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Abstract

A nut graph is a simple graph whose adjacency matrix has the eigenvalue zero
with multiplicity one such that its corresponding eigenvector has no zero entries.
It is known that there exist no cubic circulant nut graphs. A bicirculant (resp.
tricirculant) graph is defined as a graph that admits a cyclic group of automorphisms
having two (resp. three) orbits of vertices of equal size. We show that there exist no
cubic bicirculant nut graphs and we provide a full classification of cubic tricirculant
nut graphs.

Mathematics Subject Classifications: 05C50, 11C08, 12D05

1 Introduction

A nut graph is a graph of nullity one whose null space is spanned by a full vector, i.e.,
a vector with no zero entries. Nut graphs were introduced and studied by Sciriha and
Gutman [19–22, 28]. Some of their properties were further investigated in [9, 12, 23, 24].
Moreover, the chemical justification for studying such graphs can be found in [2, 10, 11,
26,27] and many other results concerning them are to be found in the monograph [25].

The problem of the existence of regular nut graphs on a given number of vertices and
a given degree was first considered in [9], where it was solved for degrees up to 11. In [1]
the degree was extended to 12 using circulant graphs in a clever way.

In a series of papers [4, 5, 7], Damnjanović and Stevanović completely resolved the
problem of existence of circulant nut graphs of given degree and order by establishing the
following result.
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Theorem 1 ([5, Theorem 5]). Let d and n be nonnegative integers. Then there exists a
d-regular circulant nut graph of order n if and only if d > 0, 4 | d, 2 | n, together with
n > d+ 4 if d ≡8 4, and n > d+ 6 if 8 | d, as well as (n, d) 6= (16, 8).

From Theorem 1 it follows that there are no cubic circulant nut graphs and that
there exists a quartic circulant nut graph of every even order n > 8. Moreover, the full
characterization of quartic circulant nut graphs can be found in [6].

One can generalize the concept of a circulant graph by taking into consideration the
so-called bicirculant (resp. tricirculant) graphs, which are the graphs that admit a cyclic
group of automorphisms having two (resp. three) orbits of vertices of equal size [14, 16].
In this paper we show that there exist no cubic bicirculant nut graphs. While there are
no cubic circulant and bicirculant graphs, there exist cubic tricirculant graphs. We give
a complete classification of these graphs. Below is a more detailed description of our
classification. We also note that the quartic bicirculant nut graphs are currently being
investigated [17].

For convenience, we will suppose that the vertex set of each tricirculant graph of order
3n is given via X ∪ Y ∪ Z, where

X = {x0, x1, . . . , xn−1}, Y = {y0, y1, . . . , yn−1}, Z = {z0, z1, . . . , zn−1},

and that there exists an automorphism which maps xj to xj+1, yj to yj+1 and zj to zj+1, for
each j ∈ Zn. If G is an arbitrary cubic tricirculant graph of order 3n, it is then clear that
n is necessarily even. Moreover, as observed by Potočnik and Toledo [18, Theorem 2.4], it
can be shown that if G is connected, then it must be isomorphic to a graph that belongs
to at least one of the next four families:

(i) T1(n, a, b), 0 6 a < b < n;

(ii) T2(n, a, b), 0 < a < n, 0 < b < n
2
;

(iii) T3(n, a), 0 6 a < n;

(iv) T4(n, a, b), 0 < a 6 b < n
2
;

whose elements can be defined via their edge sets as follows:

E(T1(n, a, b)) = {xjyj+a, xjyj+b, xjzj, yjzj, zjzj+n
2
| j ∈ Zn},

E(T2(n, a, b)) = {xjxj+b, xjzj, yjyj+n
2
, yjzj, yjzj−a | j ∈ Zn},

E(T3(n, a)) = {xjxj+n
2
, xjyj+a, xjzj, yjyj+n

2
, yjzj, zjzj+n

2
| j ∈ Zn},

E(T4(n, a, b)) = {xjxj+a, xjzj, yjyj+b, yjzj, zjzj+n
2
| j ∈ Zn}.

For brevity, if a cubic tricirculant graph is isomorphic to at least one element from
the Tj family, we will then say that such a graph is of type j, for each j = 1, 2, 3, 4. Note
that in principle, a cubic tricirculant could be of more than one type. However, every
vertex-transitive cubic tricirculant is of type j for exactly one j ∈ {1, 2, 3, 4}, with the
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exception of the triangular prism which is both of type 1 as well as of type 3 [18]. The
above definitions can be concisely visualized in the form of Figure 1. Here, we may note
that this figure actually formally represents the voltage graphs corresponding to the cubic
tricirculants [18].
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Figure 1: Voltage graphs for the cubic tricirculant graphs of types 1, 2, 3 and 4.

Finally, for each x ∈ Z, x 6= 0, let v2(x) denote the power of two in the prime factor-
ization of |x|, i.e., the unique β ∈ N0 such that 2β | x, but 2β+1 - x. We now state our
main theorem.

Theorem 2 (Tricirculant cubic nut graph classification). A tricirculant cubic graph is a
nut graph if and only if it is representable as a T1(n, a, b), 2 | n, 0 6 a < b < n such that

(i) gcd
(
n
2
, a
)

= gcd
(
n
2
, b
)

= 1;

(ii) a 6≡2
n
2

and b 6≡2
n
2
;

(iii) v2(b− a) > v2(n);

or as a T4(n, a, b), 2 | n, 0 < a 6 b < n
2

where

(iv) gcd
(
n
2
, a, b

)
= 1;

(v) if 4 - n, then at least one of a and b is even;

(vi) if 4 | n, then a and b are of different parities;

(vii) if 10 | n, then at least one of a, b, a− b, a+ b is divisible by five.

Remark 3. Condition (iv) from Theorem 2 is actually equivalent to T4(n, a, b) being
a connected graph (see, for example, [18, Theorem 2.4]). Moreover, condition (i) also
implies that T1(n, a, b) is surely connected.
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The rest of the paper will focus on providing the full proof of Theorem 2. Bearing
this in mind, its structure shall be organized as follows. Section 2 will serve to preview
certain theoretical results to be used throughout the remaining sections. Afterwards, we
will use Section 3 to show that no cubic bicirculant graph can be a nut graph and in
Section 4 we will take into consideration an arbitrary tricirculant cubic nut graph and
demonstrate that it is necessarily of type 1 or of type 4. Afterwards, Section 5 will be
used to obtain the precise conditions that a type 1 graph should satisfy in order to be
a nut graph. Finally, we shall determine all the type 4 nut graphs in Section 6, thereby
completing the proof of Theorem 2.

2 Preliminaries

In this section we review some known theoretical results from various fields of mathematics
which will be used later on throughout the remaining sections. First of all, recall that
η(G) denotes the nullity of G, i.e., the nullity of the adjacency matrix of the graph G.
Similarly, we will use N (AG) to denote the null space of G. We also note that the
eigenvectors corresponding to the eigenvalue zero are also called the kernel vectors and
may be characterized via the following lemma.

Lemma 4. Let G be a graph and let u ∈ RVG be a nonzero vector. Then u is an eigenvector
corresponding to the eigenvalue zero if and only if for every vertex x of G the following
holds: ∑

y∼x

u(y) = 0.

Proof. Multiply the row of the adjacency matrix of G, corresponding to the vertex x, by
the eigenvector u, and the result is obtained.

Here, we shall call the above condition that a kernel vector must satisfy the local
condition. We now recall some basic properties of nut graphs, see [28].

Lemma 5. Every nut graph is connected.

Lemma 6. A bipartite graph is not a nut graph.

Furthermore, we will present the following lemma which forms a connection between
the null space vectors of a nut graph and the vertices of a particular orbit of a given graph
automorphism. For the proof, see, for example, [3, p. 135].

Lemma 7. Let G be a nut graph and let π ∈ Aut(G) be its automorphism. If u ∈ N (AG)
and X = {x0, x1, . . . , xk−1} ⊆ V (G) represents an orbit of π such that

π(xj) = xj+1 (j = 0, . . . , k − 1),

where the addition is done modulo k, then we have that u is constant on X, or the orbit
size k is even and

u(xj) = (−1)j u(x0) (j = 0, . . . , k − 1).
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Circulant matrices will also play an important role in our proofs. We note that a
circulant matrix C ∈ Rn×n is any matrix bearing the form

C =


c0 c1 c2 · · · cn−1
cn−1 c0 c1 · · · cn−2
cn−2 cn−1 c0 · · · cn−3

...
...

...
. . .

...
c1 c2 c3 . . . c0

 .
It is well known from elementary linear algebra theory (see, for example, [13, Section 3.1])
that the eigenvalues of a circulant matrix can be evaluated by applying the expression

c0 + c1ζ + c2ζ
2 + · · ·+ cn−1ζ

n−1, (1)

as ζ ranges through the n-th roots of unity.
Finally, we recall the cyclotomic polynomials and provide a theorem on their divisi-

bility which shall play a key role in Section 6. The cyclotomic polynomial Φf (x) can be
defined for each f ∈ N via

Φf (x) =
∏
ξ

(x− ξ),

where ξ ranges over the primitive f -th roots of unity. It is known that these polynomials
have integer coefficients and that they are all irreducible in Q[x] (see, for example, [31]).
For this reason, an arbitrary polynomial in Q[x] has a primitive f -th root of unity among
its roots if and only if it is divisible by Φf (x). Besides that, it is worth pointing out that

Φf (x) = Φf/pk−1(xp
k−1

) (2)

holds whenever pk | f for a given prime number p and some k ∈ N, k > 2 (see, for
example, [15, p. 160]). We end the section by disclosing the following theorem on the
divisibility of lacunary polynomials by cyclotomic polynomials.

Theorem 8 (Filaseta and Schinzel [8]). Let P (x) ∈ Z[x] have N nonzero terms and let
Φf (x) | P (x). Suppose that p1, p2, . . . , pk are distinct primes such that

k∑
j=1

(pj − 2) > N − 2.

Let ej be the largest exponent such that p
ej
j | f . Then for at least one j, 1 6 j 6 k, we

have that Φf ′(x) | P (x), where f ′ =
f

p
ej
j

.

3 Nonexistence of cubic bicirculant nut graphs

In this section we show that a cubic bicirculant graph cannot be a nut graph. As demon-
strated by Pisanski [16], it is not difficult to establish that each connected cubic bicirculant
graph of order 2n must be isomorphic to a graph from at least one of the following three
families:
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(i) B1(n, a, b), 0 < a < b < n;

(ii) B2(n, a), 0 < a < n;

(iii) B3(n, a, b), 0 < a 6 b < n
2
;

whose elements have the vertex set {x0, . . . , xn−1, y0, . . . , yn−1} and the edge sets as given
below:

E(B1(n, a, b)) = {xjyj, xjyj+a, xjyj+b | j ∈ Zn},
E(B2(n, a)) = {xjxj+n

2
, xjyj, xjyj+a, yjyj+n

2
| j ∈ Zn},

E(B3(n, a, b)) = {xjyj, xjxj+a, yjyj+b | j ∈ Zn}.

X Y

a

b

0

(a) Type 1

X YE F
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0

n

2
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2
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X Y

a b
0
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Figure 2: Voltage graphs for the cubic bicirculant graphs of types 1, 2 and 3.

To make matters simple, we will say that a cubic bicirculant graph that is isomorphic to
at least one element from the Bj family is of type j, for each j = 1, 2, 3. This terminology
can now be concisely visualized in the form of Figure 2. In the following proposition, we
will demonstrate that truly none of these graphs can be nut graphs.

Proposition 9. There does not exist a cubic bicirculant nut graph.

Proof. Due to Lemma 5, it is sufficient to restrict ourselves to connected graphs. Let G
be a connected cubic bicirculant graph. If G is of type 1, then this graph is necessarily
bipartite, hence it cannot be a nut graph, by virtue of Lemma 6. If we suppose that G is
of type 2, then applying the local conditions on the vector u ∈ N (AG) promptly gives us

u(xj+n
2
) + u(yj) + u(yj+a) = 0 (j ∈ Zn), (3)

u(xj) + u(xj−a) + u(yj+n
2
) = 0 (j ∈ Zn). (4)

By virtue of Lemma 7, we see that u(yj) = u(yj+a) or u(yj) = −u(yj+a), which means
that Equation (3) leads us to u(xj+n

2
) = 0 or u(xj+n

2
) = −2u(yj). The former would

immediately imply that G is not a nut graph, hence we may assume that the latter holds.
Analogously, from Equation (4) we can conclude that u(yj+n

2
) = 0 or u(yj+n

2
) = −2u(xj).

From u(yj+n
2
) = 0 we again obtain that G is not a nut graph, while the latter quickly

yields u(xj) = 4u(xj). From here, it promptly follows that u(xj) = 0.
Finally, if we take G to be of type 3, then the local conditions on the vector u ∈ N (AG)

dictate

u(xj+a) + u(xj−a) + u(yj) = 0 (j ∈ Zn), (5)

u(xj) + u(yj+b) + u(yj−b) = 0 (j ∈ Zn). (6)
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Lemma 7 guarantees that u(xj−a) = u(xj+a) and u(yj−b) = u(yj+b) must hold, which
means that Equations (5) and (6) directly imply u(yj) = −2u(xj+a) and u(xj) = −2u(yj+b),
respectively. However, this quickly gives us u(xj) = 4u(xj) or u(xj) = −4u(xj), hence
u(xj) = 0.

4 Nonexistence of tricirculant nut graphs
of types 2 and 3

In this section, we will give a brief demonstration that if a tricirculant cubic graph is a
nut graph, then it must necessarily belong to the family comprising the type 1 graphs or
the family consisting of the type 4 graphs.

Proposition 10. A tricirculant cubic graph of type 2 or type 3 is not a nut graph.

Proof. Let G be a tricirculant cubic nut graph of type 2, say G is isomorphic to T2(n, a, b)
for appropriate parameters n, a, b, and let u ∈ N (AG). Thus, we may assume that G
has the vertex set {x0, . . . , xn−1, y0, . . . , yn−1, z0, . . . , zn−1} and that xj ∼ xj+b, xj−b, zj,
yj ∼ yj+n

2
, zj, zj−a and zj ∼ xj, yj, yj+a for j ∈ Zn. Taking everything into consideration,

we see that the local conditions for the vector u must bear the form

u(xj+b) + u(xj−b) + u(zj) = 0 (j ∈ Zn), (7)

u(yj+n
2
) + u(zj) + u(zj−a) = 0 (j ∈ Zn), (8)

u(yj) + u(yj+a) + u(xj) = 0 (j ∈ Zn), (9)

where Equations (7), (8), (9) represent the local conditions at vertices xj, yj and zj,
respectively.

By applying Lemma 7 multiple times, it is not difficult to reach a contradiction. For
starters, given the fact that j + b ≡2 j − b, Equation (7) immediately tells us that
u(zj) ∈ {2u(xj),−2u(xj)}. Furthermore, if u(zj) = −u(zj−a) (resp. u(yj) = −u(yj+a)),
then Equation (8) (resp. (9)) yields u(yj) = 0 (resp. u(xj) = 0), which leads us to
u = 0. On the other hand, if u(zj) = u(zj−a) and u(yj) = u(yj+a) both hold, then
Equation (8) implies u(yj) ∈ {4u(xj),−4u(xj)}, while Equation (9) subsequently gives us
u(xj) ∈ {8u(xj),−8u(xj)}. For this reason, u(xj) = 0 must hold, which promptly implies
u = 0 once again. Thus, in any case, the zero vector is certainly the only element of
N (AG), hence η(G) = 0, which leads to a contradiction.

Now let G be a tricirculant cubic nut graph of type 3, say G is isomorphic to T3(n, a)
for appropriate parameters n, a. Thus, we may assume that G has the vertex set {x0, . . . ,
xn−1, y0, . . . , yn−1, z0, . . . , zn−1} and that xj ∼ xj+n

2
, yj+a, zj, yj ∼ xj−a, yj+n

2
, zj and zj ∼

xj, yj, zj+n
2

for j ∈ Zn. Now let us define two vectors u, v ∈ RVG such that

u(xj) = 1, u(yj) = −1, u(zj) = 0 (j ∈ Zn),

v(xj) = 1, v(yj) = 0, v(zj) = −1 (j ∈ Zn).

Then we quickly see that these two vectors are linearly independent, while both of them
belong to N (AG). Hence, η(G) > 2, which means that G cannot be a nut graph.
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5 Tricirculant graphs of type 1

In the previous section we have demonstrated that every tricirculant cubic nut graph, if
one exists, must be of type 1 or type 4. Our next step in proving Theorem 2 will be to
precisely determine all the nut graphs among the tricirculant cubic graphs of type 1. In
order to achieve this, we will use the present section to show that the following theorem
holds.

Theorem 11. An arbitrary graph representable as T1(n, a, b), where n is even and 0 6
a, b < n, a 6= b, is a nut graph if and only if the following conditions hold:

(i) gcd
(
n
2
, a
)

= gcd
(
n
2
, b
)

= 1;

(ii) a 6≡2
n
2

and b 6≡2
n
2
;

(iii) v2(b− a) > v2(n).

Before we give the proof of Theorem 11 itself, we will need one auxiliary claim that
connects the nut property of T1(n, a, b) to the root properties of a concrete polynomial.
The next lemma demonstrates the aforementioned observation.

Lemma 12. A graph representable as T1(n, a, b) is a nut graph if and only if the Z[x]
polynomial

x2a+b + xa+2b + xa + xb − x
n
2
+2a − x

n
2
+2b − 2x

n
2
+a+b (10)

has no n-th roots of unity among its roots, besides 1.

Proof. Let G be a given graph which is representable as T1(n, a, b). Thus, we may as-
sume that G has the vertex set {x0, . . . , xn−1, y0, . . . , yn−1, z0, . . . , zn−1} and that xj ∼
yj+a, yj+b, zj, yj ∼ xj−a, xj−b, zj and zj ∼ xj, yj, zj+n

2
for j ∈ Zn.

From the local conditions for xj, yj, zj, respectively, it is clear that N (AG) represents
the solution set to the system of equations

u(zj) + u(yj+a) + u(yj+b) = 0 (j ∈ Zn), (11)

u(zj) + u(xj−a) + u(xj−b) = 0 (j ∈ Zn), (12)

u(xj) + u(yj) + u(zj+n
2
) = 0 (j ∈ Zn) (13)

in u ∈ RVG . Suppose that a fixed vector u ∈ RVG is indeed a solution vector to the
aforementioned system. From Equation (13) we quickly see that

u(zj) = −u(xj+n
2
)− u(yj+n

2
) (14)

holds for each j ∈ Zn. By plugging in Equation (14) into Equation (11), we further obtain

−u(xj+n
2
)− u(yj+n

2
) + u(yj+a) + u(yj+b) = 0,

which means that
u(xj) = u(yj+n

2
+a) + u(yj+n

2
+b)− u(yj) (15)
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is true for each j ∈ Zn. It is now possible to plug in Equations (14) and (15) into
Equation (12) in order to get(

− u(yj+a)− u(yj+b) + u(yj+n
2
)− u(yj+n

2
)
)

+
(
u(yj+n

2
) + u(yj+n

2
+b−a)− u(yj−a)

)
+
(
u(yj+n

2
+a−b) + u(yj+n

2
)− u(yj−b)

)
= 0,

i.e.,

−u(yj+a)− u(yj+b)− u(yj−a)− u(yj−b)

+ u(yj+n
2
+b−a) + u(yj+n

2
+a−b) + 2u(yj+n

2
) = 0,

(16)

for each j ∈ Zn.
Now, Equation (16) can be thought of as a system of equations in u ∈ RY and it is

not difficult to establish that a vector u represents its solution if and only if[
u(y0) u(y1) · · · u(yn−1)

]ᵀ
is a null space vector of the corresponding circulant matrix C ∈ Rn×n. By implementing
Equation (1), we see that the eigenvalues of C are obtained by the expression

− ζa − ζb − ζ−a − ζ−b + ζ
n
2
+b−a + ζ

n
2
+a−b + 2ζ

n
2 , (17)

as ζ ranges through the n-th roots of unity. We will now prove that the graph G is a nut
graph if and only if C is of nullity one.

First of all, it is clear that the scenario η(C) = 0 is certainly not possible due to the
fact that plugging in ζ = 1 into Equation (17) yields the value zero. If η(C) > 2, then
there exist two linearly independent solutions to Equation (16). However, if we apply
Equations (14) and (15) to these solutions, we further obtain two linearly independent
solution vectors to the starting system determined by Equations (11), (12) and (13). Thus,
we have η(G) > 2, which means that G is not a nut graph. On the other hand, if η(C) = 1,
it becomes sufficient to notice that the solution set of Equation (16) contains the vectors
u ∈ RY such that u(yj) is constant for each j ∈ Zn. The condition η(C) = 1 guarantees
that these vectors are actually the only solutions to Equation (16). By implementing
Equations (15) and (14), it can be swiftly seen that if u ∈ N (AG), then this vector must
be of the form

u(xj) = β, u(yj) = β, u(zj) = −2β (j ∈ Zn),

for some β ∈ R. The converse is also trivial to check, which immediately tells us that
η(G) = 1 and that N (AG) contains a full vector. Hence, G is a nut graph.

We have proved that G is a nut graph if and only if Equation (17) becomes zero for
only a single value of ζ ∈ C among the n-th roots of unity. Since ζ = 1 necessarily yields
the value zero, it is clear that this condition is equivalent to Equation (17) being nonzero
for each ζ ∈ C, ζn = 1, ζ 6= 1. For each such ζ, it is sufficient to notice that

−ζa − ζb − ζ−a − ζ−b + ζ
n
2
+b−a + ζ

n
2
+a−b + 2ζ

n
2 = 0
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if and only if

−ζa+b
(
−ζa − ζb − ζ−a − ζ−b + ζ

n
2
+b−a + ζ

n
2
+a−b + 2ζ

n
2

)
= 0

if and only if

ζ2a+b + ζa+2b + ζa + ζb − ζ
n
2
+2a − ζ

n
2
+2b − 2ζ

n
2
+a+b = 0,

in order to complete the proof of the lemma.

We are now in position to apply the auxiliary Lemma 12 in order to give a relatively
short proof of Theorem 11.

Proof of Theorem 11. Let G be a graph representable as T1(n, a, b). By virtue of
Lemma 12, we see that G is a nut graph if and only if the polynomial given in Equa-
tion (10) contains only the root 1 among all the n-th roots of unity. However, for any
x ∈ C, xn = 1, it is possible to notice that

x2a+b + xa+2b + xa + xb − x
n
2
+2a − x

n
2
+2b − 2x

n
2
+a+b =

= xa (xb−a + 1)(x
n
2
+a − 1)(x

n
2
+b − 1).

From here, it is easy to see that G is a nut graph if and only if the equation xb−a = −1
has no solutions in x ∈ C, xn = 1, while the equations x

n
2
+a = 1 and x

n
2
+b = 1 each have

a single solution in x ∈ C, xn = 1, namely the value 1.
If we put x = e

2tπ
n
i for a uniquely defined t ∈ N0, 0 6 t < n, the equation xb−a = −1

in x ∈ C, xn = 1 becomes equivalent to the equation

t(b− a) ≡n
n

2
(18)

in t ∈ N0, 0 6 t < n. Thus, the two equations will have the same number of solutions.
However, Equation (18) represents a linear congruence equation, which means that it con-
tains a solution if and only if gcd(n, b−a) | n

2
(see, for example, [29, p. 170, Theorem 5.14]).

Furthermore, it is simple to see that gcd(n, b − a) | n
2

is equivalent to v2(b − a) < v2(n).
Thus, the starting equation has no solutions if and only if v2(b− a) > v2(n).

In an analogous fashion, we may analyze the remaining two equations and discover
that they both necessarily contain a solution. Moreover, the equation x

n
2
+a = 1 has

gcd(n, n
2

+a) distinct solutions in total, while the number of solutions of x
n
2
+b = 1 is equal

to gcd(n, n
2

+ b). Taking everything into consideration, we conclude that G is a nut graph
if and only if the following conditions hold:

• gcd(n, n
2

+ a) = 1;

• gcd(n, n
2

+ b) = 1;

• v2(b− a) > v2(n).
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We will now show that gcd(n, n
2

+a) = 1 is equivalent to the conjunction of gcd(n
2
, a) =

1 and a 6≡2
n
2
. First of all, it is not difficult to realize that gcd(n

2
, a) | gcd(n, n

2
+ a), hence

if gcd(n
2
, a) > 1, then gcd(n, n

2
+ a) > 1 as well. Besides that, if a ≡2

n
2
, then n and n

2
+ a

are both surely even, which means that gcd(n, n
2

+ a) > 2. These observations show that
gcd

(
n, n

2
+ a
)

= 1 implies that gcd
(
n
2
, a
)

= 1 and a 6≡2
n
2
.

Now, suppose that gcd(n
2
, a) = 1 and a 6≡2

n
2

do both hold. If we put β = gcd(n, n
2

+a),
it is clear that β | n and β | n + 2a, which directly implies that β | 2a as well, hence
β | gcd(n, 2a). Thus, we obtain β | 2 gcd(n

2
, a), which is only possible if β ∈ {1, 2}.

Bearing in mind that a 6≡2
n
2
, it is clear that n

2
+ a is odd, which implies β 6= 2, hence

gcd(n, n
2

+ a) = 1, as desired.
Thus, we have demonstrated that gcd(n, n

2
+ a) = 1 is true if and only if gcd(n

2
, a) = 1

and a 6≡2
n
2
, and it is analogous to prove that gcd(n, n

2
+ b) = 1 is equivalent to the

conjunction of gcd(n
2
, b) = 1 and b 6≡2

n
2
. From here, we quickly conclude that G being a

nut graph is indeed equivalent to the conjunction of conditions (i), (ii) and (iii).

Remark 13. For any t ∈ N such that gcd(n, t) = 1, it is not difficult to show that
T1(n, a, b), 0 6 a, b < n, a 6= b is surely isomorphic to T1(n, ta mod n, tb mod n). Bearing
this in mind, we may impose n, a, b parameter conditions precisely required for T1(n, a, b)
to be a nut graph which are stricter than those given in Theorem 11. If 4 | n, then a
tricirculant graph of type 1 is a nut graph if and only if it is representable as T1(n, 1, b)
where 3 6 b < n, gcd(n, b) = 1 and v2(b − 1) > v2(n). Similarly, if 4 - n, then a
tricirculant graph of type 1 is a nut graph if and only if it is representable as T1(n, 2, b)
where 4 6 b < n and gcd(n, b) = 2.

6 Tricirculant graphs of type 4

In this final section, we shall determine all the nut graphs among the cubic tricirculant
graphs of type 4, thereby completing the proof of Theorem 2. The aforementioned result
is disclosed within the following theorem.

Theorem 14. An arbitrary graph representable as T4(n, a, b) where n is even and 1 6
a, b < n

2
, is a nut graph if and only if the following conditions hold:

(i) gcd
(
n
2
, a, b

)
= 1;

(ii) if 4 - n, then at least one of a and b is even;

(iii) if 4 | n, then a and b are of different parities;

(iv) if 10 | n, then at least one of a, b, a− b, a+ b is divisible by five.

We will now demonstrate how the problem of testing whether a T4(n, a, b) graph is a
nut graph can be transformed to a number theory problem, in a similar manner as it was
done in Lemma 12. The corresponding result is given in the next lemma.
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Lemma 15. A graph representable as T4(n, a, b) is a nut graph if and only if the Z[x]
polynomial

x2a+b + xa+2b + xa + xb − x
n
2
+2a+2b − x

n
2
+2a − x

n
2
+2b − x

n
2 (19)

has no n-th roots of unity among its roots, besides 1.

Proof. Let G be a given graph that is representable as T4(n, a, b). The very definition
of the type 4 graphs dictates that N (AG) represents the solution set to the system of
equations

u(xj) + u(yj) + u(zj+n
2
) = 0 (j ∈ Zn), (20)

u(zj) + u(yj+b) + u(yj−b) = 0 (j ∈ Zn), (21)

u(zj) + u(xj+a) + u(xj−a) = 0 (j ∈ Zn) (22)

in u ∈ RVG . If we suppose that some vector u ∈ RVG is a solution vector to the given
system, Equation (20) lets us immediately obtain that

u(zj) = −u(xj+n
2
)− u(yj+n

2
) (23)

is true for each j ∈ Zn. Furthermore, we can plug in Equation (23) into Equation (21) in
order to get

−u(xj+n
2
)− u(yj+n

2
) + u(yj+b) + u(yj−b) = 0,

i.e.,
u(xj) = u(yj+n

2
+b) + u(yj+n

2
−b)− u(yj) (24)

for each j ∈ Zn. Now, by plugging in Equations (23) and (24) into Equation (22), we
may conclude that(

− u(yj+b)− u(yj−b) + u(yj+n
2
)− u(yj+n

2
)
)

+
(
u(yj+n

2
+b+a) + u(yj+n

2
−b+a)− u(yj+a)

)
+
(
u(yj+n

2
+b−a) + u(yj+n

2
−b−a)− u(yj−a)

)
= 0,

which immediately gives

−u(yj+a)− u(yj+b)− u(yj−a)− u(yj−b) + u(yj+n
2
+a+b)

+ u(yj+n
2
+a−b) + u(yj+n

2
−a+b) + u(yj+n

2
−a−b) = 0,

(25)

for each j ∈ Zn.
By thinking of Equation (25) as a system of equations in u ∈ RY , we are now able to

implement the same circulant matrix null space strategy from Lemma 12. In other words,
by using an analogous proof method which we choose to leave out for the sake of brevity,
we may conclude that the graph G is a nut graph if and only if the expression

− ζa − ζb − ζ−a − ζ−b + ζ
n
2
+a+b + ζ

n
2
+a−b + ζ

n
2
−a+b + ζ

n
2
−a−b (26)
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yields zero only for a single value of ζ ∈ C, ζn = 1. Given the fact that Equation (26)
surely gives zero when we plug in ζ = 1, the said condition must be equivalent to Equa-
tion (26) not giving zero for any other n-th root of unity. However, for each ζ ∈ C, ζn = 1,
we have

−ζa − ζb − ζ−a − ζ−b + ζ
n
2
+a+b + ζ

n
2
+a−b + ζ

n
2
−a+b + ζ

n
2
−a−b = 0

if and only if

−ζa+b
(
−ζa − ζb − ζ−a − ζ−b + ζ

n
2
+a+b + ζ

n
2
+a−b + ζ

n
2
−a+b + ζ

n
2
−a−b) = 0

if and only if

ζ2a+b + ζa+2b + ζa + ζb − ζ
n
2
+2a+2b − ζ

n
2
+2a − ζ

n
2
+2b − ζ

n
2 = 0,

which promptly leads us to the desired lemma statement.

Unfortunately, the Equation (19) polynomial does not adhere to a factorization analo-
gous to the one applied on the Equation (10) polynomial during the proof of Theorem 11.
For this reason, we shall use an entirely different strategy in order to complete the proof
of Theorem 14. To begin, we define the following two auxiliary polynomials

Qa,b(x) = x2a+b + xa+2b + xa + xb − x2a+2b − x2a − x2b − 1,

Ra,b(x) = x2a+b + xa+2b + xa + xb + x2a+2b + x2a + x2b + 1,

for each a, b ∈ N. It now becomes convenient to disclose the following brief reformulation
of the polynomial problem obtained as a result of Lemma 15.

Lemma 16. A graph representable as T4(n, a, b) is a nut graph if and only if the following
two conditions hold:

(i) Φf (x) - Qa,b(x) for every f ∈ N, f > 2 such that f | n
2
;

(ii) Φf (x) - Ra,b(x) for every f ∈ N such that f | n and 2 - n
f

.

Proof. Let G be a given graph that is representable as T4(n, a, b). By virtue of Lemma 15,
it can be immediately seen that G is a nut graph if and only if the following two conditions
hold:

• Qa,b(x) does not contain a root ζ among all the n-th roots of unity such that ζ
n
2 = 1,

besides 1;

• Ra,b(x) does not contain a root ζ among all the n-th roots of unity such that ζ
n
2 =

−1.
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A complex number ζ ∈ C is an n-th root of unity and satisfies ζ
n
2 = 1 if and only if it is an

f -th primitive root of unity for some f ∈ N such that f | n
2
. From here, it is not difficult

to realize that Qa,b(x) does not contain a root among all such n-th roots of unity, besides
1, if and only if it is not divisible by any cyclotomic polynomial Φf (x) where f > 2 and
f | n

2
. In a similar fashion, it can be noticed that some ζ ∈ C is an n-th root of unity and

satisfies ζ
n
2 = −1 if and only if this number is an f -th primitive root of unity for some

f ∈ N such that f | n and 2 - n
f
. However, this means that Ra,b(x) does not contain such

a root if and only if it is not divisible by any polynomial Φf (x) where f | n and 2 - n
f
.

It is worth pointing out that, for any f ∈ N, Φf (x) divides a given polynomial V (x) ∈
Q[x] if and only if it divides any other polynomial which can be obtained from V (x) by
adding or subtracting any multiple of f from the powers of its terms. Bearing this in
mind, our next step in proving Theorem 14 will be to demonstrate the validity of the
easier underlying implication of the required equivalence. In other words, we will show
that each graph not satisfying the stated conditions is certainly not a nut graph. This
result is given in the next lemma.

Lemma 17. A graph representable as T4(n, a, b) which does not satisfy the conditions
stated in Theorem 14 is surely not a nut graph.

Proof. Let G be a given graph which is representable as T4(n, a, b) and suppose that this
graph does not satisfy all four conditions disclosed in Theorem 14. In order to make
the proof more concise, we will split it into four cases depending on which of the four
conditions is not satisfied. In all the cases, we shall demonstrate that G cannot be a nut
graph.

Case 1: gcd(n
2
, a, b) = 1 does not hold. Let β = gcd(n

2
, a, b) > 2. Given the fact that

both a and b are divisible by β, it is straightforward to notice that Qa,b(x) must contain
each β-th root of unity among its roots, hence Φβ(x) | Qa,b(x). However, since β > 2 and
β | n

2
, condition (i) from Lemma 16 dictates that G cannot be a nut graph, as desired.

Case 2: 4 - n =⇒ 2 | ab does not hold. Suppose that 4 - n, while 2 - a and 2 - b. It is
obvious that 2 | n and n

2
is odd. Also, it can be swiftly noticed that −1 must be a root

of Ra,b(x), which means that Φ2(x) | Ra,b(x). Thus, condition (ii) from Lemma 16 fails,
which implies that the graph G cannot be a nut graph.

Case 3: 4 | n =⇒ a 6≡2 b does not hold. Now, suppose that 4 | n, while a and b are
of the same parity. If a and b are both even, then it is easy to see that −1 is a root of
Qa,b(x). Thus, Φ2(x) | Qa,b(x) must hold, while 2 | n

2
. By implementing condition (i)

from Lemma 16, we get that G is not a nut graph, as desired.
If a and b are both odd, then it becomes convenient to split the problem into two

further subcases depending on whether 8 | n or n ≡8 4. If n ≡8 4, then 4 | n and 2 - n
4
,

together with

Ra,b(i) = i2a+b + ia+2b + ia + ib + i2a+2b + i2a + i2b + 1 = (ia+b + 1)(ia + ib).
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If a ≡4 b, then ia+b + 1 = 0, and if a 6≡4 b, then ia + ib = 0. Either way, we conclude
that Ra,b(i) = 0, which further implies Φ4(x) | Ra,b(x). According to condition (ii) from
Lemma 16, the graph G is not a nut graph. Finally, if 8 | n, we may observe that
Qa,b(i) = 0 by using the same computational strategy as done in the previous subcase.
This directly gives Φ4(x) | Qa,b(x). Bearing in mind that 4 | n

2
, condition (i) from

Lemma 16 tells us that G is not a nut graph.

Case 4: 10 | n =⇒ 5 | ab(a − b)(a + b) does not hold. Finally, suppose that
10 | n and that 5 - ab(a − b)(a + b). It is not difficult to establish that the latter
condition is equivalent to the disjuction of a mod 5 ∈ {1, 4} ∧ b mod 5 ∈ {2, 3} and
b mod 5 ∈ {1, 4} ∧ a mod 5 ∈ {2, 3}. Given the fact that 5 | n

2
, Lemma 16 claims that

in order to show that G is not a nut graph, it is sufficient to prove that Φ5(x) | Qa,b(x),
and this is exactly what we shall do. Since Qa,b(x) = Qb,a(x), we may assume that
a mod 5 ∈ {1, 4} and b mod 5 ∈ {2, 3}, without loss of generality. From here, it is
straightforward to notice that either b ≡5 2a or b ≡5 3a.

If we have b ≡5 2a, then by plugging in the said modular equality we swiftly notice
that

Φ5(x) | Qa,b(x)

⇐⇒ Φ5(x) | x4a + x5a + xa + x2a − x6a − x2a − x4a − 1

⇐⇒ Φ5(x) | x4a + 1 + xa + x2a − xa − x2a − x4a − 1

⇐⇒ Φ5(x) | 0,

hence Φ5(x) | Qa,b(x) is indeed true. Similarly, if b ≡5 3a, then by using the same strategy
we obtain

Φ5(x) | Qa,b(x)

⇐⇒ Φ5(x) | x5a + x7a + xa + x3a − x8a − x2a − x6a − 1

⇐⇒ Φ5(x) | 1 + x2a + xa + x3a − x3a − x2a − xa − 1

⇐⇒ Φ5(x) | 0,

which directly implies Φ5(x) | Qa,b(x) once again.

Before we proceed with the proof of Theorem 14, we will need another short auxiliary
folklore lemma.

Lemma 18. Let V (x),W (x) ∈ Q[x], W (x) 6≡ 0 be two polynomials such that W (x) | V (x)
and the powers of all the nonzero terms of W (x) are divisible by some β ∈ N. For any
j ∈ {0, . . . , β − 1}, if we use V (β,j)(x) to denote the polynomial composed of all the terms
of V (x) whose powers are congruent to j modulo β, we then have W (x) | V (β,j)(x).

Proof. Since W (x) | V (x), we may write V (x) = W (x)U(x) for some polynomial U(x) ∈
Q[x]. For each j ∈ {0, . . . , β − 1}, let U (β,j)(x) denote the polynomial comprising all
the terms of U(x) whose powers are congruent to j modulo β. It now becomes simple
to notice that V (β,j)(x) = W (x)U (β,j)(x) must be true for each j ∈ {0, . . . , β − 1}. The
lemma statement follows directly from here.
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We shall now extensively implement Lemma 18 in order to obtain a series of auxiliary
lemmas regarding the divisibility of Qa,b(x) and Ra,b(x) by polynomials whose nonzero
terms have powers divisible by a common prime.

Lemma 19. If a given W (x) ∈ Q[x] has at least two nonzero terms and all of its nonzero
terms have powers divisible by a prime number p > 7, then W (x) | Qa,b(x) and W (x) |
Ra,b(x) both imply p | a, b.

Proof. First of all, if all the numbers 2a+ b, a+ 2b, a, b, 2a+ 2b, 2a, 2b are not divisible by
p, we then obtain

Q
(p,0)
a,b (x) = −1, R

(p,0)
a,b (x) = 1.

From here we have that W (x) - Q(p,0)
a,b (x), R

(p,0)
a,b (x), hence W (x) - Qa,b(x), Ra,b(x), by

virtue of Lemma 18. Thus, there is nothing left to discuss in this scenario. We will
now suppose that at least one number from 2a + b, a + 2b, a, b, 2a + 2b, 2a, 2b is divisible
by p. In order to make the proof easier to follow, we shall split the problem into seven
corresponding cases.

Case 1: p | 2a+ b. Here, we have that b ≡p −2a, which implies

2a+ b ≡p 0, a+ 2b ≡p −3a, a ≡p a, b ≡p −2a,

2a+ 2b ≡p −2a, 2a ≡p 2a, 2b ≡p −4a, 0 ≡p 0.

It is now easy to see that we obtain two further possibilities:

• a has a unique remainder modulo p within the set {2a+b, a+2b, a, b, 2a+2b, 2a, 2b, 0};

• at least one number from the set {a, 3a, 4a, 5a} is divisible by p.

In the former scenario, Lemma 18 dictates that W (x) | Qa,b(x) or W (x) | Ra,b(x) would
both imply W (x) | xa, which is not possible. Thus, W (x) - Qa,b(x), Ra,b(x) and the lemma
statement holds. In the latter scenario, it is not difficult to conclude that each subcase
leads to p | a. From here, it immediately follows that p | a, b, as desired.

Case 2: p | a+ 2b. This case can be proved in an entirely analogous manner as case 1.

Case 3: p | a. In this case, we get a ≡p 0, which means that

2a+ b ≡p b, a+ 2b ≡p 2b, a ≡p 0, b ≡p b,
2a+ 2b ≡p 2b, 2a ≡p 0, 2b ≡p 2b, 0 ≡p 0.

We now get two further possibilities:

• p | b or p | 2b;

• the numbers {2a + b, a + 2b, a, b, 2a + 2b, 2a, 2b, 0} can be partitioned as {{2a +
b, b}, {a+ 2b, 2a+ 2b, 2b}, {a, 2a, 0}} according to their remainder modulo p.
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In the former scenario, we certainly have that p | a, b, hence there is nothing more to
discuss. In the later scenario, Lemma 18 allows us to swiftly conclude that W (x) | Qa,b(x)
implies

W (x) | x2a+b + xb, (27)

W (x) | xa+2b − x2a+2b − x2b, (28)

which is not possible due to the fact that Equations (27) and (28) together give

W (x) | (xa+2b − x2a+2b − x2b) + xb (x2a+b + xb)

=⇒ W (x) | xa+2b.

In a similar fashion, W (x) | Ra,b(x) would lead to

W (x) | x2a+b + xb, (29)

W (x) | xa+2b + x2a+2b + x2b, (30)

However, this is again impossible since Equations (29) and (30) imply

W (x) | (xa+2b + x2a+2b + x2b)− xb (x2a+b + xb)

=⇒ W (x) | xa+2b.

Case 4: p | b. This case can be proved in an entirely analogous manner as case 3.

Case 5: p | 2a+ 2b. The condition p | 2a+ 2b gets down to b ≡p −a, which immediately
leads to

2a+ b ≡p a, a+ 2b ≡p −a, a ≡p a, b ≡p −a,
2a+ 2b ≡p 0, 2a ≡p 2a, 2b ≡p −2a, 0 ≡p 0.

From here, we reach two further possibilities:

• 2a has a unique remainder modulo p within the set {2a+b, a+2b, a, b, 2a+2b, 2a, 2b,
0};

• at least one number from the set {a, 2a, 3a, 4a} is divisible by p;

In the former scenario, Lemma 18 states that W (x) | Qa,b(x) or W (x) | Ra,b(x) would
both imply W (x) | x2a, which is clearly impossible. For this reason, we obtain W (x) -
Qa,b(x), Ra,b(x) as desired. In the latter scenario, it can be quickly noticed that p | a must
be true. This leads to p | a, b, which completes the proof.

Case 6: p | 2a. The condition p | 2a directly gives us a ≡p 0, which means that this
case actually coincides with case 3.

Case 7: p | 2b. This case can be proved in an entirely analogous manner as case 6.
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Lemma 20. If W (x) ∈ Q[x] is a polynomial with at least two nonzero terms such that all
of its nonzero terms have powers divisible by five, then W (x) | Qa,b(x) and W (x) | Ra,b(x)
both imply 5 | a, b or 5 - a, b, a+ b, a− b.

Proof. To begin, if 5 | a, b, then the lemma statement certainly holds and there is nothing
more to discuss. Due to the fact that Qa,b(x) = Qb,a(x), as well as Ra,b(x) = Rb,a(x), we
can assume, without loss of generality, that 5 - b. Now, it is not difficult to notice that a
must satisfy precisely one of the following five modular equalies: a ≡5 0, a ≡5 b, a ≡5 2b,
a ≡5 3b, a ≡5 4b. We shall use this observation to complete the proof by splitting the
problem into five corresponding cases.

a ≡5 0 a ≡5 b a ≡5 2b a ≡5 3b a ≡5 4b

2a + b ≡5 b 3b 0 2b 4b
a + 2b ≡5 2b 3b 4b 0 b

a ≡5 0 b 2b 3b 4b
b ≡5 b b b b b

2a + 2b ≡5 2b 4b b 3b 0
2a ≡5 0 2b 4b b 3b
2b ≡5 2b 2b 2b 2b 2b
0 ≡5 0 0 0 0 0

Table 1: The powers of the Qa,b(x) and Ra,b(x) nonzero terms modulo five.

Case 1: a ≡5 0. In this scenario, Table 1 and Lemma 18 together dictate that W (x) |
Qa,b(x) implies

W (x) | x2a+b + xb,

W (x) | xa+2b − x2a+2b − x2b,
W (x) | xa − x2a − 1,

while W (x) | Ra,b(x) implies

W (x) | x2a+b + xb,

W (x) | xa+2b + x2a+2b + x2b,

W (x) | xa + x2a + 1.

From here onwards, the proof can be completed by using the same strategy used in case
3 in the proof of Lemma 19.

Case 2: a ≡5 b. In this case, Table 1 states that the element 0 has a unique remainder
modulo five within the set {2a+ b, a+ 2b, a, b, 2a+ 2b, 2a, 2b, 0}. For this reason, W (x) |
Qa,b(x) and W (x) | Ra,b(x) would both imply W (x) | 1, by virtue of Lemma 18. Thus,
neither W (x) | Qa,b(x) nor W (x) | Ra,b(x) can be true.
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Case 3: a ≡5 2b. Here, it is easy to check that 5 - a, b, a+ b, a− b and there is nothing
more to discuss.

Case 4: a ≡5 3b. In this situation, it is straightforward to notice that once again
5 - a, b, a+ b, a− b, which means that the lemma statement does hold.

Case 5: a ≡5 4b. Here, Table 1 tells us that the element 2a has a unique remainder
modulo five within the set {2a+ b, a+ 2b, a, b, 2a+ 2b, 2a, 2b, 0}. The rest of the proof can
now be carried out analogously as it was done in case 2.

Lemma 21. If W (x) ∈ Q[x] is a polynomial with at least two nonzero terms such that all
of its nonzero terms have powers divisible by three, then W (x) | Qa,b(x) and W (x) | Ra,b(x)
both imply 3 | a, b.

Proof. For starters, if 3 | a, b, then the lemma statement holds and there is nothing left
to prove. Given the fact that Qa,b(x) = Qb,a(x) and Ra,b(x) = Rb,a(x), we may assume,
without loss of generality, that 3 - b. It is easy to establish that either a ≡3 0 or a ≡3 b or
a ≡3 2b must hold. For this reason, it becomes convenient to split the problem into the
three corresponding cases that arise from this observation.

a ≡3 0 a ≡3 b a ≡3 2b

2a + b ≡3 b 0 2b
a + 2b ≡3 2b 0 b

a ≡3 0 b 2b
b ≡3 b b b

2a + 2b ≡3 2b b 0
2a ≡3 0 2b b
2b ≡3 2b 2b 2b
0 ≡3 0 0 0

Table 2: The powers of the Qa,b(x) and Ra,b(x) nonzero terms modulo three.

Case 1: a ≡3 0. In this case, Table 2 and Lemma 18 tell us that W (x) | Qa,b(x) implies

W (x) | x2a+b + xb,

W (x) | xa+2b − x2a+2b − x2b,
W (x) | xa − x2a − 1,

while W (x) | Ra,b(x) implies

W (x) | x2a+b + xb,

W (x) | xa+2b + x2a+2b + x2b,

W (x) | xa + x2a + 1.
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It is now evident that the given case can be resolved in the same manner as case 3 from
Lemma 19.

Case 2: a ≡3 b. If we suppose that W (x) | Qa,b(x), then Table 2 and Lemma 18 yield

W (x) | x2a+b + xa+2b − 1,

W (x) | xa + xb − x2a+2b,

W (x) | x2a + x2b,

which promptly leads us to

W (x) | (xb − xa)(xa + xb)2 (x2a+b + xa+2b − 1)

+ (x2b − x2a)(xa + xb − x2a+2b)

+ xa+b(x2a − x2b + xa+b)(x2a + x2b)

=⇒ W (x) | 2x2a+4b,

which is impossible. Thus, W (x) - Qa,b(x). In a similar fashion, if we suppose that
W (x) | Ra,b(x), it follows that

W (x) | x2a+b + xa+2b + 1,

W (x) | xa + xb + x2a+2b,

W (x) | x2a + x2b.

Subsequently, we may obtain

W (x) | (xa − xb)(xa + xb)2 (x2a+b + xa+2b + 1)

+ (x2b − x2a)(xa + xb + x2a+2b)

+ xa+b(x2b − x2a + xa+b)(x2a + x2b)

=⇒ W (x) | 2x4a+2b,

which is again not possible, hence W (x) - Ra,b(x).

Case 3: a ≡3 2b. If we suppose that W (x) | Qa,b(x), then Table 2 and Lemma 18 dictate
that

W (x) | x2a+b + xa − x2b,
W (x) | xa+2b + xb − x2a,
W (x) | x2a+2b + 1.

However, in this scenario we may conclude that

W (x) | (−1− x12b + xa+7b)(x2a+b + xa − x2b)
+ (−xb + xa+2b + xa+11b − x2a+6b)(xa+2b + xb − x2a)
+ (xa + xa+9b − x2a+4b)(x2a+2b + 1)

=⇒ W (x) | x14b,
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which is obviously impossible. Similarly, if we suppose that W (x) | Ra,b(x), we immedi-
ately get

W (x) | x2a+b + xa + x2b,

W (x) | xa+2b + xb + x2a,

W (x) | x2a+2b + 1,

which promptly implies

W (x) | (1 + x12b − xa+7b)(x2a+b + xa + x2b)

+ (−xb + xa+2b − xa+11b + x2a+6b)(xa+2b + xb + x2a)

+ (−xa + xa+9b − x2a+4b)(x2a+2b + 1)

=⇒ W (x) | x14b,

which is again not possible.

Lemma 22. If a given polynomial W (x) ∈ Q[x] has at least two nonzero terms and all of
its nonzero terms have powers divisible by four, then W (x) | Qa,b(x) and W (x) | Ra,b(x)
both imply 2 | a, b.

Proof. If 2 | a, b, then the lemma statement holds and there is nothing left to prove. Given
the fact that Qa,b(x) = Qb,a(x) and Ra,b(x) = Rb,a(x), we may assume, without loss of
generality, that a is odd. Depending on the value of b mod 4, we can divide the problem
into four corresponding cases and solve each of them separately.

b ≡4 2 b ≡4 0 b ≡4 a b ≡4 a + 2

2a + b ≡4 0 2 a + 2 a
a + 2b ≡4 a a a + 2 a + 2

a ≡4 a a a a
b ≡4 2 0 a a + 2

2a + 2b ≡4 2 2 0 0
2a ≡4 2 2 2 2
2b ≡4 0 0 2 2
0 ≡4 0 0 0 0

Table 3: The powers of the Qa,b(x) and Ra,b(x) nonzero terms modulo four, provided a is
odd.

Case 1: b ≡4 2. In this case, Table 3 and Lemma 18 tell us that W (x) | Qa,b(x) implies

W (x) | xb − x2a+2b − x2a, (31)

W (x) | xa+2b + xa. (32)
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However, by combining Equations (31) and (32), we get

W (x) | (xb − x2a+2b − x2a) + xa (xa+2b + xa)

=⇒ W (x) | xb,

which is not possible. Similarly, W (x) | Ra,b(x) implies

W (x) | xb + x2a+2b + x2a, (33)

W (x) | xa+2b + xa, (34)

which can also be shown to be impossible by combining Equation (33) and (34)

W (x) | (xb + x2a+2b + x2a)− xa (xa+2b + xa)

=⇒ W (x) | xb.

Case 2: b ≡4 0. Here, Table 3 and Lemma 18 dictate that W (x) | Qa,b(x) implies

W (x) | xa+2b + xa,

W (x) | x2a+b − x2a+2b − x2a,

while W (x) | Ra,b(x) implies

W (x) | xa+2b + xa,

W (x) | x2a+b + x2a+2b + x2a.

This case can now be resolved in an entirely analogous manner as case 3 in the proof of
Lemma 19.

Case 3: Case b ≡4 a. Here, Table 3 and Lemma 18 dictate that W (x) | Qa,b(x) and
W (x) | Ra,b(x) would both have to imply

W (x) | xa + xb, (35)

W (x) | x2a + x2b. (36)

By combining Equations (35) and (36) we could obtain

W (x) | (x2a + x2b) + (xa − xb)(xa + xb)

=⇒ W (x) | 2x2a,

which is not possible, as desired.

Case 4: b ≡4 a + 2. In this situation, from Table 3 and Lemma 18 we can easily see
that both W (x) | Qa,b(x) and W (x) | Ra,b(x) would surely imply

W (x) | x2a+b + xa, (37)

W (x) | x2a+2b + 1. (38)
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However, if we combined Equations (37) and (38), we would get

W (x) | (xa+b − 1)(x2a+b + xa) + xa (x2a+2b + 1)

=⇒ W (x) | 2x3a+2b,

which is impossible once again.

It is worth pointing out that the polynomials Qa,b(x) and Ra,b(x) have at most eight
nonzero terms. For this reason, it becomes convenient to implement Theorem 8 while
inspecting their divisibility by cyclotomic polynomials. For example, if Φf (x) | Qa,b(x)
for some f ∈ N, we may cancel out each prime factor of f which is greater than seven
in order to obtain another integer f ′ ∈ N which satisfies Φf ′(x) | Qa,b(x). The same
conclusion can be made regarding the Ra,b(x) polynomials. The proof of Theorem 14 will
heavily rely on this observation. Before we proceed with the main part of the proof, we
shall need one more auxiliary lemma regarding the divisibility of Qa,b(x) and Ra,b(x) by
certain cyclotomic polynomials.

Lemma 23. For each prime p > 11, Φp(x) | Qa,b(x) and Φp(x) | Ra,b(x) both imply
p | a, b.

Proof. Let us define Q mod p
a,b (x) and R mod p

a,b (x) as the polynomials obtained from Qa,b(x)
and Ra,b(x), respectively, by replacing the power of each nonzero term by its remainder
modulo p. It is straightforward to see that Φp(x) | Qa,b(x) holds if and only if Φp(x) |
Q mod p
a,b (x) does. Also, Φp(x) | Ra,b(x) is surely equivalent to Φp(x) | R mod p

a,b (x).
We shall demonstrate the lemma statement only for the Qa,b(x) polynomial, given the

fact that the proof regarding the Ra,b(x) polynomial can be carried out in an entirely
analogous manner. Suppose that Φp(x) | Qa,b(x). Bearing in mind that

Φp(x) =

p−1∑
j=0

xj,

it is easy to see that deg Φp(x) = p − 1. However, since degQ mod p
a,b (x) 6 p − 1, the

divisibility Φp(x) | Q mod p
a,b (x) directly implies that one of the following two possibilities

must be true:

• Q mod p
a,b (x) = β Φp(x) for some β ∈ Q \ {0};

• Q mod p
a,b (x) ≡ 0.

In the first scenario, Q mod p
a,b (x) would need to have exactly p > 11 nonzero terms, which

is obviously not possible. Thus, Q mod p
a,b (x) ≡ 0 surely holds. It is now convenient to

perform a remainder modulo p analysis identical to the one done throughout the proof of
Lemma 19. Bearing in mind all the cases disclosed in the aforementioned lemma, we may
conclude that at least one of the following four statements must be true:
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• p | a, b;

• there exists an element from the set {2a + b, a + 2b, a, b, 2a + 2b, 2a, 2b, 0} whose
remainder modulo p is unique within that set;

• the numbers {2a + b, a + 2b, a, b, 2a + 2b, 2a, 2b, 0} can be partitioned as {{2a + b,
b}, {a+ 2b, 2a+ 2b, 2b}, {a, 2a, 0}} according to their remainder modulo p.

• the numbers {2a + b, a + 2b, a, b, 2a + 2b, 2a, 2b, 0} can be partitioned as {{a + 2b,
a}, {2a+ b, 2a+ 2b, 2a}, {b, 2b, 0}} according to their remainder modulo p.

If p | a, b, then there is nothing left to discuss, since the lemma statement directly holds. If
the set {2a+ b, a+2b, a, b, 2a+2b, 2a, 2b, 0} contains an element whose remainder modulo
p is unique within the set, it is easy to see that Q mod p

a,b (x) ≡ 0 leads to a contradiction.
The last two scenarios can be resolved in an analogous manner, so we will only deal with
the third.

Suppose that the elements of the set {2a + b, a + 2b, a, b, 2a + 2b, 2a, 2b, 0} can be
partitioned as {{2a + b, b}, {a + 2b, 2a + 2b, 2b}, {a, 2a, 0}} according to their remainder
modulo p. From here, the condition Q mod p

a,b (x) ≡ 0 immediately implies

xa mod p − x2a mod p − 1 ≡ 0,

which is clearly impossible.

We are now finally able to put all the pieces of the puzzle together and finalize the
proof of Theorem 14.

Proof of Theorem 14. Let G be an arbitrarily chosen graph which is representable as
T4(n, a, b). According to Lemma 17, if G does not satisfy the four conditions given in the
theorem, then this graph is certainly not a nut graph. Thus, in order to complete the
proof, it is sufficent to suppose that G is not a nut graph, then prove that it fails to satisfy
at least one of the four stated conditions. However, if we suppose that the graph G is
not a nut graph, then Lemma 16 states that there must exist an f ∈ N, f > 2 such that
f | n

2
and Φf (x) | Qa,b(x), or an f ∈ N such that f | n, 2 - n

f
and Φf (x) | Ra,b(x). It now

becomes convenient to split the problem into two cases depending on whether Qa,b(x) or
Ra,b(x) is divisible by the corresponding cyclotomic polynomial.

Case 1: Φf (x) | Qa,b(x). If p2 | f holds for any prime number p ∈ N, we then have
that Φf (x) = Φf/p(x

p), which implies that all the nonzero terms of Φf (x) possess powers
divisible by p. Thus, if p2 | f for any prime p > 7 or p = 3, we can implement Lemma 19
or Lemma 21 in order to obtain that p | a, b. However, it is now straightforward to see
that p | a, b, n

2
, hence gcd(n

2
, a, b) 6= 1, which means that condition (i) from Theorem 14

is not satisfied.
If we have that 52 | f , we may apply Lemma 20 to obtain that 5 | a, b or 5 - a, b,

a − b, a + b. If 5 | a, b, it is then clear that condition (i) from Theorem 14 fails to hold.
If 5 - a, b, a − b, a + b, it is enough to notice that 10 | n to conclude that condition (iv)
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from Theorem 14 is not satisfied. Also, if 8 | f , it is then convenient to use Lemma 22
to reach 2 | a, b. However, this further gives that condition (i) from Theorem 14 fails to
hold once again.

Taking everything into consideration, we may assume that Φf (x) | Qa,b(x) where f ∈ N
is such that:

• f > 2 and f | n
2
;

• 8 - f and p2 - f for every prime p > 3.

We now divide the problem into two subcases depending on whether f contains a prime
factor from the set {2, 3, 5, 7}.
Subcase 1.1: 2, 3, 5, 7 - f . In this subcase, it is obvious that f must be representable
as a product of one or more distinct prime numbers greater than seven. By applying
Theorem 8, we may cancel out all the prime factors of f , one by one, until there is exactly
one left. This allows us to conclude that Φp(x) | Qa,b(x) for some prime p > 11 such
that p | f , hence p | n

2
. By implementing Lemma 23, it becomes easy to see that p | a, b.

However, this means that condition (i) from Theorem 14 does not hold.

Subcase 1.2: ¬(2, 3, 5, 7 - f). Here, we have that f contains at least one prime factor not
greater than seven. We are now able to use Theorem 8 in order to cancel out all the prime
factors of f greater than seven. Furthermore, if the obtained integer is simultaneously
divisible by five and seven, we can implement Theorem 8 once more and cancel out one
of them, given the fact that (5− 2) + (7− 2) > (8− 2). Bearing everything in mind, we
get that Φf ′(x) | Qa,b(x) must hold for some integer f ′ ∈ N such that:

• f ′ > 2, f ′ | n
2

and f ′ contains no prime factor greater than seven;

• 8 - f ′ and p2 - f ′ for each prime p ∈ {3, 5, 7};

• f ′ is not divisible by both five and seven.

It is not difficult to check that such an integer f ′ would necessarily have to belong to the
set

{2, 3, 4, 5, 6, 7, 10, 12, 14, 15, 20, 21, 28, 30, 42, 60, 84}.
Furthermore, let us define Q mod f ′

a,b (x) as the polynomial obtained from Qa,b(x) by
replacing the power of each nonzero term by its remainder modulo f ′. It is clear that
Φf ′(x) | Qa,b(x) is equivalent to Φf ′(x) | Q mod f ′

a,b (x). We now observe that for a fixed
f ′ ∈ N one can determine a finite set

Ψ ⊆ {0, 1, . . . , n− 1} × {0, 1, . . . , n− 1},

such that Φf ′(x) | Q mod f ′

a,b (x) holds if and only if (a mod p, b mod p) ∈ Ψ. Given the fact
that there are only 17 possible values for f ′, it is quite convenient to use a computer in
order to determine all the modular conditions under which Φf ′(x) | Qa,b(x) is true for
each feasible f ′. The corresponding computational results are given in Appendix A. By
examining the said results, it is not difficult to establish that at least one of the following
statements has to be true:
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• there exists a prime number p ∈ N such that p | a, b, f ′;

• f ′ = 4 and a and b are both odd;

• f ′ = 5 and 5 - a, b, a+ b, a− b.

If p | a, b, f ′, we then clearly have gcd(n
2
, a, b) 6= 1, which implies that condition (i) given

in Theorem 14 does not hold. Similarly, if f ′ = 4 and 2 - a, b, it can be immediately seen
that 4 | n

2
, hence condition (iii) is not satisfied. Finally, if f ′ = 5 and 5 - a, b, a+ b, a− b,

then 5 | n
2
, which means that condition (iv) from Theorem 14 does not hold, as desired.

Case 2: Φf (x) | Ra,b(x). In this case, we can apply the same initial discussion once
again in order to show that we may asume that Φf (x) | Ra,b(x) holds for some integer
f ∈ N such that:

• f | n and 2 - n
f
;

• 8 - f and p2 - f for every prime p > 3.

It is now convenient to divide the problem into two subcases in the same manner as it
was done in the previous case.

Subcase 2.1: 2, 3, 5, 7 - f . This subcase can be resolved in an entirely analogous manner
as subcase 1.1. For this reason, we choose to omit the proof details.

Subcase 2.2: ¬(2, 3, 5, 7 - f). In this subcase, we can implement Theorem 8 in an
identical manner as done so in subcase 1.2. This allows us to reach that Φf ′(x) | Ra,b(x)
must be true for some integer f ′ ∈ N such that:

• f ′ | n, 2 - n
f ′

and f ′ contains no prime factor greater than seven;

• 8 - f ′ and p2 - f ′ for each prime p ∈ {3, 5, 7};

• f ′ is not divisible by both five and seven.

Taking into account that f ′ 6= 1, this means that f ′ once again certainly belongs to the
set

{2, 3, 4, 5, 6, 7, 10, 12, 14, 15, 20, 21, 28, 30, 42, 60, 84}.

By defining R mod p
a,b (x) in an analogous manner as Q mod p

a,b (x) was defined in case 1, it
becomes possible to inspect the precise modular conditions that a and b have to satisfy
in order for Φf ′ | Ra,b(x) to be true for a given value of f ′. Of course, the aforementioned
examination can be easily performed via computer. The corresponding computational
results are disclosed in Appendix B and by analyzing the obtained results it is possible
to conclude that f ′ is surely even. Moreover, at least one of the following statements is
certainly true:

• there exists a prime number p ∈ N such that p | a, b, f ′
2

;

the electronic journal of combinatorics 31(2) (2024), #P2.31 26



• f ′ = 2 and a and b are both odd;

• f ′ = 4 and a and b are both odd;

• f ′ = 10 and 5 - a, b, a− b, a+ b.

If there exists a prime p such that p | a, b, f ′
2

, it is evident that gcd(n
2
, a, b) 6= 1, hence

condition (i) from Theorem 14 is not satisfied. Furthermore, if f ′ = 2 and 2 - a, b, then
it is easy to see that n ≡4 2, which means that condition (ii) fails to hold. Similarly, if
f ′ = 4 and 2 - a, b, then we get 4 | n, which implies that condition (iii) is not satisfied.
Finally, if f ′ = 10 and 5 - a, b, a− b, a + b, it is straightforward to deduce that condition
(iv) from Theorem 14 fails to hold.

Remark 24. In an analogous manner as done so in Section 5, it is possible to demonstrate
that T4(n, a, b) is always isomorphic to

T4 (n,min(ta mod n, n− ta mod n),min(tb mod n, n− tb mod n))

whenever gcd(n, t) = 1. From here, it follows that if 4 | n, then a tricirculant graph of
type 4 is a nut graph if and only if it is representable as T4(n, a, b) where 1 6 a, b < n

2
,

gcd(a, b) = 1, a 6≡2 b, and 5 | ab(a− b)(a+ b) provided 10 | n.
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za matematiko, fiziko in mehaniko and Diffine LLC for all the support given throughout
the duration of the research. T. Pisanski gratefully acknowledges the support provided
by the Mathematical Institute of the Serbian Academy of Sciences and Arts. This work
is supported in part by the Slovenian Research Agency (research program P1-0294 and
research projects N1-0140, J1-2481, J1-3002 and J1-4351).

References
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[7] I. Damnjanović and D. Stevanović. On circulant nut graphs. Linear Algebra Appl.,
633: 127–151, 2022.

[8] M. Filaseta and A. Schinzel. On testing the divisibility of lacunary polynomials by
cyclotomic polynomials. Math. Comput., 73(246): 957–965, 2003.

[9] P.W. Fowler, J.B. Gauci, J. Goedgebeur, T. Pisanski and I. Sciriha. Existence of
regular nut graphs for degree at most 11. Discuss. Math. Graph Theory, 40: 533–557,
2020.

[10] P.W. Fowler, B.T. Pickup, T.Z. Todorova, M. Borg and I. Sciriha. Omni-conducting
and omni-insulating molecules. J. Chem. Phys., 140(5): 054115, 2014.
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A Inspection for Φf(x) | Qa,b(x)

In this appendix section, we disclose the computational results that describe all the pos-
sible modular conditions that a, b ∈ N have to adhere to in order for Φf (x) | Qa,b(x) to
be true, for certain values of f ∈ N. The given results can be generated, for example, by
using the following Wolfram Mathematica command:

1 MatrixForm[

2 Table[{f,

3 MatrixForm[

4 Select[Flatten[Table[{a, b}, {a, 0, f - 1}, {b, 0, f - 1}], 1],

5 Length[CoefficientRules[

6 PolynomialRemainder[

7 x^(2 #[[1]] + #[[2]]) + x^(#[[1]] + 2 #[[2]]) + x^#[[1]] +

8 x^#[[2]] - x^(2 #[[1]] + 2 #[[2]]) - x^(2 #[[1]]) -

9 x^(2 #[[2]]) - 1, Cyclotomic[f, x], x]]] == 0 &]]}, {f, {2,

10 3, 4, 5, 6, 7, 10, 12, 14, 15, 20, 21, 28, 30, 42, 60, 84}}]]
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f a mod f b mod f

2 0 0

3 0 0

4 0 0
1 1
1 3
3 1
3 3

5 0 0
1 2
1 3
2 1
2 4
3 1
3 4
4 2
4 3

6 0 0

7 0 0

10 0 0
2 4
2 6
4 2
4 8
6 2
6 8
8 4
8 6

12 0 0
3 3
3 9
9 3
9 9

f a mod f b mod f

14 0 0

15 0 0
3 6
3 9
6 3
6 12
9 3
9 12
12 6
12 9

20 0 0
4 8
4 12
5 5
5 15
8 4
8 16
12 4
12 16
15 5
15 15
16 8
16 12

21 0 0

28 0 0
7 7
7 21
21 7
21 21

f a mod f b mod f

30 0 0
6 12
6 18
12 6
12 24
18 6
18 24
24 12
24 18

42 0 0

60 0 0
12 24
12 36
15 15
15 45
24 12
24 48
36 12
36 48
45 15
45 45
48 24
48 36

84 0 0
21 21
21 63
63 21
63 63

B Inspection for Φf(x) | Ra,b(x)

In this appendix section, we give the computational results that describe all the possible
modular conditions that a, b ∈ N have to satisfy in order for Φf (x) | Ra,b(x) to hold, for
concrete values of f ∈ N. The said results can be quickly obtained, for example, by using
the following Wolfram Mathematica command:
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1 MatrixForm[

2 Table[{f,

3 MatrixForm[

4 Select[Flatten[Table[{a, b}, {a, 0, f - 1}, {b, 0, f - 1}], 1],

5 Length[CoefficientRules[

6 PolynomialRemainder[

7 x^(2 #[[1]] + #[[2]]) + x^(#[[1]] + 2 #[[2]]) + x^#[[1]] +

8 x^#[[2]] + x^(2 #[[1]] + 2 #[[2]]) + x^(2 #[[1]]) +

9 x^(2 #[[2]]) + 1, Cyclotomic[f, x], x]]] == 0 &]]}, {f, {2,

10 3, 4, 5, 6, 7, 10, 12, 14, 15, 20, 21, 28, 30, 42, 60, 84}}]]

f a mod f b mod f

2 1 1

3

4 1 1
1 3
2 2
3 1
3 3

5

6 3 3

7

10 1 3
1 7
3 1
3 9
5 5
7 1
7 9
9 3
9 7

12 3 3
3 9
6 6
9 3
9 9

f a mod f b mod f

14 7 7

15

20 2 6
2 14
5 5
5 15
6 2
6 18
10 10
14 2
14 18
15 5
15 15
18 6
18 14

21

28 7 7
7 21
14 14
21 7
21 21

f a mod f b mod f

30 3 9
3 21
9 3
9 27
15 15
21 3
21 27
27 9
27 21

42 21 21

60 6 18
6 42
15 15
15 45
18 6
18 54
30 30
42 6
42 54
45 15
45 45
54 18
54 42

84 21 21
21 63
42 42
63 21
63 63
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