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Abstract

Let G be a cancellative 3-uniform hypergraph in which the symmetric difference
of any two edges is not contained in a third one. Equivalently, a 3-uniform hyper-
graph G is cancellative if and only if G is {F4, F5}-free, where F4 = {abc, abd, bcd}
and F5 = {abc, abd, cde}. A classical result in extremal combinatorics states that
the maximum size of a cancellative hypergraph is achieved by the balanced complete
tripartite 3-uniform hypergraph, which was firstly proved by Bollobás and later by
Keevash and Mubayi. In this paper, we consider spectral extremal problems for
cancellative hypergraphs. More precisely, we determine the maximum p-spectral
radius of cancellative 3-uniform hypergraphs, and characterize the extremal hy-
pergraph. As a by-product, we give an alternative proof of Bollobás’ result from
spectral viewpoint.

Mathematics Subject Classifications: 05C35, 05C50, 05C65

1 Introduction

Consider an r-uniform hypergraph (or r-graph for brevity) G and a family of r-graphs F .
We say G is F-free if G does not contain any member of F as a subhypergraph. The Turán
number ex(n,F) is the maximum number of edges of an F -free hypergraph on n vertices.
Determining Turán numbers of graphs and hypergraphs is one of the central problems in
extremal combinatorics. For graphs, the problem was asymptotically solved for all non-
bipartite graphs by the celebrated Erdős-Stone-Simonovits Theorem [5, 6]. By contrast
with the graph case, there is comparatively little understanding of the hypergraph Turán
number. We refer the reader to the surveys [8, 11, 14].
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In this paper we consider spectral analogues of Turán-type problems for r-graphs. For
r = 2, the picture is relatively complete, due in large part to a longstanding project of
Nikiforov, see e.g., [15] for details. However, for r > 3 there are very few known results.
In [12], Keevash, Lenz and Mubayi determined the maximum p-spectral radius of any 3-
graph on n vertices not containing the Fano plane when n is sufficiently large. They also
obtained a p-spectral version of the Erdős-Ko-Rado theorem on t-intersecting r-graphs.
Recently, Ellingham, Lu and Wang [4] showed that the n-vertex outerplanar 3-graph of
maximum spectral radius is the unique 3-graph whose shadow graph is the join of an
isolated vertex and the path Pn−1. Gao, Chang and Hou [9] studied the spectral extremal
problem for K+

r+1-free r-graphs among linear hypergraphs, where K+
r+1 is the r-expansion

of the complete graph Kr+1, i.e., K+
r+1 is obtained from Kr+1 by enlarging each edge of

Kr+1 with (r−2) new vertices disjoint from V (Kr+1) such that distinct edges of Kr+1 are
enlarged by distinct vertices. Generalizing Gao-Chang-Hou’s result, She, Fan, Kang and
Hou [18] considered the linear spectral Turán type problems for the expansion of a color
critical graph.

To state our results precisely, we need some basic definitions and notations. A 3-graph
is tripartite or 3-partite if it has a vertex partition into three parts such that every edge
has exactly one vertex in each part. Let T3(n) be the complete 3-partite 3-graph on n
vertices with part sizes bn/3c, b(n+ 1)/3c, b(n+ 2)/3c, and t3(n) be the number of edges
of T3(n). That is,

t3(n) =
⌊n

3

⌋
·
⌊n+ 1

3

⌋
·
⌊n+ 2

3

⌋
.

We call an r-graph G cancellative if G has the property that for any edges A, B, C
whenever A ∪ B = A ∪ C, we have B = C. Equivalently, G is cancellative if G has no
three distinct triples A, B, C satisfying B4C ⊂ A, where 4 is the symmetric difference.
For graphs, the condition is equivalent to saying that G is triangle-free. Moving on to
3-graphs, we observe that B4C ⊂ A can only occur when |B ∩ C| = 2 for B 6= C.
This leads us to identify the two non-isomorphic configurations that are forbidden in a
cancellative 3-graph: F4 = {abc, abd, bcd} and F5 = {abc, abd, cde}.

It is well-known that the study of Turán numbers dates back to Mantel’s theorem,
which states that ex(n,K3) = bn2/4c. As an extension of the problem to hypergraphs,
Katona conjectured (c.f. [1]), and Bollobás proved the following result.

Theorem 1 ([1]). A cancellative 3-graph on n vertices has at most t3(n) edges, with
equality only for T3(n).

In [10], Keevash and Mubayi presented a new proof of Bollobás’ result, and further
proved a stability theorem for cancellative hypergraphs.

The aim of this paper is to establish a p-spectral analogue of Theorem 1. One moti-
vation for studying this problem is that the spectral radius of an r-graph G is an upper
bound for the average degree of G, and hence any upper bound on the spectral radius also
gives an upper bound on the size of G. It is important to note that we will not rely on the
usage of Theorem 1 to accomplish the proof of our main result (Theorem 10), although
one can simplify the proof with the help of Theorem 1. As a by-product, we give an
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alternative proof of Bollobás’ result for the case 3 |n from spectral viewpoint. Our main
results can be summarized as follows.

Theorem 2. Let p > 1 and G be a cancellative 3-graph on n vertices.

(1) If p > 3, then λ(p)(G) 6 λ(p)(T3(n)), with equality if and only if G = T3(n).

(2) If p = 1 and G has at least one edge, then λ(1)(G) = 2/9.

2 Preliminaries

In this section we introduce definitions and notation that will be used throughout the
paper, and give some preliminary lemmas.

Given an r-graph G = (V (G), E(G)) and a vertex v of G. The link LG(v) is the
(r − 1)-graph consisting of all S ⊂ V (G) with |S| = r − 1 and S ∪ {v} ∈ E(G). The
degree dG(v) of v is the size of LG(v). As usual, we denote by NG(v) the neighborhood
of a vertex v, i.e., the set formed by all the vertices which form an edge with v. In the
above mentioned notation, we will skip the index G whenever G is understood from the
context.

The shadow graph of G, denoted by ∂(G), is the graph with V (∂(G)) = V (G) and
E(∂(G)) consisting of all pairs of vertices that belong to an edge of G, i.e., E(∂(G)) = {e :
|e| = 2, e ⊆ f for some f ∈ E(G)}. For more definitions and notation from hypergraph
theory, see e.g., [2].

For any real number p > 1, the p-spectral radius was introduced by Keevash, Lenz
and Mubayi [12] and subsequently studied by Nikiforov [16, 17]. Let G be an r-graph of
order n, the polynomial form of G is a multi-linear function PG(x) : Rn → R defined for
any vector x = (x1, x2, . . . , xn)T ∈ Rn as

PG(x) = r!
∑

{i1,i2,...,ir}∈E(G)

xi1xi2 · · ·xir .

The p-spectral radius of G is defined as

λ(p)(G) := max
‖x‖p=1

PG(x), (1)

where ‖x‖p := (|x1|p + · · ·+ |xn|p)1/p.
For any real number p > 1, we denote by Sn−1

p,+ the set of all nonnegative real vectors

x ∈ Rn with ‖x‖p = 1. If x ∈ Rn is a vector with ‖x‖p = 1 such that λ(p)(G) = PG(x),
then x is called an eigenvector corresponding to λ(p)(G). Note that PG(x) can always
reach its maximum at some nonnegative vectors. By Lagrange’s method, we have the
eigenequations for λ(p)(G) and x ∈ Sn−1

p,+ as follows:

λ(p)(G)xp−1i = (r − 1)!
∑

{i,i2,...,ir}∈E(G)

xi2 · · ·xir for xi > 0. (2)
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It is worth mentioning that the p-spectral radius λ(p)(G) shows remarkable connec-
tions with some hypergraph invariants. For instance, λ(1)(G)/r! is the Lagrangian of G,
λ(r)(G)/(r − 1)! is the usual spectral radius introduced by Cooper and Dutle [3], and
λ(∞)(G)/r! is the number of edges of G (see [16, Proposition 2.10]).

Given two vertices u and v, we say that u and v are equivalent in G, in writing u ∼ v,
if transposing u and v and leaving the remaining vertices intact, we get an automorphism
of G.

Lemma 3 ([16]). Let G be a uniform hypergraph on n vertices and u ∼ v. If p > 1 and
x ∈ Sn−1

p is an eigenvector to λ(p)(G), then xu = xv.

3 Cancellative hypergraphs of maximum p-spectral radius

The aim of this section is to give a proof of Theorem 2. We split it into Theorem 10 –
Theorem 18, which deal with p = 3, p > 3 and p = 1, respectively.

3.1 General properties on cancellative hypergraphs

We start this subsection with a basic fact.

Lemma 4. Let G be a cancellative hypergraph, and u, v be adjacent vertices. Then L(u)
and L(v) are edge-disjoint graphs.

Proof. Assume by contradiction that e ∈ E(L(u)) ∩E(L(v)). Since u and v are adjacent
in G, we have {u, v} ⊂ e1 ∈ E(G) for some edge e1. Hence, e2 = e ∪ {u}, e3 = e ∪ {v}
and e1 are three edges of G such that e24e3 ⊂ e1, a contradiction.

Let G be a 3-graph and v ∈ V (G). We denote by Ev(G) the collection of edges of G
containing v, i.e., Ev(G) = {e : v ∈ e ∈ E(G)}. For a pair of vertices u and v in G, we
denote by T u

v (G) a new 3-graph with V (T u
v (G)) = V (G) and

E(T u
v (G)) =

(
E(G) \ Ev(G)

)
∪ {(e \ {u}) ∪ {v} : e ∈ Eu(G) \ Ev(G)}.

Lemma 5. Let G be a cancellative 3-graph. Then T u
v (G) is also cancellative for any

u, v ∈ V (G).

Proof. Suppose to the contrary that there exist three edges e1, e2, e3 ∈ T u
v (G) such that

e14e2 ⊂ e3. Recalling the definition of T u
v (G), we deduce that u, v are non-adjacent in

T u
v (G), and (e ∪ {u}) \ {v} ∈ E(G) for any e ∈ Ev(T

u
v (G)). On the other hand, since

G is cancellative, we have v ∈ e1 ∪ e2 ∪ e3. Denote by α the number of edges e1, e2, e3
containing v. It suffices to consider the following three cases.

Case 1. α = 3. We have v ∈ e1 ∩ e2 ∩ e3. Hence, e′1 = (e1 ∪ {u}) \ {v}, e′2 =
(e2 ∪ {u}) \ {v} and e′3 = (e3 ∪ {u}) \ {v} are three edges in G with e′14e′2 ⊂ e′3. This
contradicts the fact that G is cancellative.

Case 2. α = 2. Without loss of generality, we assume v ∈ (e1 ∩ e2) \ e3 or v ∈
(e1 ∩ e3) \ e2. If v ∈ (e1 ∩ e2) \ e3, then e3 ∈ E(G). It follows that e′1 = (e1 ∪ {u}) \ {v},
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e′2 = (e2∪{u})\{v} and e3 are three edges of G with e′14e′2 ⊂ e3, which is a contradiction.
If v ∈ (e1 ∩ e3) \ e2, then e2 ∈ E(G). It follows that e′1 = (e1 ∪ {u}) \ {v}, e2 and
e′3 = (e3 ∪ {u}) \ {v} are three edges of G with e′14e2 ⊂ e′3, a contradiction.

Case 3. α = 1. Without loss of generality, we assume v ∈ e3 \ (e1 ∪ e2). Then
e1 ∈ E(G) and e2 ∈ E(G). We immediately obtain that e1, e2 and e′3 = (e3 ∪ {u}) \ {v}
are three edges of G with e14e2 ⊂ e′3. This is a contradiction and proves Lemma 5.

The following result can be found in [16, Proposition 7.2].

Lemma 6 ([16]). Let p > 1 and G be a complete 3-partite 3-graph. Then

λ(p)(G) =
6

p
√

27
· (|E(G)|)1−1/p.

Proof. Assume that V1, V2 and V3 are the vertex classes of G with ni := |Vi| and n1 >
n2 > n3. Let x ∈ Sn−1

p,+ be an eigenvector corresponding to λ(p)(G). By Lemma 3, for

i = 1, 2, 3 we denote ai := xv for v ∈ Vi, and set λ := λ(p)(G) for short. In light of
eigenequation (2), we find that 

λap−11 = 2n2n3a2a3,

λap−12 = 2n1n3a1a3,

λap−13 = 2n1n2a1a2,

from which we obtain that ai = (3ni)
−1/p, i = 1, 2, 3. Therefore,

λ =
2 · (27 · n1n2n3)

1−1/p

9
=

6
p
√

27
· (|E(G)|)1−1/p.

This completes the proof of Lemma 6.

3.2 Extremal p-spectral radius of cancellative hypergraphs

Let SPEXp(n, {F4, F5}) be the set of all 3-graphs attaining the maximum p-spectral
radius among cancellative hypergraphs on n vertices. If p = 3, we will denote it by
SPEX(n, {F4, F5}) for short. Given a vector x ∈ Rn and a set S ⊂ [n] := {1, 2, . . . , n},
we write x(S) :=

∏
i∈S xi for short. The support set S of a vector x is the set of the

indices of non-zero elements in x, i.e., S = {i ∈ [n] : xi 6= 0}. Also, we denote by
xmin := min{|xi| : i ∈ [n]} and xmax := max{|xi| : i ∈ [n]}.
Lemma 7. Let p > 1, G ∈ SPEXp(n, {F4, F5}), and x ∈ Sn−1

p,+ be an eigenvector corre-

sponding to λ(p)(G). If u, v are two non-adjacent vertices, then xu = xv.

Proof. Assume u and v are two non-adjacent vertices in G. Since G is a cancellative
3-graph, we have T v

u (G) is also cancellative by Lemma 5. It follows from (1) and (2) that

λ(p)(T v
u (G)) > 6

∑
e∈E(G)

x(e)− 6
∑

e∈Eu(G)

x(e) + 6
∑

e∈Ev(G)

x(e \ {v}) · xu

= λ(p)(G)− 3λ(p)(G)xpu + 3λ(p)(G)xp−1v xu

= λ(p)(G) + 3λ(p)(G)(xp−1v − xp−1u ) · xu,
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which yields that xu > xv. Likewise, we also have xv > xu by considering T u
v (G). Hence,

xu = xv, completing the proof of Lemma 7.

Lemma 8. Let p > 1, G ∈ SPEXp(n, {F4, F5}), and u, v be two non-adjacent vertices.
Then there exists a cancellative 3-graph H such that

LH(u) = LH(v), λ(p)(H) = λ(p)(G), and dH(w) 6 dG(w), w ∈ V (G). (3)

Proof. Assume that x ∈ Sn−1
p,+ is an eigenvector corresponding to λ(p)(G). By Lemma 7,

xu = xv. Without loss of generality, we assume dG(u) > dG(v). In view of (1) and (2),
we have

λ(p)(T v
u (G)) > 6

∑
e∈E(G)

x(e)− 6
∑

e∈Eu(G)

x(e) + 6
∑

e∈Ev(G)

x(e \ {v}) · xu

= λ(p)(G) + 3λ(p)(G)(xp−1v − xp−1u ) · xu
= λ(p)(G).

Observe that T v
u (G) is a cancellative 3-graph and G ∈ SPEXp(n, {F4, F5}). We immedi-

ately obtain that λ(p)(T v
u (G)) = λ(p)(G). It is straightforward to check that H := T v

u (G)
is a cancellative 3-graph satisfying (3), as desired.

Next, we give an estimation on the entries of eigenvectors corresponding to λ(p)(G).

Lemma 9. Let G ∈ SPEXp(n, {F4, F5}) and x ∈ Sn−1
p,+ be an eigenvector corresponding

to λ(p)(G). If 1 < p 6 3, then

xmin >
(3

4

)2/(p−1)
· xmax.

Proof. Suppose to the contrary that xmin 6
(
3
4

)2/(p−1) · xmax. Let u and v be two vertices
such that xu = xmin and xv = xmax > 0. Then we have(

1 +
xu
xv

)(
xu
xv

)p−1

6

(
1 +

(
3

4

)2/(p−1))(
3

4

)2

6
7

4
· 9

16
< 1,

which implies that
xpv − xpu > xp−1u xv. (4)

On the other hand, by eigenequations we have

2
∑

e∈Ev(G)\Eu(G)

x(e) > λ(p)(G)(xpv − xpu). (5)

Now, we consider the cancellative 3-graph T v
u (G). In light of (1) and (5), we have

λ(p)(T v
u (G)) > 6

∑
e∈E(G)

x(e)− 6
∑

e∈Eu(G)

x(e) + 6
∑

e∈Ev(G)\Eu(G)

x(e \ {v}) · xu

> λ(p)(G)− 3λ(p)(G)xpu + 3λp(G)(xpv − xpu) · xu
xv

> λ(p)(G) + 3λ(p)(G)
(
− xpu + xp−1u xv ·

xu
xv

)
= λ(p)(G),
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where the third inequality is due to (4). This contradicts the fact that G has maximum
p-spectral radius over all cancellative hypergraphs.

Now, we are ready to give a proof of Theorem 2 for p = 3.

Theorem 10. Let G be a cancellative 3-graph on n vertices. Then λ(3)(G) 6 λ(3)(T3(n))
with equality if and only if G = T3(n).

Proof. According to Lemma 8, we assume that G∗ ∈ SPEX(n, {F4, F5}) is a 3-graph such
that LG∗(u) = LG∗(v) for any non-adjacent vertices u and v.

Our first goal is to show G∗ = T3(n) by Claim 11 – Claim 13. Assume that x ∈ Sn−1
3,+

is an eigenvector corresponding to λ(3)(G∗); u1 is a vertex in G∗ such that xu1 = xmax

and u2 is a vertex with xu2 = max{xv : v ∈ NG∗(u1)}. Let U1 := V (G∗) \ NG∗(u1)
and U2 := V (G∗) \ NG∗(u2). Since u2 ∈ V (G∗) \ U1, there exists a vertex u3 such that
{u1, u2, u3} ∈ E(G∗). Let U3 = V (G∗)\NG∗(u3). Recall that for any non-adjacent vertices
u and v we have LG∗(u) = LG∗(v). Hence, the sets U1, U2 and U3 are well-defined.

Claim 11. The following statements hold:

(1) dG∗(u1) > n(n− 1)/9;

(2) dG∗(u2) > n(n− 1)/12;

(3) dG∗(v) > n(n− 1)/16, v ∈ V (G∗).

Proof of Claim 11. Since T3(n) is a cancellative 3-graph, it follows from Lemma 6 that

λ(3)(G∗) > λ(3)(T3(n)) = 2 · (t3(n))2/3,

which is equivalent to

27 ·
(
λ(3)(G∗)

2

)3/2

> 27 · t3(n) =


n3, n ≡ 0 (mod 3),

(n− 1)2(n+ 2), n ≡ 1 (mod 3),

(n− 2)(n+ 1)2, n ≡ 2 (mod 3).

By simple algebra we see

λ(3)(G∗) >
2 ·
(
(n− 2)(n+ 1)2

)2/3
9

>
2n(n− 1)

9
. (6)

(1). By eigenequation with respect to u1, we have

λ(3)(G∗)x2u1
= 2

∑
{u1,i,j}∈E(G∗)

xixj 6 2dG∗(u1)x
2
u1
.

Combining with (6), we get

dG∗(u1) >
λ(3)(G∗)

2
>
n(n− 1)

9
. (7)
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(2). Since LG∗(u) = LG∗(v) for any pair u, v ∈ U1, we immediately obtain that
|(e \ {u2}) ∩ U1| 6 1 for each e ∈ Eu2(G

∗) by the definition of U1. It follows from
xu2 = max{xv : v ∈ V (G∗) \ U1} that

λ(3)(G∗)x2u2
= 2

∑
{u2,i,j}∈E(G∗)

xixj 6 2dG∗(u2)xu1xu2 ,

which, together with Lemma 9 for p = 3, gives

dG∗(u2) >
xu2

xu1

· λ
(3)(G∗)

2

>
3

4
· λ

(3)(G∗)

2

>
1

12
n(n− 1).

The last inequality is due to (6).
(3). Let v be an arbitrary vertex in V (G∗). Then

λ(3)(G∗)x2v = 2
∑

{v,i,j}∈E(G∗)

xixj 6 2dG∗(v)x2u1
.

Hence, by Lemma 9 and (6) we have

dG∗(v) >
( xv
xu1

)2
· λ

(3)(G∗)

2
>

1

16
n(n− 1),

as desired. �

Next, we consider the graph H = LG∗(u1)∪LG∗(u2)∪LG∗(u3). Let φ : E(H)→ [3] be
a mapping such that φ(f) = i if f ∈ LG∗(ui), i ∈ [3]. By Lemma 4, φ is an edge coloring
of H. For convenience, we denote L := V (G∗) \ (U1 ∪ U2 ∪ U3).

Claim 12. If L 6= ∅, then there is no rainbow star K1,3 in the induced subgraph H[L] with
the coloring φ.

Proof of Claim 12. Suppose to the contrary that there exist v1, v2, v3, v4 ∈ L with
φ(v1v2) = 1, φ(v1v3) = 2 and φ(v1v4) = 3. We first show that {v1, v2, v3, v4} induces a
clique in ∂(G∗) by contradiction. Without loss of generality, we assume v2v3 /∈ E(∂(G∗)).
Then LG∗(v2) = LG∗(v3). Since φ(v1v2) = 1 and φ(v1v3) = 2, we have {u1, v1, v2} ∈ E(G∗)
and {u2, v1, v3} ∈ E(G∗). This implies that e1 = {u1, u2, u3}, e2 = {u1, v1, v2} and
e3 = {u2, v1, v2} are three edges in G∗ with e24e3 ⊂ e1, which is impossible.

On the other hand, since L = V (G∗)\ (U1∪U2∪U3), we have viuj ∈ E(∂(G∗)) for any
i ∈ [4], j ∈ [3]. Therefore, every pair of vertices in {v1, v2, v3, v4, u1, u2, u3} is contained in
an edge of G∗. Consider the graph

H ′ :=

( 3⋃
i=1

LG∗(ui)

)⋃( 4⋃
i=1

LG∗(vi)

)
.
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By Claim 11, we have

|E(H ′)| =
∑
16i63

dG∗(ui) +
∑
16j64

dG∗(vj)

>

(
1 +

3

4
+ 5× 9

16

)
· 1

9
n(n− 1)

=
73

144
n(n− 1)

>

(
n

2

)
,

a contradiction completing the proof of Claim 12. �

Claim 13. L = ∅.

Proof of Claim 13. Suppose to the contrary that L 6= ∅. For i = 1, 2, 3, let Li be the set
of vertices in L which is not contained in an edge with coloring i. By Claim 12, we have
L = L1 ∪ L2 ∪ L3. Without loss of generality, we assume L1 6= ∅. Let w be a vertex in
L1. Then there exists an edge f in G∗ such that f = {u1, w, w′}, where w′ ∈ U2 ∪ U3. If
w′ ∈ U2, then f ′ = {u1, u3, w′} ∈ E(G∗). Since G∗ is cancellative, w is not a neighbor of
u3 in G∗. This implies that w ∈ U3, a contradiction to w ∈ L. Similarly, if w′ ∈ U3, then
w ∈ U2, which is also a contradiction. �

Now, we continue our proof. By Claim 13, we immediately obtain that G∗ is a complete
3-partite 3-graph with vertex classes U1, U2 and U3. Hence, G∗ = T3(n) by Lemma 6.

Finally, it is enough to show that G = T3(n) for any G ∈ SPEX(n, {F4, F5}). Ac-
cording to Lemma 8 and Claim 13, we can transfer G to the complete 3-partite 3-graph
T3(n) by a sequence of switchings T v

u ( · ) that keep the spectral radius unchanged. Let
T1, . . . , Ts be such a sequence of switchings T v

u ( · ) which turn G into T3(n). Consider the
3-graphs G = G0, G1, . . . , Gs = T3(n) in which Gi is obtained from Gi−1 by applying Ti.
Let z ∈ Sn−1

3,+ be an eigenvector corresponding to λ(3)(Gs−1) and T v
u (Gs−1) = T3(n), and

denote
A := V (Gs−1) \

(
NGs−1(v) ∪ {u} ∪ {v}

)
.

Hence, we have LGs−1(w) = LGs−1(v) = LT3(n)(v) for each w ∈ A. In what follows, we
shall prove LGs−1(u) = LGs−1(v), and therefore Gs−1 = T3(n). If LGs−1(u) 6= LGs−1(v),
there exists an edge e = v1v2 ∈ LGs−1(u)\LGs−1(v) since zu = zv by Lemma 7. Let M1 and
M2 be two subsets of V (Gs−1) such that M1 ∪M2 = NGs−1(v) and LGs−1(v) = K|M1|,|M2|.
If {v1, v2} ⊂ NGs−1(v), then {v1, v2} ⊂M1 or {v1, v2} ⊂M2. It follows that there exists a
vertex w ∈ NGs−1(v) such that f1 := {v, w, v1} ∈ E(Gs−1) and f2 := {v, w, v2} ∈ E(Gs−1).
However, f14f2 ⊂ {u, v1, v2} ∈ E(Gs−1), a contradiction. So we obtain {v1, v2} ∩ A 6= ∅.
Without loss of generality, we assume v1 ∈ A. Then LGs−1(v1) = LGs−1(v), i.e., uv2 ∈
LGs−1(v). Thus, u ∈ NGs−1(v), a contradiction. This implies that Gs−1 = T3(n). Likewise,
Gi−1 = Gi for each i ∈ [s− 1], and therefore G = T3(n). This completes the proof of the
theorem.
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According to Theorem 10, we can give an alternative proof of Bollobás’ result for
n ≡ 0 (mod 3).

Corollary 14. Let G be a cancellative 3-graph on n vertices with n ≡ 0 (mod 3). Then
|E(G)| 6 t3(n) with equality if and only if G = T3(n).

Proof. Denote by z the all-ones vector of dimension n. In view of (1), we deduce that

λ(3)(G) >
PG(z)

‖z‖33
=

6|E(G)|
n

.

On the other hand, by Theorem 10 we have

λ(3)(G) 6 λ(3)(T3(n)) = 2 · (t3(n))2/3.

As a consequence,

|E(G)| 6 n

3
· (t3(n))2/3 = t3(n).

Equality may occur only if λ(3)(G) = 2 · (t3(n))2/3 = λ(3)(T3(n)), and therefore G = T3(n)
by Theorem 10.

Next, we will prove Theorem 2 for the case p > 3 as stated in Theorem 16.

Lemma 15 ([16]). Let p > 1 and G be an r-graph with m edges. Then the function

fG(p) :=

(
λ(p)(G)

r!m

)p

is non-increasing in p.

Theorem 16. Let p > 3 and G be a cancellative 3-graph on n vertices. Then λ(p)(G) 6
λ(p)(T3(n)) with equality if and only if G = T3(n).

Proof. Assume that p > 3 and G is a 3-graph in SPEXp(n, {F4, F5}) with m edges. It is
enough to show that G = T3(n). By Lemma 15, we have(

λ(p)(G)

6m

)p

6

(
λ(3)(G)

6m

)3

,

which, together with λ(3)(G) 6 2 · (t3(n))2/3 by Theorem 10 and Lemma 6, gives

λ(p)(G) 6 (6m)1−3/p · (λ(3)(G))3/p 6 23/p · (6m)1−3/p · (t3(n))2/p.

On the other hand, we have

λ(p)(G) > λ(p)(T3(n)) =
6

p
√

27
· (t3(n))1−1/p.

We immediately obtain m > t3(n). The result follows from Theorem 1.
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Finally, we shall give a proof of Theorem 2 for the remaining case p = 1. In what
follows, we always assume that x ∈ Sn−1

1,+ is an eigenvector such that x has the minimum

possible number of non-zero entries among all eigenvectors corresponding to λ(1)(G). Be-
fore continuing, we need the following result.

Lemma 17 ([7]). Let G be an r-graph and S be the support set of x. Then for each pair
vertices u and v in S, there is an edge in G[S] containing both u and v.

Theorem 18. Let G be a cancellative 3-graph. Then λ(1)(G) = 2/9.

Proof. Assume that G is a cancellative 3-graph with support set S. Let H := G[S]. By
Lemma 17, for any u, v ∈ S there is an edge in H containing both u and v. Hence, each
pair of edges of H has at most one common vertex by H being cancellative. So the shadow
graph of H is the complete graph K|S|. Since H is cancellative, the link graphs LH(u)
and LH(v) are edge-disjoint graphs for any distinct vertices u, v ∈ S. It follows from (2)
that

|S| · λ(1)(G) = 2
∑

uv∈E(∂(H))

xuxv 6 1− 1

|S|
, (8)

where the last inequality follows from Motzkin–Straus Theorem [13]. On the other hand,
set

zv =

{
1/|S|, v ∈ S,
0, otherwise.

We immediately have

λ(1)(G) > 6
∑

e∈E(H)

z(e) = 2
∑

v∈V (H)

(
zv ·

∑
f∈LH(v)

z(f)

)
=
|S| − 1

|S|2
,

where the last inequality follows from the fact that dH(v) = (|S| − 1)/2 for v ∈ V (H).
Combining with (8) we get

λ(1)(G) =
|S| − 1

|S|2
.

Clearly, (|S| − 1)/|S|2 attains its maximum at |S| = 3 when |S| > 3. Hence, we see

λ(1)(G) 6 2/9. Finally, noting that λ(1)(G) is at least the Lagrangian of an edge K
(3)
3 ,

i.e.,

λ(1)(G) > λ(1)(K3
3) =

2

9
,

we obtain λ(1)(G) = 2/9, as desired.

Remark 19. For an r-graph G on n vertices, it is well-known that λ(1)(G)/r! is the La-
grangian of G. In [19], Yan and Peng present a tight upper bound on λ(1)(G) for F5-free
3-graphs, see [19] for details.
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