of
generality assume E is on the same side of AB as C. Now {EBD} is a fourth distinct
triangle, because the only congruency class of triangle having sides of length BE and BD
is BCD, and clearly {BCD} ̸∼= {EBD} since the latter is not isosceles and the former is.

A B

C

D

Figure 10: Subcase 2c

A B

C

D

Figure 11: Subcase 2d

Subcase 2c: CD = AB and BC ̸= AB. If both triangles {EAB} and {FAB} are
congruent to {ABC} then we are again done by Lemma 4; else without loss of generality
assume it is {ABE} which is not congruent to {ABC}. This means either {EAB} ∼=
{ACD} or {EAB} ∼= {BCD}, which implies either EAB ∼= ACD or EAB ∼= BCD
(since both triangles ACD and BCD are isosceles with base length AB). Without loss of
generality, assume E is on the same side of AB as C. If EAB ∼= ACD then EA = AC.
The only isosceles triangle with leg length AC is ACD, but {EAC} ̸∼= {ACD} since their
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vertex angles ∠CAE and ∠CAD are unequal, contradiction. If EAB ∼= BCD then EB =
BC. The only isosceles triangle with leg length BC is BCD, but {EBC} ̸∼= {BCD},
contradiction.

Subcase 2d: CD = AB and BC = AB. Then ACBD must be as shown, with BCD
equilateral and A the arc midpoint of CD on the circle with center B. Now {BCD},
{ACD}, {ABC} are noncongruent, so {EAB} must be congruent to one of these three
triangles. We perform the finite case-check and verify that in all cases a fourth distinct
triangle is produced.

This completes all cases where ACBD is a kite.
Case 3: ACBD is a parallelogram with diagonals AB and CD. We may assume it

is not a rhombus, since otherwise we reduce to Case 1. We may also assume that no
four-vertex subset of the six vertices forms a kite, since otherwise we reduce to Case 2.

A B

C

D

Figure 12: Case 3

A B

C D

Figure 13: Subcase 4a

A B

C D

Figure 14: Subcase 4b

Now, {EAC} ̸∼= {EBC}, else some four points determine a kite by Lemma 3 and we
reduce to a previous case. Repeating this argument, {EAC} ̸∼= {EBC} ̸∼= {EBD} ̸∼=
{EAD} ̸∼= {EAC}. However, since there are only three distinct triangles, some pair
of these four triangles must be congruent; without loss of generality, assume the pair is
{EAC} ∼= {EBD}, which implies their areas are equal, so E is on the midline of the
parallelogram parallel to AC. Now if ACBD is not a rectangle, then it is impossible for
{EAC} and {EBD} to be congruent. So ACBD is a rectangle. Note {ACD} ̸∼= {ACE}
by area considerations, and {BCE} ̸∼= {ACD} since the former is isosceles and the latter
is not. We already have {ACE} ̸∼= {BCE}; by applying Lemma 3 we also find {ADE} ̸∼=
{ACD} and {ADE} ̸∼= {ACE}. Since there are only three distinct triangles, we see
{BCE} ∼= {ADE}, which proves E is the center. But then EAC,EBC,EAB,ACD are
pairwise noncongruent, contradiction.

Case 4: ACDB is an isosceles trapezoid with bases AB and CD. Without loss of
generality, assume C is closer to A than B. If either E or F are the reflections of C or
D across AB, then we reduce to one of the previous cases, so assume this is not the case.
Observe that {ABC} ̸∼= {ACD}.

Subcase 4a: If BC = AD < AB then {EAB} ̸∼= {ABC}, Otherwise, E is either D,
the reflection of C over AB, or the reflection of C over the midpoint of AB; all of these
are disallowed (the latter two produce kites ACBE and ADBE, respectively). Also,
{EAB} ̸∼= {ACD}, since all side lengths of the latter are shorter than AB. Therefore
our three congruency classes are {EAB}, {ABC}, and {ACD}. By the same reasoning
{FAB} ̸∼= {ABC}, {ACD}, so {EAB} ∼= {FAB}. If ABEF is a rhombus, a non-
rhombus kite, or a non-rhombus parallelogram, we reduce to Cases 1, 2, and 3 respectively,
so by Lemma 3 ABEF is also a trapezoid, implying {AEF} ̸∼= {ABE}. Also, {AEF} ̸∼=
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{ABC}, else one of AE,AF = AB; without loss of generality assume AE = AB, so
AEB is an isosceles triangle with leg length AB which is not congruent to any of the
three previous triangles, giving us four distinct triangles. Thus {AEF} ∼= {ACD}. Since
∠ACD and ∠AEF are both obtuse, they must correspond with each other, so AD = AF
and triangle AFD is isosceles. Since {ABC} and {ABE} are not isosceles, we find
{AFD} = {ACD} so triangle ACD is also isosceles. As ∠ACD is obtuse, we must have
AC = CD and FAD ∼= ACD, which implies AC = CD = AD. But this means ACD is
equilateral, implying ∠ACD = 60◦ < 90◦, contradiction.

Subcase 4b: BC = AD = AB. Note that {EAB} and {FAB} are both noncongruent
to {ABC}, since otherwise would produce a kite (by the same reasoning as in the previous
subcase).

If {EAB} and {FAB} are both noncongruent to {ACD}, then the three congruency
classes must be {ABC}, {ACD}, and {EAB} ∼= {FAB}. Since {EAB}, {FAB} ̸∼=
{ACD} it follows that the lengths EA = FB and EB = FA are not equal to length
AB, which reduces ABEF to the previous subcase. Otherwise, without loss of generality,
assume {EAB} ∼= {ACD}, and that the orientation of the congruence is EAB ∼= CAD.

E

A B

C D

Figure 15: Subsubcase 4b(i)
E

A B

C D

Figure 16: Subsubcase 4b(ii)

Subsubcase 4b(i): E is on the same side of AB as C and D. Then ∠EBA = ∠CDA =
∠CBA implies C,B,E colinear, at which point the four triangles {BCE}, {ACE},
{ABC}, {ACD} are pairwise noncongruent: {BCE} is degenerate, {ACE} and {ABC}
are acute isosceles triangles with different leg lengths, and {ACD} is obtuse. We have
found four triangles, contradiction.

Subsubcase 4b(ii): E is on the opposite side of AB as C and D. Without loss of
generality assume BEA ∼= BDC; note that EB = BD = AC, EA = CD, AB = BC =
AD = CE, and the five points are symmetric across the perpendicular bisector of BC.

If BE ̸= AE, then all lengths of triangle BDE are are less than AB, so {BDE} is
not congruent to {ABC} or {ABD}. Also, {DEC} has no side length equal to BD, so
{DEC} is not congruent to {ABC}, {ABD}, or {BDE}, because it has no side length
equal to AC = BD. This gives us four distinct triangles.

If BE = AE, we have AC = CD = DB = BE = EA, so the pentagon is equilateral,
and DA = AB = BC = CE. Therefore ∠ABD = ∠BDA = ∠BCA = ∠BAC = ∠BEC
and ∠EBA = ∠ADC = ∠BCD = ∠BAE = ∠AEC, which means ∠EBD = ∠BDC =
∠DCA = ∠CAE = ∠AEB, and the pentagon is also equiangular. This implies it is a
regular pentagon. It is straightforward to check that one cannot add a sixth point to a
regular pentagon without introducing two new distinct triangles.
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So we have exhausted all cases and are done.

3 Proof of Theorem 2

For ease of notation, we consider an N ×N grid, so we wish to show that the number of
triangles is between 0.1558N4 + o(N4) and 0.1875N4 + o(N4) distinct triangles.

Let [N ] = {0, 1, . . . , N − 1}, so the square lattice grid is [N ] × [N ]. Note that any
triangle contained in this grid has at least one vertex as a vertex of its bounding box, so
it can be mapped with suitable reflections, rotations, and translations onto a congruent
triangle also contained in the grid with one vertex at the origin (see Figure 17). This
means it suffices to count the number of distinct triangles having one vertex at the origin.

Figure 17: Lattice triangle with a congruent triangle having vertex at the origin

Let O be the origin, A = (a1, a2), and B = (b1, b2). The set of all triangles (including
OAB) contained in [N ] × [N ] congruent to OAB will be referred to as the congruency
class of OAB. If OAB is scalene and has no sides parallel to the coordinate axes, define
the minimal congruency set of OAB as follows:

1. If OAB has two vertices on its bounding rectangle (without loss of generality assume
a1 > b1 and a2 > b2), the minimal congruency set consists of the four triangles
{(0, 0), (a1, a2), (b1, b2)}, {(0, 0), (a2, a1), (b2, b1)}, {(0, 0), (a1, a2), (a1 − b1, a2 − b2)},
and {(0, 0), (a2, a1), (a2 − b2, a1 − b1)}. This is shown in Figure 18.

2. If OAB has all three vertices on its bounding rectangle, the minimal congruency
set consists of the two triangles {(0, 0), (a1, a2), (b1, b2)} and {(0, 0), (a2, a1), (b2, b1)}.
This is shown in Figure 19.

Call the congruency class of OAB minimal if it contains only the triangles in the minimal
congruency set.

For angle θ and lattice point P , we say that P is rotatable by θ if the rotation of P
counterclockwise about the origin by θ is also a lattice point. Call P rotatable if there
exists θ ̸∈ {0◦, 90◦, 180◦, 270◦} such that P is rotatable by θ. Note that P is rotatable by

the electronic journal of combinatorics 31(2) (2024), #P2.24 10



O

A

B

O

A

B

O

A

B

O

A

B

Figure 18: First type of minimal congruency class

O

A

B

O

A

B

Figure 19: Second type of minimal congruency class

θ if and only if it is rotatable by θ+90◦, so if it is rotatable then there exists 0 < θ < 90◦

such that P is rotatable by θ.
Similarly, for triangle OAB and angle θ, we say that OAB is rotatable by θ if A and B

are both rotatable by θ, and that OAB is rotatable if there exists θ ̸∈ {0◦, 90◦, 180◦, 270◦}
such that A and B are both rotatable by θ.

We now show that rotatability of a triangle is linked to minimality of its congruency
class:

Lemma 5. If a scalene non-right triangle with one vertex at the origin is not rotatable,
then its congruency class is minimal.

Proof. Suppose for the sake of contradiction there existed a triangle OAB (in the first
quadrant) which is not rotatable but also not minimal; by the latter assumption there
exists another triangle OCD (also in the first quadrant) such that {OCD} ∼= {OAB} and
OCD is not in OAB’s minimal congruency set. If triangles {OCD} and {OAB} are not
oriented identically (i.e. the isometry mapping one to the other is a rotation rather than
a glide reflection), then reflect OCD over the line y = x to make it oriented identically to
OAB while keeping it in the first quadrant.

Consider the point order of the congruence. If OCD ∼= OAB, then OCD must be
OAB, since otherwise would contradict rotatability of OAB. However, this contradicts
the assumption that OCD is not one of the triangles in OAB’s minimal congruency set.
Similarly ODC ∼= OAB leads to contradiction.

Otherwise, without loss of generality assume that DOC ∼= OAB, then translate DOC
to OEF as illustrated in Figure 20, so OEF ∼= OAB implies, by the non-rotatability
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Figure 20: Positioning of triangles OAB, OCD, and OEF .

(a, b)

(c, d)

θ

Figure 21: (a, b) is rotatable by angle θ, and tan θ =
d
c
− b
a

1+
d
c
· b
a

= ad−bc
ac+bd

.

assumption, that OEF is a rotation of OAB by an integer multiple of 90◦. The translation
sends D to O and O to E, so D and E are reflections over O. The only rotation of OAB
by an integer multiple of 90◦ to OEF such that the reflection of E over O is in the first
quadrant is the rotation by 180◦, so OEF is the 180◦ rotation of OAB, This implies D = A
and C = A − B (denoting vector subtraction), which again contradicts the assumption
that OCD is not one of the triangles in OAB’s minimal congruency set.

Note that if a non-origin lattice point P is rotatable by 0◦ < θ < 90◦, then cos θ and
sin θ must be rational, so can be expressed as p

r
and q

r
for primitive Pythagorean triple

(p, q, r).

Lemma 6. Let (p, q, r) be a primitive Pythagorean triple, and let θ = arccos(q/r) =
arcsin(p/r). The number of points in [N ]× [N ] rotatable by θ is at most

0 if 2N2 < r,

N if N ⩽ r ⩽ 2N2,

r⌈N/r⌉2 if r < N.

Proof. If r > 2N2 then no points are rotatable by θ, since if (a, b) ∈ [N ]× [N ] rotates to
(c, d) then a2 + b2 = c2 + d2 and θ = arctan

(
ad−bc
ac+bd

)
(see Figure 21) hence p

q
= ad−bc

ac+bd
so

r ⩽
√

(ad− bc)2 + (ac+ bd)2 =
√

(a2 + b2)(c2 + d2) = a2 + b2 < 2N2, contradiction.
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In the remaining cases, it will be useful to note that (a, b) rotates by θ to
(
ap−bq

r
, aq+bp

r

)
,

which means (a, b) is rotatable by θ if and only if ap ≡ bq (mod r).
The above implies that there is exactly one point rotatable by θ in any 1× r subrow

of the lattice. If N ⩽ r then one can cover [N ]× [N ] in N such subrows, so the number
of lattice points rotatable by θ in [N ] × [N ] is at most N . If r < N then one can cover
[N ]× [N ] in ⌈N/r⌉2 squares of size r, each having r points rotatable by θ, so the number
of points rotatable by θ is at most r⌈N/r⌉2.

We now present a refinement of the middle case of Lemma 6 that holds when r is
sufficiently large.

Lemma 7. Let M > 4 be an arbitrarily chosen positive integer, let (p, q, r) be a primitive
Pythagorean triple, and let θ = arccos( q

r
) = arcsin(p

r
). If r ⩾ 2M4N and N ⩾ M5, the

number of points in [N ]× [N ] rotatable by θ is at most N/M .

Proof. From the observations in the proof of Lemma 6, letting c = p−1q (mod r), rotata-
bility by θ can be expressed as a ≡ bc (mod r). Hence rotatability by θ is a linear relation,
i.e. if points S and T are rotatable by θ then so are uS + vT for any u, v ∈ Z. Note that
the points rotatable by θ in [N ]× [N ] are in the form of (cb mod r, b) for 0 ⩽ b < N and
0 ⩽ cb mod r < N .

Since r > N , there is at most one point rotatable by θ per row of [N ] × [N ] by the
above reasoning. Suppose there were more than N/M points rotatable by θ contained
in [N ] × [N ]; then by the Pigeonhole Principle there exist 0 ⩽ b1 < b2 < N such that
b2 − b1 < M , and the rows b1, b2 both contain points rotatable by θ in [N ]× [N ]. Let the
vector connecting these points be (u, v) with v > 0, so we have 0 < v < M . Meanwhile
by Lemma 6, since r ⩾ 2M4N > 2M4, no point (a, b) with a, b ⩽ M2 is rotatable by θ so
M2 < |u| ⩽ N . Note that

∣∣ v
u

∣∣ < M
M2 = 1

M
.

For any b, consider the rows b, b+ v, . . . , b+ 2M4
⌊

N
|u|

⌋
v. The corresponding columns

for rotatable points by θ in [r]× [r] in those rows are, respectively,{
a, a+ u, . . . , a+ 2M4

⌊
N

|u|

⌋
u

}
(mod r)

for a ≡ cb (mod r). Note that the largest difference in the set of column indices above is
2M4

⌊
N
|u|

⌋
|u| ⩽ 2M4N ⩽ r, so this set of lattice points “wraps around” the modulus r at

most once (see Figure 22).
After removing the last element from the set, the remaining corresponding columns{

a, a+ u, . . . , a+

(
2M4

⌊
N

|u|

⌋
− 1

)
u

}
(mod r)

when reduced to residues modulo r are all spaced a distance of at least u from each other.
Thus the square grid [N ]× [N ] can contain at most

⌈
N
|u|

⌉
points rotatable by θ from this

set, by counting columns.
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P0

P1

P2

P
2M4⌊ N

|u|⌋−1

P
2M4⌊ N

|u|⌋

(0, 0) (r, 0)

Figure 22: Rotatable points differing by a multiple of (u, v), here indexed by Pk = (a+ku
mod r, b+ kv).

Partition the rows of [N ]× [N ] into sets of the form{
k, k + v, . . . , k +

(
2M4

⌊
N

|u|

⌋
− 1

)
v

}
such that each row is in at least one set. One can do this with at most v

⌈
⌈N/v⌉

2M4⌊N/|u|⌋

⌉
sets.

Since |u| < N , we have
⌊

N
|u|

⌋
⩾ 1, so

⌊
N
|u|

⌋
⩾ 1

2
· N
|u| . This implies the number of sets is at

most ⩽ v

(
1 +

1+N
v

M4

|u| N

)
.

We know each of these sets contains at most
⌈

N
|u|

⌉
rows with points rotatable by θ in

[N ]× [N ], so the number of points rotatable by θ in [N ]× [N ] is at most

v

(
1 +

1 + N
v

M4

|u| N

)⌈
N

|u|

⌉
⩽ v

(
1 +

1 + N
v

M4

|u| N

)(
1 +

N

|u|

)
.

We now finish the calculation, recalling that N ⩾ M5, 0 < v < M , and M2 < |u| < N :

v

(
1 +

1 + N
v

M4

|u| N

)(
1 +

N

|u|

)
= v

(
1 +

(
1 +

N

|u|

)(
1 + N

v

M4

|u| N

)
+

N

|u|

)

⩽ v

(
1 +

2N

|u|

2N
v

M4

|u| N
+

N

M2

)

⩽ M +
4N

M4
+ v

(
N

M2

)
⩽ N

M3
+ v

(
N

M2

)
⩽ N

M3
+ (M − 1)

(
N

M2

)
⩽ N

M
,
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Let P denote the set of primitive Pythagorean triples, where triples (p, q, r) and (q, p, r)
are counted separately.

Lemma 8. The number of rotatable triangles in [N ]× [N ] with one vertex at the origin
is at most

N4

 ∑
(p,q,r)∈P

1

2r2

+ o(N4) ⩽ 0.0633N4 + o(N4).

Proof. Let N > 55 and M = ⌊ 5
√
N⌋. We begin by upper-bounding the number of rotatable

triangles in [N ] × [N ]. This may be done by finding the number of triangles which are
rotatable by θ for each θ, then summing over all θ. Take N large and M ⩽

√
N ; use f(θ)

to denote the number of points in [N ]× [N ] rotatable by θ.
The number of rotatable triangles contained in [N ]× [N ] is at most∑

0◦<θ<90◦

(
f(θ)

2

)
=

∑
(p,q,r)∈P

(
f(arctan(q/p))

2

)
.

By Lemma 6 and Lemma 7,∑
0◦<θ<90◦

(
f(θ)

2

)
⩽

∑
(p,q,r)∈P

r<N

(
r⌈N/r⌉2

2

)
+

∑
(p,q,r)∈P

N⩽r<2M4N

(
N

2

)
+

∑
(p,q,r)∈P

2M4N⩽r⩽2N2

(
N/M

2

)
.

The first summand is at most N4
∑

(p,q,r)∈P
1

2r2
+ o(N4). Since the number of primitive

Pythagorean triples with hypotenuse less than k, counting (p, q, r) and (q, p, r) separately,
is k

π
+ o(k) [8, 327-328], the second summand is o(N4) and the third summand is at most

N4

πM2 + o(N4).
Thus the number of rotatable triangles is at most

N4

 ∑
(p,q,r)∈P

1

2r2
+

1

πM2

+ o(N4).

Since M = ⌊ 5
√
N⌋, the N4 1

πM2 term is o(N4). Hence the number of rotatable triangles in
[N ]× [N ] is at most

N4

 ∑
(p,q,r)∈P

1

2r2

+ o(N4).

It remains to give the numerical upper bound on
∑

(p,q,r)∈P
1

2r2
. It is well-known that

any primitive Pythagorean triple (p, q, r) can be expressed as (m2 − n2, 2mn,m2 + n2)
or (2mn,m2 − n2,m2 + n2) for positive integers m and n. Since m2 + n2 ⩽ r, we have
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n ⩽ √
r. This means the number of primitive Pythagorean triples with hypotenuse r is

at most 2
√
r. The rest is a straightfoward computer-assisted computation:∑

(p,q,r)∈P

1

2r2
=

∑
(p,q,r)∈P
r⩽105

1

2r2
+

∑
(p,q,r)∈P
r>105

1

2r2

⩽
∑

(p,q,r)∈P
r⩽105

1

2r2
+

∞∑
r=105

√
r

r2

⩽ 1

2
(0.1137) + 0.0064 < 0.0633.

where the former summand is evaluated by enumerating the finite number of triples
and summing, while the latter summand is evaluated by upper-bounding with a Riemann
integral. (Here, the index cutoff of 105 was arbitrarily chosen to facilitate the computation;
the constant may be reduced slightly by increasing the index cutoff and employing more
computational power.)

We are now ready to prove Theorem 2. It is equivalent to prove the following:

Theorem 9. The number of distinct triangles in [N ]× [N ] is between 0.1558N4 + o(N4)
and 0.1875N4 + o(N4).

Proof. As noted before, it suffices to count the number of congruency classes of triangles
with at least one vertex at the origin.

The total number of such triangles is
(
N2−1

2

)
= 1

2
N4 + o(N4). Since any line contains

at most N points inside [N ] × [N ], the number of right triangles and isosceles triangles
are both o(N4), so the number of scalene non-right triangles is 1

2
N4 + o(N4).

(a1, a2)

(b1, b2)

(b1, a2)

(a1, b2)

Figure 23: Pairing of triangles having two and three vertices on bounding box.

Furthermore, consider pairing triangles {(0, 0), (a1, a2), (b1, b2)} and
{(0, 0), (a,b2), (a2, b1)} (see Figure 23). This pairs the scalene non-right triangles with
three vertices on its bounding box and the scalene non-right triangles with two vertices
on its bounding box, except for o(N4) exceptions (where the pair of a scalene non-right
triangle is paired with an isosceles or a right triangle). This implies that the number of
scalene non-right triangles with three vertices on its bounding box and the number of
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scalene non-right triangles with two vertices on its bounding box are identical up to a
constant difference of o(N4). Hence the number of each is 1

4
N4 + o(N4).

Let A be the number of rotatable triangles in [N ] × [N ] having three vertices on its
bounding box, and B be the number of rotatable triangles [N ]× [N ] having two vertices
on its bounding box. By Lemma 8, A+B ⩽ 0.0633N4 + o(N4).

The number of non-rotatable scalene non-right triangles having three vertices on its
bounding box is therefore 0.25N4 − A+ o(N4), and the number of non-rotatable scalene
non-right triangles having two vertices on its bounding box is 0.25N4 − B + o(N4).

By Lemma 5, non-rotatable scalene non-right triangles have minimal congruency
classes. The minimal congruency set of scalene non-right triangles with three vertices
on its bounding box consists of exactly 2 triangles, each with three vertices on their
bounding boxes; the minimal congruency set of scalene non-right triangles with two ver-
tices on its bounding box consists of exactly 4 triangles, each with two vertices on their
bounding boxes. Hence the number of congruency classes is at least

0.25N4 − A+ o(N4)

2
+

0.25N4 − B + o(N4)

4
⩾ 0.1875N4 − A+B

2
+ o(N4),

which is greater than 0.1558N4 + o(N4) as desired.
Meanwhile, since the congruency class of any scalene non-right triangle contains at

least the triangles given by its minimal congruency set, we have the number of congruency
classes total is at most

0.25N4 + o(N4)

2
+

0.25N4 + o(N4)

4
= 0.1875N4 + o(N4).

4 Conjectures

We present several natural conjectures based on this work. Firstly, observing that the
regular heptagon has 4 distinct triangles, we conjecture that this is optimal:

Conjecture 10. The maximum number of points in the plane spanning four distinct
triangles is 7, achieved only by the regular heptagon.

In light of work done in 1 and 2 distinct triangles in higher dimensions [3, 2], we also
suspect the maximum number of points in R3 spanning three distinct triangles may be 8,
e.g. is achievable by the vertices of a cube.

It would be interesting to determine the true constant c for which the n-point square
lattice determines cn2 + o(n2) distinct triangles.

In addition, we have numerical evidence suggesting that the equilateral triangular
lattice has more triangles than the square lattice: note that in the N × N triangular
lattice, by a similar translational argument to the square lattice, it suffices to count
triangles with at least one vertex on either a 60◦ or a 120◦ corner of the lattice. We
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used a computer program to count the number of distinct triangles TN in such a grid,
and computed TN

N4 for 1 ⩽ N ⩽ 250; a curvefit suggests that a triangular lattice of n
points spans approximately 0.2n2 distinct triangles. Thus, we would like to also exclude
the triangular lattice from optimal configurations. We more strongly conjecture that no
two-dimensional lattice has asymptotically fewer distinct triangles than the square lattice:

Conjecture 11. Let c0 be the real number such that the n-point square lattice spans
c0n

2 + o(n2) distinct triangles. Then for any distinct nonzero vectors a, b ∈ R2, the n-
point lattice generated by a and b, i.e. {ua+ vb | 0 ⩽ u, v <

√
n, u, v ∈ Z}, spans at least

c0n
2 + o(n2) distinct triangles.

The investigation of non-rectangular lattice point sets could also be relevant to the
discussion of this problem. For instance, one might consider the hexagonal grid formed
by the triangular lattice, or sets of points formed by taking the intersection of a disk
with any lattice. The authors believe this analysis will be more technically challenging,
but may yield interesting results in the way of lower constant factors on the number of
distinct triangles.
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