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Abstract

Let Γ denote a distance-regular graph with diameter D 󰃍 3. Jurǐsić and Vidali
conjectured that if Γ is tight with classical parameters (D, b,α,β), b 󰃍 2, then Γ is
not locally the block graph of an orthogonal array nor the block graph of a Steiner
system. In the present paper, we prove this conjecture and, furthermore, extend
it from the following aspect. Assume that for every triple of vertices x, y, z of Γ,
where x and y are adjacent, and z is at distance 2 from both x and y, the number
of common neighbors of x, y, z is constant. We then show that if Γ is locally the
block graph of an orthogonal array (resp. a Steiner system) with smallest eigenvalue
−m, m 󰃍 3, then the intersection number c2 is not equal to m2 (resp. m(m+ 1)).
Using this result, we prove that if a tight distance-regular graph Γ is not locally the
block graph of an orthogonal array or a Steiner system, then the valency (and hence
diameter) of Γ is bounded by a function in the parameter b = b1/(1 + θ1), where b1
is the intersection number of Γ and θ1 is the second largest eigenvalue of Γ.

Mathematics Subject Classifications: 05E30

1 Introduction

Let Γ denote a distance-regular graph with diameter D 󰃍 3, intersection numbers ai, bi, ci
(0 󰃑 i 󰃑 D), and eigenvalues k = θ0 > θ1 > · · · > θD. Jurǐsić, Koolen, and Terwilliger [8]
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showed that Γ satisfies the following inequality:

󰀕
θ1 +

k

a1 + 1

󰀖󰀕
θD +

k

a1 + 1

󰀖
󰃍 − ka1b1

(a1 + 1)2
. (1)

We say Γ is tight whenever Γ is nonbipartite and equality holds in (1). Tight distance-
regular graphs have been studied with considerable attention and characterized in various
ways; see [6, 7, 16, 17]. A notable characterization is that, for each vertex x in a tight
distance-regular graph, its local graph at x is a connected strongly regular graph with
eigenvalues

a1, r := −1− b1
1 + θD

, s := −1− b1
1 + θ1

, (2)

see [8, Theorem 12.6]. Suppose that Γ is tight with D 󰃍 3, and let ∆ denote a local graph
of Γ. We observe that ∆ is a connected strongly regular graph with eigenvalues a1, r, s.
Throughout this paper, we assume that r and s are integers. Because if they are not,
∆ is a conference graph, which implies that Γ is a Taylor graph; see [12, 13]. Therefore,
further discussion of Γ in this paper is unnecessary when r and s are not integers.

Suppose that s 󰃑 −2, that is, the smallest eigenvalue of ∆ is less than or equal to −2. For
notational convenience, we set m := −s and n := r−s. By Sims’ result (cf. [15, Theorem
5.1]), ∆ belongs to one of the following families: (i) complete multipartite graphs with
classes of size m, (ii) block graphs of orthogonal arrays OA(m,n), (iii) block graphs of
Steiner systems S(2,m,mn+m− n), (iv) finitely many further graphs. If Γ has classical
parameters (D, b,α, β), then in case (i), Γ is the complete multipartite graph K(n+1),m

with D = 2 [3, Proposition 1.1.5]. For cases (ii) and (iii), when Γ has diameter D = 3,
we must have b = 1. This restriction implies that Γ is one of the following three graphs:
the Johnson graph J(6, 3), the halved 6-cube, or the Gosset graph E7(1); see [11, Section
7]. Hence, our focus lies on cases where D 󰃍 4 and b 󰃍 2. Jurǐsić and Vidali posed the
following conjecture:

Conjecture 1 ([11, Conjecture 2]). Let Γ be a tight distance-regular graph with classical
parameters (D, b,α, β), b 󰃍 2, and diameter D 󰃍 4. For a vertex u of Γ, the local graph
of Γ at u is not the block graph of an orthogonal array or a Steiner system.

In the present paper, we prove this conjecture and extend it to the case where a
tight distance-regular graph Γ has no classical parameters; see Theorem 23 and Corollary
17. Furthermore, we extend the conjecture from the following viewpoint. Let Γ be a
distance-regular graph with diameter D 󰃍 3. Note that a tight distance-regular graph is
1-homogeneous in the sense of Nomura [8, Theorem 11.7]. We consider a regular property
for Γ that is a more general concept than the 1-homogeneous property: we say the (triple)
intersection number γ(Γ) exists if, for every triple of vertices (x, y, z) of Γ such that x
and y are adjacent and z is at distance 2 from both x and y, the number of common
neighbors of x, y, and z is constant and equal to γ(Γ). To avoid the degenerate case, we
assume that there exists at least one such triple (x, y, z) in Γ (i.e., a2 ∕= 0) when we say
γ(Γ) exists. The result of our extension is the main result of this paper and is as follows:
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Theorem 2. Let Γ be a distance-regular graph with diameter D 󰃍 3, valency k, and
intersection number c2. Assume that Γ is locally strongly regular with smallest eigenvalue
−m, where m 󰃍 3, and the intersection number γ(Γ) exists. Then the following (i) and
(ii) hold.

(i) If Γ is locally the block graph of an orthogonal array and k > m2, then c2 ∕= m2.

(ii) If Γ is locally the block graph of a Steiner system and k > m(m + 1), then c2 ∕=
m(m+ 1).

Theorem 2 is relevant to the problem of determining an upper bound on the diameter
of a tight distance-regular graph. In the theory of distance-regular graphs, establishing
an upper bound for the diameter of distance-regular graphs in terms of some intersection
numbers is an important problem. In particular, with respect to the valency k = b0,
various bounds for the diameter have been known and have contributed to the theory of
distance-regular graphs; see [14]. One of the significant results of these contributions is
the proof of the Bannai-Ito conjecture [1, p. 237] by Bang, Dubickas, Koolen, and Moulton
[2].

Bannai-Ito Conjecture. There are finitely many distance-regular graphs with fixed
valency at least three.

To prove this conjecture, they demonstrated that the diameter of the distance-regular
graph is bounded by a univariate function with the variable valency k. Returning our
attention to the present paper, we will discuss an upper bound on the diameter in a tight
distance-regular graph using a specific parameter, distinct from valency k. Specifically, by
utilizing the result of Theorem 2, we will show that when a tight distance-regular graph
is not locally the block graph of an orthogonal array or a Steiner system, its diameter is
bounded by a function of the parameter b = b1/(1 + θ1). We present this finding in the
following theorem.

Theorem 3. Let Γ be a tight distance-regular graph with diameter D 󰃍 3, intersection
number b1, and eigenvalues k > θ1 > · · · > θD. Define

b := b1/(1 + θ1).

We assume b 󰃍 2. If a local graph of Γ is neither the block graph of an orthogonal array
nor the block graph of a Steiner system, then the valency k (and hence diameter D) of Γ
is bounded by a function of b.

In Remark 26, we give an explicit bound in terms of b for the valency of Γ. From Theorem
3, it follows that the diameter of a tight distance-regular graph with classical parameters
(D, b,α, β), D 󰃍 3, and b 󰃍 2, is bounded by a function of b; see Corollary 27.

This paper is organized as follows. In Section 2, we present basic definitions and some
known results about distance-regular graphs. Section 3 discusses the block graph of an
orthogonal array and its properties. We then analyze the structure of the µ-graph of an
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amply regular graph that is locally the block graph of an orthogonal array. Following
that, Section 4 covers the block graph of a Steiner system and its properties. We also
analyze the structure of the µ-graph of an amply regular graph that is locally the block
graph of a Steiner system. In Section 5, we revisit results related to the triple intersection
number of a distance-regular graph and dedicate this section to proving our main result,
Theorem 2. We conclude this section with a discussion of the case of tight distance-regular
graphs with diameter three. Section 6 provides the proof of Conjecture 1 using Theorem
2. Finally, the paper concludes in Section 7 with the proof of Theorem 3 and a discussion
of further direction.

2 Preliminaries

In this section, we review the basic definitions and some known results concerning
distance-regular graphs that we will use later. For more background information, refer to
[3].

Throughout this section, let Γ denote a finite, undirected, connected, and simple
graph. We denote V (Γ) by the vertex set of Γ. For vertices x, y ∈ V (Γ), the distance
between x and y, denoted as ∂(x, y), is the length of a shortest path from x to y in Γ.
The diameter D of Γ is the maximum value of ∂(x, y) for all pairs of vertices x and y
of Γ. Suppose that Γ has diameter D. For x ∈ V (Γ) and an integer 0 󰃑 i 󰃑 D, define
Γi(x) = {y ∈ V (Γ) | ∂(x, y) = i}. Abbreviate Γ(x) = Γ1(x). For an integer k 󰃍 0 we say
Γ is regular with valency k (or k-regular) if |Γ(x)| = k for every x ∈ V (Γ).

We now recall some special regular graphs. We say the graph Γ is distance-regular
whenever for all integers 0 󰃑 h, i, j 󰃑 D and for all vertices x, y ∈ V (Γ) with ∂(x, y) = h,
the number phi,j = |Γi(x)∩Γj(y)| is independent of x and y. The numbers phi,j are called the
intersection numbers of Γ. By construction, we observe that phi,j = phj,i for 0 󰃑 i, j, h 󰃑 D.
We abbreviate

ci = pi1,i−1, ai = pi1,i, bi = pi1,i+1, (0 󰃑 i 󰃑 D).

Observe that Γ is regular with valency k = b0. Moreover, we note that a0 = bD =
c0 = 0, c1 = 1, and ai + bi + ci = k for 0 󰃑 i 󰃑 D. We refer to the sequence
{b0, b1, . . . , bD−1; c1, c2, . . . , cD} as the intersection array of Γ. Next, consider the following
regularity properties of the graphs below:

(i) Every pair of adjacent vertices has precisely λ common neighbors.

(ii) Every pair of vertices at distance 2 has precisely µ common neighbors.

(iii) Every pair of nonadjacent vertices has precisely µ common neighbors.

Let Γ be κ-regular with ν vertices. We say Γ is amply regular with parameters (ν,κ,λ, µ)
if (i) and (ii) hold. We also say Γ is strongly regular with parameters (ν,κ,λ, µ) if (i) and
(iii) hold. Observe that every distance-regular graph is amply regular with λ = a1 and
µ = c2. Moreover, every distance-regular graph with D 󰃑 2 is strongly regular. If Γ is a
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connected strongly regular graph with parameters (ν,κ,λ, µ) and diameter two, then it
has precisely three distinct eigenvalues κ > r > s, satisfying

ν =
(κ− r)(κ− s)

κ+ rs
, λ = κ+ r + s+ rs, µ = κ+ rs. (3)

The following is an example of a strongly regular graph for later use in this paper.

Example 4. A generalized quadrangle is an incidence structure such that: (i) every pair
of points is on at most one line, and hence every pair of lines meets in at most one point,
(ii) if p is a point not on a line L, then there is a unique point p′ on L such that p and
p′ are collinear. If every line contains s + 1 points, and every point lies on t + 1 lines,
we say that the generalized quadrangle has order (s, t), denoted by GQ(s, t). The point
graph of a generalized quadrangle is the graph with the points of the quadrangle as its
vertices, where two points are adjacent if and only if they are collinear. The point graph
of a GQ(s, t) is strongly regular with parameters

ν = (s+ 1)(st+ 1), κ = s(t+ 1), λ = s− 1, µ = t+ 1.

We recall the notion of a complete multipartite graph. A clique in Γ is a subset of
V (Γ) such that every pair of distinct vertices is adjacent. A clique of size n is referred to
as a complete graph Kn. A coclique of Γ is a subset of V (Γ) such that no two vertices are
adjacent. A complete bipartite graph Km,n is a graph whose vertex set can be partitioned
into two cocliques, say an m-set M and an n-set N , where each vertex in M is adjacent
to all vertices in N . A complete multipartite graph Kt×n is a graph whose vertex set can
be partitioned into cocliques {Mi}ti=1 of size n, where each vertex in Mi is adjacent to all
vertices in Mj (1 󰃑 j ∕= i 󰃑 t). We note that K2×m is the same as Km,m.

Next, we recall the concepts of a local graph and a µ-graph. For a vertex x ∈ V (Γ),
let ∆(x) denote the subgraph of Γ induced on Γ(x). We call ∆(x) the local graph of Γ at
x. Let P be a property of a graph or a family of graphs. We say Γ is locally P whenever
every local graph of Γ has the property P or belongs to the family P . For example, we
say Γ is locally complete multipartite or locally strongly regular. Suppose that Γ is amply
regular with parameters (ν,κ,λ, µ). For two vertices x, y with ∂(x, y) = 2, the subgraph
of Γ induced on Γ(x) ∩ Γ(y) is called a µ-graph of Γ. If Γ is distance-regular, a µ-graph
is often called a c2-graph of Γ.

Lemma 5 ([3, Proposition 1.3.2]). Let Γ be a regular graph with v vertices, valency k,
and smallest eigenvalue −m.

(i) If C is a coclique of Γ, then |C| 󰃑 v(1 + k/m)−1, with equality if and only if every
vertex outside C has exactly m neighbors in C.

(ii) If Γ is strongly regular and C is a clique of Γ, then

|C| 󰃑 1 + k/m, (4)

with equality if and only if every vertex outside C has exactly µ/m neighbors in C,
where µ is the number of common neighbors of any two nonadjacent vertices.
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The upper bound for the size of a clique in (4) is called the Hoffman bound (or Delsarte
bound). If a clique C in a distance-regular graph attains the Hoffman bound, we call C a
Delsarte clique.

Lemma 6. Let Γ be an amply regular graph with parameters (ν, k, a1, c2). Assume that
Γ is locally strongly regular with parameters (k, a1,λ, µ). For a vertex x of Γ, let ∆(x) be
the local graph of Γ at x with smallest eigenvalue −m. If C is a Delsarte clique of ∆(x),
then a vertex at distance two from x either has 1 + µ/m neighbors in C or no neighbors
in C.

Proof. Let z be a vertex of Γ at distance two from x. Suppose that the Delsarte clique
C has a neighbor of z. We will show that the number of neighbors of z in C is 1 + µ/m.
Select a vertex y ∈ C that is adjacent to z. Consider the local graph ∆(y) in Γ, and
note that ∆(y) is strongly regular with smallest eigenvalue −m. Now, consider the vertex
subset C ′ = C ∪ {x} \ {y} in Γ. Obviously, C ′ forms a clique in ∆(y) of the same size as
C. Hence, C ′ is a Delsarte clique of ∆(y). Since ∆(y) is strongly regular and z ∈ ∆(y) is
not an element of C ′, Lemma 5(ii) implies that z has µ/m neighbors in C ′. Therefore, z
has precisely 1 + µ/m neighbors in C.

We recall the Q-polynomial property. Let Γ be distance-regular with diameter D 󰃍 3.
We abbreviate the vertex set as X = V (Γ). We denote MatX(R) as the R-algebra
consisting of real matrices, where both rows and columns are indexed by X. For each
integer 0 󰃑 i 󰃑 D, define the matrix Ai ∈ MatX(R) with (x, y)-entry 1 if ∂(x, y) = i and
0 otherwise. Observe that

AiAj =
D󰁛

h=0

phi,jAh (0 󰃑 i, j 󰃑 D).

It is known that the matrices {Ai}Di=0 form a basis for a commutative subalgebra M of
MatX(R). We call M the Bose-Mesner algebra of Γ. The algebra M has a second basis
{Ei}Di=0 such that EiEj = δi,jEi (0 󰃑 i, j 󰃑 D), where the matrices Ei (0 󰃑 i 󰃑 D) are
called the primitive idempotents of Γ. We note that M is closed under the entrywise
multiplication ◦ since Ai ◦ Aj = δi,jAi. Thus, there exist real numbers qhi,j such that

Ei ◦ Ej = |X|−1

D󰁛

h=0

qhi,jEh (0 󰃑 i, j 󰃑 D).

An ordering {Ei}Di=0 is called Q-polynomial whenever for all distinct h, j (0 󰃑 h, j 󰃑 D)
we have qh1,j = 0 if and only if |h − j| ∕= 1. We say Γ is Q-polynomial whenever there
is a Q-polynomial ordering of the primitive idempotents; cf. [3, p. 235]. Suppose Γ is a
tight distance-regular graph. In [16], several characterizations of Γ with the Q-polynomial
property were introduced. In [8, Section 13(vi)], the authors provided many examples of
Γ, both with and without the Q-polynomial property. Here, we recall one example of Γ
that does not have the Q-polynomial property, which will be used later in this paper.
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Example 7 ([3, Section 13.2.D]). The graph 3.O7(3) is distance-transitive with 1134
vertices and has intersection array {117, 80, 24, 1; 1, 12, 80, 117}. The graph 3.O7(3) is tight
but not Q-polynomial. Each local graph of 3.O7(3) is strongly regular with parameters
(117, 36, 15, 9), and has nontrivial eigenvalues r = 9, s = −3.

We finish this section with one comment. Let Γ be a graph with valency k and diameter
D. It is well-known that the number of vertices is bounded in terms of k and D:

|V (Γ)| 󰃑 1 + k + k(k − 1) + · · ·+ k(k − 1)D−1 =

󰀻
󰀿

󰀽
1 +

k((k − 1)D − 1)

k − 2
k > 2;

2D + 1 k = 2.
(5)

The right-hand side of (5) is called the Moore bound. We call Γ a Moore graph if the
equality in (5) holds. For more detailed information about Moore graphs, see [14].

3 The block graph of an orthogonal array

In this section, we discuss the block graph of an orthogonal array and its properties.
We then analyze the structure of the µ-graphs of an amply regular graph that is locally
the block graph of an orthogonal array. An orthogonal array, denoted as OA(m,n), is
a structured m × n2 array with entries chosen from the set {1, . . . , n}. It possesses the
property that the columns of every 2 × n2 subarray contain all possible n2 pairs exactly
once. In other words, for each pair of rows, every pair of elements from the set {1, . . . , n}
appears precisely once in a column. The block graph of an orthogonal array is a graph
whose vertices are the columns of OA(m,n), where two columns are adjacent if and only
if there exists a row where they share the same entry. We note that the block graph of
OA(m,n) is the same concept as the Latin square graph Lm(n); see [4, Section 8.4].

Lemma 8 (cf. [5, Theorem 5.5.1]). If OA(m,n) is an orthogonal array with n 󰃍 m, then
its block graph is a strongly regular graph with parameters

󰀃
n2, m(n− 1), (m− 1)(m− 2) + n− 2, m(m− 1)

󰀄
. (6)

Moreover, the spectrum of the block graph of OA(m,n) is

󰀕
m(n− 1) n−m −m

1 m(n− 1) (n− 1)(n+ 1−m)

󰀖
.

Using Lemma 5(ii) and Lemma 8, we find that the maximum clique size in the block
graph of OA(m,n) is n. Constructing a Delsarte clique in the block graph of OA(m,n)
is straightforward: for each i ∈ {1, . . . , n}, consider the set Sr,i, which consists of the
columns of OA(m,n) containing the entry i in row r. Note that these sets naturally form
cliques. Furthermore, as each element in {1, . . . , n} appears exactly n times in each row,
the size of each clique Sr,i is n for all i and r. These cliques are referred to as the canonical
cliques of the block graph of OA(m,n).
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Lemma 9. Let Γ be an amply regular graph with parameters (v, k, a1, c2) and locally the
block graph of an orthogonal array OA(m,n). If c2 = m2, then every c2-graph of Γ is the
block graph of an orthogonal array OA(m,m), and therefore, is complete m-partite.

Proof. Observe that for each row r (1 󰃑 r 󰃑 m) in OA(m,n), the set Sr,i (1 󰃑 i 󰃑 n)
forms a canonical clique of size n. Fix a vertex x of Γ, and let ∆ denote the local graph
of Γ at x. By construction of OA(m,n), ∆ consists of n (disjoint) canonical cliques

Sr,1, Sr,2, . . . , Sr,n (1 󰃑 r 󰃑 m).

Note that every vertex of ∆ belongs to exactly m canonical cliques. Fix a row r = 1 and
observe that each S1,i is a canonical clique in ∆. Select a vertex z of Γ at distance two
from the vertex x. Let M = M(x, z) denote the c2-graph of Γ induced by the vertices
x and z. Since c2 = m2, M consists of m2 columns obtained from the orthogonal array
OA(m,n). Let O be the m × m2 array consisting of the vertices of M. We claim that
O has the structure of an orthogonal array OA(m,m), which implies that M is a block
graph of OA(m,m). To prove this claim, we will show that in each row of O, precisely m
distinct symbols occur, each exactly m times. In other words, it is equivalent to proving
that M consists of m disjoint canonical cliques, with each vertex of M being incident to
precisely m canonical cliques.

For 1 󰃑 i 󰃑 n, define Ci := S1,i ∩ Γ(z). Applying Lemma 6, we find that for each i, the
size of Ci is either m or 0. Observe that Ci forms a canonical clique of M if its size is m.
Therefore, {Ci | 1 󰃑 i 󰃑 n,Ci ∕= ∅} is a partition of the vertex set of M into m canonical
cliques of size m. Note that, without loss of generality, we may permute the entries of
OA(m,n) so that Ci = ∅ for all i > m, and thus O consists of the entries {1, 2, . . . ,m}
and each vertex in M is incident to m canonical cliques. Therefore, we conclude that M
is the block graph of OA(m,m).

4 The block graph of a Steiner system

In this section, we discuss the block graph of a Steiner system and its properties. We
then analyze the structure of µ-graph of an amply regular graph that is locally the block
graph of a Steiner system. A Steiner system S(2,m, n) is a 2-(n,m, 1) design, that is, a
collection of m-sets taken from a set of size n, satisfying the property that every pair of
elements from the n-set is contained in exactly one m-set. In this context, the elements
of the n-set are referred to as points, and the m-sets are referred to as blocks of the
system. A straightforward counting argument reveals that the number of blocks in a
Steiner system S(2,m, n) is given by n(n− 1)/m(m− 1), and each point occurs in exactly
(n− 1)/(m− 1) blocks. A Steiner system S(2,m, n) is said to be symmetric if the number
of points is equal to the number of blocks; otherwise, it is regarded as non-symmetric.
The block graph of a Steiner system S(2,m, n) is defined as the graph whose vertices
correspond to the blocks of the system. Two blocks are adjacent in this graph if and only
if they intersect at exactly one point.
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Lemma 10 (cf. [5, Theorem 5.3.1]). The block graph of a non-symmetric Steiner system
S(2,m, n) is a strongly regular graph with parameters

󰀕
n(n− 1)

m(m− 1)
,
m(n−m)

m− 1
, (m− 1)2 +

n− 1

m− 1
− 2, m2

󰀖
. (7)

Moreover, the spectrum of this graph is
󰀣

m(n−m)
m−1

n−m2

m−1
−m

1 n− 1 n(n−1)
m(m−1)

− n

󰀤
. (8)

The block graph of a Steiner system S(2,m,mn+m− n) with n 󰃍 m+ 1 is called a
Steiner graph Sm(n). By Lemma 10, the graph Sm(n) is strongly regular with parameters

󰀕
(m+ n(m− 1))(n+ 1)

m
, mn, m2 − 2m+ n, m2

󰀖
. (9)

Using (4) and (8), we can determine that the size of a maximum clique in the block graph
of a Steiner system S(2,m, n) is (n− 1)/(m− 1). Constructing a Delsarte clique in the
block graph of S(2,m, n) is straightforward: for each i ∈ {1, . . . , n}, we define Si as the
set of all blocks in the design that contain the point i. These cliques Si are referred to as
the canonical cliques of the block graph.

Lemma 11. Let Γ be an amply regular graph with parameters (v, k, a1, c2) and locally the
block grpah of a Steiner system S(2,m, n). If c2 = m(m+ 1), then every c2-graph of Γ is
the block graph of a Steiner system S(2,m,m2), and therefore, is complete (m+1)-partite.

Proof. For a vertex x of Γ, let ∆ denote the local graph of Γ at x, that is, the block graph
of a Steiner system S(2,m, n). We denote its corresponding Steiner system by (P ,B),
where P denotes the set of points and B denotes the set of blocks. Observe that B is the
vertex set of the local graph ∆, and furthermore, |P| = n and |B| = n(n−1)/(m(m−1)).
Select a vertex y of Γ at distance two from the vertex x. Let M(x, y) denote the c2-graph
of Γ induced by the vertices x and y. Let B′ denote the vertex set of M(x, y). Observe
that B′ is a subset of B with cardinality m(m + 1) since c2 = m(m + 1). We define the
subset P ′ of P by

P ′ =

󰀫
p ∈ P

󰀏󰀏󰀏󰀏󰀏 p ∈
󰁞

B∈B′

B

󰀬
.

We claim that |P ′| = m2. To prove this claim, let us consider a vertex B in M(x, y). Since
B is a block in B′, we can write it as B = {p1, p2, . . . , pm}, where pi ∈ P ′ (1 󰃑 i 󰃑 m).
Now, for the point p1 we consider the canonical clique Sp1 of ∆. By Lemma 10 and (7), ∆
is strongly regular with µ = m2. Applying Lemma 6, we find that there are exactly m+1
neighbors of y in Sp1 , denoted as B = B0, B1, . . . , Bm. Observe that each Bi contains
m− 1 points, excluding the common point p1. It implies that the total number of points
in

󰁖m
i=0 Bi is m

2. Since each Bi belongs to B′, all m2 points are elements of P ′. Therefore,
we have |P ′| 󰃍 m2.
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Suppose that |P ′| > m2. Recall the vertices B = {p1, p2, . . . , pm}, B1, . . . , Bm. For 1 󰃑 i 󰃑
m, let Spi denote the canonical clique of ∆ corresponding to the point pi. By construction,
the canonical cliques containing the vertex B are precisely Sp1 , Sp2 , . . . , Spm , and each Spi

has precisely m neighbors of y besides B. Therefore, we obtain m2+1 vertices of M(x, y).
Now, choose a point q ∈ P ′ such that q /∈ Bi for all 0 󰃑 i 󰃑 m. Such a point can be
chosen because |

󰁖m
i=0 Bi| = m2 and by our assumption |P ′| > m2. Note that none of the

points of p1, p2, . . . , pm equals q. Consider the corresponding canonical clique Sq of ∆. It
follows that none of Sp1 , Sp2 , . . . , Spm equals Sq. By Lemma 6, Sq has m + 1 neighbors
of y, denoted as B̌0, B̌1, . . . , B̌m. These blocks {B̌i}mi=0 belong to B′, and each block B̌i

contains the point q, so we obtain m + 1 new vertices in M(x, y). This implies that the
number of vertices of M(x, y) is at least (m2 + 1) + (m + 1) = m2 + m + 2. However,
this contradicts the fact that |B′| = c2 = m2 +m. Hence, we conclude that |P ′| = m2, as
claimed.

Next, we consider the pair (P ′,B′). We will show that this pair forms a 2-(m2,m, 1)
design, that is, each pair of points in P ′ is contained in exactly one block of B′. For each
pair of distinct points p and q in P ′, let Bp,q denote the (unique) block in B that contains
both p and q. We define B′′ as the collection of blocks in B that contain pairs of points
from P ′, i.e., B′′ = {Bp,q ∈ B | p, q ∈ P ′}. We assert that B′ = B′′. First, it is clear that
B′ is a subset of B′′. Next, we determine the cardinality of B′′. To do this, consider the
set

󰀋
({p, q}, B)

󰀏󰀏B ∈ B′′, {p, q} ∈
󰀃
B
2

󰀄󰀌
. Through double-counting the pairs ({p, q}, B),

we find 󰀕
m

2

󰀖
|B′′| 󰃑

󰀕
|P ′|
2

󰀖
.

Simplifying this inequality, we obtain |B′′| 󰃑 m(m+1). On the other hand, since B′ ⊆ B′′

and |B′| = m(m + 1), it follows that |B′′| = m(m + 1). Therefore, we have B′ = B′′, as
asserted. Consequetly, the pair (P ′,B′) possesses the structure of a 2-(m2,m, 1) design.
The result follows.

5 Proof of Theorem 2

In this section, we prove Theorem 2. To do this, we first recall and present some lemmas
required for the proof without providing their proofs.

Lemma 12 (cf. [10, Lemma 4]). For integers t, n 󰃍 2 let Γ be a connected graph of
diameter at least 2, in which every µ-graph is isomorphic to Kt×n. Then Γ is regular.
Moreover, for an arbitrary vertex x of Γ, the local graph ∆ of Γ at x satisfies the following
properties:

(i) ∆ is regular;

(ii) ∆ has diameter 2 and every µ-graph of ∆ is isomorphic to K(t−1)×n;

(iii) ∆ is strongly regular if t 󰃍 3;
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(iv) if the intersection number γ(Γ) exists, then γ(Γ) > 0 and the intersection number
γ(∆) exists with γ(∆) = γ(Γ)− 1.

Lemma 13 (cf. [10, Theorem 8]). For integers t, n 󰃍 2 let Γ be a connected graph in
which every µ-graph is isomorphic to Kt×n. If the intersection number γ(Γ) exists with
γ(Γ) 󰃍 2, then γ(Γ) = t.

Lemma 14 (cf. [10, Theorem 11]). For an integer n 󰃍 3 let Γ be a connected graph in
which every µ-graph is isomorphic to Kn,n. If the intersection number γ(Γ) exists and
γ(Γ) = 2, then Γ is locally GQ(λ/n, n− 1). In particular, Γ has diameter 2 if and only if
Γ is locally GQ(n− 1, n− 1).

Lemma 15 (cf. [10, Theorem 12]). For integers t 󰃍 1 and n 󰃍 3 let Γ be a connected
graph in which every µ-graph is isomorphic to Kt×n. If the intersection number γ(Γ)
exists, then t 󰃑 4. Moreover, equality holds only if Γ is the unique distance-regular graph
3.O7(3), which is locally locally locally GQ(2, 2).

Now we are ready to prove Theorem 2.

Proof of Theorem 2. Let ∆ denote the local graph of Γ at a vertex x ∈ V (Γ). Since
∆ is strongly regular, we denote its parameters as (k, a1,λ, µ) and its eigenvalues as
a1 > r > −m, where a1 is the intersection number of Γ. For notational convenience, we
let n = r + m. Now, we consider each case: (i) ∆ is the block graph of an orthogonal
array, and (ii) ∆ is the block graph of a Steiner system.

Case (i): Suppose ∆ is the block graph of an orthogonal array with k > m2. Assume that
c2 = m2; we will derive a contradiction from this assumption. To this end, we consider
the c2-graphs of Γ. By Lemma 9, every c2-graph of Γ is the block graph of OA(m,m),
which is isomorphic to Km×m, where m 󰃍 3.

We claim that m = 3. To show this, we consider the (triple) intersection number γ(Γ).
We assert that γ(Γ) 󰃍 2. Suppose that γ(Γ) = 1. Choose a vertex z at distance two from
x, and then choose a vertex y that is adjacent to both x and z. Next, choose a Delsarte
clique C of ∆ that contains y. Consider the subset Nz := C ∩ Γ(z) of C. Note that
Nz is not empty since y ∈ Nz. By Lemma 6, and since µ = m(m − 1) by (6), we have
|Nz| = 1+ µ/m = m. Since n > m, one can choose a vertex y′ ∈ C \Nz. Considering the
triple of vertices (x, y′, z) and using the assumption γ(Γ) = 1, it follows that Nz = {y}.
Thus, |Nz| = m = 1, which contradicts m 󰃍 3. Therefore, we have γ(Γ) 󰃍 2, as asserted.
Since the c2-graph of Γ is isomorphic to Km×m and the intersection number γ(Γ) exists
with γ(Γ) 󰃍 2, by applying Lemma 13 to Γ we obtain γ(Γ) = m. In addition, applying
Lemma 15 to Γ and considering the given condition m 󰃍 3, we have 3 󰃑 m 󰃑 4. If m = 4,
by Lemma 15, Γ must be the distance-regular graph 3.O7(3). In this case, referring to
Example 7, ∆ has the smallest eigenvalue −3, namely m = 3, contradicting the given
m = 4. Therefore, we rule out the case m = 4. Consequently, we have m = 3, as claimed.

From the claim, it follows that the c2-graph of Γ is isomorphic to K3×3. With this
comment, we apply Lemma 12 to Γ, obtainining that every µ-graph of ∆ is isomorphic
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to K2×3, and the intersection number γ(∆) exists with γ(∆) = γ(Γ) − 1 = 3 − 1 = 2.
Subsequently, by applying Lemma 14 to ∆, we conclude that ∆ is locally GQ(2, 2).

However, this is impossible for the following reasons. Choose a vertex v in ∆ and consider
the local graph ∆(v) of ∆ at v. Then ∆(v) is GQ(2, 2), a strongly regular graph with
parameters (15, 6, 1, 3). By (4), the maximal size of a clique of ∆(v) is 3. But we can find
a clique of size 5 within ∆(v) as follows. Consider a Delsarte clique C of ∆ containing
v. Since |∆(v)| = 15, it follows that a1 = 15, which is the valency of ∆. Recall m = 3,
where −m is the smallest eigenvalue of ∆. By (4), we have |C| = 1 + a1/m = 6. Since
C \ {v} is a clique in ∆(v), we find that ∆(v) contains a clique of size 5. This contradicts
the requirement that the maximal size of a clique in ∆(v) is 3. Therefore, ∆ cannot be
locally GQ(2, 2). Consequently, we conclude c2 ∕= m2.

Case (ii): The proof is similar to Case (i). Suppose ∆ is the block graph of a Steiner
system with k > m(m+ 1). Assume that c2 = m(m+ 1). By Lemma 11, every c2-graph
of Γ is the block graph of a Steiner system S(2,m,m2), which is isomorphic to Km×(m+1).
We determine the intersection number γ(Γ). Using the same argument as in the proof
of Case (i), we find that γ(Γ) = m = 3. Therefore, every c2-graph of Γ is isomorphic
to K3×4. By Lemma 12, every µ-graph of ∆ is isomorphic to K2×4 and the intersection
number γ(∆) is 2. Therefore, by Lemma 14, ∆ is locally GQ(3, 3). However, this is
impossible for the following reasons. Choose a vertex v in ∆. Then, the local graph ∆(v)
of ∆ at v is GQ(3, 3), a strongly regular graph with parameters (40, 12, 2, 4). Therefore,
the valency of ∆ is 40. By (7) and since m = 3, the valency of ∆ is 3(n − 3)/2. From
these comments, we have 3(n − 3)/2 = 40, which implies n = 89/3. This contradicts
the fact that n is an integer. Therefore, ∆ cannot be locally GQ(3, 3). Consequently, we
conclude c2 ∕= m(m+ 1). The proof is now complete.

Remark 16. In Theorem 2, we assumed that Γ is locally strongly regular with smallest
eigenvalue −m, where m 󰃍 3. In the proof of the theorem, assuming c2 = m2 (resp.
c2 = m(m+1)), we obtained that each c2-graph of Γ is the block graph of the orthogonal
array OA(m,m) (resp. the Steiner system S(2,m,m2)) from Lemma 9 (resp. Lemma 11),
and derived a contradiction from its structure. It is worth noting that the existence of an
orthogonal array OA(m,m) is equivalent to the existence of a projective plane of order
m. Similarly, the existence of a Steiner system S(2,m,m2) is equivalent to the existence
of a projective plane of order m. Thus, if m is a number for which no projective plane
of order m exists, then the c2-graph of Γ does not exist, and hence we do not need the
assumption that the intersection number γ(Γ) exists.

Next, we apply Theorem 2 to tight distance-regular graphs, resulting in the following.

Corollary 17. Let Γ be a tight distance-regular graph with diameter D 󰃍 3, intersection
numbers b1, c2, and eigenvalues k > θ1 > · · · > θD. Define

b := b1/(1 + θ1).

Assume b 󰃍 2. Then the following (i) and (ii) hold.
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(i) If Γ is locally the block graph of an orthogonal array and k > (b + 1)2, then c2 ∕=
(b+ 1)2,

(ii) If Γ is locally the block graph of a Steiner system and k > (b + 1)(b + 2), then
c2 ∕= (b+ 1)(b+ 2).

Proof. Since Γ is tight, it is locally connected strongly regular with smallest eigenvalue
−1 − b. Moreover, the tight property implies that Γ is 1-homogeneous, from which it
follows that the intersection number γ(Γ) exists. With these comments, apply Theorem
2 to Γ. The result follows.

Remark 18. From Corollary 17, we conclude that a distance-regular graph Γ with diameter
at least 3 and b = b1/(1 + θ1) 󰃍 2 cannot be tight if (i) Γ is locally the block graph of an
orthogonal array and c2 = (b+1)2, or (ii) Γ is locally the block graph of a Steiner system
and c2 = (b+ 1)(b+ 2).

We give a comment on the case when Γ has diameter D = 3 in Corollary 17. Recall
a Taylor graph, that is, a distance-regular graph with intersection array {k, c2, 1; 1, c2; k}
with c2 < k − 1. We note that a nonbipartite distance-regular graph with diameter 3 is
tight if and only if it is a Taylor graph [9, Theorem 3.2]. Let Γ be a Taylor graph. Then Γ
is locally strongly regular with parameters (k, a1,λ, µ) and eigenvalues a1 > r > s. Since
Γ is a Taylor graph, its local graphs satisfy

a1 = k − c2 − 1, λ = (3a1 − k − 1)/2, µ = a1/2, (10)

and
k = −(2r + 1)(2s+ 1). (11)

In Corollary 17, the graph Γ with D = 3 corresponds to a Taylor graph. In this case,
referring to the above discussion, it can yield the following stronger result.

Proposition 19. Let Γ be a Taylor graph with intersection numbers a1, c2. Let a1 > r > s
denote the eigenvalues of a local graph of Γ. Set m = −s and n = r − s. The following
(i)–(iii) are equivalent:

(i) Γ is locally strongly regular with the parameters of the block graph of OA(m,n),

(ii) n = 2m− 1, and

(iii) c2 = 2m(m− 1).

Furthermore, the following (iv)–(vi) are equivalent:

(iv) Γ is locally strongly regular with the parameters of the Steiner graph Sm(n),

(v) n = 2m, and

(vi) c2 = 2(m+ 1)(m− 1).
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Proof. Throughout this proof, let∆ denote a local graph of Γ with parameters (k, a1,λ, µ).
Using (10), (11) along with µ = a1+rs from (3), the parameters (k, a1,λ, µ) are expressed
in terms of m and n:

󰀃
(2n− 2m+ 1)(2m− 1), 2m(n−m), (n−m)(m+ 1)−m, m(n−m)

󰀄
. (12)

First, we show that (i)–(iii) are equivalent.

(i) ⇒ (ii): Suppose ∆ has parameters (6) of the block graph of OA(m,n). Then we have
µ = m(m− 1). Since ∆ is the local graph of Γ, it also has the parameter µ = m(n−m)
from (12). From these two formulas for µ, it follows that n = 2m− 1.

(ii) ⇒ (iii): Suppose that n = 2m − 1. Recall the parameters (12) of ∆. Substituting
n = 2m− 1 into (12), we obtain the parameters

󰀃
(2m− 1)2, 2m(m− 1), m2 −m− 1, m(m− 1)

󰀄
. (13)

Observe that c2 = k − a1 − 1 from the first equation in (10). Evaluate c2 using the
parameters in (13) and simplify the result to get c2 = 2m(m− 1).

(iii) ⇒ (i): Using c2 = 2m(m − 1) and the parameters in (12), express the equation
c2 = k − a1 − 1 in terms of m and n to obtain

2m(m− 1) = (2n− 2m+ 1)(2m− 1)− 2m(n−m)− 1. (14)

Simplify (14) to get the equation (m−1)(n−2m+1) = 0. We note that m ∕= 1 since −m
is the smallest eigenvalue of ∆. Therefore, we have n = 2m− 1. Using this equation, we
find that the parameters in (6) and (13) are equal. Therefore, ∆ has the same parameters
as the block graph of OA(m,n).

Next, we show that (iv)–(vi) are equivalent.

(iv) ⇒ (v): Suppose that ∆ has parameters (9) of the Steiner graph Sm(n). Then we
have µ = m2. Since ∆ is the local graph of Γ, it also has the parameter µ = m(n −m)
from (12). From these two formulas for µ, it follows that n = 2m.

(v) ⇒ (vi): Suppose that n = 2m. Substituting n = 2m into (12), we obtain the
parameters 󰀃

4m2 − 1, 2m2, m2, m2
󰀄
. (15)

Evaluate c2 = k − a1 − 1 using the parameters in (15) and simplify the result to get
c2 = 2(m+ 1)(m− 1).

(vi) ⇒ (iv): Using c2 = 2(m+1)(m−1) and the parameters in (12), express the equation
c2 = k − a1 − 1 in terms of m and n to obtain

2(m+ 1)(m− 1) = (2n− 2m+ 1)(2m− 1)− 2m(n−m)− 1. (16)

Simplify (16) to get the equation (m − 1)(n − 2m) = 0. Since m ∕= 1, we have n = 2m.
Using this equation, we find that the parameters in (9) and (15) are equal. Therefore, ∆
has the same parameters as the Steiner graph Sm(n).
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Example 20. (i) The Johnson graph J(6, 3) has intersection array {9, 4, 1; 1, 4, 9}. Its
local graph is strongly regular with parameters (9, 4, 1, 2) and eigenvalues 4, 1,−2. Note
that m = 2 and n = 3. Thus, every local graph of J(6, 3) has the same parameters as the
block graph of OA(2, 3). Indeed, J(6, 3) is locally the block graph of OA(2, 3) since the
structure of the local graphs is determined by their parameters.

(ii) The halved 6-cube has intersection array {15, 6, 1; 1, 6, 15}. Its local graph is strongly
regular with parameters (15, 8, 4, 4) and eigenvalues 8, 2,−2. Note that m = 2 and n = 4.
Thus, every local graph of the halved 6-cube has the same parameters as the Steiner graph
S2(4). By the same reason as in (i), the halved 6-cube is locally the Steiner graph S2(4).

(iii) The Taylor graph from the Kneser graph K(6, 2) has intersection array
{15, 8, 1; 1, 8, 15}. Its local graph is strongly regular with parameters (15, 6, 1, 3) with
eigenvalues 6, 1,−3. Note that m = 3 and n = 4. Neither n = 2m − 1 nor n = 2m is
satisfied. Therefore, the Taylor graph from K(6, 2) is not locally the block graph of an
orthogonal array or a Steiner graph.

6 Proof of Conjecture 1

In this section, we consider tight distance-regular graphs with classical parameters and
prove Conjecture 1. We begin by recalling the notion of classical parameters. For a
non-zero integer b, we define

󰀗
i

1

󰀘
=

󰀗
i

1

󰀘

b

:= 1 + b+ b2 + · · ·+ bi−1.

Let Γ be a distance-regular graph with diameter D 󰃍 3. We say Γ has classical parameters
(D, b,α, β) whenever its intersection array {b0, b1, . . . , bD−1; c1, c2, . . . , cD} satisfies

bi =

󰀕󰀗
D

1

󰀘
−

󰀗
i

1

󰀘󰀖󰀕
β − α

󰀗
i

1

󰀘󰀖
(0 󰃑 i 󰃑 D − 1),

ci =

󰀗
i

1

󰀘󰀕
1 + α

󰀗
i− 1

1

󰀘󰀖
(1 󰃑 i 󰃑 D).

We note that if Γ has classical parameters (D, b,α, β), then Γ is tight if and only if
β = 1 + α

󰀅
D−1
1

󰀆
and b,α > 0; see [11, Proposition 2].

Lemma 21 (cf. [11, Theorem 7]). Let Γ be a tight distance-regular graph with valency k,
intersection number a1, and classical parameters (D, b,α, β). Then, its local graphs are
strongly regular with parameters (k, a1,λ, µ), where

µ = α(b+ 1), λ = (α− 1)(b+ 1) + αb

󰀗
D − 2

1

󰀘
,

and eigenvalues a1 > r > s, where

a1 = α(b+ 1)

󰀗
D − 1

1

󰀘
, r = αb

󰀗
D − 2

1

󰀘
, s = −1− b. (17)
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Remark 22. Let Γ be a tight distance-regular graph with classical parameters (D, b,α, β)
and smallest eigenvalue s. From the equations s = −1− b1/(1+ θ1) in (2) and s = −1− b
in (17), Γ satisfies

b =
b1

1 + θ1
. (18)

Now, we are ready to prove Conjecture 1.

Theorem 23 (cf. [11, Conjecture 2]). Let Γ be a tight distance-regular graph with classical
parameters (D, b,α, β), where D 󰃍 3 and b 󰃍 2. Then, a local graph of Γ is neither the
block graph of an orthogonal array or a Steiner system.

Proof. For a vertex x ∈ V (Γ), let ∆ denote the local graph of Γ at x. Since Γ is tight
and by Lemma 21, ∆ is a strongly regular graph with eigenvalues a1, r, s from (17). From
Remark 22, Γ satisfies that b = b1/(1 + θ1). Set m := −s = 1 + b and n := r − s =
αb

󰀅
D−2
1

󰀆
+1+ b. Observe that n > m and ∆ has the smallest eigenvalue −m with m 󰃍 3.

Now, we consider two cases: (i) ∆ is the block graph of an orthogonal array; (ii) ∆ is the
block graph of a Steiner system.

Case (i): Suppose ∆ is the block graph of an orthogonal array. Consider the parameter
µ of ∆. By Lemma 8 we have µ = m(m − 1) and by Lemma 21 we have µ = α(1 + b).
By these comments and since m = 1 + b, it follows α = b. Thus, the intersection number
c2 of Γ is given by

c2 =

󰀗
2

1

󰀘󰀕
1 + α

󰀗
1

1

󰀘󰀖
= (1 + b)(1 + α) = (1 + b)2.

However, this contradicts the result of Corollary 17(i).

Case (ii): The argument is similar to Case (i). Suppose ∆ is the block graph of a Steiner
system S(2,m, n). Consider the parameter µ of ∆. By Lemma 10 and Lemma 21, we
have µ = m2 = α(b + 1). Since m = b + 1, it follows α = b + 1. Thus, the intersection
number c2 of Γ is given by

c2 =

󰀗
2

1

󰀘󰀕
1 + α

󰀗
1

1

󰀘󰀖
= (1 + b)(1 + α) = (1 + b)(2 + b).

However, this contradicts the result of Corollary 17(ii).
Consequently, ∆ is neither the block graph of an orthogonal array nor the block graph of
a Steiner system. The result follows.

7 Proof of Theorem 3

In this section, we prove Theorem 3. To do this, we recall some known results that we
need in the proof.
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Lemma 24 (cf. [15, Theorem 3.1]). Let Γ be a primitive strongly regular graph with
parameters (v, k,λ, µ) and integral eigenvalues k > r > s = −m. Then

µ 󰃑 m3(2m− 3). (19)

If equality holds, then n = m(m− 1)(2m− 1), where n = r − s.

Lemma 25 (cf. [4, Theorem 8.6.3]). Let Γ be a primitive strongly regular graph with
parameters (v, k,λ, µ) and integral eigenvalues k > r > s. For convenience, we set
m := −s and n := r − s. Let f(m,µ) = 1

2
m(m− 1)(µ+ 1) +m− 1. Then

(i) If µ = m(m− 1) and n > f(m,µ), then Γ is the block graph of an orthogonal array
OA(m,n).

(ii) If µ = m2 and n > f(m,µ), then Γ is the block graph of a Steiner system
S(2,m,mn+m− n).

(iii) (Claw bound) If µ ∕= m(m− 1) and µ ∕= m2, then n 󰃑 f(m,µ).

Now we prove Theorem 3.

Proof of Theorem 3. Let ∆ denote a local graph of Γ at a vertex x ∈ V (Γ). Then ∆
is strongly regular with parameters (k, a1,λ, µ) and eigenvalues a1, r, s from (2). Set
m := −s and n := r − s. By the given condition, ∆ is neither the block graph of an
orthogonal array nor the block graph of a Steiner system. By Lemma 25, we find

n 󰃑 1

2
m(m− 1)(µ+ 1) +m− 1. (20)

Substitute n = r +m into (20) and simplify the result to obtain

r 󰃑 1

2
m(m− 1)(µ+ 1)− 1. (21)

Apply (19) to (21) to obtain

r 󰃑 1

2
m(m− 1)(m3(2m− 3) + 1)− 1. (22)

Next, we recall the equation µ = a1+ rs from (3). Eliminate µ in (19) using this equation
and simplify the result using s = −m to obtain

a1 󰃑 m3(2m− 3) + rm. (23)

Eliminate r in the right-hand side of (23) by applying the inequality (22) and then simplify
the result to obtain

a1 󰃑 g(m), (24)
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where g(m) = 1
2

󰀃
m3(2m−3)+1

󰀄󰀃
m2(m−1)+2

󰀄
−m−1. We note that a1 is the valency

of ∆ and the diameter of ∆ is two. Thus, by (5) we have

|V (∆)| = k 󰃑 1 + a21. (25)

Applying the inequality (24) to the right-hand side of (25), we find

k 󰃑 1 + g(m)2.

Since m = 1+ b, the valency k of Γ is bounded by a function in b. Since the diameter of a
distance-regular graph is bounded in terms of its valency (cf. [2, Section 4]), we conclude
that the diameter of Γ is bounded by a function in b. The result follows.

Remark 26. Referring to the proof of Theorem 3, the valency k is bounded by a function
ϕ in the variable b, where

ϕ(b) =
1

4

󰀅󰀃
(1 + b)3(2b− 1) + 1

󰀄 󰀃
b(1 + b)2 + 2

󰀄
− 2b− 4

󰀆2
+ 1.

Since b = m − 1, we also find that the diameter of Γ is bounded by a function in the
variable m, where −m is the smallest eigenvalue of a local graph of Γ.

Corollary 27. Let Γ be a tight distance-regular graph with classical parameters
(D, b,α, β), D 󰃍 3, b 󰃍 2. Then, the diameter of Γ is bounded by a function in b.

Proof. Let k > θ1 > . . . > θD be eigenvalues of Γ. From Remark 22, Γ satisfies that
b = b1/(1 + θ1). By Theorem 23, a local graph of Γ is neither the block graph of an
orthogonal array nor the block graph of a Steiner system. Therefore, by Theorem 3, the
diameter of Γ is bounded by a function in b. The result follows.

We conclude the paper with a brief summary and a discussion of further direction.
We considered a distance-regular graph Γ with diameter D 󰃍 3. Assuming that Γ is
locally strongly regular with smallest eigenvalue −m, where m 󰃍 3, and the intersection
number γ(Γ) exists, we have shown our main result that if Γ is locally the block graph
of an orthogonal array (resp. a Steiner system), then the intersection number c2 is not
equal to m2 (resp. m(m + 1)). In particular, when Γ is tight with classical parameters,
it is not locally the block graph of an orthogonal array or a Steiner system. Additionally,
using the main result, we have proven that if Γ is tight and not locally the block graph
of an orthogonal array or a Steiner system, then the diameter of Γ is bounded by a
function of the parameter b = b1/(1+θ1). As we mentioned in Section 1, it is a significant
problem to determine an upper bound for the diameter of distance-regular graphs using
some intersection numbers of Γ. Our future goal is to generalize Theorem 3, demonstrating
that the diameter of tight distance-regular graphs is bounded by a function of the variable
b. We present the following conjecture.

Conjecture 28. Let Γ be a tight distance-regular graph. Let b = b1/(1 + θ1), where b1
is the intersection number of Γ and θ1 is the second largest eigenvalue of Γ, and assume
b 󰃍 2. Then, the diameter of Γ is bounded by a function in b.
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Remark 29. To prove Conjecture 28, according to Theorem 3, it suffices to prove that for
tight distance-regular graphs with D 󰃍 3 which are locally the block graphs of orthogonal
arrays or Steiner systems, their diameters are bounded by a function in b, provided b 󰃍 2.
Furthermore, it is worth noting that, except for the halved 2D-cubes and the Johnson
graphs J(2D,D), all known tight distance-regular graphs have diameter at most 4.
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