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Abstract

For many well-known families of triple systems M, there are perhaps many
near-extremal M-free configurations that are far from each other in edit-distance.
Such a property is called non-stable and is a fundamental barrier to determining
the Turán number of M. Liu and Mubayi gave the first finite example that is
non-stable. In this paper, we construct another finite family of triple systems M
such that there are two near-extremal M-free configurations that are far from each
other in edit-distance. We also prove its Andrásfai-Erdős-Sós type stability theorem:
Every M-free triple system whose minimum degree is close to the average degree
of the extremal configurations is a subgraph of one of these two near-extremal
configurations. As a corollary, our main result shows that the boundary of the
feasible region of M has exactly two global maxima.

Mathematics Subject Classifications: 05C35, 05C65, 05D05

1 Introduction

1.1 Turán number and stability

For r 󰃍 2 an r-uniform hypergraph (henceforth r-graph) H is a collection of r-subsets of
some finite set V . Given a family F of r-graphs we say H is F -free if it does not contain
any member of F as a subgraph. The Turán number ex(n,F) of F is the maximum
number of edges in an F -free r-graph on n vertices. The Turán density π(F) of F is
defined as π(F) = limn→∞ ex(n,F)/

󰀃
n
r

󰀄
. A family F is called nondegenerate if π(F) > 0.

The study of ex(n,F) is perhaps the central topic in extremal combinatorics. Much
is known about ex(n,F) when r = 2, and one of the most famous results in this regard is
Turán’s theorem, which states that for every integer ℓ 󰃍 2 the Turán number ex(n,Kℓ+1)
is uniquely achieved by the balanced ℓ-partite graph on n vertices, which is called the
Turán graph T (n, ℓ).

For r 󰃍 3 determining π(F) for a family F of r-graphs is known to be notoriously
hard in general. Indeed, the problem of determining π(Kr

ℓ ) raised by Turán [32], where

Center for Discrete Mathematics, Fuzhou University, China (fzuzyx@gmail.com, jfhou@fzu.edu.cn,
hengli.fzu@gmail.com).

the electronic journal of combinatorics 31(2) (2024), #P2.3 https://doi.org/10.37236/11701

https://doi.org/10.37236/11701


Kr
ℓ is the complete r-graph on ℓ vertices, is still wide open for all ℓ > r 󰃍 3. Erdős offered

$500 for the determination of any π(Kr
ℓ ) with ℓ > r 󰃍 3 and $1000 for the determination

of all π(Kr
ℓ ) with ℓ > r 󰃍 3.

Conjecture 1 (Turán [32]). For every integer ℓ 󰃍 3 we have π(K3
ℓ+1) = 1− 4/ℓ2.

The case ℓ = 3 above, which states that π(K3
4) = 5/9 has generated a lot of interest

and activity over the years [4, 8, 17]. The best bound that π(K3
4) 󰃑 0.561666 was given

by Razborov [30] using the Flag Algebra machinery.
For a family F of r-graphs, it is natural to ask for the “continuity” of the discrete

F -free r-graphs whose size is close to ex(n,F). The seminal result in this regard is the
Simonovits stability theorem, proved independently by Erdős and Simonovits [31].

Theorem 2 (Erdős, Simonovits [31]). Fix ℓ 󰃍 2. For every δ > 0, there exists 󰂃 and
N0 = N0(󰂃) such that the following holds for every n > N0: if G is an n-vertex graph
containing no copy of Kℓ+1 with at least (1− 󰂃)|T (n, ℓ)| edges, then G can be transformed
to T (n, ℓ) by adding and deleting at most δn2 edges.

The stability phenomenon plays an important role in determining Turán number ex-
actly. It was first used by Simonovits [31] for graphs, and by several authors [3, 10,
11, 13, 16, 27, 28] for r-graphs. More precisely, one can determine ex(n,F) exactly by
first determining the asymptotic value, then using a stability theorem to prove that any
r-graph with the extremal number of edges is the unique extremal r-graph. This is espe-
cially valuable in extremal hypergraph theory, where exact results are rare, and any new
approach gives insight to the governing phenomenon of the problems.

However, there are many Turán problems for hypergraphs that (perhaps) do not have
the stability property. For example, Kostochka [17] showed that there are at least 2n−2

nonisomorphic extremal K3
4 -free constructions on 3n vertices (assuming Turán’s Tetrahe-

dron conjecture is true). The absence of stability seems to be a fundamental barrier in
determining Turán numbers of some families. This motivates Mubayi [26] to make the
following definition.

Definition 3 (t-stable). Let r 󰃍 2 and t 󰃍 1 be integers. A family F of r-graphs is
t-stable if for every m ∈ N there exist r-graphs G1(m), . . . ,Gt(m) on m vertices such that
the following holds. For every δ > 0 there exist 󰂃 > 0 and N0 such that for all n 󰃍 N0 if H
is an F -free r-graph on n vertices with |H| > (1− 󰂃)ex(n,F) then H can be transformed
to some Gi(n) by adding and removing at most δnr edges. Say F is stable if it is 1-stable.

Denote by ξ(F) the minimum integer t such that F is t-stable, and set ξ(F) = ∞ if
there is no such t. Call ξ(F) the stability number of F .

The classical Erdős–Stone–Simonovits theorem [7, 6] and Erdős–Simonovits stability
theorem [31] imply that every nondegenerate family of graphs is stable. Families that
are non-stable and whose Turán densities can be determined were constructed only very
recently. In [21], Liu and Mubayi constructed the first finite 2-stable family of 3-graphs.
Later in [22], Liu, Mubayi and Reiher constructed the first finite t-stable family of triple
systems (3-graphs) for every integer t 󰃍 3. Recently, together with Liu and Mubayi, the
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authors [12] gave the first exact and stability results for a hypergraph Turán problem
with infinitely many extremal constructions that are far from each other in edit-distance.
Liu and Pikhurko [24] used another method to construct finite families with an infinite
stability number.

In this paper, we give another finite family M of 3-graphs with ξ(M) = 2 and give
its Andrásfai–Erdős–Sós type [1] stability theorem. Note that an r-graph H is a blowup
of an r-graph G if there exists a map ψ : V (H) → V (G) so that ψ(E) ∈ G iff E ∈ H.
We say H is G-colorable if there exists a map φ : V (H) → V (G) so that φ(E) ∈ G for all
E ∈ H, and we call such a map φ a homomorphism from H to G. In other words, H is
G-colorable if and only if H occurs as a subgraph in some blowup of G. An r-graph H is
called bipartite if V (H) has a partition A ∪ B such that H[A] = H[B] = ∅. Let G2

12 be
a 3-graph on 12 vertices whose complement is a perfect matching. The following is our
main result.

Theorem 4. There exists a finite family M of 3-graphs such that the following statements
hold.

(a) ex(n,M) 󰃑 n3/8 for all positive integers n, and equality holds if and only if 12 | n.

(b) There exist constants 󰂃 > 0 and N0 such that the following holds for every integer
n 󰃍 N0. Every n-vertex M-free 3-graph with minimum degree at least (3/8− 󰂃)n2

is either bipartite or G2
12-colorable. In other words, ξ(M) = 2.

1.2 Feasible region

Our result has an application on feasible region function which was introduced by Liu and
Mubayi [20] to understand the extremal properties of F -free hypergraphs beyond just the
determination of π(F). Given an r-graph H on n vertices, the shadow of H is defined as

∂H =

󰀝
A ∈

󰀕
V (H)

r − 1

󰀖
: there is B ∈ H such that A ⊂ B

󰀞
.

The edge density of H is defined as ρ(H) = |H|/
󰀃
v(H)
r

󰀄
, and the shadow density of H is

defined as ρ(∂H) = |∂H|/
󰀃
v(H)
r−1

󰀄
. For a family F the feasible region Ω(F) of F is the set

of points (x, y) ∈ [0, 1]2 such that there exists a sequence of F -free r-graphs (Hk)
∞
k=1 with

lim
k→∞

v(Hk) = ∞, lim
k→∞

ρ(∂Hk) = x, and lim
k→∞

ρ(Hk) = y.

The feasible region unifies and generalizes many classical problems such as the Kruskal–
Katona theorem [14, 18] and the Turán problem. For some constant c(F) ∈ [0, 1] the
projection to the first coordinate,

projΩ(F) = {x : there is y ∈ [0, 1] such that (x, y) ∈ Ω(F)} ,

is the interval [0, c(F)] . Moreover, there is a left-continuous almost everywhere differen-
tiable function g(F) : projΩ(F) → [0, 1] such that

Ω(F) =
󰀋
(x, y) ∈ [0, c(F)]× [0, 1] : 0 󰃑 y 󰃑 g(F)(x)

󰀌
.
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Let us call g(F) the feasible region function of F . It was shown in [20] that g(F) is not
necessarily continuous, and in [19], it was shown that g(F) can have infinitely many local
maxima even for some simple and natural families F .

Using Theorem 4, we have the following result.

Theorem 5. The set projΩ(M) = [0, 1], and g(M)(x) 󰃑 3/4 for all x ∈ [0, 1]. Moreover,
g(M)(x) = 3/4 if and only if x = 11/12 or 1.

10

y

x

1

3
4

11
12

(1, 1)

Figure 1: The function g(M) has exactly two global maxima.

This paper is organized as follows. The following section gives the construction of
M. In Section 3 we determine the Turán number of M and prove Theorem 4 (a). In
Section 4, we study the stability of M and prove Theorem 4 (b). The proof of Theorem 5
is presented in Section 5. Section 6 contains some concluding remarks.

2 Construction of M

In this section, we will construct a finite family M of 3-graphs with ex(n,M) 󰃑 n3/8 and
ξ(M) = 2. At first, we give some definitions and notations. For positive integers n1 and
n2 with n1 󰃑 n2, let [n1] : = {1, . . . , n1} and [n1, n2] : = [n2] \ [n1 − 1]. We identify an
r-graph H with its edge set, use V (H) to denote its vertex set, and denote by v(H) the
size of V (H). For a vertex v ∈ V (H), the link LH(v) of v in H is

LH(v) = {A ∈ ∂H : A ∪ {v} ∈ H} .

The degree of v in H is dH(v) = |LH(v)|. Denote by δ(H) and ∆(H) the minimum degree
and maximum degree of H, respectively. The neighborhood NH(v) of v is defined as

NH(v) = {u ∈ V (H) \ {v} : there exists e ∈ H such that {u, v} ⊆ e}.
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For a set A ⊆ V (H) denote by H[A] the induced subgraph of H with A. We will omit
the subscript H from our notations if it is clear from the context. For a graph G and two
disjoint sets X, Y ⊆ V (G) denote by G[X, Y ] the induced bipartite subgraph of G with
two parts X and Y .

Let ℓ 󰃍 r 󰃍 2 and Kr
ℓ+1 be the collection of all r-graphs F with at most

󰀃
ℓ+1
2

󰀄
edges

such that for some (ℓ+1)-set S, which will be called the core of F , every pair {u, v} ⊂ S
is covered by an edge in F . We notice that Kr

ℓ+1 is a finite family. The Fano plane,
hereafter denoted by Fano, is the unique hypergraph with 7 triples on 7 vertices in which
every pair of vertices is contained in a unique triple, i.e., the 3-graph on the vertex set [7]
with the edge set

{123, 345, 561, 174, 275, 376, 246}.

The Turán density of a Fano was determined by De Caen and Füredi in [5]. Later
Keevash and Sudakov [16] and, independently, Füredi and Simonovits [10] proved the
stability theorem of a Fano by showing

Theorem 6 (Füredi and Simonovits [10]). There exist γ > 0 and N0 such that the
following holds. If H is a Fano-free 3-graph on n > N0 vertices with δ(H) 󰃍 (3/8− γ)n2,
then H is bipartite.

Using Theorem 6, the Turán number of a Fano was determined for large n [10]. The
complete determination of its Turán number was obtained by Bellmann and Reiher [2].

Theorem 7 (Bellmann and Reiher [2]). For every integer n 󰃍 7, we have

ex(n,Fano) =
n− 2

2
·
󰀙
n2

4

󰀚
.

Recall that G2
12 is the 3-graph on 12 vertices whose complement is a perfect matching.

The following two 3-graphs play a key role in our proof.

Definition 8. Let G1
n be a 3-graph on n vertices whose vertex set is partitioned into two

parts of size ⌊n/2⌋ and ⌈n/2⌉, and whose edges consist of all triples intersecting both
parts. For n 󰃍 12, let G2

n be a 3-graph on n vertices which is a blowup of G2
12 with the

maximum number of edges.

Remarks.

• Simple calculation shows that each part in G2
n has size either ⌊n/12⌋ or ⌈n/12⌉.

• For i = 1, 2, let gi(n) = |Gi
n|. Then limn→∞ gi(n)/n

3 = 1/8.

• Transforming G1
n to G2

n requires us to delete and add Ω(n3) edges. Indeed, ∂G1
n is a

complete graph, whereas the clique number of ∂G2
n is 12. By Turán’s theorem, one

must delete at least (1 − π(K13))
󰀃
n
2

󰀄
= Ω(n2) edges from ∂G1

n to obtain a copy of
∂G2

n. Since every edge in ∂G1
n is covered by Ω(n) edges in G1

n, we need to remove at
least Ω(n3) edges from G1

n before getting G2
n.
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⌊n/2⌋ ⌈n/2⌉

Figure 2: The 3-graph G1
n and the complement of G2

12.

Both G1
n and G2

n has at most n3/8 edges. Now we find a finite family M of 3-graphs
such that both G1

n and G2
n are M-free and the extremal constructions of M is close to

either G1
n or G2

n. For i = 1, 2, let F∞(Gi
n) be the (infinite) family of all r-graphs F such

that Gi
n is F -free for all positive integers n, i.e.,

F∞(Gi
n) =

󰀋
r-graph F : Gi

n is F -free for all positive integers n
󰀌
.

For every positive integer m, let Fm(Gi
n) consist of all members of F∞(Gi

n) with at most
m vertices, i.e.,

Fm(Gi
n) =

󰀋
F ∈ F∞(Gi

n) : v(F ) 󰃑 m
󰀌
.

We set

M = F91(G1
n) ∩ F91(G2

n). (1)

Remarks.

• Each member J of K3
13 is not contained in any blow up of G2

12. As ν(J ) 󰃑 91, that
is why we choice m = 91 in (1).

• G1
n is Fano-free. So, if we can find J ∈ K3

13 such that J contains a copy of Fano,
then J ∈ M.

3 Turán number of M

In this section we prove Theorem 4 (a) using a idea given by Liu, Mubayi and Reiher
[23]. First we present some definitions and lemmas which will be used later. Let H be an
r-graph with V (H) = [n]. For x = (x1, . . . , xn) define the multilinear polynomial of H as

pH(x) : =
󰁛

E∈H

󰁜

i∈E

xi.
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Denote by ∆n−1 the standard (n− 1)-dimensional simplex, i.e.,

∆n−1 =

󰀫
x ∈ [0, 1]n :

n󰁛

i=1

xi = 1

󰀬
.

The Lagrangian of H is

λ(H) : = max{pH(x) : x ∈ ∆n−1}.

Note that ∆n−1 is compact in [0, 1]n and pH(x) is continuous, so λ(H) is well-defined.
The following lemma is about the relationship between λ(H) and the maximum num-

ber of edges in a blowup of H (e.g. see Frankl and Füredi [9] or Keevash’s survey [15,
Section 3]).

Lemma 9 ( Frankl and Füredi [9]). Let r 󰃍 2 and G and H be two r-graphs. Suppose
that G is a blowup of H with v(G) = n. Then |G| 󰃑 λ(H)nr.

The following lemmas give Lagrangians of two hypergraphs by an easy calculation.

Lemma 10. Let H be a complete bipartite 3-graph on n vertices. Then λ(H) < 1/8.

Proof. Suppose that H is partitioned into two parts A1 and A2 with V (A1) = [s] and
V (A2) = [s + 1, n] such that H[Ai] = ∅ for i = 1, 2. For x ∈ ∆n−1, let

󰁓s
i=1 xi = a and󰁓n

i=s+1 xi = 1− a. Then, by the Maclaurin’s inequality, we have

pH(x) =
s󰁛

i=1

xi

󰀳

󰁃
󰁛

{j,k}⊆[s,n]

xjxk

󰀴

󰁄+
n󰁛

i=s+1

xi

󰀳

󰁃
󰁛

{j,k}⊆[s]

xjxk

󰀴

󰁄

󰃑 a

󰀕
n− s

2

󰀖󰀕
1− a

n− s

󰀖2

+ (1− a)

󰀕
s

2

󰀖󰀓a
s

󰀔2

<
1

2
a(1− a)2 +

1

2
(1− a)a2

=
1

2
a(1− a)

󰃑 1

8
,

which implies that λ(H) < 1/8.

Lemma 11. λ(G2
12) = 1/8.
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Proof. For x ∈ ∆11, let x3i−2 + x3i−1 + x3i = ai for i ∈ [4]. Then, we have

pG2
12
(x) =

󰁛

{i,j,k}⊂[12]

xixjxk − (x1x2x3 + x4x5x6 + x7x8x9 + x10x11x12)

=
4󰁛

i=1

󰀳

󰁃
󰁜

j∈[4]\{i}

aj + (x3i−2x3i−1 + x3i−1x3i + x3i−2x3i)
󰁛

k∈[4]\{i}

ak

󰀴

󰁄

󰃑
4󰁛

i=1

󰀳

󰁃
󰁜

j∈[4]\{i}

aj + 3
󰀓ai
3

󰀔2 󰁛

k∈[4]\{i}

ak

󰀴

󰁄

=
1

3

󰁛

{j,k}⊂[4]

ajak

󰃑 2

󰀣󰁓4
i=1 ai
4

󰀤2

=
1

8
,

where the first and second inequalities both follow from the Maclaurin’s inequality. More-
over, equality holds only if a1 = a2 = a3 = a4 = 1/4 and xi = 1/12 for i ∈ [12].

For two r-graphs F and H, recall that we say f : V (F ) → V (H) is a homomorphism if
f(E) ∈ H for all E ∈ F . We say H is F -hom-free if there is no homomorphism from F to
H. This is equivalent to say that every blowup of H is F -free. For a family F of r-graphs
we say H is F-hom-free if it is F -hom-free for all F ∈ F . An r-graph F is 2-covered if
every {u, v} ⊂ V (F ) is contained in some E ∈ F , and a family F is 2-covered if all F ∈ F
are 2-covered. An easy observation is that if an r-graph F is 2-covered, then H is F -free
if and only if it is F -hom-free.

Definition 12 (Blowup-invariant). A family F of r-graphs is blowup-invariant if every
F -free r-graph is also F -hom-free.

The following simple lemma is a special case of Lemma 15 [24], which is also an
extension of Lemma 8 [29].

Lemma 13 (see Liu and Pikhurko [24]). The family M = F91(G1
n) ∩ F91(G2

n) is blowup-
invariant.

Let H be an r-graph and {u, v} ⊂ V (H) be two non-adjacent vertices (i.e., no edge
contains both u and v). We say u and v are equivalent if LH(u) = LH(v). Otherwise
we say they are non-equivalent. An equivalence class of H is a maximal vertex set in
which every pair of vertices are equivalent. We say H is symmetrized if for any two non-
equivalent vertices u, v ∈ V (H) there is an edge of H containing both of them. In [23],
Liu, Mubayi and Reiher summarized the well known method of Zykov [33] symmetrization
for solving Turán problems into the following statement.
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Theorem 14 (Liu, Mubayi and Reiher [23]). Suppose that F is a blowup-invariant family
of r-graphs. If H denotes the class of all symmetrized F-free r-graphs, then ex(n,F) =
h(n) holds for every n ∈ N+, where h(n) = max{|H| : H ∈ H and v(H) = n}.

Now prove Theorem 4 (a) by showing

Theorem 15. Let M = F91(G1
n) ∩ F91(G2

n). Then ex(n,M) 󰃑 n3/8 for all positive
integers n, and equality holds if and only if 12 | n.

Proof. Let H be the collection of all symmetrized M-free r-graphs. Define

h(n) = max{|H| : H ∈ H and v(H) = n}.

Combining Lemma 13 and Theorem 14, it suffices to prove that h(n) 󰃑 n3/8, and equality
holds if and only if 12 | n.

For each H ∈ H, let T ⊆ V (H) be the set that contains exactly one vertex from
each equivalence class of H and let T = H[T ]. Then H is a blowup of T . To prove
|H| 󰃑 n3/8, we divide our remaining argument into the following two cases according to
the cardinality of T .

Case 1: |T | 󰃑 12.
By Lemma 9, it suffices to show that λ(T ) 󰃑 1/8. Since H does not contain any

member of M as a subgraph, either T ⊆ G1
m or T ⊆ G2

m for some positive integer m. If it
is the former case, then λ(T ) 󰃑 λ(G1

m) < 1/8 by Lemma 10. Otherwise, due to the fact
that T is 2-covered, T ⊆ G2

12. It follows from Lemma 11 that λ(T ) 󰃑 λ(G2
12) = 1/8, and

the equality holds if and only if T is a copy of G2
12.

Case 2: |T | 󰃍 13.
If |H| 󰃍 n3/8, then H contains a copy of a Fano by Theorem 7. Since the Fano is 2-

covered, T also contains a copy of a Fano. Thus, we can find a subgraph F ⊆ T such that
F ∈ K3

13 and F contains a copy of a Fano, a contradiction to the fact that F ∈ M.

4 Stability of M

In this section we always suppose that M = F91(G1
n)∩F91(G2

n), and prove Theorem 4 (b)
using a ingenious machinery provided in [23]. The following two definitions play a key
role in our proof.

Definition 16 (Symmetrized-stability). Let F be a family of r-graphs and let H be a
class of F -free r-graphs. We say that F is symmetrized-stable with respect to H if there
exist 󰂃 > 0 and N0 such that every symmetrized F -free r-graphs H on n 󰃍 N0 vertices
with δ(H) 󰃍

󰀃
π(F)/(r − 1)!− 󰂃

󰀄
nr−1 is a subgraph of a member of H.

Definition 17 (Vertex-extendibility). Let F be a family of r-graphs and let H be a class
of F -free r-graphs. We say that F is vertex-extendable with respect to H if there exist
ζ > 0 and N0 ∈ N such that for every F -free r-graph H on n 󰃍 N0 vertices satisfying
δ(H) 󰃍

󰀃
π(F)/(r − 1)!− ζ

󰀄
nr−1 the following holds: if H− v is a subgraph of a member

of H for some vertex v ∈ V (H), then H is a subgraph of a member of H as well.
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In [23], Liu, Mubayi and Reiher developed a machinery that reduces the proof of sta-
bility of certain families F to the simpler question of checking that an F -free hypergraph
H with large minimum degree is vertex-extendable.

Theorem 18 (Liu, Mubayi and Reiher [23]). Suppose that F is a blowup-invariant non-
degenerate family of r-graphs and that H is a hereditary class of F-free r-graphs. If F is
symmetrized-stable and vertex-extendable with respect to H, then the following statement
holds. There exist ε > 0 and N0 such that every F-free r-graph on n 󰃍 N0 vertices with
minimum degree at least (π(F)/(r − 1)!− ε)nr−1 is contained in H.

Let

H = {3-graph H : H is either bipartite or G2
12-colorable}. (2)

We prove that M is symmetrized-stable with respect to H.

Lemma 19. There exist 󰂃 > 0 and N0 such that every symmetrized M-free 3-graphs H
on n 󰃍 N0 vertices with minimum degree δ(H) 󰃍

󰀃
3/8− 󰂃

󰀄
n2 belongs to H.

Proof. We choose 󰂃, N0 satisfying the condition of Theorem 6 and let H be a symmetrized
M-free 3-graphs H on n 󰃍 N0 vertices with δ(H) 󰃍

󰀃
3/8 − 󰂃

󰀄
n2. Let T ⊆ V (H) be

a set that contains exactly one vertex from each equivalence class of H and T = H[T ].
Then H is a blowup of T . If |T | 󰃑 12, then either T ⊆ G1

m or T ⊆ G2
m for some positive

integer m as H does not contain any member of M as a subgraph. This means H ∈ H.
Now let |T | 󰃍 13. If H is Fano-free. Then H is bipartite by Theorem 6 and we are done.
Otherwise, T also contains a copy of a Fano as the Fano is 2-covered. This means we can
find a subgraph F ⊆ T such that F ∈ K3

13 and F contains a copy of a Fano. However,
F ∈ M by the construction of M, a contradiction.

We prove Theorem 4 (b) briefly. The details can be found in Subsections 4.1 and 4.2.

Proof of Theorem 4 (b). Let 󰂃 > 0 be a sufficiently small constant and N0 be a sufficiently
large integer. Suppose that H is an M-free 3-graph on n 󰃍 N0 vertices with δ(H) 󰃍
(3/8− 󰂃)n2. It follows from Lemma 13 that M is blowup-invariant. By Theorem 18 and
Lemma 19, it suffices to show that M is vertex-extendable with respect to H. If there is
a vertex v such that H− v is bipartite, then H is also bipartite by Lemma 20. Otherwise,
if H− v is G2

12-colorable, then H is also G2
12-colorable by Lemma 26.

4.1 Bipartite

In this subsection, we prove the following lemma.

Lemma 20. There exist ζ > 0 and N0 such that every M-free 3-graph H on n > N0

vertices which has minimum degree δ(H) > (3/8− ζ)n2 and possesses a vertex v such
that H′ := H− v is bipartite is bipartite itself.
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Proof. Let 󰂃 > 0 be a sufficiently small constant and N0 be a sufficiently large integer.
Let ζ = min{γ, 󰂃/2}, where γ is the constant in Theorem 6. Suppose that H is an M-free
3-graph on n > N0 vertices with δ(H) > (3/8 − ζ)n2, and there exists exists a vertex
v ∈ V (H) such that the 3-graph H′ = H−v is bipartite. Then H′ can be partitioned into
two parts A1 and A2 such that H′[Ai] is empty for i = 1, 2, and

δ(H′) 󰃍 δ(H)− n 󰃍 (3/8− 󰂃)n2.

Claim 21. We have ||Ai|− n/2| < 2󰂃n for i = 1, 2.

Proof of Claim 21. Let α = |A1|. Since H′ is bipartite, for every vertex y ∈ A2, we have

d(y) 󰃑 α(n− α) +

󰀕
α

2

󰀖
.

On the other hand, d(y) 󰃍 δ(H′) 󰃍 (3/8− 󰂃)n2. Therefore,

󰀕
3

8
− 󰂃

󰀖
n2 󰃑 α(n− α) +

󰀕
α

2

󰀖
,

where implies that α > n/2−2󰂃n. Similarly, we have |A2| > n/2−2󰂃n. Since |A1|+|A2| =
n− 1, we have ||Ai|− n/2| < 2󰂃n for i = 1, 2.

Denote 󰁥H by the complete bipartite 3-graph on V (H′) with two parts A1 and A2. For
w ∈ V (H′) let Mw = L 󰁥H(w)\LH′(w). Members in Mw are called missing edges of LH′(w).

Claim 22. For each w ∈ V (H′), |Mw| 󰃑 10󰂃n2 .

Proof of Claim 22. For w ∈ Ai, L 󰁥H(w) is a complete graph on A3−i and added a complete
bipartite graph with two parts A1 and A2 except w. By Claim 21, we have

|Mw| 󰃑
󰀕
n/2 + 2󰂃n

2

󰀖
+

󰀕
1

2
n+ 2󰂃n

󰀖2

−
󰀕
3

8
− 󰂃

󰀖
n2 󰃑 10󰂃n2.

Claim 23. For each w ∈ V (H′), |NH(w) ∩ A2| 󰃍 |A2|− n/100.

Proof of Claim 23. It suffices to prove |NH′(w) ∩ A2| 󰃍 |A2|− n/100. Let S ⊆ A2 denote
the set of isolated vertices of LH′(w). Then NH(w)∩A2 = A2 −S. Note that each vertex
u ∈ S is incident with |A1|+ |A2| (or |A2|) missing edges of LH′(w) if w ∈ A1 (or w ∈ A2).
On the other hand, there are at most 10󰂃n2 missing edges by Claim 22. Thus, if w ∈ A1,
then |S| 󰃑 2× 10󰂃n2/(|A1|+ |A2|) < n/100; if w ∈ A2, then |S| 󰃑 10󰂃n2/|A1| < n/100 by
Claim 21.

Claim 24. For i ∈ [2], |NH(v) ∩ Ai| 󰃍 ((
√
3− 1)/2− 7󰂃/2)n.
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Proof of Claim 24. Note that

󰀕
|NH(v)|

2

󰀖
󰃍 dH(v) 󰃍 δ(H) 󰃍

󰀕
3

8
− 󰂃

2

󰀖
n2.

This implies that |NH(v)| 󰃍 (
√
3/2− 3󰂃/2)n, which together with Claim 21 yields

|NH(v) ∩ Ai| 󰃍
󰀣√

3

2
− 3

2
󰂃

󰀤
n−

󰀕
1

2
+ 2󰂃

󰀖
n =

󰀣√
3− 1

2
− 7

2
󰂃

󰀤
n.

If H is Fano-free, then we are done by Theorem 6. Suppose that S ⊆ V (H) is a
set of size 7 such that H[S] is a Fano. Then v ∈ S as H′ is Fano-free. Let S \ {v} =
{w1, w2, w3, w4, w5, w6} and define

A′
2 = A2 ∩NH(v) ∩

󰀃
∩i∈[6]NH(wi)

󰀄
.

Then Claims 23 and 24 imply that |A′
2| 󰃍 ((

√
3− 1)/2− 7󰂃/2)n− 6× n/100 > n/5. Fix

a vertex u1 ∈ A1 (it is possible that u1 ∈ {w1, w2, w3, w4, w5, w6}). There exists an edge
w7w8 ∈ LH′(u1)[A

′
2] by Claim 22. Let E1 ⊆ H be a set of edges that cover all pairs in

S×{w7, w8}, and let F1 = H[S]∪{u1w7w8}∪E1. Then F1 ⊆ H, F1 ∈ K3
9 and F1 contains

a copy of the Fano. Repeating this process twice, we can get a subgraph F3 ⊆ H such
that F3 ∈ K3

13 contains a copy of a Fano. However, F3 ∈ M by the construction of M, a
contradiction.

4.2 G2
12-colorable

In this subsection, we consider the case that H′ is G2
12-colorable. We need the following

lemma given by Liu, Mubayi and Reiher [22] (also see [25] Lemma 3.2).

Lemma 25 ([22, 25]). Fix a real η ∈ (0, 1) and integers m,n 󰃍 1. Let G be a 3-graph with
vertex set [m] and let H be a further 3-graph with v(H) = n. Consider a vertex partition

V (H) =
󰁖

i∈[m] Vi and the associated blow-up 󰁥G = G[V1, . . . , Vm] of G. If two sets T ⊆ [m]
and S ⊂ V have the properties

(a) |Vj| 󰃍 (|S|+ 1)|T |η1/3n for all j ∈ T ,

(b) |H[Vj1 , Vj2 , Vj3 ]| 󰃍 |󰁥G[Vj1 , Vj2 , Vj3 ]|− ηn3 for all {j1, j2, j3} ∈
󰀃
T
3

󰀄
, and

(c) |LH(v)[Vj1 , Vj2 ]| 󰃍 |L󰁥G(v)[Vj1 , Vj2 ]|− ηn2 for all v ∈ S and {j1, j2} ∈
󰀃
T
2

󰀄
,

then there exists a selection of vertices uj ∈ Vj\S for all j ∈ [T ] such that U = {uj : j ∈ T}
satisfies 󰁥G[U ] ⊆ H[U ] and L󰁥G(v)[U ] ⊆ LH(v)[U ] for all v ∈ S. In particular, if H ⊆ 󰁥G,
then 󰁥G[U ] = H[U ] and L󰁥G(v)[U ] = LH(v)[U ] for all v ∈ S.
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Lemma 26. There exist ζ > 0 and N0 such that every M-free 3-graph H on n > N0

vertices satisfying the minimum degree δ(H) > (3/8− ζ)n2 and possessing a vertex v
such that H′ := H− v is G2

12-colorable is G2
12-colorable itself.

Proof. Let 󰂃 > 0 be a sufficiently small constant and N0 be a sufficiently large integer.
Let H be an M-free 3-graph on n > N0 vertices with δ(H) 󰃍 (3/8− ζ)n2, where ζ = 󰂃/2.
Suppose that there exists a vertex v ∈ V (H) such that H′ = H− v is G2

12-colorable. Then
we have

δ(H′) 󰃍 δ(H)− n 󰃍 (3/8− 󰂃)n2. (3)

Since H′ is G2
12-colorable, let

P = {V1, . . . , V12}
be the partition of V (H′) such that every edge in H′ intersects at most one vertex in
Vj for every j ∈ [12], and there is no edges between V3i−2V3i−1V3i for i ∈ [4]. Define
󰁥G2
12 = G2

12[V1, . . . , V12] to be the associated blowup of G2
12. We say edges in 󰁥G2

12 \ H′ are
missing edges of H′. For u ∈ V (H′), edges in L 󰁥G2

12
(u) \ LH′(u) are also called missing

edges of LH′(u).

Claim 27. We have the following hold:

(a) ||Vi|− n/12| < 4󰂃1/2n for every i ∈ [12].

(b) If i ∈ [12] and u ∈ V (H′) \ Vi, then |Vi \NH(u)| 󰃑 1000󰂃1/2n.

(c) For every u ∈ V (H′) the number of missing edges of LH′(u) is at most 100󰂃1/2n2.

Proof of Claim 27. Let xi = |Vi|/(n− 1) for i ∈ [12] and x = (x1, . . . , x12). By symmetry
it suffices to prove |x1 − 1/12| 󰃑 4󰂃1/2. Notice that |H′| 󰃑 pG2

12
(x)(n − 1)3 and |H′| 󰃍

(1/8− 󰂃)n2(n− 1) by (3). Thus,

pG2
12
(x) 󰃍 1/8− 󰂃. (4)

On the other hand, let x3i−2 + x3i−1 + x3i = ai for i ∈ [4] and recall from the proof of
Lemma 11 that

pG2
12
(x) =

󰁛

{i,j,k}⊂[12]

xixjxk − (x1x2x3 + x4x5x6 + x7x8x9 + x10x11x12)

󰃑
4󰁛

i=1

󰀳

󰁃
󰁜

j∈[4]\{i}

aj + 3
󰀓ai
3

󰀔2 󰁛

k∈[4]\{i}

ak

󰀴

󰁄 (5)

=
1

3

󰁛

{j,k}⊂[4]

ajak.

Thus, by (4), we have

3− 8
󰁛

{j,k}⊂[4]

ajak 󰃑 24󰂃,
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which together with
󰁓

i∈[4] ai = 1 yields that

3− 8
󰁛

{j,k}⊂[4]

ajak = 3

󰀳

󰁃
󰁛

i∈[4]

ai

󰀴

󰁄
2

− 8
󰁛

{j,k}⊂[4]

ajak =
󰁛

1󰃑i<j󰃑4

(ai − aj)
2 󰃑 24󰂃.

This means |ai − aj| < 5󰂃1/2 for i, j ∈ [4]. By the triangle inequality,

4

󰀏󰀏󰀏󰀏a1 −
1

4

󰀏󰀏󰀏󰀏 󰃑

󰀏󰀏󰀏󰀏󰀏󰀏

󰁛

i∈[4]

ai − 1

󰀏󰀏󰀏󰀏󰀏󰀏
+ |3a1 − a2 − a3 − a4| 󰃑

󰁛

i∈[2,4]

|a1 − ai| < 16󰂃1/2.

Therefore, |a1 − 1/4| < 4󰂃1/2 and then a2 + a3 + a4 > 1/2. By (5), we have

pG2
12
(x) 󰃑

4󰁛

i=1

󰀳

󰁃
󰁜

j∈[4]\{i}

aj + (x3i−2x3i−1 + x3i−1x3i + x3i−2x3i)
󰁛

k∈[4]\{i}

ak

󰀴

󰁄

=
4󰁛

i=1

󰀳

󰁃
󰁜

j∈[4]\{i}

aj + (x3i−2x3i−1 + x3i−1x3i + x3i−2x3i)
󰁛

k∈[4]\{i}

ak

󰀴

󰁄

+
4󰁛

i=1

󰀳

󰁃3
󰀓ai
3

󰀔2 󰁛

k∈[4]\{i}

ak − 3
󰀓ai
3

󰀔2 󰁛

k∈[4]\{i}

ak

󰀴

󰁄

󰃑1

3

󰁛

{j,k}⊂[4]

ajak +
4󰁛

i=1

󰀳

󰁃
󰀕
x3i−2x3i−1 + x3i−1x3i + x3i−2x3i − 3

󰀓ai
3

󰀔2
󰀖 󰁛

k∈[4]\{i}

ak

󰀴

󰁄

󰃑1

8
+

4󰁛

i=1

󰀳

󰁃
󰀕
x3i−2x3i−1 + x3i−1x3i + x3i−2x3i − 3

󰀓ai
3

󰀔2
󰀖 󰁛

k∈[4]\{i}

ak

󰀴

󰁄 .

This together with (4) shows that

4󰁛

i=1

󰀳

󰁃
󰀕
3
󰀓ai
3

󰀔2

− x3i−2x3i−1 + x3i−1x3i + x3i−2x3i

󰀖 󰁛

k∈[4]\{i}

ak

󰀴

󰁄 󰃑 󰂃.

Since

3
󰀓ai
3

󰀔2

− x3i−2x3i−1 + x3i−1x3i + x3i−2x3i 󰃍 0

for each i ∈ [4], we have

󰀕
3
󰀓a1
3

󰀔2

− x1x2 + x2x3 + x1x3

󰀖
(a2 + a3 + a4) 󰃑 󰂃.
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Thus,

2a21 − 6(x1x2 + x2x3 + x1x3) 󰃑
6󰂃

a2 + a3 + a4
< 12󰂃. (6)

Note that

2a21 − 6(x1x2 + x2x3 + x1x3) = (x1 − x2)
2 + (x2 − x3)

2 + (x1 − x3)
2.

We have |xi − xj| < 4󰂃1/2 for i, j ∈ [3] by (6) and then |x1 − 1/12| < 4󰂃1/2 by the triangle
inequality again. This completes the proof of (a).

Before proving (b) and (c), we claim that ∆(H′) 󰃑 ∆(󰁥G2
12) 󰃑 (3/8+50󰂃1/2)n2. Indeed,

by symmetry let v ∈ V1. Then

dH′(v) 󰃑 d󰁥G2
12
(v) = (|V2|+ |V3|)

12󰁛

i=4

|Vi|+
󰁛

4󰃑i<j󰃑12

|Vi||Vj|

󰃑 (|V2|+ |V3|)
12󰁛

i=4

|Vi|+
󰀣󰁓12

i=4 |Vi|
9

󰀤2 󰀕
9

2

󰀖
. (7)

Set x = |V2|+ |V3|. Then |x− n/6| 󰃑 8󰂃1/2n and

12󰁛

i=4

|Vi| 󰃑 n− |V1|− x 󰃑 11

12
n+ 4󰂃1/2n− x.

by (a). Treating x as a new variable, by (7), we have

dH′(v) 󰃑 x

󰀕
11

12
n+ 4󰂃1/2n− x

󰀖
+

󰀣
11
12
n+ 4󰂃1/2n− x

9

󰀤2 󰀕
9

2

󰀖

󰃑 (3/8 + 50󰂃1/2)n2. (8)

Now we prove (b). If there exists some i ∈ [12] and a vertex u ∈ V (H′) \ Vi, such that
|Vi \NH′(u)| > 1000󰂃1/2n. By (8), we have

dH′(u) 󰃑 ∆(H′)− 1000ε1/2n(n/12− 4󰂃1/2n) < (3/8− 10󰂃1/2)n2,

a contradiction to (3).
For (c), the number of missing edges of LH′(u) for each u ∈ V (H′) is at most

∆(󰁥G2
12)− δ(H′) 󰃑 50󰂃1/2n2 + 2󰂃n2 < 100󰂃1/2n2

by (3) and (8).

Recall that H′ is 12-partite with the vertex partition P . The following claim shows
that H does not contain an edge E with v ∈ E and |E ∩ Vi| = 2 for some i ∈ [12].
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Claim 28. |E ∩ Vi| 󰃑 1 for all E ∈ H and i ∈ [12].

Proof of Claim 28. By symmetry it suffices to show |E ∩ V1| 󰃑 1 for every E ∈ H con-
taining vertex v. Assume for the sake of contradiction that there exist distinct vertices
u1, u

′
1 ∈ V1 such that E = {v, u1, u

′
1}. By Claim 27 (a) and (b) for every i ∈ [2, 12]

the set V ′
i = (NH′(u1) ∩ NH′(u′

1)) ∩ Vi has size at least n/24. Applying Lemma 25
with S = {u1, u

′
1}, T = [2, 12] and η = 50󰂃1/4 we can obtain uj ∈ V ′

j for j ∈ [2, 12]
such that H[U ∪ {u1}] ∼= H[U ∪ {u′

1}] ∼= G2
12, where U = {uj : j ∈ [2, 12]}. This

implies that H[U ∪ {u1} ∪ {u′
1} ∪ {v}] is a copy of a member of K3

13 with 14 vertices.
On the other hand, G2

12 is K3
13-hom-free and not bipartite hypergraph. This means

H[U ∪ {u1} ∪ {u′
1} ∪ {v}] ∈ M, a contradiction.

Claim 29. There are no two distinct index i, j ∈ [12] such that both |NH(v) ∩ Vi| and
|NH(v) ∩ Vj| are at most n/36.

Proof of Claim 29. Let V ′
i = NH(v) ∩ Vi for i ∈ [12]. By Claim 28, LH(v) is a 12-partite

graph with the vertex partition P ′ = {V ′
1 , . . . , V

′
12}. Suppose to the contrary that there

are at least two sets in P ′ that have size at most n/36. Then, by Claim 27 (a),

|LH(v)| 󰃑
󰀕
10

2

󰀖󰀕
1

12
+ 4󰂃

1
2

󰀖2

n2 +
󰀓 n

36

󰀔2

+ 2× 10× n

36

󰀕
1

12
+ 4󰂃

1
2

󰀖
n <

󰀕
3

8
− 󰂃

󰀖
n2,

a contradiction.

Claim 30. There is no index i ∈ [12] such that NH(v) ∩ Vi ∕= ∅ and |NH(v) ∩ Vj| 󰃍 n/36
for all j ∈ [12] \ {i}.

Proof of Claim 30. By symmetry, assume for the sake of contradiction that there exists
a vertex u1 ∈ NH(v)∩ V1 and |NH(v)∩ Vj| 󰃍 n/36 for all j ∈ [2, 12]. By Claim 27 (b) the
set V ′

j = (NH(v) ∩NH(u1)) ∩ Vj has at least the size |V ′
j | 󰃍 n/36− 1000󰂃1/2n > n/50 for

j ∈ [2, 12] . Applying Lemma 25 with S = {u1}, T = [2, 12] and η = 50󰂃1/4, we can get a
set U = {uj : j ∈ [2, 12]} with uj ∈ V ′

j such that H[U ∪{u1}] ∼= G2
12. For every j ∈ [12] let

ej ∈ H be an edge containing both ui and v. We have H[U ∪ {u1}]∪ {ej : j ∈ [12]} ∈ K3
13

with at most 25 vertices. On the other hand, G2
12 is K3

13-hom-free and not bipartite
hypergraph. This means H[U ∪ {u1}] ∪ {ej : j ∈ [12]} ∈ M, a contradiction.

Combining Claims 29 and 30, we may assume that NH(v)∩ V1 = ∅. Recall that 󰁥G2
12 is

a blowup of G2
12. We have L󰁥G2

12
(x) = L󰁥G2

12
(y) for x, y ∈ Vi with i ∈ [12]. Choose a vertex

u ∈ V1, let Bv = LH(v)\L󰁥G2
12
(u) be the set of bad edges in LH(v) andMv = L󰁥G2

12
(u)\LH(v)

be the set of missing edges in LH(v). The aim is to show Bv = ∅. First, we show |Bv| is
small.

Claim 31. |Bv| < 100󰂃1/12n2.
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Proof of Claim 31. By contradiction, |Bv| 󰃍 100󰂃1/12n2. Notice that each edge in Bv

has one vertex in V2 and the other vertex in V3. Combining Claim 27 (a) and an easy
averaging argument show that there exists a vertex u2 ∈ V2 such that

|NBv(u2) ∩ V3| 󰃍
|Bv|
|V2|

>
100󰂃1/12n2

n/10
> 500󰂃1/12n.

Let V ′
1 = V1, V

′
3 = NBv(u2) ∩ V3, and V ′

j = NH(v) ∩ Vj for j ∈ [4, 12]. Then |V ′
j | > n/36

for j ∈ [4, 12] by Claim 29. Applying Lemma 25 with S = {u2}, T = [12] \ {2}, and
η = 50󰂃1/4 we can obtain uj ∈ V ′

j for j ∈ [12] \ {2} such that the induced subgraph of
H[{u1, . . . , u12}] ∼= G2

12. For j ∈ [4, 12] let ej be an edge containing both v and uj. Let F =
H[{u1, . . . , u12}]∪{ej : j ∈ [4, 12]}∪{vu2u3}. Then F ∈ K3

12 with the core {v, u2, . . . , u12}.
Note that F is G2

12-colorable, as F is not bipartite. We can find a map ψ : V (F ) → V (G2
12)

such that ψ(e) ∈ G2
12 for all e ∈ F . Since both {u1, . . . , u12} and {v, u2, . . . , u12} are 2-

covered in F , the restrictions of ψ on {u1, . . . , u12} and {v, u2, . . . , u12} are both injective
for all e ∈ F , and ψ(v) = ψ(u1). Notice that LF (u1)[{u2, . . . , u12}] has exactly 54 edges
and {u2u3} /∈ LF (u1)[{u2, . . . , u12}]. This means the degree of ψ(v) in G2

12 should be at
least 54 + 1 = 55, which contradicts the fact that the maximum degree of G2

12 is 54.

A consequence of Claim 31 is that the size of Mv satisfies

|Mv| = |L󰁥G2
12
(u) \ LH(v)| = |L󰁥G2

12
(u)|− |L󰁥G2

12
(u) ∩ LH(v)|

= |L󰁥G2
12
(u)|− (|LH(v)|− |Bv|)

󰃑 54× (n/12 + 4󰂃1/2n)2 − ((3/8− 󰂃)n2 − |Bv|)
< 200󰂃1/12n2. (9)

Claim 32. Bv = ∅.

Proof of Claim 32. By contradiction, there is an edge u2u3 ∈ Bv with u2 ∈ V2 and u3 ∈ V3.
Let V ′

j = Vj for j ∈ [3] and V ′
j = Vj ∩NH(v)∩NH(u2)∩NH(u3) for j ∈ [4, 12]. By (9) and

Claim 27, we have |V ′
j | 󰃍 |Vj|/2 > n/25. Applying Lemma 25 with S = {v, u2, u3}, T =

[12] and η = 200󰂃1/36 we can obtain wj ∈ V ′
j for j ∈ [12] such that

(a) H[{w1, . . . , w12}] ∼= G2
12,

(b) LH(v)[{w2, . . . , w12}] = L󰁥G2
12
(w1)[{w2, . . . , w12}],

(c) LH(u2)[{w1, w3, . . . , w12}] = L󰁥G2
12
(w2)[{w1, w3, . . . , w12}], and

(d) LH(u3)[{w1, w2, w4, . . . , w12}] = L󰁥G2
12
(w3)[{w1, w2, w4, . . . , w12}].

Clearly, H[{v, u2, u3, w4, . . . , w12}] ∈ K3
12 with the core {v, u2, u3, w4, . . . , w12}. Let

F = H[{v, u2, u3, w1, w2, . . . , w12}]. We can find a map ψ : V (F ) → V (G2
12) such that

ψ(e) ∈ G2
12 for all e ∈ F . Notice that both H[{w1, . . . , w12}] and H[{v, u2, u3, w4, . . . , w12}]

are 2-covered in F , so the restrictions of ψ on sets {w1, . . . , w12} and {v, u2, u3, w4, . . . , w12}
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are both injective, and moreover, ψ(v) = ψ(w1) (due to (b), v is adjacent to all vertices
in {w2, . . . , w12}, so ψ(v) is distinct from {ψ(w2), . . . ,ψ(w12)}), ψ(u2) = ψ(w2) (due to
(c) and a similar reason), and ψ(u3) = ψ(w3) (due to (d) and a similar reason). Let
w = ψ(v) = ψ(w1). Notice that the induced subgraph of |LF (w1)[{w2, . . . , w12}]| has size
54 and u2u3 ∈ LF (v) \ LF (w1). The degree of w in G2

12 is at least 54 + 1 = 55, which
contradicts the fact that the maximum degree of G2

12 is 54.

Define

V ∗
j =

󰀫
V1 ∪ {v}, if j = 1,

Vj, otherwise.

Then P∗ = {V ∗
1 , . . . , V

∗
12} is a vertex partition of H. By Claim 32, LH(v) ⊆ L󰁥G2

12
(x)

for x ∈ V1. Therefore, H is G2
12-colorable with P∗. This completes the proof of Lemma

26.

5 Feasible Region of M

In this section we consider the feasible region Ω(M) of M and prove Theorem 5. First,
from Lemma 4.2 in [22], we have the following simple corollary of Theorem 4.

Corollary 33. There exist constants 󰂃0 ∈ (0, 1) and N0 such that the following statement
holds for all 󰂃 󰃑 󰂃0 and n 󰃍 N0. Suppose that H is an M-free 3-graph on n vertices with
at least (1/8 − 󰂃)n3 edges. Then there exists a set Z󰂃 ⊆ V (H) of size at most 󰂃1/2n such

that the subgraph 󰁨H = H− Z󰂃 is either bipartite or G2
12-colorable, δ( 󰁨H) 󰃍 (3/8− 3󰂃1/2)n2

and | 󰁨H| 󰃍 (1/8− 2󰂃1/2)n3.

Using Corollary 33, we prove

Lemma 34. Let 󰂃 > 0 be sufficiently small and N0 be sufficiently large. Suppose that H
is an M-free 3-graph on n 󰃍 N0 vertices with at least (1/8− 󰂃)n3 edges. Then,

either

󰀏󰀏󰀏󰀏|∂H|− 11

24
n2

󰀏󰀏󰀏󰀏 < 100󰂃1/4n2 or
1

2
n2 − 12󰂃1/2n2 < |∂H| 󰃑

󰀕
n

2

󰀖
.

Proof. Let H be an M-free 3-graph on n 󰃍 N0 vertices with at least (1/8−󰂃)n3 edges. By
Corollary 33, there exists a set Z󰂃 ⊆ V (H) of size at most 󰂃1/2n such that the subgraph
󰁨H = H − Z󰂃 is either bipartite or G2

12-colorable, δ( 󰁨H) 󰃍 (3/8 − 3󰂃1/2)n2 and | 󰁨H| 󰃍
(1/8− 2󰂃1/2)n3. Let 󰁨n = |V ( 󰁨H)|. Then

󰁨n = n− |Z󰂃| 󰃍 n− 󰂃1/2n. (10)

Suppose that 󰁨H is bipartite with two parts A1 and A2. Note from Claim 21 that for
i = 1, 2,

n

2
− 6󰂃1/2n < |Ai| <

n

2
+ 6󰂃1/2n. (11)
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First we prove a lower bound for |∂H|. Let a (or (b)) denote the number of edges of
󰁨H which intersect A1 (or A2) exactly two vertices. Since 󰁨H is bipartite, the following
inequalities hold:

a+ b = | 󰁨H| 󰃍 (1/8− 2󰂃1/2)n3

|A2||(∂ 󰁨H)[A1]| 󰃍 a

|A1||(∂ 󰁨H)[A2]| 󰃍 b

|A1||(∂ 󰁨H)[A1, A2]| 󰃍 2a

|A2||(∂ 󰁨H)[A1, A2]| 󰃍 2b.

This together with (11) yields

|∂ 󰁨H| = |(∂ 󰁨H)[A1]|+ |(∂ 󰁨H)[A2]|+ |(∂ 󰁨H)[A1, A2]|

󰃍 a

|A2|
+

b

|A1|
+

2a+ 2b

|A1|+ |A2|

󰃍 a

n/2 + 6󰂃1/2n
+

b

n/2 + 6󰂃1/2n
+

2a+ 2b

n

󰃍 (1/8− 2󰂃1/2)n3

n/2 + 6󰂃1/2n
+

2(1/8− 2󰂃1/2)n3

n

>

󰀕
1

2
− 12󰂃1/2

󰀖
n2.

Therefore,

1

2
n2 − 12󰂃1/2n2 < |∂ 󰁨H| 󰃑 |∂H| 󰃑

󰀕
n

2

󰀖
.

Suppose that 󰁨H is G2
12-colorable and let P = {V1, . . . , V12} be the vertex partition of

󰁨H such that there is no edge between V3i−2V3i−1V3i for i ∈ [4]. Notice from Claim 27 that
for every i ∈ [12],

󰀏󰀏󰀏|Vi|−
n

12

󰀏󰀏󰀏 󰃑 8󰂃1/4n. (12)

First we prove a lower bound for |∂H|. Note that ∂ 󰁨H is 12-partite with the vertex partition

P . Let G denote the blow up of G2
12 with P . By (12), for each e ∈ ∂G \ ∂ 󰁨H, there are at

least 9(n/12− 8󰂃1/4n) sets E ∈ G \ 󰁨H such that e ⊂ E. Thus,

|∂G \ ∂ 󰁨H| 󰃑 3|G \ 󰁨H|
9(n/12− 8󰂃1/4n)

󰃑 3× 2󰂃1/2n3

9(n/12− 8󰂃1/4n)
< 20󰂃1/2n2,

and it follows that

|∂ 󰁨H| > |∂G|− 20󰂃1/2n2 󰃍
󰀕
12

2

󰀖󰀓 n

12
− 8󰂃1/4n

󰀔2

− 20󰂃1/2n2 >
11

24
n2 − 100󰂃1/4n2.
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Therefore,

|∂H| 󰃍 |∂ 󰁨H| > 11n2/24− 100󰂃1/4n2. (13)

Next, we give an upper bound for |∂H|. As in the proof of Claim 28, we can show
LH(v)[Vi] = ∅ for i ∈ [12] and every v ∈ Z󰂃. Thus,

|∂H| 󰃑
󰀕
12

2

󰀖󰀕
󰁨n
12

󰀖2

+ 󰁨n|Z󰂃|+
󰀕
|Z󰂃|
2

󰀖
<

11

24
n2 + 100󰂃1/4n2. (14)

Combining (13) and (14), if 󰁨H is G2
12-colorable, then

󰀏󰀏󰀏󰀏|∂H|− 11

24
n2

󰀏󰀏󰀏󰀏 < 100󰂃1/4n2

This completes the proof of Lemma 34.

Now we are ready to prove Theorem 5.

Proof of Theorem 5. Since G1
n is M-free and |∂G1

n| =
󰀃
n
2

󰀄
, it follows from Observation 1.5

in [20] that projΩ(M) = [0, 1]. Recall that g(M)(x) is the feasible region function of M.
Theorem 4 shows that g(M)(x) 󰃑 3/4 for all x ∈ [0, 1] and g(M)(11/12) = g(M)(1) =
3/4. Now suppose that (Hk)

∞
k=1 is a sequence ofM-free 3-graphs with limk→∞ v(Hk) = ∞,

limk→∞ ρ(∂Hk) = x0, and limk→∞ ρ(Hk) = 3/4. For any sufficiently small 󰂃 > 0 and
sufficiently large N0, there exists k0 such that v(Hk) 󰃍 N0 and |Hk| > (1/8− 󰂃)(v(Hk))

3

for all k 󰃍 k0. Therefore, by Lemma 34, for every k 󰃍 k0 either

11

12
− 200󰂃1/4 <

|∂Hk|󰀃
v(Hk)

2

󰀄 <
11

12
+ 200󰂃1/4

or

1− 24󰂃1/2 <
|∂Hk|󰀃
v(Hk)

2

󰀄 󰃑 1

Letting 󰂃 → 0 we obtain either x0 =
11
12

or x0 = 1, and this completes the proof.

6 Concluding remarks

In this paper, we construct a finite family of triple systems M, determine its Turán
number, and prove that there are two near-extremal M-free constructions that are far
from each other in edit-distance. We believe that families of hypergraphs having the
stability number large than one is an universal phenomenon in extremal combinatorics.

The forbidden family M is a suitably chosen family based on G1
n and G2

n. Now we
generalize G1

n and G2
n. A 3-graph H is called weak-ℓ-partite if V (H) has a partition

V1 ∪ . . . ∪ Vℓ such that H[Vi] = ∅ for every i ∈ [ℓ]. For an integer t 󰃍 2, let F t
3t2 be the
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3-graph with vertex set [3t2] whose complement is a perfect matching. For n > 3t2, let
Ht

n be the complete balanced weak-t-partite 3-graph on n vertices and F t
n be a 3-graph

on n vertices which is a blowup of F t
3t2 with the maximum number of edges. It is easy to

see that H2
n = G1

n and F2
n = G2

n. An obvious calculation shows

|Ht
n| ≈

󰀕
n

3

󰀖
− t

󰀕
n
t

3

󰀖
≈ t2 − 1

6t2
n3

and

|F t
n| ≈

󰀕󰀕
3t2

3

󰀖
− t2

󰀖󰀓 n

3t2

󰀔3

≈ t2 − 1

6t2
n3.

It is natural to ask the following problem.

Problem 35. Let t 󰃍 2 be an integer. Does there exist a finite family of triple systems
M such that there are exactly two near-extremal M-free constructions Ht

n and F t
n?

This paper only addresses the problem when t = 2. After the submission of this paper,
Liu and Pikhurko [24] gave a more general result, which implies Theorem 5 and a weaker
form of Theorem 4 and answers Problem 35. We refer the reader to [24] for more details.
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[5] D. De Caen and Z. Füredi. The maximum size of 3-uniform hypergraphs not con-
taining a Fano plane. J. Combin. Theory, Ser. B, 78(2):274–276, 2000.
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