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Abstract

We present new infinite families of (q2 + 1)–tight sets of quadrics admitting the
symplectic group PSp(n, q), n = 4, 6, as an automorphism group. Our constructions
rely on the geometry of Veronese and Grassmann varieties.

Mathematics Subject Classifications: 51A50, 05B25

1 Introduction

Let Pr be a finite classical polar space of rank r > 2. A tight set is a subset M of points
of Pr such that for all points P of Pr, the intersection size |P⊥∩M| assumes exactly two
values in terms of a certain parameter i > 1, according as P ∈M or not, where P⊥ denotes
the subset of points of Pr that are collinear with P . Together with the notion of tight set
is that of m–ovoid generalizing the classical definition of ovoid of Pr. An m–ovoid is a
subset of Pr met in m points by every maximal. In the literature tight sets and m–ovoids
are named intriguing sets and they are closely connected with other combinatorial objects,
such as strongly regular graphs, partial difference sets, Boolean degree one functions and
the very well studied Cameron–Liebler line classes. Many examples of tight sets exist in
finite polar spaces having low rank and generally tight sets with large parameters have an
interesting underlying geometry and sometimes seem to be related to certain irreducible
or absolutely irreducible representations of finite classical groups. For more details and
results on intriguing sets, see [2]. In this paper, we construct new infinite families of
(q2 + 1)–tight sets in orthogonal polar spaces with an automorphism group isomorphic
to the symplectic group PSp(n, q), n = 4, 6. As far as we know, no non trivial examples
with the same parameter were previously known. Our construction relies on the geometry
of the Veronese embedding of degree 2 of the finite projective space PG(3, q) and on the
Grassmannian of lines of PG(5, q).
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2 Intriguing sets

Let V be a n-dimensional vector space over the finite field GF(q) equipped with a non–
degenerate sesquilinear form or quadratic form f and let Pr be the associated polar space.
A point of Pr is a 1-dimensional totally isotropic or singular subspace of V . A maximal
totally isotropic or singular subspace of Pr is named a generator of Pr and all generators
have the same dimension, say r, called the rank of the polar space. An ovoid of Pr is a
set of points that meets each generator in exactly one point and its size is usually denoted
by θr. Assuming r > 2, a subset M of Pr is said to be an intriguing set if there exist
constants h1 6= h2 such that |P⊥ ∩M| = h1 or h2, according as P ∈ M or not, where P
ranges over the points of Pr. There are exactly two types of intriguing sets:
1- i–tight sets: in this case |M| = i(qr − 1)/(q − 1), h1 = qr−1 + i((qr−1 − 1)/(q − 1) and
h2 = i((qr−1 − 1)/(q − 1);
2. m–ovoids: |M| = mθr, h1 = (m− 1)θr−1 + 1 and h2 = mθr−1

Notice that, if H is a subgroup of a finite classical group having exactly two orbits
on points of Pr then both orbits are always intriguing sets (and necessarily of the same
type).

Usually, to prove that a subset M of Pr is an intriguing set one needs to prove that
M is a two intersection set with respect to the perp of singular points. Interestingly, from
[8, Lemma 2.1], if M is a subset of Pr of size i(qr − 1)/(q − 1) or mθr, for some i or r
and h1 and h2 are the parameters determined by M as above, then the condition for M
to be an intriguing set is equivalent to each of the conditions:

|P⊥ ∩M| = h1 for all P ∈M
|P⊥ ∩M| = h2 for all P ∈ Pr \M.

3 The quadric Veronesean V3 of PG(9, q)

Let q be a fixed prime power. For any integer k, denote by PG(k, q) the k–dimensional
projective space over the Galois field GF(q). Let n > 1 be an arbitrary integer. We
choose homogeneous projective coordinates in PG(n, q) and in PG(n(n + 3)/2, q). The
Veronesean map of degree 2, say ν, sends a point of PG(n, q) with coordinates (x0, . . . , xn)
onto the points of PG(n(n+ 3)/2, q) with coordinates

(x20, x
2
1, . . . , x

2
n, x0x1, . . . , x0xn, . . . , xn−1xn).

The quadric Veronesean or the Veronese variety V2n

n , or, for short Vn, is the image of the
Veronesean map. It turns out that the Veronesean map is a bijection between points of
PG(n, q) and points of Vn.

Consider the quadric Veronesean V3 in PG(9, q) and the correspondiing Veronesean
map. The image of an arbitrary plane of PG(3, q) under the Veronesean map is a quadric
Veronesean V2 and the the subspace of PG(9, q) generated by it has dimension 5. Such a
subspace is called a V2–subspace of PG(9, q). The image of a line of PG(3, q) is a conic
and the plane generated by it is called a conic plane. There are (q2 + 1)(q2 + q+ 1) conic
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planes and two conic planes are either disjoint or meet in a point of V3. For any q, the
conic planes are contained in the chord variety S(V3) of V3 that is a hypersurface of degree
4 and has (q2 + 1)(q4 + q3 + q2 + q + 1) points. As shown in [6], S(V3) is a two–character
set with respect to hyperplanes. We also recall that V3 is a cap of PG(9, q) [9, Theorem
25.1.8].

The automorphism group M of V3 contains PGL(4, q) and acts transitively on conic
planes of V3.

Assume q is odd. The stabilizer in M of a conic C of V3 induces a group N isomorphic
to PGL(2, q) and has three orbits on the relevant conic plane, i.e., the conic C, the orbit of
internal points and the orbit of external points to C. It follows that M has, apart from V3,
two orbits of sizes (q2+1)(q2+q+1)q(q−1)/2 and (q2+1)(q2+q+1)q(q+1)/2 partitioning
the pointset of S(V3). It is known that the hyperplane sections of the veronese variety Vn
correspond to quadrics of PG(n, q) [9, Theorem 25.1.3]:

Proposition 1. Let H be a hyperplane of PG(9, q). Then |H ∩ V3| ∈ {q + 1, q2 + 1, q2 +
q + 1, (q + 1)2, 2q2 + q + 1}.

From [6] we recall the following result.

Proposition 2. S(V3) is a two–character set with respect to hyperplanes with characters
q5 + 2q4 + 2q3 + 2q2 + q + 1 and q5 + q4 + 2q3 + 2q2 + q + 1.

4 Grassmannian

Let G(1, n, q) denote the set of two–dimensional subspaces of the vector space V :=
GF(q)n+1. A two–dimensional subspace of V corresponds to a line of the associated
projective space PG(n, q) so that G(1, n, q) can be viewed as the set of such lines. Denote
by (. . . , Xij, . . . ), with 0 6 i < j 6 n, the homogeneous coordinates of PG(N, q) =
PG(Λ2(V ), N = n(n+ 1)/2− 1, where Λ2(V ) denotes the exterior square of V . They are
called the Plücker coordinates on G(1, n, q). If ` is a line of PG(n, q) defined by two points,
say P1 = P (X1) and P2 = P (X2), we can associate with ` the point ρ(`) = P (X1 ∧X2) ∈
PG(N, q). The map of sets given by

ρ : G(1, n, q)→ PG(N, q),

` 7→ ρ(`)

is a well–defined map called the Plücker embedding of G(1, n, q). The subset G(1, n, q) is
an algebraic variety called the Grassmannian of lines of PG(n, q) and it is intersection of
quadrics [9, Theorem 24.1.6, Theorem 24.1.7]. Also from [9, Theorem 24.2.9], G(1, n, q)
contains two systems of maximal subspaces. The first system consists of the (n − 1)–
spaces Πn−1 with ρ−1(Πn−1 the set of all lines through a common point; this system is
called Latin system and its elements are called Lains spaces. The second system consists
of planes Π2 with ρ−1(Π2) the set of lines contained in a common plane; this system is
called the Greek system and its elements are called Greek planes. For more details, see
[9].
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A linear complex L of PG(n, q) is a set of lines whose Pluc̈ker coordinates satisfy a
linear equation

∑
i<j aijXij = 0. There exists a one-to-one correspondence between linear

complexes of PG(n, q) and hyperplane sections of G(1, n, q). Let H :
∑

i<j aijXij = 0 be
a hyperplane of PG(N, q). We associate with H the (n + 1) × (n + 1) skew-symmetric
matrix

AH =


0 a01 . . . a0n
−a01 0 . . . a1n

...
...

...
...

−a0n −a1n . . . 0


up to a non–zero scalar in GF(q) \ {0}. The linear complex L is said to be of type r if
the corresponding matrix AH has rank r. A linear complex of type n + 1 is said to be
non-singular. It is known that the rank of a skew–symmetric matrix is an even number.
Hence, in PG(n, q), n even, all linear complexes are singular.

Lemma 3. Let ` = 〈P0, P1〉 be a line of PG(n, q), with P0 = P (X) and P1 = P (Y )
two distinct points of PG(n, q). The point ρ(`) lies on the hyperplane H if and only if
XAHY

t = 0.

Proof. Let H :
∑

i<j aijXij = 0, X = (Xi)06i6n, Y = (Yi)06i6n and ρ(`) = (pij)06i<j6n,
where pij = XiYj −XjYi. Since∑

i<j

aijpij =
∑
i<j

aijxiyj −
∑
i<j

aijxjyi = 0,

we see that XAHY
t = 0 if and only if ρ(`) ∈ H.

Let P = ρ(`) be a point on G(1, n, q) and consider the subspace TP (G(1, n, q)) given
by the intersection of all tangent hyperplanes at P to all quadrics defining G(1, n, q). The
subspace TP (G(1, n, q)) is called the tangent space to G(1, n, q) at the point P . Being
G(1, n, q) non–singular, dim(TP (G(1, n, q))) = dimG(1, n, q) for all P ∈ G(1, n, q). From
[7, Proposition 2.4], if Γ` denotes the set of all lines of PG(n, q) intersecting `, then
TP (G(1, n, q)) is generated by ρ(Γ`). In particular, [7, Prop. 2.5], if H is a hyperplane of
PG(N, q) containing TP (G(1, n, q)) then ` is contained in NullSpace(AH).

From now on we assume that n = 4 and hence N = 9.

Lemma 4. [9, Lemma 24.2.15] The automorphism group K of G(1, 4, q) in PGL(10, q)
is isomorphic to PGL(5, q).

Lemma 5. [10, Lemma 2.5] The group K has two obits on points of PG(9, q) of size
(q2 + 1)(q4 + q3 + q2 + q + 1) and (q4 + q3 + q2 + q + 1)(q3 − 1)q2, i.e., G(1, n, q) and its
complement in PG(9, q).

There are two possibilities for a hyperplane section of G(1, 4, q) since a skew-symmetric
matrix of order 5 has type 2 or 4. The corresponding singular linear complexes correspond
to:
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- (type 2) lines of PG(4, q) incident to or contained in a plane. In this case L consists of
(q2 + q + 1)(q3 + q2 + 1) lines
- (type 4) lines of PG(4, q) incident to or contained in a parabolic quadric Q(4, q). In this
case L consists of (q + 1)2(q + 1) lines.

Theorem 6. The Grassmannian of lines of PG(4, q) is a two–character set of PG(9, q)
with respect to hyperplanes. It has size (q2 + 1)(q4 + q3 + q2 + q+ 1) and the constants are
(q2 + q + 1)(q3 + q2 + 1) and (q + 1)2(q + 1).

Theorem 7. The Veronese variety V3 is a subset of G(1, 4, q).

Proof. The lines of PG(4, q) spanned by the rows of the matrix(
a b c d 0
0 a b c d

)
.

represents the Veronese embedding of PG(3, q) ⊂ PG(9, q) by means of its maximal
minors, namely

(a, b, c, d) 7→ (a2, ab, ac, ad, b2 − ac, bc− ad, bd, c2 − bd, cd, d2).

This is the variety V3 up to projectivities.

5 G(1, 4, q) and S(V3): the link

As already observed, S(V3) has size (q2+1)(q4+q3+q2+q+1) that is exactly the number of
points of G(1, 4, q). Also, as a two–character set, S(V3) has the same characters of G(1, 4, q)
[6]. The connection between these two varieties is the well–known isomorphism Sp(4, q) '
O(5, q), q any prime power, see [13], involving the classical generalized quadranglesW(3, q)
and Q(4, q). Here is the picture. Assume that q is odd. The projective space associated to
the symmetric square of the natural 4-dimensional symplectic module, V4, say PG(S2(V4)),
is where the variety V3 lives. In virtue of the isomorphism Sp(4, q) ' O(5, q), considering
the exterior square of the natural O(5, q)–module, say V5, we see that also G(1, 4, q) lives
in PG(S2(V4)) as well. This geometric context describes an action of Sp(4, q) on the
10-dimensional module Λ2(V5). In the paper [5] the authors actually showed that Λ2(V5)
is isomorphic to S2(V4) as Sp(4, q)- modules. For more details on modules, see [3]. In
other terms, the Plücker image of the singular lines of the parabolic quadric Q stabilized
by O(5, q) coincides with the pointset of the Veronese variety V3. In this correspondence,
conics of V3 arising from totally isotropic lines of PG(V4) are quadratic cones on Q with
vertex a point P on Q. The other tangent lines to Q at P , not contained in Q, correspond
to the set of internal points and external points of the associated conic on V3. We call V3
together with its conics corresponding to totally isotropic lines of PG(V4) the Symplectic
Veronese variety Vs

3 , and V3 together with conics corresponding to non isotropic lines of
PG(V4) the non isotropic Veronese variety Vn

3 . From our discussion above we have the
following result.
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Proposition 8. S(Vs
3) = G(1, 4, q) ∩ S(V3)

In other terms, to get S(V3) from S(Vs
3) we need to add points on conic planes of Vn

3 .
Their number is q4 + q2. On the other hand to get G(1, 4, q) we have to add points of
PG(9, q) corresponding, under the Plücker map, to secant lines to Q and external lines to
Q.

In the next section we show that S(Vs
3) is also contained in a non–degenerate quadric

of PG(9, q).

6 PSp(4, q) 6 PΩ±(10, q), q odd

Let V4 = V (4, q), q = ph, p odd prime, h > 1, be a 4–dimensional vector space over
the finite field GF(q). Let f be a non–degenerate symplectic form on V4. We denote by
Sp(4, q) the group of all isometries of the symplectic space (V4, f) and by PSp(4, q) its
projective image, i.e. the group Sp(4, q)/〈±I〉 acting faithfully on the projective space
PG(3, q) associated to V4. By choosing a suitable basis for V4 we may assume that f is
represented by the matrix

X =


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 ,

and we may identify Sp(4, q) with the group of all matrices A ∈ GL(4, q) such that
ATXA = X.

The Sp(4, q)–module V4 ⊗ V4 has dimension 16. The group Sp(4, q) acts on this via:
(u ⊗ v)g = (ug ⊗ vg) and the form on this 16-dimensional module is f 2(u ⊗ v, w ⊗ z) =
f(u,w)f(v, z). With this action, the tensor square is reducible. From [3, Def. 5.2.1]
one submodule is the symmetric square of V4, S

2(V4). From [3, Proposition 5.2.4] the
symmetric square of the matrix X (after rescaling the basis of V4) is

S2(X) =



0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 −1 0 0 0
0 0 0 −4 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 −4 0 0 0 0
0 0 −1 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0


.

The matrix S2(X) is the Gram matrix of the symmetric form F 2 on the 10–dimensional
vector space S2(V4) [3, Prop. 5.2.4]. From a projective point of view, the set of singular
vectors with respect to F 2 in PG(9, q) = PG(S2(V4)) is the non–degenerate quadric Q
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with equation 2X1X10 + X2X9 − X3X7 + 2X5X8 − 2X2
4 − 2X2

6 = 0, where X1, . . . , X10

are projective homogeneous coordinates of PG(9, q). Since the determinant of the matrix
S2(X) is 162, the quadric Q is elliptic if q ≡ 3 mod 4 and hyperbolic if q ≡ 1 mod 4.
Notice that −I4 ∈ Sp(4, q) acts trivially on S2(V4) hence the image of Sp(4, q) in this
representation is G = PSp(4, q).

Let V3 be the Veronese variety of PG(9, q) with parametric equations:

(a2, ab, ac, ad, b2, bc, bd, c2, cd, d2),

where a, b, c, d vary in GF(q) and (a, b, c, d) 6= (0, 0, 0, 0). An easy check show that V3
is a subset of Q. The group PSp(4, q) is transitive on totally isotropic points, totally
isotropic lines and non-isotropic lines of PG(3, q). Without loss of generality consider the
line ` : (0, 0, α, β), α, β ∈ GF(q), (α, β) 6= (0, 0). Then ` is a totally isotropic line and its
image under ν is the conic, C, with parametric equations (0, 0, 0, 0, 0, 0, 0, c2, cd, d2) in the
plane π : X1 = · · · = X7 = 0. Also π is totally singular for Q. Of course C = V3 ∩ π.
Since PSp(4, q) is transitive on totally isotropic lines, we get q3 + q2 + q + 1 planes of Q
each intersecting V3 in a conic and two such conics either are disjoint or meet in a point
necessarily belonging to V3. These are the conic planes of V3 corresponding to totally
isotropic lines of PG(3, q). Considering the pointset of Q covered by these conic planes we
get a subset of Q consisting of q3 +q2 +q+1+q2(q3 +q2 +q+1) = (q2 +1)(q3 +q2 +q+1)
points. Actually, this pointset is the chord variety S(Vs

3) arising from the Symplectic
Veronese variety introduced in the previous section.

Theorem 9. The set S(Vs
3) is a (q2 + 1)–tight set of Q−(9, q), q ≡ 3 mod (4).

Proof. Let P be a point of V3. By transitivity, we may choose P = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0).
Then P⊥ : X10 = 0 and P⊥ meets V3 in the set (a2, ab, ac, b2, bc, c2, 0, 0, 0, 0), a, b, c ∈
GF (q) and (a, b, c) 6= (0, 0, 0). This is a Veronese surface V2 lying in a projective 5-
subspace T of PG(9, q) and it arises from the Veronese embedding of a plane σ of PG(3, q).
A plane of PG(3, q) contains q + 1 totally isotropic lines and any other totally isotropic
line of PG(3, q) meets σ in a point. It follows that P⊥ meets S(Vs

3) in q2 + q + 1 + (q +
1)q2 + (q3 + q2)q = q4 + 2q3 + 2q2 + q+ 1 = q3 + (q2 + 1)(q2 + q+ 1) points. The stabilizer
of the conic C in G has three orbits on π: the conic C, the set of internal points to C of
size q(q− 1)/2 and the set of external points to C of size q(q+ 1)/2. It follows that S(Vs

3)
is the union of three G–orbits of sizes q3 + q2 + q + 1, q(q − 1)(q3 + q2 + q + 1)/2 and
q(q + 1)(q3 + q2 + q + 1)/2. Call the last two orbits I and E , respectively.

Take a point P ∈ I. Then P is internal to a conic of V3 in a conic plane. Without loss
of generality, we can assume that P ∈ π. It is easy to see that the set of internal points
to C is the set {(a2, a, 1 − θ2λ) : a ∈ GF(q)∗} ∪ {(1, 0,−θ2λ)}, where λ is a non square
in GF(q). Then P can always be chosen as the point (0, 0, 0, 0, 0, 0, 0, 1, 0,−µ), µ a non
square in GF(q). It follows that P⊥ : X5 = µX1. There are q2 + q plane conics meeting
C in a point. Of course P⊥ contains π and hence the set of internal points I to C. We
have that P⊥ meets V3 in the set where b2 = λa2. This means necessarily that a = b = 0
and hence P⊥ meets V3 just in C. P⊥ meets the q2 + q planes above in a line that is
tangent to C and so does not meet the set of internal points of the relevant conic and the
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remaining q3 conic planes in an external line to the relevant conic and hence containing
(q + 1)/2 internal points. Then P⊥ meets I in q(q − 1)/2 + q3(q + 1)/2 points and E in
q(q + 1)/2 + q(q2 + q) + q3(q + 1)/2.

We have that

q+1+q(q−1)/2+q3(q+1)/2+q(q+1)/2+q(q2+q)+q3(q+1)/2 = q3+(q2+1)(q2+q+1).

Take a point P ∈ E . Again, without loss of generality we may choose P external to
the conic C in the plane π, say P = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0). Then P⊥ : X2 = 0. There
are q2 + q plane conics meeting C in a point. Of course P⊥ contains π and hence the set
of external points E to C. We have that P⊥ meets V3 in 2q2 + q+ 1 points (correspondent
to two planes in PG(3, q) sharing a totally isotropic line). Indeed, P⊥ meets V3 in the
subset of V3 for which ab = 0. This means that P⊥ contains 2q + 1 conic planes, π
included. Also P⊥ meets q2 − q planes in a line that is tangent to C and so contains q
points of the subset of external points of the relevant conic and the remaining q3 conic
planes in a secant line and hence containing (q − 1)/2 external points. Then P⊥ meets
E in (2q + 1)q(q + 1)/2 + q(q2 − q) + q3(q − 1)/2 points. It follows that P⊥ meets I in
(2q + 1)q(q − 1)/2 + q3(q − 1)/2 points. We have that

2q2 +q+1+(2q+1)q(q−1)/2+q3(q−1)/2+(2q+1)q(q+1)/2+q(q2−q)+q3(q−1)/2 =

= q3 + (q2 + 1)(q2 + q + 1).

We have proved that for any P ∈ S(Vs
3), P⊥ meets S(Vs

3) in q3 + (q2 + 1)(q2 + q + 1)
points. The result now follows from [8, Lemma 2.1].

Corollary 10. The full stabilizer H of S(Vs
3) in PΩ±(10, q) is 2× PSp(4, q).

Proof. Clearly PSp(4, q) 6 H. Let A =


ω 0 0 0
0 1 0 0
0 0 ω 0
0 0 0 1

 , where ω is a primitive element

of GF(q). Then ATXA = ωX and hence A ∈ CSp(4, q), the conformal symplectic group.
The symmetric square of A multiplied by ω−1I10 is the matrix
diag(ω, 1, ω, 1, ω−1, 1, ω−1, ω, 1, ω−1) that belongs to SO±(10, q). It is easy to check that
its spinor norm is a non–square in GF(q) and hence the diagonal automorphism δ′ of
Ω±(10, q) induces the involutorial diagonal automorphism δ of Sp(4, q). For more details,
see [3, Prop. 5.5.2]. Also, H is a maximal subgroup of PΩ±(10, q), see [3, Table 8.67,
Table 8.69].

Proposition 11. S(Vs
3) ⊂ Q−(9, q) cannot be the union of q2 +1 mutually disjoint three–

dimensional subspaces

Proof. Apart from conic planes, S(Vs
3) contains another family T of q3 + q2 + q+ 1 planes

that are tangent to V3: it is easy to check that the plane τ : X1 = X2 = X4 = X5 =
X6 = X7 = X10 = 0 is tangent to V3 at the point R = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0) and τ

the electronic journal of combinatorics 31(2) (2024), #P2.30 8



meets the conic plane π : X1 = · · · = X7 = 0 along the line t : X1 = X2 = X3 = X4 =
X5 = X6 = X7 = X10 = 0 that is tangent to the conic C, with parametric equations
(0, 0, 0, 0, 0, 0, 0, c2, cd, d2). We have that τ is a singular plane of Q±(9, q). Under the
action of G we get the family T . The plane τ contains the q + 1 tangent lines to the
conics of V3 passing through the point R and hence τ and its G–orbit is contained in
S(Vs

3). From Proposition 8 the dimension of a projective subspace of S(Vs
3) is at most

three. In particular, the three–space 〈τ, π〉 is singular for Q±(9, q) and it meets S(Vs
3) in

2q2 + q+ 1 points and so cannot lie in S(Vs
3). This excludes the possibility, in the elliptic

case, that S(Vs
3) is the union of q2 + 1 mutually disjoint three–dimensional subspaces, as

desired.

Remark 12. When q is even, the symmetric square representation of the symplectic group
PSp(4, q) is reducible in PGL(10, q) and no non degenerate polar space is involved. For
more details see [12].

7 Higher dimensions

In this section we provide other infinite families of (q2 + 1)–tight sets of Q−(13, q), q = ph

odd, h odd, and p ≡ 11 mod (12) or q = 2h, h odd, and of Q(12, 3h). Our construction
relies on the geometry of the Grassmannian, say I, of totally isotropic lines of PG(5, q),
with respect to a symplectic polarity N with isometry group PSp(6, q). Notice that
|I| = (q2 + 1)(q5 + q4 + q3 + q2 + q + 1).

Lemma 13. Let ` be a totally isotropic line of PG(5, q) with respect to N . The stabilizer
S of ` in PSp(6, q) has five orbits on totally isotropic lines of N .

Proof. As already observed, the number of totally isotropic lines of PG(5, q) with respect
to N is (q2 + 1)(q3 + 1)(q2 + q + 1). Of course {`} is an orbit. There are q + 1 totally
isotropic planes on ` permuted by S each containing q2 + q lines distinct from ` and again
permuted by S. We get an orbit O1 of size q(q+ 1)2. On each point of PG(5, q) there are
q3 + q2 + q+ 1 totally isotropic lines. Fix P ∈ `. There are q3 totally isotropic lines on P
not lying in totally isotropic planes on `. Varying P on ` under S we get an orbit O2 of size
q3(q+ 1). This means that there are (q+ 1)(q6 + 2q4− q3 + q2− q+ 1)−1 totally isotropic
lines disjoint from `. On a point P ∈ ` there are q3 + q2 totally isotropic planes not
containing ` and permuted by S. If two such planes meet in a line, such a line necessarily
passes through P . In each such plane there are q2 lines disjoint from `. We get an orbit
O3 of size q4(q + 1)2. The last orbit O4 of S has size q7 consisting of totally isotropic
lines disjoint from `N . Notice that |O1 ∪O2 ∪O3| = q6 + 2q5 + 2q4 + 2q3 + 2q2 + q + 1 =
q5 + (q2 + 1)(q4 + q3 + q2 + q + 1).

Proposition 14. The Grassmannian I is embedded in an elliptic quadric Q−(13, q),
q = ph odd, h odd, and p ≡ 11 mod (12) or q = 2h, h odd.

Proof. From [11, Prop. 9.3.3 iv), Prop. 9.3.4], the group PSp(6, q) can be realized as a
subgroup of PΩ−(14, q). Indeed, Sp(6, q) acts on a 14–dimensional submodule of Λ2(V6),
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where V6 is the underlying vector space of PG(5, q), yielding I as a PSp(6, q)–orbit on
Q−(13, q). In other terms, I is obtained intersecting G(1, 5, q) with Q−(13, q).

Theorem 15. The symplectic Grassmannian I is a (q2 + 1)-tight set of Q−(13, q) admit-
ting PSp(6, q) as an automorphism group.

Proof. Let P be a point of I. Then the tangent space TP (G(1, 5, q)) is contained in the
hyperplane P⊥, where ⊥ is the orthogonal polarity of PG(13, q) associated to Q−(13, q).
We want to establish how P⊥ meets I. What we know is that a hyperplane section of
G(1, 5, q) corresponds to a non–degenerate linear complex of PG(5, q), hence to a sym-
plectic polarity M of PG(5, q). It follows that |P⊥ ∩ I| corresponds to the number η of
totally isotropic lines of PG(5, q) which are simultaneously totally isotropic for both the
polarities N and M.

From [4, Section 3],

(q + 1)η = q3N1 + (q6 − 1)(q3 − 1)/(q − 1)2,

where N1 = |{p ∈ PG(5, q) : pN ⊆ pM}|. Now, since TP (G(1, 5, q)) ⊂ P⊥, we have that
N1 = q3 + q2 + q + 1. This yields η = q5 + (q2 + 1)(q4 + q3 + q2 + q + 1). It follows that
P⊥ ∩ I consists of the points corresponding to ρ(O1 ∪ O2 ∪ O3).

Of course, if P ∈ Q−(13, q)\I, then P⊥ meets I in (q2 +1)(q4 +q3 +q2 +q+1) points.
From [4, Section 3], in this case N1 = q + 1 and it seems that a possible configuration in
PG(5, q) consists of a non-isotropic line joining the center P of a star, say L, of totally
isotropic lines, with a point Q not in the subspace PN .

For completeness we also consider the case when P ∈ G(1, 5, q) corresponds to a non–
isotropic line.

Lemma 16. Let ` be a non–isotropic line of PG(5, q) with respect to N . The stabilizer
S of ` in PSp(6, q) has four orbits on totally isotropic lines of N .

Proof. A first orbit R1 consists of the q3 + q2 + q + 1 totally isotropic lines of `N . The
lines of the form 〈P,Q〉 where P ∈ ` and Q ∈ PN are totally isotropic and form an orbit
R2 of size (q+1)(q3 +q2 +q+1). If P ∈ `N , then there are q3 +q2 +q+1 totally isotropic
lines on P of which q + 1 are in `N . We get (q3 + q2 + q + 1)(q3 + q2) totally isotropic
lines of which (q + 1)(q3 + q2 + q + 1) have already been counted. By difference, we get
an orbit R3 of size (q3 + q2 + q + 1)(q3 + q2 + 1). All the remaining totally isotropic lines
are permuted in a single orbit, say R4.

From the above corollary, we can say that if P is a point on the Grassmannian G(1, 5, q)
corresponding to `, then P⊥ meets I in (q3 + q2 + q+ 1)(q3 + q2 + 1) points. Indeed, from
[4, Section 3], if N1 = q3 + q2 + 2q + 2, then η = (q3 + q2 + q + 1)(q3 + q2 + 1).

When q = 3i, from [11, Prop. 9.3.1], PSp(6, 3i) 6 Ω(13, 3i). This depends on the fact
that in the 14–dimensional representation of PSp(6, 3i) the orthogonal form is not non–
degenerate and there exists a point of PG(13, 3i) respect to which all points of PG(13, 3i)
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are conjugate. Then one can pass to the quotient geometry PG(13, 3i)/P on which we
have a non–degenerate orthogonal form. For further results on this 13–dimensional rep-
resentation, see [1, Section 4].

Theorem 17. Assume q = 3i. The symplectic Grassmannian I is a (q2 + 1)-tight set of
Q(12, q) admitting PSp(6, q) as an automorphism group.
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