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Submitted: Nov 21, 2023; Accepted: Apr 30, 2024; Published: May 17, 2024

© The authors. Released under the CC BY-ND license (International 4.0).

Abstract

We study infinite binary words that contain few distinct palindromes. In par-
ticular, we classify such words according to their critical exponents. This extends
results by Fici and Zamboni [TCS 2013]. Interestingly, the words with 18 and
20 palindromes happen to be morphic images of the fixed point of the morphism
0 7→ 01, 1 7→ 21, 2 7→ 0.

Mathematics Subject Classifications: 68R15

1 Introduction

We consider the trade-off between the number of distinct palindromes and the critical
exponent in infinite binary words. For brevity, every mention of a number of palindromes
will refer to a number of distinct palindromes, including the empty word. Fici and Zam-
boni [6] show that the least number of palindromes in an infinite binary word is 9 and this
bound is reached by the word (001011)ω. At the other end of the spectrum, the famous
Thue-Morse word TM , fixed point of the morphism 0→ 01, 1→ 10, has the least critical
exponent and infinitely many palindromes.

Our results completely answer questions of this form: do infinite β+-free binary words
with at most p palindromes exist? In each case, we also determine whether there are
exponentially or polynomially many such words. The results are summarized in Table 1.
A green (resp. red) cell means that there are exponentially (resp. polynomially) many
words. We have labelled the cells that correspond to an item of Theorem 3 or 7.

Fici and Zamboni [6] also show that an aperiodic binary word contains at least 11
palindromes and this bound is reached by the morphic image of the Fibonacci word by
0→ 0, 1→ 01101. This word contains in particular the factor

(00110100011010011010001101000110100110100011010011010001101000110100110100011010001101)
7
2 .
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Theorem 1.(a) improves this exponent to 10
3

+
. Fleischer and Shallit [7] have considered

the number of binary words of length n with at most 11 palindromes (sequence A330127
in the OEIS) and proved that it is Θ (κn), where κ = 1.1127756842787 . . . is the root of
X7 = X + 1.

∞ TM
25 3.h
24
23
22
21 3.g
20 7.b
19 3.f
18 7.a 3.e
17
16
15 3.d
14
13 3.c
12 3.b
11 3.a
10
9 (001011)ω

p
β+ 2+ 7

3

+ 5
2

+ 28
11

+ 13
5

+ 8
3

+
3+ 23

7

+ 10
3

+ ∞

Table 1: Infinite β+-free binary words with at most p palindromes.

2 Preliminaries

An alphabet A is a finite set and its elements are called letters. A word u over A of
length n is a finite string u = u0u1 · · ·un−1, where uj ∈ A for all j ∈ {0, 1, . . . , n − 1}.
If A = {0, 1, . . . , d − 1}, the length of u is denoted |u| and |u|i denotes the number of
occurrences of the letter i ∈ A in the word u. The Parikh vector ~u ∈ Nd is the vector
defined as ~u = (|u|0, |u|1, . . . , |u|d−1)T . The set of all finite words over A is denoted A∗.
The set A∗ equipped with concatenation as the operation forms a monoid with the empty
word ε as the neutral element. We will also consider the set Aω of infinite words (that
is, right-infinite words) and the set ωAω of bi-infinite words. A word v is an e-power of
a word u if v is a prefix of the infinite periodic word uuu · · · = uω and e = |v|/|u|. We
write v = ue. We also call ue a repetition with period u and exponent e. For instance, the
Czech word kapka (drop) can be written in this formalism as (kap)5/3. A word is α+-free
(resp. α-free) if it contains no repetition with exponent β such that β > α (resp. β > α).
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The critical exponent E(u) of an infinite word u is defined as

E(u) = sup{e ∈ Q : ue is a factor of u for a non-empty word u} .

The asymptotic critical exponent E∗(u) of an infinite word u is defined as +∞ if E(u) =
+∞, and

E∗(u) = lim sup
n→∞

{e ∈ Q : ue is a factor of u for some u of length n} ,

otherwise. If each factor of u has infinitely many occurrences in u, then u is recurrent.
Moreover, if for each factor the distances between its consecutive occurrences are bounded,
then u is uniformly recurrent. The language L(u) is the set of factors occurring in u.
The language L(u) is closed under reversal if for each factor w = w0w1 · · ·wn−1, its
reverse wR = wn−1 · · ·w1w0 is also a factor of u. A word w is a palindrome if w = wR.
Let us denote 0 = 1 and 1 = 0, then for any binary word w its bit complement is
w = w0 w1 · · ·wn−1.

Consider a factor w of a recurrent infinite word u = u0u1u2 · · · . Let j < ` be two
consecutive occurrences of w in u. Then the word ujuj+1 · · ·u`−1 is a return word to w in
u.

The (factor) complexity of an infinite word u is the mapping Cu : N → N defined by
Cu(n) = #{w ∈ L(u) : |w| = n}.

Given a word w ∈ L(u), we define the sets of left extensions, right extensions and
bi-extensions of w in u over an alphabet A respectively as

Lu(w) = {i ∈ A : iw ∈ L(u)}, Ru(w) = {j ∈ A : wj ∈ L(u)}

and
Bu(w) = {(i, j) ∈ A×A : iwj ∈ L(u)}.

If #Lu(w) > 1, then w is called left special (LS). If #Ru(w) > 1, then w is called
right special (RS). If w is both LS and RS, then it is called bispecial (BS). We define
b(w) = #Bu(w) − #Lu(w) − #Ru(w) + 1 and we distinguish ordinary BS factors with
b(w) = 0, weak BS factors with b(w) < 0 and strong BS factors with b(w) > 0.

A morphism is a map ψ : A∗ → B∗ such that ψ(uv) = ψ(u)ψ(v) for all words u, v ∈ A∗.
The morphism ψ is non-erasing if ψ(i) 6= ε for each i ∈ A. Morphisms can be naturally
extended to infinite words by setting ψ(u0u1u2 · · · ) = ψ(u0)ψ(u1)ψ(u2) · · · . A fixed point
of a morphism ψ : A∗ → A∗ is an infinite word u such that ψ(u) = u. We associate to a
morphism ψ : A∗ → A∗ the (incidence) matrix Mψ defined for each k, j ∈ {0, 1, . . . , d−1}
as [Mψ]kj = |ψ(j)|k.

If there exists N ∈ N such that MN
ψ has positive entries, then ψ is a primitive mor-

phism. By definition, we have for each u ∈ A∗ the following relation for the Parikh vectors
~ψ(u) = Mψ~u.

Let u be an infinite word over an alphabet A. Then the uniform frequency fi of the
letter i ∈ A is equal to α if for any sequence (wn) of factors of u with increasing lengths

α = lim
n→∞

|wn|i
|wn|

.
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It is known that fixed points of primitive morphisms have uniform letter frequencies [9].
Let u be an infinite word over an alphabet A and let ψ : A∗ → B∗ be a morphism.

Consider a factor w of ψ(u). We say that (w1, w2) is a synchronization point of w if
w = w1w2 and for all p, s ∈ L(ψ(u)) and v ∈ L(u) such that ψ(v) = pws there ex-
ists a factorization v = v1v2 of v with ψ(v1) = pw1 and ψ(v2) = w2s. We denote the
synchronization point by w1 • w2.

Given a factorial language L and an integer `, let L` denote the words of length ` in
L. The Rauzy graph of L of order ` is the directed graph whose vertices are the words of
L`−1, the arcs are the words of L`, and the arc corresponding to the word w goes from
the vertex corresponding to the prefix of w of length `− 1 to the vertex corresponding to
the suffix of w of length `− 1.

Finally, this paper mainly studies properties of the words µ(p) and ν(p) that are
morphic images of the word p = ϕω(0) studied in [2], where

ϕ(0) = 01

ϕ(1) = 21

ϕ(2) = 0

µ(0) = 011001

µ(1) = 1001

µ(2) = 0

ν(0) = 011

ν(1) = 0

ν(2) = 01

3 Fewest palindromes, least critical exponent, and factor com-
plexity

3.1 General result

Theorem 1. There exists an infinite binary β+-free word containing only p palindromes
for the following pairs (p, β). Moreover, this list of pairs is optimal.

(a) (11, 10
3

)

(b) (12, 23
7

)

(c) (13, 3)

(d) (15, 8
3
)

(e) (18, 28
11

)

(f) (20, 5
2
)

(g) (25, 7
3
)

Proof. The optimality is obtained by backtracking. For example, to obtain the step
between items (c) and (d), we show that there exists no infinite cubefree word containing
at most 14 palindromes. The proof of the positive results is split in two cases, depending
on the factor complexity of the considered words, see Theorems 3 and 7. Let us already
remark that, in any case, it is easy to check that the proposed word does not contain
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more than the claimed number of palindromes since it only requires to check the factors
up to some finite length.

3.2 Exponential cases

We need some terminology and a lemma from [11]. A morphism f : Σ∗ → ∆∗ is q-uniform
if |f(a)| = q for every a ∈ Σ, and is called synchronizing if for all a, b, c ∈ Σ and u, v ∈ ∆∗,
if f(ab) = uf(c)v, then either u = ε and a = c, or v = ε and b = c.

Lemma 2. [11, Lemma 23] Let a, b ∈ R satisfy 1 < a < b. Let α ∈ {a, a+} and
β ∈ {b, b+}. Let h : Σ∗ → ∆∗ be a synchronizing q-uniform morphism. Set

t = max

(
2b

b− a
,
2(q − 1)(2b− 1)

q(b− 1)

)
.

If h(w) is β-free for every α-free word w with |w| 6 t, then h(z) is β-free for every α-free
word z ∈ Σ∗.

The results in this subsection use the following steps. We find an appropriate uniform
synchronizing morphism h by exhaustive search. We use Theorem 2 to show that h
maps every binary 7

3

+
-free word (resp. ternary squarefree word) to a suitable binary β+-

free word. Since there are exponentially many binary 7
3

+
-free words [10] (resp. ternary

squarefree words [12]), there are also exponentially many binary β+-free words.

Theorem 3. There exist exponentially many infinite binary β+-free words containing at
most p palindromes for the following pairs (p, β).

(a) (11, 10
3

)

(b) (12, 23
7

)

(c) (13, 3)

(d) (15, 8
3
)

(e) (18, 13
5

)

(f) (19, 28
11

)

(g) (21, 5
2
)

(h) (25, 7
3
)

Proof.

(a) (11, 10
3

): Applying the 39-uniform morphism

0→ 001011001011100101110010110010111001011

1→ 100101100101100101110010110010111001011

to any binary 7
3

+
-free word gives a 10

3

+
-free binary word containing at most 11

palindromes.

the electronic journal of combinatorics 31(2) (2024), #P2.29 5



(b) (12, 23
7

): Applying the 45-uniform morphism

0→ 000101100010111000101110001011000101110001011

1→ 100010110001011000101110001011000101110001011

to any binary 7
3

+
-free word gives a 23

7

+
-free binary word containing at most 12

palindromes.

(c) (13, 3): Applying the 7-uniform morphism

0→ 0001011

1→ 1001011

to any binary 7
3

+
-free word gives a cubefree binary word containing at most 13

palindromes.

(d) (15, 8
3
): Applying the 3-uniform morphism

0→ 001

1→ 101

to any binary 7
3

+
-free word gives a 8

3

+
-free binary word containing at most 15 palin-

dromes.

(e) (18, 13
5

): Applying the 72-uniform morphism

0→ 001011001100101100101001011001100101100110010100101100101001011001100101

1→ 100110010100101100110010110010100101100110010100101100101001011001100101

to any binary 7
3

+
-free word gives a 13

5

+
-free binary word containing at most 18

palindromes.

(f) (19, 28
11

): Applying the 49-uniform morphism

0→ 0010110010110101100101001011001010010110101100101

1→ 1010110010100101100101101011001010010110101100101

to any binary 7
3

+
-free word gives a 28

11

+
-free binary word containing at most 19

palindromes.

(g) (21, 5
2
): Applying the 10-uniform morphism

0→ 0011001101

1→ 1001011001

to any binary 7
3

+
-free word gives a 5

2

+
-free binary word containing at most 21 palin-

dromes.
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(h) (25, 7
3
): Applying the 36-uniform morphism

0→ 001101100101100110110010011001011001

1→ 101100100110100110110010011001011001

2→ 001101100110100110110010011001011001

to any ternary squarefree word gives a 7
3

+
-free binary word containing at most 25

palindromes.

3.3 Polynomial cases

Theorem 4. [2] Every bi-infinite ternary cubefree word avoiding

F = {00,11,22,20,212,0101,02102,121012,01021010,21021012102}

has the same set of factors as p.

Lemma 5. Every bi-infinite cubefree binary word avoiding

F18 = {1101,00100,10101,010011,1011001011,110010110011,1011001010010110010}

has the same set of factors as µ(p).

Proof. Consider a bi-infinite binary cubefree word w avoiding F18. The factors of w of
length at least 5 that contain 0101 only as a prefix and a suffix are 01011001100101,
010100101, and 0101100101. Thus, w is in {0110011001, 01001, 011001}ω. So, w is in
{011001, 1001, 0}ω. That is, w = µ(v) for some bi-infinite ternary word v. Since w is
cubefree, its pre-image v is also cubefree.

To show that v avoids F , we consider every f ∈ F and we show by contradiction that
f is not a factor of v.

(a) If v contains 22, then µ(220) = 00011001 and µ(222) = 000 contain 03 and
µ(221) = 001001 contains 00100 ∈ F18.

(b) If v contains 20, then v contains x20 for x ∈ {0, 1} by (a).
µ(x20) contains 10010011001 as a suffix, which contains 00100 ∈ F18.

(c) If v contains 00, then v contains 100 to avoid the cube 000 and by (b).
µ(100) = 1001011001011001 contains 1011001011 ∈ F18.

(d) If v contains 11, then µ(011) and µ(111) contain (1001)3 and µ(211) = 010011001

contains 010011 ∈ F18.

(e) If v contains 212, then v contains 2121 by (a) and (b).
v contains x2121y with x ∈ {0, 1} by (a) and y ∈ {0, 2} by (d).
Since µ(1) is a suffix of µ(0) and µ(2) is a prefix of µ(0), then µ(x2121y) contains
the factor µ(121212) = µ ((12)3).
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(f) If v contains 0101, then µ(0101) = 01100110010110011001 contains
110010110011 ∈ F18.

(g) If v contains 02102, then v contains 102102 by (b) and (c).
µ(102102) = 1001011001010010110010 contains 1011001010010110010 ∈ F18.

(h) If v contains 121012, then v contains 0121012 by (d) and (e).
v contains 10121012 by (b) and (c).
v contains 210121012 by (d) and (f).
v contains 2101210121 by (a) and (b).
v contains 21012101210 by (d) and (e).
v contains x21012101210 with x ∈ {0, 1} by (a).
Since µ(1) is a suffix of µ(0), then µ(x21012101210) contains
µ(121012101210) = µ ((1210)3).

(i) If v contains 01021010, then v contains 010210102 by (c) and (f).
v contains 0102101021 by (a) and (b).
v contains 01021010210 by (d) and (e).
v contains 010210102101 by (c) and (g).
v contains 1010210102101 by (b) and (c).
v contains 21010210102101 = (21010)22101 by (d) and (f).
v contains (21010)221012 by (d) and to avoid (21010)3.
v contains 1(21010)221012 by (a) and to avoid (02101)3.
w contains µ(1(21010)221012) = 1001(µ(210)1001011001)2µ(210)10010.
To avoid 00100 ∈ F18, w contains
1001(µ(210)1001011001)2µ(210)100101 = (1001µ(210)100101)3.

(j) If v contains 21021012102, then v contains 121021012102 by (a) and (g).
v contains 0121021012102 by (d) and (e).
v contains 10121021012102 by (b) and (c).
v contains 210121021012102 by (d) and (f).
v contains 0210121021012102 by (a) and (h).
v contains 10210121021012102 by (b) and (c).
v contains 102101210210121021 by (a) and (b).
v contains 1021012102101210210 by (d) and (e).
v contains 10210121021012102101 by (c) and (g).
v contains 102101210210121021010 by (d) and to avoid (1021012)3.
µ(102101210210121021010) = (µ(102101)0)311001.

Lemma 6. Every bi-infinite cubefree binary word avoiding

F20 = {0101,1011,010010,1100110100110011}

has the same set of factors as ν(p).
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Proof. Consider a bi-infinite binary cubefree word w avoiding F20. Since w is cubefree, w
is in {011, 0, 01}ω. So w = ν(v) for some bi-infinite ternary word v. Since w is cubefree,
its pre-image v is also cubefree.

To show that v avoids F , we consider every f ∈ F and we show by contradiction that
f is not a factor of v.

(a) If v contains 00, then ν(00) = 011011 contains 1011 ∈ F20.

(b) If v contains 11, then v contains 11y for some letter y.
ν(11y) contains the cube 000 as a prefix.

(c) If v contains 22, then ν(22) = 0101 ∈ F20.

(d) If v contains 20, then ν(20) = 01011 contains 0101 ∈ F20.

(e) If v contains 212, then v contains 2121 by (c) and (d).
ν(2121) = 010010 ∈ F20.

(f) If v contains 0101, then v contains 10101 by (a) and (d).
v contains 210101 by (b) and to avoid (01)3.
v contains 2101012 by (b) and to avoid (10)3.
ν(2101012) = 0100110011001 = 0(1001)3.

(g) If v contains 02102, then v contains 102102 by (a) and (d).
v contains 1021021 by (c) and (d).
v contains 10210210 by (b) and (e).
w contains ν(10210210) = 0011010011010011.
To avoid 03 and 13, w contains 100110100110100110 = (100110)3.

(h) If v contains 121012, then v contains 0121012 by (b) and (e).
v contains 10121012 by (a) and (d).
v contains 210121012 by (b) and (f).
v contains 2101210121 by (c) and (d).
v contains 21012101210 by (b) and (e).
w contains ν(21012101210) = 01001100100110010011.
To avoid 13, w contains 010011001001100100110 = (0100110)3.

(i) If v contains 01021010, then
ν(01021010) = 01100110100110011 contains 1100110100110011 ∈ F20.

(j) If v contains 21021012102, then v contains 121021012102 by (c) and (g).
v contains 0121021012102 by (b) and (e).
v contains 10121021012102 by (a) and (d).
v contains 210121021012102 by (b) and (f).
v contains 0210121021012102 by (c) and (h).
v contains 10210121021012102 by (a) and (d).
v contains 102101210210121021 by (c) and (d).
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v contains 1021012102101210210 by (b) and (e).
v contains 10210121021012102101 by (a) and (g).
v contains 102101210210121021010 by (b) and to avoid (1021012)3.
ν(102101210210121021010) = (0011010011001)31.

Theorem 7.

(a) The word µ(p) is 28
11

+
-free and contains 18 palindromes. Every bi-infinite 13

5
-free

binary word containing at most 18 palindromes has the same set of factors as either
µ(p), µ(p), µ(p)R, or µ(p)R.

(b) The word ν(p) is 5
2

+
-free and contains 20 palindromes. Every recurrent 28

11
-free

binary word containing at most 20 palindromes has the same set of factors as either
ν(p), ν(p), ν(p)R, or ν(p)R.

Proof.

(a) We prove in Section 4.3 that µ(p) is 28
11

+
-free.

We construct the set S20
18 defined as follows: a word v is in S20

18 if and only if there
exists a 13

5
-free binary word pvs containing at most 18 palindromes and such that

|p| = |v| = |s| = 20. From S20
18 , we construct the Rauzy graph R20

18 such that the
vertices are the factors of length 19 and the arcs are the factors of length 20. We
notice that R20

18 is disconnected. It contains four connected components that are
symmetric with respect to reversal and bit complement. Let C20

18 be the connected
component which avoids the factor 1101. We check that C20

18 is identical to the
Rauzy graph of the factors of length 19 and 20 of µ(p).

Now we consider a bi-infinite 13
5

-free binary word w with 18 palindromes. So w
corresponds to a walk in one of the connected components of R20

18, say C20
18 without

loss of generality. By the previous remark, w has the same set of factors of length
20 as µ(p). Since max {|f |, f ∈ F18} = 19 6 20, w avoids every factor in F18.
Moreover, w is cubefree since it is 13

5
-free. By Theorem 5, w has the same factor

set as µ(p).

Then the proof is complete by symmetry by reversal and bit complement.

(b) We prove in Section 4.2 that ν(p) is 5
2

+
-free.

We construct the set S78
20 defined as follows: a word v is in S78

20 if and only if there
exists a 28

11
-free binary word pvs containing at most 20 palindromes and such that

|p| = |v| = |s| = 78. From S78
20 , we construct the Rauzy graph R78

20 such that
the vertices are the factors of length 77 and the arcs are the factors of length 78.
We notice that R78

20 is not strongly connected. It contains four strongly connected
components that are symmetric with respect to reversal and bit complement. Let
C78

20 be the strongly connected component which avoids the factor 1011. We check
that C78

20 is identical to the Rauzy graph of the factors of length 77 and 78 of ν(p).
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Now we consider a recurrent 28
11

-free binary word w with 20 palindromes. Since w
is recurrent, w corresponds to a walk in one of the strongly connected components
of R78

20, say C78
20 without loss of generality. By the previous remark, w has the same

set of factors of length 78 as ν(p). Since max {|f |, f ∈ F20} = 16 6 78, w avoids
every factor in F20. Moreover, w is cubefree since it is 28

11
-free. By Theorem 6, w

has the same factor set as ν(p).

Then the proof is complete by symmetry by reversal and bit complement.

Notice that item (b) requires recurrent words rather than bi-infinite words. That is
because of, e.g., the bi-infinite word x = ν(p)R010110ν(p). Obviously ν(p) and ν(p)R

have the same set of 20 palindromes and it is easy to check that x contains no additional
palindrome. We show that x is 5

2

+
-free by checking the central factor of x of length 200.

Then larger repetitions of exponent > 5
2

are ruled out since the word 110011001001101

is a prefix of 110ν(p) but is neither a factor of ν(p) nor ν(p)R. By symmetry, this also
holds for xR = ν(p)R011010ν(p), x, and xR.

4 The critical exponent of ν(p) and µ(p)

Before recalling the definition of the infinite words p, ν(p) and µ(p), let us underline that
all of them are uniformly recurrent and ν(p) and µ(p) are morphic images of p. Hence in
order to compute their (asymptotic) critical exponents, we will exploit the following two
useful statements. See also [8].

Theorem 8 ([4]). Let u be a uniformly recurrent aperiodic infinite word. Let (wn) be
a sequence of all bispecial factors ordered by their length. For every n ∈ N, let rn be a
shortest return word to wn in u. Then

E(u) = 1 + sup
n∈N

{
|wn|
|rn|

}
and E∗(u) = 1 + lim sup

n→+∞

|wn|
|rn|

. (1)

Theorem 9. Let u be an infinite word over an alphabet A such that the uniform letter
frequencies in u exist. Let ψ : A∗ → B∗ be an injective morphism and let L ∈ N be
such that every factor v of ψ(u), |v| > L, has a synchronization point. Then E∗(u) =
E∗(ψ(u)).

Proof. The inequality E∗(ψ(u)) > E∗(u) is proven in [5] for any non-erasing morphism
under the assumption of existence of uniform letter frequencies in u. Let us prove the
opposite inequality. According to the definition of E∗(ψ(u)), there exist sequences

(
wn
)

and
(
vn
)

such that

1. lim
n→∞

|vn| =∞;

2. wn is a factor of ψ(u) for each n ∈ N;

3. wn is a prefix of the periodic word
(
vn
)ω

for each n ∈ N;
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4. E∗(ψ(u)) = lim
n→∞

|wn|
|vn| .

If E∗(ψ(u)) = 1, then, clearly, E∗(ψ(u)) 6 E∗(u). Assume in the sequel that E∗(ψ(u)) >
1, then we have for large enough n that |wn| > |vn| and moreover, by the first item,
|vn| > L. By assumption, both vn and wn have synchronization points and since vn is a
prefix of wn for large enough n, we may write

wn = xn • ψ(w′n) • yn and vn = xn • ψ(v′n) • zn ,

where we highlighted the first and the last synchronization point (not necessarily distinct)
in wn and vn and where w′n and v′n are uniquely given factors of u and the lengths of xn,
yn, zn are smaller than L.

By the third item, we have

wn = vknun = (xnψ(v′n)zn)kun ,

where un is a proper prefix of vn and k ∈ N, k > 1.
There are two possible cases for (un).

(a) Either (|un|) is bounded, but as E∗(ψ(u)) > 1, it follows that k > 2 for large enough
n.

(b) Or there is a subsequence (ujn) of (un) such that for all n ∈ N we have |ujn| > L.
Then by assumption, ujn has a synchronization point and we may write ujn =
xjn • ψ(u′jn) • yjn , where we highlighted the first and the last synchronization point
in ujn and u′jn is a prefix of v′jn by injectivity of ψ.

(a) In the first case, since k > 2 for large enough n, then wn starts with (xnψ(v′n)zn)2.
By definition of synchronization points and injectivity of ψ, there exists a unique
factor tn of u such that ψ(v′n)znxn = ψ(tn). Consequently, wn = (xnψ(v′n)zn)kun =
xnψ(tk−1n v′n)znun. Therefore, tk−1n v′n is a factor of u and it is a prefix of (tn)ω and

E∗(ψ(u)) = lim
n→∞

|wn|
|vn|

= lim
n→∞

|xnψ(tn
k−1v′n)znun|
|ψ(tn)|

= lim
n→∞

|ψ(tn
k−1v′n)|

|ψ(tn)|
,

where the last equality holds thanks to boundedness of (|xn|), (|zn|) and (|un|).

(b) In the second case, wjn = (xjnψ(v′jn)zjn)kxjnψ(u′jn)yjn , where k > 1. By definition
of synchronization points and injectivity of ψ, there exists a unique factor tjn of u
such that ψ(v′jn)zjnxjn = ψ(tjn). Consequently, (tjn)ku′jn is a factor of u and it is a
prefix of (tjn)ω and

E∗(ψ(u)) = lim
n→∞

|wn|
|vn|

= lim
n→∞

|xjnψ
(
(tjn)ku′jn

)
yjn|

|ψ(tjn)|
= lim

n→∞

|ψ
(
(tjn)ku′jn

)
|

|ψ(tjn)|
,

where the last equality holds thanks to boundedness of (xn) and (yn).
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Combining two simple facts:

• |ψ(u)|
|u| = ~1

T
Mψ

~u
|u| for each word u over A, where ~1 is a vector with all coordinates

equal to one;

• for each sequence (sn) of factors of u with limn→∞ |sn| = ∞ we have, by uniform

letter frequencies in u, lim
n→∞

~sn
|sn| = ~f , where ~f is the vector of letter frequencies in

u,

we obtain

lim
n→∞

|ψ(sn)|
|sn|

= ~1
T
Mψ

~f . (2)

Consequently,

(a) in the first case, since limn→∞ |tn| =∞, we obtain using (2)

E∗(ψ(u)) = lim
n→∞

|ψ(tnk−1v′n)|
|ψ(tn)|

= lim
n→∞

|ψ(tnk−1v′n)|
|tnk−1v′n|

|tn|
|ψ(tn)|

|tnk−1v′n|
|tn|

= lim
n→∞

|tnk−1v′n|
|tn| 6 E∗(u) ,

where the last inequality follows from the fact that (tn)k−1v′n ∈ L(u) and (tn)k−1v′n
is a power of tn;

(b) in the second case, since lim |tjn| =∞, we obtain using (2)

E∗(ψ(u)) = lim
n→∞

|ψ
(
(tjn )

ku′jn

)
|

|ψ(tjn )|

= lim
n→∞

|ψ
(
(tjn )

ku′jn

)
|

|(tjn )ku′jn |
|tjn |
|ψ(tjn )|

|(tjn )ku′jn |
|tjn |

= lim
n→∞

|(tjn )ku′jn |
|tjn |

6 E∗(u) ,

where the last inequality follows from the fact that (tjn)ku′jn ∈ L(u) and (tjn)ku′jn
is a power of tjn .

4.1 The infinite word p

In order to compute the critical exponent of morphic images of p, it is essential to describe
bispecial factors and their return words in p and to determine the asymptotic critical
exponent of p.

The infinite word p is the fixed point of the injective morphism ϕ, where

ϕ(0) = 01,

ϕ(1) = 21,

ϕ(2) = 0.
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Therefore, p has the following prefix

p = 01210210102101210102101210210121010 · · ·

Remark 10. It is readily seen that each non-empty factor of p has a synchronization point.

The following characteristics of p are known [2]:

• The factor complexity of p is C(n) = 2n+ 1.

• The word p is not closed under reversal: 02 ∈ L(p), but 20 /∈ L(p).

• The word p is uniformly recurrent and p has uniform letter frequencies because ϕ
is primitive.

4.1.1 Bispecial factors in p

First, we will examine LS factors. Using the form of ϕ, we observe

• 0 has only one left extension: 1,

• 1 has two left extensions: 0 and 2,

• 2 has two left extensions: 0 and 1.

Therefore, every LS factor has left extensions either {0, 2}, or {0, 1}.

Lemma 11. Let w 6= ε, w ∈ L(p).

• If w is a LS factor such that 0w, 1w ∈ L(p), then 1ϕ(w) is a LS factor such that
01ϕ(w), 21ϕ(w) ∈ L(p).

• If w is a LS factor such that 0w, 2w ∈ L(p), then ϕ(w) is a LS factor such that
0ϕ(w), 1ϕ(w) ∈ L(p).

Proof. It follows from the form of ϕ and the fact that p is the fixed point of the morphism
ϕ, i.e., if u ∈ L(p), then ϕ(u) ∈ L(p).

Second, we will focus on RS factors. We observe

• 0 has two right extensions: 1 and 2,

• 1 has two right extensions: 0 and 2,

• 2 has only one right extension: 1.

Therefore, every RS factor has right extensions either {1, 2}, or {0, 2}. Using similar
arguments as for LS factors, we get the following statement.

Lemma 12. Let w 6= ε, w ∈ L(p).
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• If w is a RS factor such that w0, w2 ∈ L(p), then ϕ(w)0 is a RS factor such that
ϕ(w)01, ϕ(w)02 ∈ L(p).

• If w is a RS factor such that w1, w2 ∈ L(p), then ϕ(w) is a RS factor such that
ϕ(w)2, ϕ(w)0 ∈ L(p).

It follows from the form of LS and RS factors that we have at most 4 possible kinds
of non-empty BS factors in p.

Proposition 13. Let v be a non-empty BS factor in p.

1. 0v, 2v, v0, v2 ∈ L(p) if and only if there exists w ∈ L(p) such that v = 1ϕ(w) and
0w, 1w,w1, w2 ∈ L(p).

2. 0v, 1v, v1, v2 ∈ L(p) if and only if there exists w ∈ L(p) such that v = ϕ(w)0 and
0w, 2w,w0, w2 ∈ L(p).

3. 0v, 2v, v1, v2 ∈ L(p) if and only if there exists w ∈ L(p) such that v = 1ϕ(w)0 and
0w, 1w,w0, w2 ∈ L(p).

4. 0v, 1v, v0, v2 ∈ L(p) if and only if there exists w ∈ L(p) such that v = ϕ(w) and
0w, 2w,w1, w2 ∈ L(p).

Proof. The implication (⇐) follows from Lemmata 11 and 12. We will prove the opposite
implication for Item 1, the other cases may be proven analogously. If v is a non-empty
factor such that 0v, 2v, v0, v2 ∈ L(p), then v necessarily starts and ends with the letter
1. By the form of ϕ, we have the following synchronization points v = 1 • v̂• (v̂ may be
empty). Hence, by injectivity of ϕ, there exists a unique w in p such that v = 1ϕ(w).
Thus, using again the form of ϕ and the knowledge of possible right extensions, the factor
w is BS and 0w, 1w,w1, w2 ∈ L(p).

We can see that the only BS factor of length one is 1, it has left extensions 0, 2 and
right extensions 0, 2. Applying Proposition 13 Item 2, we obtain that ϕ(1)0 is BS with left
extensions 0, 1 and right extensions 1, 2. Proposition 13 Item 1 gives us that 1ϕ2(1)ϕ(0)
is BS with left extensions 0, 2 and right extensions 0, 2. This process can be iterated
providing us with infinitely many BS factors:

1→ ϕ(1)0→ 1ϕ2(1)ϕ(0)→ ϕ(1)ϕ3(1)ϕ2(0)0→
→ 1ϕ2(1)ϕ4(1)ϕ3(0)ϕ(0)→ ϕ(1)ϕ3(1)ϕ5(1)ϕ4(0)ϕ2(0)0 · · · (3)

The only BS factor of length two is 10, it has left extensions 0, 2 and right extensions
1, 2. Applying Proposition 13 Item 4, we obtain that ϕ(1)ϕ(0) is BS with left extensions
0, 1 and right extensions 0, 2. Proposition 13 Item 3 gives us that 1ϕ2(1)ϕ2(0)0 is BS
with left extensions 0, 2 and right extensions 1, 2. This process can be iterated providing
us again with infinitely many BS factors:

10→ ϕ(1)ϕ(0)→ 1ϕ2(1)ϕ2(0)0→ ϕ(1)ϕ3(1)ϕ3(0)ϕ(0)→
→ 1ϕ2(1)ϕ4(1)ϕ4(0)ϕ2(0)0→ ϕ(1)ϕ3(1)ϕ5(1)ϕ5(0)ϕ3(0)ϕ(0) · · · (4)
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Each BS factor v of length greater than two has at least two synchronization points
and the corresponding BS factor w from Proposition 13 is non-empty. In other words,
the BS factor v makes part of one of the sequences (3) and (4) of BS factors.

As a consequence of Proposition 13 and the above arguments, we get a complete
description of BS factors in p.

Corollary 14. Let w be a non-empty BS factor in p. Then it has one of the following
forms:

(A)

w
(n)
A = 1ϕ2(1)ϕ4(1) · · ·ϕ2n(1)ϕ2n−1(0)ϕ2n−3(0) · · ·ϕ(0)

for n > 1. If n = 0, then we set w
(0)
A = 1.

The Parikh vector of w
(n)
A is the same as of the word 1ϕ(012)ϕ3(012) · · ·ϕ2n−1(012).

(B)

w
(n)
B = ϕ(1)ϕ3(1) · · ·ϕ2n+1(1)ϕ2n(0)ϕ2n−2(0) · · ·ϕ2(0)0

for n > 0.

The Parikh vector of w
(n)
B is the same as of the word 012ϕ2(012)ϕ4(012) · · ·ϕ2n(012).

(C)
w

(n)
C = 1ϕ2(1)ϕ4(1) · · ·ϕ2n(1)ϕ2n(0)ϕ2n−2(0) · · ·ϕ2(0)0

for n > 0.

The Parikh vector of w
(n)
C is the same as of the word 01ϕ2(01)ϕ4(01) · · ·ϕ2n(01).

(D)

w
(n)
D = ϕ(1)ϕ3(1) · · ·ϕ2n+1(1)ϕ2n+1(0)ϕ2n−1(0) · · ·ϕ(0)

for n > 0.

The Parikh vector of w
(n)
D is the same as of the word ϕ(01)ϕ3(01) · · ·ϕ2n+1(01).

Lemma 15. All BS factors in p are ordinary.

Proof. The empty word is ordinary because all factors of length two are 10, 01, 02, 12, 21.
Thus b(ε) = 5− 3− 3 + 1 = 0. It is easy to verify that each non-empty BS factor w has
three extensions. In particular,

• extensions of w = w
(n)
A are: 0w2, 2w0, 0w0,

• extensions of w = w
(n)
B are: 2w2, 2w1, 0w2,

• extensions of w = w
(n)
C are: 0w0, 0w2, 1w0,

• extensions of w = w
(n)
D are: 1w2, 0w1, 1w1.

Consequently, b(w) = 3− 2− 2 + 1 = 0.

the electronic journal of combinatorics 31(2) (2024), #P2.29 16



4.1.2 The shortest return words to bispecial factors in p

Each factor of p has 3 return words. This claim follows from the next theorem.

Theorem 16 (Theorem 5.7 in [1]). Let u be a uniformly recurrent infinite word. Then
each factor of u has exactly 3 return words if and only if C(n) = 2n + 1 and u has no
weak BS factors.

Let us first comment on return words to the shortest BS factors – observe the prefix
of p at the beginning of this section.

• The return words to ε are 0, 1, 2.

• The return words to 1 are 12, 102, 10.

• The return words to ϕ(1)0 are 210 = ϕ(1)0, 21010, 2101. The shortest one is 210

and it is a prefix of all of them.

• The return words to 10 are 10, 102, 1012. The shortest one is 10 and it is a prefix
of all of them.

Lemma 17. If w is a non-empty BS factor of p and v is a return word to w, then ϕ(v)
is a return word to ϕ(w).

Proof. On one hand, since vw contains w as a prefix and as a suffix, ϕ(v)ϕ(w) contains
ϕ(w) as a prefix and as a suffix, too. On the other hand, w starts in 1 or 2 and ends in 0 or
1, thus ϕ(w) starts in 0 or 2 and ends in 1, therefore it has the following synchronization
points •ϕ(w)•. Consequently, ϕ(v)ϕ(w) cannot contain ϕ(w) somewhere in the middle
because in such a case, by injectivity of ϕ, vw would contain w also somewhere in the
middle.

The following observation is an immediate consequence of the definition of return
words.

Observation 18. Let w be a factor of p and let v be its return word. If w has a unique
right extension a, then v is a return word to wa, too. If w has a unique left extension b,
then bvb−1 is a return word to bw. In particular, the Parikh vectors of the corresponding
return words are the same.

Example 19. Consider the BS factor 10 with the shortest return word 10 (being a prefix
of the other two return words), then by Lemma 17 the BS factor ϕ(1)ϕ(0) has the shortest
return word equal to ϕ(10). By Lemma 17, the factor ϕ2(1)ϕ2(0) has the shortest return
word equal to ϕ2(10) and by Observation 18, the shortest return word to the BS factor
1ϕ2(1)ϕ2(0)0 has the same Parikh vector as ϕ2(10).

Putting together Lemma 17, Observation 18 and the knowledge of BS factors, we
obtain the following statement about the shortest return words to BS factors in p.

Corollary 20. The shortest return words to BS factors in p have the following properties.
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(A) The shortest return words to w
(n)
A are

(i) 12 and 10 for n = 0,

(ii) r
(n)
A with the same Parikh vector as ϕ2n−1(012) for n > 1.

(B) The shortest return word r
(n)
B to w

(n)
B has the same Parikh vector as ϕ2n(012).

(C) The shortest return word to w
(n)
C is

(i) 10 for n = 0

(ii) r
(n)
C with the same Parikh vector as ϕ2n(01) for n > 1.

(D) The shortest return word r
(n)
D to w

(n)
D has the same Parikh vector as ϕ2n+1(01).

Proof. We will prove case (A). The other cases are similar. The shortest return words

to w
(0)
A = 1 are given at the beginning of Section 4.1.2. Let us proceed by induction

on n. Consider the bispecial factor w
(1)
A = 1ϕ2(1)ϕ(0) = 1ϕ(ϕ(1)0). By description

of the shortest return words to short bispecial factors, we know that 210 is the shortest
return word (moreover prefix of all other return words) to the bispecial factor ϕ(1)0. Using
Lemma 17, ϕ(210) is the shortest return word to the factor ϕ2(1)ϕ(0). By Observation 18,

the Parikh vector of the shortest return word to w
(1)
A = 1ϕ2(1)ϕ(0) is equal to the Parikh

vector of ϕ(210), hence also to the Parikh vector of ϕ(012). Assume for a fixed n > 1, the

bispecial factor w
(n)
A = 1ϕ2(1)ϕ4(1) · · ·ϕ2n(1)ϕ2n−1(0)ϕ2n−3(0) · · ·ϕ(0) has the shortest

return word with the Parikh vector ϕ2n−1(012) and this return word is a prefix of all other

return words. By definition, w
(n+1)
A = 1ϕ2(w

(n)
A )ϕ(0). By Lemma 17 and by induction

assumption, the shortest return word to the factor ϕ2(w
(n)
A ) has the same Parikh vector

as ϕ2n+1(012). Using Observation 18, we obtain that the shortest return word to w
(n+1)
A

has the same Parikh vector as the factor ϕ2n+1(012), too.

4.1.3 The asymptotic critical exponent of p

Let us determine the asymptotic critical exponent of p using Theorem 8. We use the
form of BS factors and their shortest return words determined above. We get E∗(p) =
1 + max{A′, B′, C ′, D′}, where

A′ = lim sup
n→∞

|w(n)
A |
|r(n)A |

= lim sup
n→∞

|1ϕ(012)ϕ3(012) · · ·ϕ2n−1(012))|
|ϕ2n−1(012)|

;

B′ = lim sup
n→∞

|w(n)
B |
|r(n)B |

= lim sup
n→∞

|012ϕ2(012)ϕ4(012) · · ·ϕ2n(012))|
|ϕ2n(012)|

;

C ′ = lim sup
n→∞

|w(n)
C |
|r(n)C |

= lim sup
n→∞

|01ϕ2(01)ϕ4(01) · · ·ϕ2n(01)|
|ϕ2n(01)|

;

D′ = lim sup
n→∞

|w(n)
D |
|r(n)D |

= lim sup
n→∞

|ϕ(01)ϕ3(01) · · ·ϕ2n+1(01)|
|ϕ2n+1(01)|

.
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By the Hamilton-Cayley theorem, we have M3
ϕ−2M2

ϕ+Mϕ−I = 0. Consequently, for each
w ∈ {0, 1, 2}∗, if we denote `n := |ϕn(w)| = (1, 1, 1)Mn

ϕ ~w, then `n satisfies the recurrence
relation `n+3 − 2`n+2 + `n+1 − `n = 0. Denote β the largest root of the characteristic
polynomial t3 − 2t2 + t− 1; β

.
= 1.75488. By the Perron-Frobenius theorem, β is strictly

larger than the modulus of the other roots of the characteristic polynomial. We thus
obtain:

A′ = lim
n→∞

∑n
k=1 β

2k−1

β2n−1 = β2

β2−1 ;

B′ = C ′ = lim
n→∞

∑n
k=0 β

2k

β2n
= β2

β2−1 ;

D′ = lim
n→∞

∑n
k=0 β

2k+1

β2n+1
= β2

β2−1 .

Consequently, E∗(p) = 1 + β2

β2−1
.
= 2.48.

4.2 The infinite word ν(p)

The morphism ν has the form:

ν(0) = 011,

ν(1) = 0,

ν(2) = 01.

Therefore,
ν(p) = 011001001101001100110100110010011 · · ·

and ν is injective.

Remark 21. The reader may easily check that any factor of ν(p) of length at least two
has a synchronization point.

Using the above remark and Theorem 9, we deduce that

E∗(ν(p)) = E∗(p).

4.2.1 Bispecial factors in ν(p)

Lemma 22. Let v ∈ L(ν(p)) be a BS factor of length at least two. Then one of the items
holds.

1. There exists w ∈ L(p) such that v = 1ν(w)01 and 0w, 2w,w0, w2 ∈ L(p).

2. There exists w ∈ L(p) such that v = ν(w)0 and 0w, 1w,w1, w2 ∈ L(p).

3. There exists w ∈ L(p) such that v = 1ν(w)0 and 0w, 2w,w1, w2 ∈ L(p).
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4. There exists w ∈ L(p) such that v = ν(w)01 and 0w, 1w,w0, w2 ∈ L(p).

Proof. The statement follows from Remark 21 and from the possible left and right exten-
sions of factors in p.

Combining Lemma 22 and Corollary 14, we get a complete description of BS factors
in ν(p).

Corollary 23. Let v be a non-empty BS factor in ν(p) of length at least two. Then
v = 01 or v = 10 or v has one of the following forms:

(A)

v
(n)
A = 1ν(1ϕ2(1)ϕ4(1) · · ·ϕ2n(1)ϕ2n−1(0)ϕ2n−3(0) · · ·ϕ(0))01

for n > 1 and v
(0)
A = 1ν(1)01 = 1001.

v
(n)
A and 011ν(1ϕ(012)ϕ3(012) . . . ϕ2n−1(012)) have the same Parikh vector.

(B)

v
(n)
B = ν(ϕ(1)ϕ3(1) · · ·ϕ2n+1(1)ϕ2n(0)ϕ2n−2(0) · · ·ϕ2(0)0)0

for n > 0.

v
(n)
B and 0ν(012ϕ2(012)ϕ4(012) . . . ϕ2n(012)) have the same Parikh vector.

(C)
v
(n)
C = 1ν(1ϕ2(1)ϕ4(1) · · ·ϕ2n(1)ϕ2n(0)ϕ2n−2(0) · · ·ϕ2(0)0)0

for n > 0.

v
(n)
C and 01ν(01ϕ2(01)ϕ4(01) . . . ϕ2n(01)) have the same Parikh vector.

(D)

v
(n)
D = ν(ϕ(1)ϕ3(1) · · ·ϕ2n+1(1)ϕ2n+1(0)ϕ2n−1(0) · · ·ϕ(0))01

for n > 0.

v
(n)
D and 01ν(ϕ(01)ϕ3(01) · · ·ϕ2n+1(01)) have the same Parikh vector.

4.2.2 The shortest return words to bispecial factors in ν(p)

Lemma 24. If w is a non-empty BS factor in p and v is its return word, then ν(v) is a
return word to ν(w)0.

Proof. On one hand, consider any occurrence of vw and denote a the following letter,
then ν(v)ν(w)0 is a prefix of ν(vwa). Since vw contains w as a prefix and as a suffix, then
ν(v)ν(w)0 contains ν(w)0 as a prefix and as a suffix, too. On the other hand, w starts in 1

or 2 and ends in 0 or 1, thus ν(w)0 starts in 0 and ends in 0110 or 00, therefore ν(w)0 has
the following synchronization points •ν(w) • 0. Consequently, ν(v)ν(w)0 cannot contain
ν(w)0 somewhere in the middle because in such a case, by injectivity of ν, vw would
contain w also somewhere in the middle.
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Applying Lemma 24 and Observation 18, we have the following description of the
shortest return words to BS factors.

Corollary 25. The shortest return words to BS factors of length at least three in ν(p)
have the following properties.

(A) The shortest return word r̂
(n)
A to v

(n)
A has the same Parikh vector as ν(ϕ2n−1(012))

for n > 1 and 100 is the shortest return word to v
(0)
A = 1001.

(B) The shortest return word r̂
(n)
B to v

(n)
B has the same Parikh vector as ν(ϕ2n(012)).

(C) The shortest return word r̂
(n)
C to v

(n)
C has the same Parikh vector as ν(ϕ2n(01)).

(D) The shortest return word r̂
(n)
D to v

(n)
D has the same Parikh vector as ν(ϕ2n+1(01)).

Proof. We will prove case (A). The other cases are similar. We know that the return

words to w
(0)
A = 1 in p are 12, 10, 102. Using Lemma 24, we obtain that ν(12) = 001,

ν(10) = 0011 and ν(102) = 001101 are return words to ν(1)0. Since ν(1)0 has unique
left and right extensions 1, using twice Observation 18, we obtain that 1ν(12)1−1 = 100,
1001 and 100110 are return words to v0A = 1001. Therefore, the shortest return word to

v
(0)
A = 1001 is 100 and it is a prefix of all of them.

Now, let us consider n > 1 and the bispecial factor

v
(n)
A = 1ν(1ϕ2(1)ϕ4(1) · · ·ϕ2n(1)ϕ2n−1(0)ϕ2n−3(0) · · ·ϕ(0))01 = 1ν(w

(n)
A )01.

Using Corollary 20, we know that the shortest return word to w
(n)
A has the same Parikh

vector as ϕ2n−1(012), moreover the shortest return word is a prefix of all other return
words.

Using Lemma 24, and the fact that ν is non-erasing, we obtain that the shortest return
word to ν(w

(n)
A )0 has the same Parikh vector as ν(ϕ2n−1(012)). Using Observation 18

twice, we obtain that the shortest return word to 1ν(w
(n)
A )01 has the same Parikh vector

as ν(ϕ2n−1(012)), since adding 1 at the beginning and erasing 1 at the end does not
change the Parikh vector.

4.2.3 The critical exponent of ν(p)

Using Theorem 8 and the description of BS factors from Corollary 23 and of their shortest
return words from Corollary 25, we obtain the following formula for the critical exponent
of ν(p).

E(ν(p)) = 1 + max {A,B,C,D, F} ,

the electronic journal of combinatorics 31(2) (2024), #P2.29 21



where

A = sup
n>1

{
|v(n)A |
|r̂(n)A |

}
= sup

n>1

{
|011ν(1ϕ(012)ϕ3(012) . . . ϕ2n−1(012))|

|ν(ϕ2n−1(012))|

}
∪
{
|1001|
|100|

}
;

B = sup
n>0

{
|v(n)B |
|r̂(n)B |

}
= sup

n>0

{
|0ν(012ϕ2(012)ϕ4(012) . . . ϕ2n(012))|

|ν(ϕ2n(012))|

}
;

C = sup
n>0

{
|v(n)C |
|r̂(n)C |

}
= sup

n>1

{
|01ν(01ϕ2(01)ϕ4(01) . . . ϕ2n(01))|

|ν(ϕ2n(01))|

}
∪
{
|1ν(10)0|
|ν(10)|

}
;

D = sup
n>0

{
|v(n)D |
|r̂(n)D |

}
= sup

n>0

{
|01ν(ϕ(01)ϕ3(01) . . . ϕ2n+1(01))|

|ν(ϕ2n+1(01))|

}
;

F = max

{
|w|
|r|

: w BS in ν(p) of length one or two and r its shortest return word

}
.

Theorem 26. The critical exponent of ν(p) equals

E(ν(p)) =
5

2
.

Proof. To evaluate the critical exponent of ν(p) using the above formula, we have to do
several steps.

1. Determining the shortest return words of BS factors of length one and two in ν(p):

• 0 is a BS factor with the shortest return word 0.

• 1 is a BS factor with the shortest return word 1.

• 01 is a BS factor with the shortest return words 010, 011.

• 10 is a BS factor with the shortest return word 10.

Thus for each BS factor w of length one or two and its shortest return word r we
have |w||r| 6 1 and F = 1.

2. Computation of A and B. The sequence cn := |ν(ϕn(012))| satisfies c0 = 6, c1 =
10, c2 = 17, and the recurrence relation cn = 2cn−1 − cn−2 + cn−3.

The explicit solution reads

cn = A1β
n +B1λ

n
1 + C1λ

n
2 ,

where
β
.
= 1.75488, λ1

.
= 0.12256 + 0.74486i, λ2 = λ1
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are the roots of the polynomial t3 − 2t2 + t− 1, and

A1 =
6|λ1|2 − 20 Re(λ1) + 17

|β − λ1|2
.
= 5.581308964 ;

B1 =
6βλ2 − 10(β + λ2) + 17

(β − λ1)(λ2 − λ1)
.
= 0.209345518− 0.103481025i ;

C1 = B1 .

Let us show that A 6 3
2
. Since |1001||100| = 4

3
< 3

2
, it remains to show for all n > 1 that

4 +A1

∑n
k=1 β

2k−1 +B1

∑n
k=1 λ

2k−1
1 + C1

∑n
k=1 λ

2k−1
2

A1β2n−1 +B1λ
2n−1
1 + C1λ

2n−1
2

6? 3

2
,

8 + 2A1

n∑
k=1

β2k−1 + 4 Re

(
B1

n∑
k=1

λ2k−1
1

)
6? 3A1β

2n−1 + 6 Re(B1λ
2n−1
1 ),

8 + 2A1

n−1∑
k=1

β2k−1 + 4 Re

(
B1

n−1∑
k=1

λ2k−1
1

)
6? A1β

2n−1 + 2 Re(B1λ
2n−1
1 ),

8 + 2A1

(
β2n−1

β2 − 1
− β

β2 − 1

)
+ 4 Re

(
B1λ1

1− λ2n−2
1

1− λ21

)
6? A1β

2n−1 + 2 Re(B1λ
2n−1
1 ).

Since

2

β2 − 1
6 1,

we need to prove the inequality in the form

8 + 4 Re

(
B1λ1

1− λ2n−21

1− λ21

)
6? 2A1

β

β2 − 1
+ 2 Re(B1λ

2n−1
1 ).

For the left side, we can write for n > 1

8 + 4 Re

(
B1λ1

1− λ2n−21

1− λ21

)
6 8 + 4|B1||λ1|

|λ1|2n−2 + 1

|λ21 − 1|

6 8 + 4|B1||λ1|
2

|λ21 − 1|
.

For the right side, we can write for n > 1

2A1
β

β2 − 1
+ 2 Re(B1λ

2n−1
1 ) > 2A1

β

β2 − 1
− 2|B1||λ1|2n−1

> 2A1
β

β2 − 1
− 2|B1||λ1|.
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Since the inequality

8 + 4|B1||λ1|
2

|λ21 − 1|
6 2A1

β

β2 − 1
− 2|B1||λ1|

holds true for the given values, we obtain A 6 3
2
.

Next, we will show that B 6 3
2
.

For all n > 0 we have to show that

1 + A1

∑n
k=0 β

2k +B1

∑n
k=0 λ

2k
1 + C1

∑n
k=0 λ

2k
2

A1β2n +B1λ2n1 + C1λ2n2
6? 3

2
,

2 + 2A1

n−1∑
k=0

β2k + 4 Re

(
B1

n−1∑
k=0

λ2k1

)
6? A1β

2n + 2 Re
(
B1λ

2n
1

)
,

2 + 2A1
β2n − 1

β2 − 1
+ 4 Re

(
B1
λ2n1 − 1

λ21 − 1

)
6? A1β

2n + 2 Re
(
B1λ

2n
1

)
.

Since

2

β2 − 1
6 1,

we need to prove the inequality in the form

2 + 4 Re

(
B1
λ2n1 − 1

λ21 − 1

)
6? A1

2

β2 − 1
+ 2 Re

(
B1λ

2n
1

)
.

For the left side, we can write for n > 0

2 + 4 Re

(
B1
λ2n1 − 1

λ21 − 1

)
6 2 + 4|B1|

|λ1|2n + 1

|λ21 − 1|

6 2 + 4|B1|
2

|λ21 − 1|
.

For the right side, we can write for n > 0

A1
2

β2 − 1
+ 2 Re

(
B1λ

2n
1

)
> A1

2

β2 − 1
− 2|B1||λ1|2n

> A1
2

β2 − 1
− 2|B1|.

Since the inequality

2 + 4|B1|
2

|λ21 − 1|
6 A1

2

β2 − 1
− 2|B1|

holds true for given values, we obtain B 6 3
2
.
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3. Computation of C and D. The sequence dn := |ν(ϕn(01))| satisfies d0 = 4, d1 =
7, d2 = 13, and the recurrence relation dn = 2dn−1 − dn−2 + dn−3.

The explicit solution reads

dn = A2β
n +B2λ

n
1 + C2λ

n
2 ,

where
β
.
= 1.75488, λ1

.
= 0.12256 + 0.74486i, λ2 = λ1

are the roots of the polynomial t3 − 2t2 + t− 1, and

A2 =
4|λ1|2 − 14 Re(λ1) + 13

|β − λ1|2
.
= 4.213205567 ;

B2 =
4βλ2 − 7(β + λ2) + 13

(β − λ1)(λ2 − λ1)
.
= −0.106602784 + 0.24671731i ;

C2 = B2 .

First, we will show that C = 3
2
. Recall that

C = sup

{
|01ν(01ϕ2(01)ϕ4(01) . . . ϕ2n(01))|

|ν(ϕ2n(01))|
: n > 1

}
∪
{
|1ν(10)0|
|ν(10)|

}
,

consequently, C > |1ν(10)0|
|ν(10)| = 3

2
.

It suffices to show for all n > 1 that

2 + A2

∑n
k=0 β

2k +B2

∑n
k=0 λ

2k
1 + C2

∑n
k=0 λ

2k
2

A2β2n +B2λ2n1 + C2λ2n2
6? 3

2
,

4 + 2A2

n−1∑
k=0

β2k + 4 Re

(
B2

n−1∑
k=0

λ2k1

)
6? A2β

2n + 2 Re
(
B2λ

2n
1

)
,

4 + 2A2
β2n − 1

β2 − 1
+ 4 Re

(
B2
λ2n1 − 1

λ21 − 1

)
6? A2β

2n + 2 Re
(
B2λ

2n
1

)
.

Since

2

β2 − 1
6 1,

we need to prove the inequality in the form

4 + 4 Re

(
B2
λ2n1 − 1

λ21 − 1

)
6? A2

2

β2 − 1
+ 2 Re

(
B2λ

2n
1

)
.
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Now, we need to be more careful with the approximations. For the left side, we can
write for n > 2

4 + 4 Re

(
B2
λ2n1 − 1

λ21 − 1

)
6 4 + 4 Re

(
B2

1− λ21

)
+ 4|B2|

|λ1|2n

|1− λ21|

6 4 + 4 Re

(
B2

1− λ21

)
+ 4|B2|

|λ1|4

|1− λ21|
.

For the right side, we can write for n > 2

A2
2

β2 − 1
+ 2 Re

(
B2λ

2n
1

)
> A2

2

β2 − 1
− 2|B2||λ1|2n

> A2
2

β2 − 1
− 2|B2||λ1|4.

Since the inequality

4 + 4 Re

(
B2

1− λ21

)
+ 4|B2|

|λ1|4

|1− λ21|
6 A2

2

β2 − 1
− 2|B2||λ1|4

holds true for given values, it remains to check the case for n = 1.

If n = 1, we get
2 + d0 + d2

d2
=

19

13
<

3

2
.

Therefore, we have proven that C = 3
2
.

It remains to prove D 6 3
2
, however, the steps are the same as in the proof of the

inequality A 6 3
2
. Thus, we dare to skip it.

We have shown that max{A,B,C,D} = 3
2
, and F = 1. Consequently, E(ν(p)) =

1 + max{A,B,C,D, F} = 5
2
.

4.3 The infinite word µ(p)

The morphism µ has the form:

µ(0) = 011001,

µ(1) = 1001,

µ(2) = 0.

µ(p) = 0110011001010010110010100101100110010110010100101100110010100101100110010110010 . . .

and µ is injective.

Remark 27. The reader may easily check that any factor of µ(p) of length at least six has
a synchronization point.

Using the above remark and Theorem 9, we deduce that

E∗(µ(p)) = E∗(p).
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4.3.1 Bispecial factors in µ(p)

Lemma 28. Let v ∈ L(µ(p)) be a BS factor of length at least six. Then one of the items
holds.

1. There exists w ∈ L(p) such that v = µ(w)01 and 0w, 2w,w0, w2 ∈ L(p).

2. There exists w ∈ L(p) such that v = 011001µ(w) and 0w, 1w,w1, w2 ∈ L(p).

3. There exists w ∈ L(p) such that v = µ(w) and 0w, 2w,w1, w2 ∈ L(p).

4. There exists w ∈ L(p) such that v = 011001µ(w)01 and 0w, 1w,w0, w2 ∈ L(p).

We would like to point out that in this section, we use the same notation for BS factors
and their shortest return words as in Section 4.2. We are persuaded that no confusion
arises since we do not refer here to the BS factors and their shortest return words from
Section 4.2.

Corollary 29. Let v be a BS factor in µ(p) of length at least six. Then v = 011001 or
v = 100101 or v = 01100101 or v has one of the following forms:

(A)

v
(n)
A = µ(1ϕ2(1)ϕ4(1) · · ·ϕ2n(1)ϕ2n−1(0)ϕ2n−3(0) · · ·ϕ(0))01

for n > 1.

v
(n)
A and 01µ(1ϕ(012)ϕ3(012) . . . ϕ2n−1(012)) have the same Parikh vector.

(B)

v
(n)
B = 011001µ(ϕ(1)ϕ3(1) · · ·ϕ2n+1(1)ϕ2n(0)ϕ2n−2(0) · · ·ϕ2(0)0)

= µ(0ϕ(1)ϕ3(1) · · ·ϕ2n+1(1)ϕ2n(0)ϕ2n−2(0) · · ·ϕ2(0)0)

for n > 0.

v
(n)
B and 000111µ(012ϕ2(012)ϕ4(012) . . . ϕ2n(012)) have the same Parikh vector.

(C)
v
(n)
C = µ(1ϕ2(1)ϕ4(1) · · ·ϕ2n(1)ϕ2n(0)ϕ2n−2(0) · · ·ϕ2(0)0)

for n > 0.

v
(n)
C and µ(01ϕ2(01)ϕ4(01) . . . ϕ2n(01)) have the same Parikh vector.

(D)

v
(n)
D = 011001µ(ϕ(1)ϕ3(1) · · ·ϕ2n+1(1)ϕ2n+1(0)ϕ2n−1(0) · · ·ϕ(0))01

for n > 0.

v
(n)
D and 00001111µ(ϕ(01)ϕ3(01) . . . ϕ2n+1(01)) have the same Parikh vector.
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4.3.2 The shortest return words to bispecial factors in µ(p)

Lemma 30. If w is a BS factor of p, |w| > 2, and v is its return word, then µ(v) is a
return word to µ(w).

Proof. On one hand, since vw contains w as a prefix and as a suffix, then µ(v)µ(w)
contains µ(w) as a prefix and as a suffix, too. On the other hand, w starts in 10 or
21 and ends in 0 or 1, therefore µ(w) has the following synchronization points •µ(w)•.
Consequently, µ(v)µ(w) cannot contain µ(w) somewhere in the middle because in such a
case, by injectivity of µ, vw would contain w also somewhere in the middle.

Applying Lemma 30 and Observation 18, we have the following description of the
shortest return words to BS factors.

Corollary 31. The shortest return words to BS factors of length greater than eight in
µ(p) have the following properties.

(A) The shortest return word r̂
(n)
A to v

(n)
A has the same Parikh vector as µ(ϕ2n−1(012))

for n > 1.

(B) The shortest return word r̂
(n)
B to v

(n)
B has the same Parikh vector as µ(ϕ2n(012)).

(C) The shortest return word r̂
(n)
C to v

(n)
C has the same Parikh vector as µ(ϕ2n(01)).

(D) The shortest return word r̂
(n)
D to v

(n)
D has the same Parikh vector as µ(ϕ2n+1(01)).

Proof. We will prove case (A). The other cases are similar. Let us consider n > 1 and
the bispecial factor

v
(n)
A = µ(1ϕ2(1)ϕ4(1) · · ·ϕ2n(1)ϕ2n−1(0)ϕ2n−3(0) · · ·ϕ(0))01 = µ(w

(n)
A )01.

Using Corollary 20, we know that the shortest return word to w
(n)
A has the same Parikh

vector as ϕ2n−1(012), moreover the shortest return word is a prefix of all of the return
words.

Using Lemma 30, and the fact that µ is non-erasing, we obtain that the shortest return
word to µ(w

(n)
A ) has the same Parikh vector as µ(ϕ2n−1(012)). Using Observation 18

twice, we obtain that the shortest return word to µ(w
(n)
A )01 has the same Parikh vector

as µ(ϕ2n−1(012)).

4.3.3 The critical exponent of µ(p)

Using Theorem 8 and the description of BS factors from Corollary 29 and of their shortest
return words from Corollary 31, we obtain the following formula for the critical exponent
of µ(p).

E(µ(p)) = 1 + max {A,B,C,D, F} ,
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where

A = sup

{
|v(n)A |
|r̂(n)A |

: n > 1

}
= sup

{
|01µ(1ϕ(012)ϕ3(012) · · ·ϕ2n−1(012))|

|µ(ϕ2n−1(012))|
: n > 1

}
;

B = sup

{
|v(n)B |
|r̂(n)B |

: n > 0

}
= sup

{
|000111µ(012ϕ2(012)ϕ4(012) · · ·ϕ2n(012))|

|µ(ϕ2n(012))|
: n > 0

}
;

C = sup

{
|v(n)C |
|r̂(n)C |

: n > 0

}
= sup

{
|µ(01ϕ2(01)ϕ4(01) · · ·ϕ2n(01))|

|µ(ϕ2n(01))|
: n > 1

}
;

D = sup

{
|v(n)D |
|r̂(n)D |

: n > 0

}
= sup

{
|00001111µ(ϕ(01)ϕ3(01) · · ·ϕ2n+1(01))|

|µ(ϕ2n+1(01))|
: n > 0

}
;

F = max

{
|w|
|r|

: w BS in µ(p) of length at most 8 and r its shortest return word

}
.

Theorem 32. The critical exponent of µ(p) equals

E(µ(p)) =
28

11
.

Proof. To evaluate the critical exponent of µ(p) using the above formula, we have to do
several steps.

1. Determining the shortest return words of BS factors of length at most 8 in µ(p):

• 0 is a BS factor with the shortest return word 0.

• 1 is a BS factor with the shortest return word 1.

• 01 is a BS factor with the shortest return word 01.

• 10 is a BS factor with the shortest return word 10.

• 010 is a BS factor with the shortest return word 01.

• 1001 is a BS factor with the shortest return word 1001.

• 011001 is a BS factor with the shortest return word 0110.

• 100101 is a BS factor with the shortest return word 10010.

• 01100101 is a BS factor with the shortest return word 011001.

Therefore, F = max
{

1, 3
2
, 6
5
, 8
6

}
< 17

11
.

2. Computation of A and B. The sequence en := |µ(ϕn(012))| satisfies e0 = 11, e1 =
21, e2 = 36, and the recurrence relation en = 2en−1 − en−2 + en−3.

The explicit solution reads

en = A3β
n +B3λ

n
1 + C3λ

n
2 ,
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where
β
.
= 1.75488, λ1

.
= 0.12256 + 0.74486i, λ2 = λ1

are the roots of the polynomial t3 − 2t2 + t− 1, and

A3 =
11|λ1|2 − 42 Re(λ1) + 36

|β − λ1|2
.
= 11.530751580 ;

B3 =
11βλ2 − 21(β + λ2) + 36

(β − λ1)(λ2 − λ1)
.
= −0.265375790− 0.557144391i ;

C3 = B3 .

Let us show that A 6 17
11

. We have to show for all n > 1 that

6 +A3

∑n
k=1 β

2k−1 +B3

∑n
k=1 λ

2k−1
1 + C3

∑n
k=1 λ

2k−1
2

A3β2n−1 +B3λ
2n−1
1 + C3λ

2n−1
2

6? 17

11
,

66 + 11A3

n∑
k=1

β2k−1 + 22 Re

(
B3

n∑
k=1

λ2k−1
1

)
6? 17A3β

2n−1 + 34 Re(B2λ
2n−1
1 ),

66 + 11A3

n−1∑
k=1

β2k−1 + 22 Re

(
B3

n−1∑
k=1

λ2k−1
1

)
6? 6A3β

2n−1 + 12 Re(B3λ
2n−1
1 ),

66 + 11A3

(
β2n−1

β2 − 1
− β

β2 − 1

)
+ 22 Re

(
B3λ1

1− λ2n−2
1

1− λ21

)
6? 6A3β

2n−1 + 12 Re(B3λ
2n−1
1 ).

Since

11

β2 − 1
6 6,

we need to prove the inequality in the form

66 + 22 Re

(
B3λ1

1− λ2n−21

1− λ21

)
6? 11A3

β

β2 − 1
+ 12 Re(B3λ

2n−1
1 ).

For the left side, we can write for n > 1

66 + 22 Re

(
B3λ1

1− λ2n−21

1− λ21

)
6 66 + 22|B3||λ1|

|λ1|2n−2 + 1

|λ21 − 1|

6 66 + 22|B3||λ1|
2

|λ21 − 1|
.

For the right side, we can write for n > 1

11A3
β

β2 − 1
+ 12 Re(B3λ

2n−1
1 ) > 11A3

β

β2 − 1
− 12|B3||λ1|2n−1

the electronic journal of combinatorics 31(2) (2024), #P2.29 30



> 11A3
β

β2 − 1
− 12|B3||λ1|.

Since the inequality

66 + 22|B3||λ1|
2

|λ21 − 1|
6 11A3

β

β2 − 1
− 12|B1||λ1|

holds true for the given values, we obtain A 6 17
11

.

Next, we will show that B 6 17
11

.

Since for n = 0 we have
|v(0)B |
|r̂(0)B |

= 6+11
11

= 17
11

, it remains to show that for all n > 1

6 + A3

∑n
k=0 β

2k +B3

∑n
k=0 λ

2k
1 + C3

∑n
k=0 λ

2k
2

A3β2n +B3λ2n1 + C3λ2n2
6? 17

11
,

66 + 11A3

n−1∑
k=0

β2k + 22 Re

(
B3

n−1∑
k=0

λ2k1

)
6? 6A3β

2n + 12 Re
(
B3λ

2n
1

)
,

66 + 11A3
β2n − 1

β2 − 1
+ 22 Re

(
B3
λ2n1 − 1

λ21 − 1

)
6? 6A3β

2n + 12 Re
(
B3λ

2n
1

)
.

Now, we need to be more careful with the approximations, we will therefore prove
the inequality in the form

66 + 22 Re

(
B3
λ2n1 − 1

λ21 − 1

)
6? 11A3

β2 − 1
+ A3β

2n

(
6− 11

β2 − 1

)
+ 12 Re

(
B3λ

2n
1

)
.

For the left side, we can write for n > 1

66 + 22 Re

(
B3
λ2n1 − 1

λ21 − 1

)
6 66 + 22|B3|

|λ1|2n + 1

|λ21 − 1|

6 66 + 22|B3|
1 + |λ1|2

|λ21 − 1|
.

For the right side, we can write for n > 1

11A3

β2 − 1
+A3β

2n

(
6− 11

β2 − 1

)
+ 12 Re

(
B3λ

2n
1

)
>

11A3

β2 − 1
+A3β

2

(
6− 11

β2 − 1

)
− 12|B3||λ1|2n

>
11A3

β2 − 1
+A3β

2

(
6− 11

β2 − 1

)
− 12|B3||λ1|2.

Since the inequality

66 + 22|B3|
1 + |λ1|2

|λ21 − 1|
6

11A3

β2 − 1
+ A3β

2

(
6− 11

β2 − 1

)
− 12|B3||λ1|2

holds true for the given values, we conclude B = 17
11

.
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3. Computation of C and D. The sequence fn := |µ(ϕn(01))| satisfies f0 = 10, f1 =
15, f2 = 26, and the recurrence relation fn = 2fn−1 − fn−2 + fn−3.

The explicit solution reads

fn = A4β
n +B4λ

n
1 + C4λ

n
2 ,

where
β
.
= 1.75488, λ1

.
= 0.12256 + 0.74486i, λ2 = λ1

are the roots of the polynomial t3 − 2t2 + t− 1, and

A4 =
10|λ1|2 − 30 Re(λ1) + 26

|β − λ1|2
.
= 8.704306843 ;

B4 =
10βλ2 − 15(β + λ2) + 26

(β − λ1)(λ2 − λ1)
.
= 0.647846579 + 0.291191845i ;

C4 = B4 .

The computation for C 6 17
11

is the same as for B. Let us show that D 6 17
11

. We
have to show for n > 1 that

8 +A4

∑n
k=1 β

2k−1 +B4

∑n
k=1 λ

2k−1
1 + C4

∑n
k=1 λ

2k−1
2

A4β2n−1 +B4λ
2n−1
1 + C4λ

2n−1
2

6? 17

11
,

88 + 11A4

(
β2n−1

β2 − 1
− β

β2 − 1

)
+ 22 Re

(
B4λ1

1− λ2n−2
1

1− λ21

)
6? 6A4β

2n−1 + 12 Re(B4λ
2n−1
1 ).

Since

11

β2 − 1
6 6,

we need to prove the inequality in the form

88 + 22 Re

(
B4λ1

1− λ2n−21

1− λ21

)
6? 11A4

β

β2 − 1
+ 12 Re(B4λ

2n−1
1 ).

For the left side, we can write for n > 1

88 + 22 Re

(
B4λ1

1− λ2n−21

1− λ21

)
6 88 + 22 Re

(
B4λ1

1− λ21

)
+ 22|B4|

|λ1|2n−1

|1− λ21|

6 88 + 22 Re

(
B4λ1

1− λ21

)
+ 22|B4|

|λ1|
|1− λ21|

.

For the right side, we can write for n > 1

11A4
β

β2 − 1
+ 12 Re(B4λ

2n−1
1 ) > 11A4

β

β2 − 1
− 12|B4||λ1|2n−1
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> 11A4
β

β2 − 1
− 12|B4||λ1|.

Since the inequality

88 + 22 Re

(
B4λ1

1− λ21

)
+ 22|B4|

|λ1|
|1− λ21|

6 11A4
β

β2 − 1
− 12|B4||λ1|

holds true for the given values, we obtain D 6 17
11

.

We have shown that max{A,B,C,D} = B = 17
11

, and F < 17
11

. Consequently,
E(µ(p)) = 1 + max{A,B,C,D, F} = 28

11
.
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