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Abstract

For positive integers n > k > t let
([n]
k

)
denote the collection of all k-subsets of

the standard n-element set [n] = {1, . . . , n}. Subsets of
([n]
k

)
are called k-graphs.

A k-graph F is called t-intersecting if |F ∩ F ′| > t for all F, F ′ ∈ F . One of the
central results of extremal set theory is the Erdős-Ko-Rado Theorem which states
that for n > (k− t + 1)(t + 1) no t-intersecting k-graph has more than

(
n−t
k−t
)

edges.
For n greater than this threshold the t-star (all k-sets containing a fixed t-set) is
the only family attaining this bound. Define F(i) = {F \ {i} : i ∈ F ∈ F}. The
quantity %(F) = max

16i6n
|F(i)|/|F| measures how close a k-graph is to a star. The

main result (Theorem 1.3) shows that %(F) > 1/d holds if F is 1-intersecting,
|F| > 2dd2d+1

(
n−d−1
k−d−1

)
and n > 4(d− 1)dk. Such a statement can be deduced from

earlier results, however only for much larger values of n/k and/or n. The proof is
purely combinatorial, it is based on a new method: shifting ad extremis. The same
method is applied to obtain a nearly optimal bound in the case of t > 2 (Theorem
1.4).

Mathematics Subject Classifications: 05D05

1 Introduction

For positive integers n > k, let [n] = {1, . . . , n} be the standard n-element set and
(
[n]
k

)
the collection of its k-subsets. A family F ⊂

(
[n]
k

)
is called t-intersecting if |F ∩ F ′| > t

for all F, F ′ ∈ F and t a positive integer. In the case t = 1 we usually omit t and speak of
intersecting families. Let us recall one of the fundamental results of extremal set theory.

Theorem 1 (Exact Erdős-Ko-Rado Theorem ([2], [4], [18])). Let k > t > 0, n >
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n0(k, t) = (k − t+ 1)(t+ 1). Suppose that F ⊂
(
[n]
k

)
is t-intersecting. Then

|F| 6
(
n− t
k − t

)
. (1)

Let us note that |S(n, k, t)| =
(
n−t
k−t

)
holds for the full star

S(n, k, t) =

{
S ∈

(
[n]

k

)
: [t] ⊂ S

}
and for n > n0(k, t) up to isomorphism S(n, k, t) is the only family to achieve equality in
(1). The exact bound n0(k, t) = (k − t + 1)(t + 1) is due to Erdős, Ko and Rado in the
case t = 1. For t > 15 it was established in [4]. Wilson [18] closed the gap 2 6 t 6 14 by
a proof valid for all t > 1.

Let us recall some standard notation. Set ∩F = ∩{F : F ∈ F}. If | ∩ F| > t then F
is called a t-star, for t = 1 we usually omit the 1. If ∩F = ∅ then we call F a non-trivial
family.

For a subset E ⊂ [n] and a family F ⊂
(
[n]
k

)
, define

F(E) = {F \ E : E ⊂ F ∈ F}, F(E) = {F ∈ F : F ∩ E = ∅}.

In the case E = {i} we simply use F(i) and F (̄i) to denote F({i}) and F({i}), respec-
tively. In analogy,

F(u, v, w̄) := {F \ {u, v} : F ∈ F , F ∩ {u, v, w} = {u, v}} .

Let us define the quantity

%(F) = max

{
|F(i)|
|F|

: 1 6 i 6 n

}
.

Since %(F) = 1 if and only if F is a star, in a way %(F) measures how far a family is from
a star.

A set T is called a t-transversal of F if |T ∩F | > t for all F ∈ F . If F is t-intersecting
then each F ∈ F is a t-transversal. Define

τt(F) = min{|T | : T is a t-transversal of F}.

For t = 1 we usually omit the 1.

Proposition 2. If F is t-intersecting, then

%(F) >
t

τt(F)
. (2)

Proof. Fix a t-transversal T of F with |T | = τt(F). Then

t|F| 6
∑
i∈T

|F(i)| 6 |T | ·max{|F(i)| : i ∈ T},

implying (2).
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Obviously, τt(F) = t if and only if F is a t-star.

Example 3. For n > k > t > 0 define

A(n, k, t) =

{
A ∈

(
[n]

k

)
: |A ∩ [t+ 2]| > t+ 1

}
.

Clearly, A = A(n, k, t) is t-intersecting, %(A) = t+1+o(1)
t+2

, τt(F) = t+1. We should note

that for 2k− t < n < (k− t+1)(t+1), |A| >
(
n−t
k−t

)
with equality for n = (k− t+1)(t+1).

In [3] it was shown that for any positive ε and n > n1(k, t, ε), %(F) < 1 − ε implies
|F| 6 |A| for any t-intersecting family F ⊂

(
[n]
k

)
. The value of n1(k, t, ε) is implicit in [3].

With careful calculation (cf. e.g. [10]) for fixed ε > 0 one can prove a bound quadratic
in k. Dinur and Friedgut [1] introduced the so-called junta-method that leads to strong
results for n > ck, however the value of the constant is large and it is further dependent
on the particular problem (the same is true for the recent advances of Keller and Lifschitz
[16]).

The aim of the present paper is to prove some similar results concerning %(F) for
t-intersecting families for n > ck with relatively small constants c. Let us state here our
main result for the case t = 1.

Theorem 4. Let n, k, d be integers, k > d > 2, n > 4(d−1)dk. If F ⊂
(
[n]
k

)
is intersecting

and |F| > 2dd2d+1
(
n−d−1
k−d−1

)
, then %(F) > 1

d
.

Let us stress once more that %(F) > 1
d

follows from the results of [3] and [1] however
only for much larger value of n.

For t > 2, we obtain the following result.

Theorem 5. Let F ⊂
(
[n]
k

)
be a t-intersecting family with t > 2. If |F| > (t + 1)

(
n−1

k−t−1

)
and n > 2t(t+ 2)k, then %(F) > t

t+1
.

2 Preliminaries

In this section, we recall some useful results that are needed in our proofs.
Define the lexicographic order A <L B for A,B ∈

(
[n]
k

)
by A <L B if and only if

min{i : i ∈ A \ B} < min{i : i ∈ B \ A}. E.g., (1, 2, 9) <L (1, 3, 4). For n > k > 0 and(
n
k

)
> m > 0 let L(n, k,m) denote the first m sets A ∈

(
[n]
k

)
in the lexicographic order.

For X ⊂ [n] with |X| > k > 0 and
(|X|

k

)
> m > 0, we also use L(X, k,m) to denote the

first m sets A ∈
(
X
k

)
in the lexicographic order.

For A ⊂
(
[n]
a

)
and B ⊂

(
[n]
b

)
, we say that A,B are cross t-intersecting if |A ∩ B| > t

for every A ∈ A and B ∈ B. A powerful tool is the Kruskal-Katona Theorem ([17, 15]),
especially its reformulation due to Hilton [12].
Hilton’s Lemma ([12]). Let n, a, b be positive integers, n > a + b. Suppose that
A ⊂

(
[n]
a

)
and B ⊂

(
[n]
b

)
are cross-intersecting. Then L(n, a, |A|) and L(n, b, |B|) are

cross-intersecting as well.
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For F ⊂
(
[n]
k

)
define the `th shadow of F ,

∂`F = {G : |G| = k − `, ∃F ∈ F such that G ⊂ F} .

For ` = 1 we often omit the superscript.
The following statement goes back to Katona [15]. Let us include the very short proof.

Proposition 6. Let F ⊂
(
[n]
k

)
be an initial family. Then

∂F(1̄) ⊂ F(1). (3)

Proof. Indeed, if E ⊂ F ∈ F(1̄) and E = F \ {j}. Then by initiality E ∪ {1} ∈ F , i.e.,
E ∈ F(1).

The Katona Intersecting Shadow Theorem gives an inequality concerning the sizes of
a t-intersecting family and its shadow.

Katona Intersecting Shadow Theorem ([14]). Suppose that n > 2k − t, t > ` > 1.
Let ∅ 6= A ⊂

(
[n]
k

)
be a t-intersecting family. Then

|∂`A| > |A|
(
2k−t
k−`

)(
2k−t
k

) (4)

with equality holding if and only if F is isomorphic to
(
[2k−t]

k

)
.

Let us recall an important operation called shifting introduced by Erdős, Ko and Rado
[2]. For F ⊂

(
[n]
k

)
and 1 6 i < j 6 n, define

Sij(F) = {Sij(F ) : F ∈ F} ,

where

Sij(F ) =

{
(F \ {j}) ∪ {i}, j ∈ F, i /∈ F and (F \ {j}) ∪ {i} /∈ F ;

F, otherwise.

It is well known (cf. [5]) that shifting preserves the t-intersecting property.
Let (x1, . . . , xk) denote the set {x1, . . . , xk} where we know or want to stress that

x1 < . . . < xk. Let us define the shifting partial order ≺ where P ≺ Q for P = (x1, . . . , xk)
and Q = (y1, . . . , yk) if and only if xi 6 yi for all 1 6 i 6 k. This partial order can be
traced back to [2]. A family F ⊂

(
[n]
k

)
is called initial if F ≺ G and G ∈ F always imply

F ∈ F . Note that an initial family F satisfies Sij(F) = F for all 1 6 i < j 6 n. By
repeated shifting one can transform an arbitrary k-graph into a shifted k-graph with the
same number of edges. Note also that |F(1)| > |F(2)| > . . . > |F(n)| for an initial family.

We need the following property of initial families.

Proposition 7. Suppose that F ⊂
(
[n]
k

)
is initial and t-intersecting. Let r 6 s < k − t

and let R ⊂ [s] with |R| = r. Then F([s]),F(R, [s]) are cross (t+ s− r)-intersecting.
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Proof. Suppose for contradiction that there exist F ∈ F([s]), F ′ ∈ F(R, [s]) such that
|F ∩F ′| = t+j 6 t−1+s−r. Let E ⊂ F ∩F ′ and T ⊂ [s]\R with |E| = |T | = j+1. Then
F ′′ := F∪T \E satisfies F ′′ ≺ F whence F ′′ ∈ F . However |F ′∩F ′′| = |F∩F ′|−|E| = t−1,
the desired contradiction.

We need a notion called pseudo t-intersecting, which was introduced in [7]. A family
F ⊂

(
[n]
k

)
is said to be pseudo t-intersecting if for every F ∈ F there exists 0 6 i 6 k − t

such that |F ∩ [2i+ t]| > i+ t.

Fact 8. Let F ⊂
(
[n]
k

)
be an initial family. If [t− 1] ∪ {t + 1, t + 3, . . . , 2k − t + 1} /∈ F ,

then F is pseudo t-intersecting.

Proof. Indeed, otherwise if F is pseudo t-intersecting then there exists F ∈ F such that
|F ∩ [2i+ t]| < i+ t holds for all i = 0, 1, . . . , k − t. By initiality it follows that

[t− 1] ∪ {t+ 1, t+ 3, . . . , 2k − t+ 1} ∈ A,

a contradiction.

Theorem 9 ([4]). Let F ⊂
(
[n]
k

)
be an initial family with 0 6 t < k. If F is pseudo

t-intersecting, then

|F| 6
(

n

k − t

)
. (5)

The following property is proved in [7]. Let us include a proof as well.

Proposition 10 ([7]). Let n > max{2a − t, 2b − t}. If A ⊂
(
[n]
a

)
, B ⊂

(
[n]
b

)
are cross

t-intersecting and both initial, then either both A and B are pseudo t-intersecting, or one
of them is pseudo (t+ 1)-intersecting.

Proof. If A is not pseudo t-intersecting, then there exists A ∈ A such that |A∩ [2i+ t]| <
i+ t holds for all i = 0, 1, . . . , a− t. By initiality it follows that

A0 := [t− 1] ∪ {t+ 1, t+ 3, . . . , t+ 2(a− t+ 1)− 1} ∈ A.

Similarly, if B is not pseudo (t+ 1)-intersecting then

B0 := [t] ∪ {t+ 2, t+ 4, . . . , 2b− t} ∈ B.

Note that |A0 ∩B0| = t− 1. By the cross t-intersecting property, we infer that if B is not
pseudo (t + 1)-intersecting then A is pseudo t-intersecting. Similarly, if A is not pseudo
(t+ 1)-intersecting then B is pseudo t-intersecting. Thus the proposition follows.

The following inequalities for cross t-intersecting families can be deduced from Propo-
sition 10.

the electronic journal of combinatorics 31(2) (2024), #P2.33 5



Corollary 11 ([4]). Suppose that A,B ⊂
(
[n]
k

)
are cross t-intersecting, |A| 6 |B|. Then

either

|B| 6
(

n

k − t

)
or (6)

|A| 6
(

n

k − t− 1

)
. (7)

We need the following inequalities concerning binomial coefficients.

Proposition 12 ([11]). Let n, k, i be positive integers. Then(
n− i
k

)
>
n− ik
n

(
n

k

)
, for n > ik. (8)

Corollary 13. Let n, k, t be positive integers. If n > 2(t− 1)(k − t) and k > t > 2, then(
n− t− 2

k − t− 2

)
>

1

2

(
n− 3

k − t− 2

)
. (9)

Proof. Note that

n > 2(t− 1)(k − t) = 2(t− 1)(k − t− 2) + 4(t− 1) > 2(t− 1)(k − t− 2) + 3.

By (8) we have(
n− t− 2

k − t− 2

)
>

(n− 3)− (t− 1)(k − t− 2)

n− 3

(
n− 3

k − t− 2

)
>

1

2

(
n− 3

k − t− 2

)
.

3 Shifting ad extremis and the proof of Theorem 4

Note that for initial families one can deduce Theorem 4 under much milder constraints
(cf. [8]). The problem is that one cannot transform a general family into an initial family
without increasing %(F). To circumvent this difficulty we are going to apply the recently
developed method of shifting ad extremis.

Let us define formally the notion of shifting ad extremis developed recently (cf. [6]).
It can be applied to one, two or several families. For notational convenience we explain
it for the case of two families in detail.

Let F ⊂
(
[n]
k

)
, G ⊂

(
[n]
`

)
be two families and suppose that we are concerned, as usual

in extremal set theory, to obtain upper bounds for |F|+ |G|, |F||G| or some other function
f of |F| and |G|. For this we suppose that F and G have certain properties (e.g., cross-
intersecting and non-trivial). Since |Sij(H)| = |H| for all families H, it is convenient
to apply Sij simultaneously to F and G. Certain properties, e.g., t-intersecting, cross-
intersecting or ν(F) 6 r are known to be maintained by Sij. However, some other
properties may be destroyed, e.g., non-triviality, %(G) 6 c, etc. Let P be the collection of
the latter properties that we want to maintain.
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For any family H, define the quantity

w(H) =
∑
H∈H

∑
i∈H

i.

Obviously w(Sij(H)) 6 w(H) for 1 6 i < j 6 n with strict inequality unless Sij(H) = H.

Definition 14. Suppose that F ⊂
(
[n]
k

)
, G ⊂

(
[n]
`

)
are families having property P . We

say that F and G have been shifted ad extremis with respect to P if Sij(F) = F and
Sij(G) = G for every pair 1 6 i < j 6 n whenever Sij(F) and Sij(G) also have property
P .

Let us show that we can obtain shifted ad extremis families by the following shifting
ad extremis process. Let F , G be cross-intersecting families with property P . Apply the
shifting operation Sij, 1 6 i < j 6 n, to F ,G simultaneously and continue as long as the
property P is maintained. By abuse of notation, we keep denoting the current families
by F and G during the shifting process. If Sij(F) or Sij(G) does not have property P ,
then we do not apply Sij and choose a different pair (i′, j′). However we keep returning to
previously failed pairs (i, j), because it might happen that at a later stage in the process
Sij does not destroy property P any longer. Note that the quantity w(F) + w(G) is a
positive integer and it decreases strictly in each step. This guarantees that eventually we
shall arrive at families that are shifted ad extremis with respect to P .

Let F , G be shifted ad extremis families. A pair (i, j) is called shift-resistant if either
Sij(F) 6= F or Sij(G) 6= G.

In the case of several families, Fi ⊂
(
[n]
ki

)
, 1 6 i 6 r. It is essentially the same. One

important property that is maintained by simultaneous shifting is overlapping, namely
the non-existence of pairwise disjoint edges F1 ∈ F1, . . . , Fr ∈ Fr (cf. [13]).

Proof of Theorem 4. Let F ⊂
(
[n]
k

)
be intersecting, |F| > 2dd2d+1

(
n−d−1
k−d−1

)
and %(F) 6 1

d
.

Without loss of generality, we may assume that F is shifted ad extremis for %(F) 6 1
d
.

Then Sij(F) 6= F implies %(Sij(F)) > 1
d
. Thus, if a pair (i, j) is shift-resistant then

|F(i)|+ |F(j)| > |F|/d.
Let P1, . . . , Ps be a maximal collection of pairwise disjoint shift-resistant pairs, Pi =

(xi, yi), 1 6 i 6 s. Clearly, ∑
16i6s

(|F(xi)|+ |F(yi)|) >
s

d
|F|. (10)

For a pair of subsets E0 ⊂ E, let us use the notation

F(E0, E) = {F \ E : F ∈ F , F ∩ E = E0}.

Note that F(E,E) = F(E) and F(∅, E) = F(E).

Claim 15. For all D ∈
(
[n]
d

)
,

|F(D)| > (d− 1)|F(D)|. (11)
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Proof. For any subset E ⊂ [n] note the identity∑
x∈E

|F(x)| =
∑

16j6|E|

∑
Ej∈(E

j )

j|F(Ej, E)| >
∑

16j6|E|−1

∑
Ej∈(E

j )

|F(Ej, E)|+ |E||F(E,E)|

>
∑

E′⊂E,|E′|>1

|F(E ′, E)|+ (|E| − 1)|F(E)|.

By
∑

E′⊂E
|F(E ′, E)| = |F|, we infer that

∑
x∈E

|F(x)| > |F| − |F(E)|+ (|E| − 1)|F(E)|. (12)

If |E| = d, then %(F) 6 1
d

implies that the left hand side of (12) is less than |F|.
Comparing with the right hand side yields (11).

Claim 16. For all D ∈
(
[n]
d

)
,

|F(D)| < d

(
n− d− 1

k − d− 1

)
. (13)

Proof. For convenience assume that D = [n − d + 1, n]. Then F(D) ⊂
(
[n−d]
k−d

)
, F(D) ⊂(

[n−d]
k

)
and F(D),F(D) are cross-intersecting. If

|F(D)| > d

(
n− d− 1

k − d− 1

)
>
∑
16j6d

(
n− d− j
k − d− 1

)
+

(
n− 2d− 2

k − d− 2

)
,

then L(n− d, k − d, |F(D)|) contains{
A ∈

(
[n− d]

k − d

)
: A ∩ [d] 6= ∅

}⋃{
A ∈

(
[d+ 1, n− d]

k − d

)
: {d+ 1, d+ 2} ⊂ A

}
.

By Hilton’s Lemma, we have

L(n− d, k, |F(D)|) ⊂
{
B ∈

(
[n− d]

k

)
: [d] ⊂ B and B ∩ {d+ 1, d+ 2} 6= ∅

}
.

It follows that

|F(D)| 6
(
n− 2d− 1

k − d− 1

)
+

(
n− 2d− 2

k − d− 1

)
< |F(D)|,

contradicting (11).

Claim 17.

s 6 d2 − d. (14)
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Proof. Assume that s > d2 − d+ 1. Define E = P1 ∪ . . . ∪ Pd2−d+1 and

Fj = {F ∈ F : |F ∩ E| = j}.

Clearly |E| = 2(d2 − d+ 1) and

|Fj| =
∑

Ej∈(E
j )

|F(Ej, E)|. (15)

By (13) we have ∑
D∈(E

d)

|F(D)| <
(

2(d2 − d+ 1)

d

)
d

(
n− d− 1

k − d− 1

)
.

Note that for any set F ∈ F with F ∩ E = Ej and d 6 j 6 |E|, F is counted
(
j
d

)
times

in
∑

D∈(E
d)
|F(D)|. By (15) and

(
j
d

)
> j for j > d, it follows that

∑
D∈(E

d)

|F(D)| =
∑

d6j6|E|

∑
Ej∈(E

j )

(
j

d

)
|F(Ej, E)| > |Fd|+

∑
d<j6|E|

j|Fj|.

By (13) we obtain that

|Fd|+
∑

d<j6|E|

j|Fj| 6
∑

D∈(E
d)

|F(D)| <
(

2(d2 − d+ 1)

d

)
d

(
n− d− 1

k − d− 1

)
. (16)

Applying (10) with s = d2 − d+ 1,

d2 − d+ 1

d
|F| 6

∑
x∈E

|F(x)| =
∑

16j6|E|

j|Fj|

< (d− 1)
∑
16j6d

|Fj|+ |Fd|+
∑

d<j6|E|

j|Fj|

(16)
< (d− 1)|F|+ d

(
2(d2 − d+ 1)

d

)(
n− d− 1

k − d− 1

)
.

It follows that

|F| < d2
(

2(d2 − d+ 1)

d

)(
n− d− 1

k − d− 1

)
.

Let c(d) = d2
(
2(d2−d+1)

d

)
. For d > 4, since ed < 4d−1 6 dd−1, using

(
n
k

)
<
(
en
k

)k
we have

c(d) < 2deddd+2 < 2dd2d+1,

contradicting our assumption |F| > 2dd2d+1
(
n−d−1
k−d−1

)
. For d = 2, 3, it can be checked

directly that c(d) < 2dd2d+1, contradicting our assumption as well.
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Fix X ⊂ [n] with |X| = 2d2 − 2d and P1 ∪ · · · ∪ Ps ⊂ X. Define

T =
{
T ⊂ [n] : |T | 6 d, |F(T )| > (2d2)−|T ||F|

}
.

By (10), there exists x ∈ X such that

|F(x)| > 1

2d
|F| > 1

2d2
|F|,

implying T 6= ∅. By (13) and |F| > 2dd2d+1
(
n−d−1
k−d−1

)
, we know that for every D ∈

(
[n]
d

)
,

|F(D)| < d

(
n− d− 1

k − d− 1

)
6 (2d2)−d|F|.

Thus |T | 6 d− 1 for each T ∈ T .
Now choose T ∈ T such that |T | = t is maximum. Clearly t > 1. Note that the

maximality of t implies that for every Z ⊂ [n] with t < |Z| 6 d

|F(Z)| 6 (2d2)−|Z||F|. (17)

Set A = F(T,X ∪ T ) and U = [n] \ (X ∪ T ). Assume that

U = {u1, u2, . . . , um} with u1 < u2 < · · · < um.

Let Q = {u1, u2, . . . , u2d−t}. Note that A(Q) = F(T,X ∪ T ∪Q). By (17) we have

|A(Q)| > |F(T )| −
∑

x∈(X\T )∪Q

|F(T ∪ {x})|

> (2d2)−t|F| − (2d2 − 2d+ 2d− t)(2d2)−(t+1)|F|

=
t

(2d2)t+1
|F|.

Then by |F| > 2dd2d+1
(
n−d−1
k−d−1

)
we infer that

|A(Q)| >
(
n− d− 1

k − d− 1

)
=

(
n− d− 1

(k − t)− (d+ 1− t)

)
. (18)

Claim 18. For every S ⊂ X \ T ,

|F(S,X ∪ T )| 6 22d−1
(
n− d− 1− |S|
k − d− 1− |S|

)
. (19)

Proof. Let B = F(S,X∪T ). Recall that P1, P2, . . . , Ps is a maximal collection of pairwise
disjoint shift-resistant pairs and P1 ∪ P2 ∪ · · · ∪ Ps ⊂ X. Then F is initial on [n] \ X.
It follows that A ⊂

(
[n]\(X∪T )

k−t

)
, B ⊂

(
[n]\(X∪T )

k−|S|

)
are initial and cross-intersecting. For any

R ⊂ Q with |R| = r 6 d, we have A(Q) ⊂
(
[n]\(X∪T∪Q)

k−t

)
and B(R,Q) ⊂

(
[n]\(X∪T∪Q)

k−|S|−r

)
.
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By Proposition 7, we infer that A(Q), B(R,Q) are cross (2d − t − r + 1)-intersecting.
Since r 6 d implies 2d − t − r + 1 > d + 1 − t, by (18) and (5) we see that A(Q) is not
pseudo (2d− t− r+ 1)-intersecting. By Proposition 10, it follows that B(R,Q) is pseudo
(2d− t− r + 2)-intersecting. Thus by (5) we have

|B(R,Q)| 6
(

n− |X ∪ T ∪Q|
k − |S| − r − (2d− t− r + 2)

)
=

(
n− |X ∪ T ∪Q|

k − 2d− 2 + t− |S|

)
.

Since t 6 d− 1, |X ∪ T ∪Q| > |S|+ 2d− t > |S|+ d+ 1 and

n− d− 1− |S|
2

> k − d− 1− |S| > k − 2d− 2 + t− |S|,

we infer that

|B(R,Q)| 6
(

n− d− 1− |S|
k − 2d− 2 + t− |S|

)
<

(
n− d− 1− |S|
k − d− 1− |S|

)
.

Moreover, |B(R)| 6
(
n−d−1−|S|
k−d−1−|S|

)
for |R| = d+ 1. Thus,

|B| =
∑
R⊂Q

|B(R,Q)| =
∑

R⊂Q,|R|6d

|B(R,Q)|+
∑

R⊂Q,|R|>d+1

|B(R,Q)|

6
∑

R⊂Q,|R|6d

|B(R,Q)|+
∑

R⊂Q,|R|=d+1

|B(R)|

<
∑
06i6d

(
2d− t
i

)(
n− d− 1− |S|
k − d− 1− |S|

)
+

(
2d− t
d+ 1

)(
n− d− 1− |S|
k − d− 1− |S|

)

6

(
n− d− 1− |S|
k − d− 1− |S|

) ∑
06i6d+1

(
2d− 1

i

)

6 22d−1
(
n− d− 1− |S|
k − d− 1− |S|

)
.

By (19),

|F(T )| =
∑

S⊂X\T

|F(S,X ∪ T )| <
∑

06j6|X\T |

(
|X \ T |

j

)
22d−1

(
n− d− 1− j
k − d− 1− j

)

<
∑

06j6|X\T |

(
2d2 − 2d

j

)
22d−1

(
n− d− 1− j
k − d− 1− j

)
.

Note that n > 4d(d− 1)k implies(
2d2−2d
j+1

)(
n−d−2−j
k−d−2−j

)(
2d2−2d

j

)(
n−d−1−j
k−d−1−j

) =
(2d2 − 2d− j)(k − d− 1− j)

(j + 1)(n− d− 1− j)
<

(2d2 − 2d)k

n
6

1

2
.
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It follows that∑
06j6|X\T |

(
2d2 − 2d

j

)(
n− d− 1− j
k − d− 1− j

)
<

(
n− d− 1

k − d− 1

) ∑
06i6∞

2−i = 2

(
n− d− 1

k − d− 1

)
.

Thus,

|F(T )| < 22d

(
n− d− 1

k − d− 1

)
<

1

d
|F|

and therefore ∑
x∈T

|F(x)| > |F| − |F(T )| > d− 1

d
|F|.

Since |T | = t 6 d−1, there exists some x ∈ T with |F(x)| > 1
d
|F|, contradicting %(F) 6 1

d
.

Thus the theorem holds.

4 Proof of Theorem 5

In this section we consider the maximum degree ratio problem for t-intersecting families.
Let us recall the t-covering number τt(F):

τt(F) = min {|T | : |T ∩ F | > t for all F ∈ F} .

It should be clear that τt(F) = t if and only if F is a t-star. Proposition 2 yields

%(F) >
t

τt(F)
(20)

for any t-intersecting family F ⊂
(
[n]
k

)
.

We say that a t-intersecting family F is saturated if any addition of an extra k-set to
F would destroy the t-intersecting property.

In the case τt(F) = t+ 1 one can improve on (20).

Proposition 19. Suppose that F ⊂
(
[n]
k

)
is t-intersecting, n > 2k, τt(F) 6 t + 1 and F

is saturated. Then %(F) > t+1
t+2

.

Proof. Without loss of generality let [t + 1] be a t-transversal of F , i.e., |F ∩ [t + 1]| > t
for all F ∈ F . Define

Fi = {F \ [t+ 1] : F ∈ F , F ∩ [t+ 1] = [t+ 1] \ {i}}

and F0 = F([t + 1]). By saturatedness F0 =
(
[t+2,n]
k−t−1

)
. Obviously, Fi,Fj are cross-

intersecting for 1 6 i < j 6 t+1. By Hilton’s Lemma, min{|Fi|, |Fj|} 6
(
n−t−2
k−t−1

)
. Assume

by symmetry |F1| 6 |F2| 6 . . . 6 |Ft+1|. Then

|F1| 6
(
n− t− 2

k − t− 1

)
<

(
n− t− 1

k − t− 1

)
= |F0|.
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Note that

|F(1)| = |F2|+ · · ·+ |Ft+1|+ |F0| > (t+ 1)|F1|, |F(1̄)| = |F1|.

Thus

%(F) >
|F(1)|

|F(1)|+ |F(1̄)|
>
t+ 1

t+ 2
.

Remark 20. Considering all k-subsets of [2k − t] shows that without some conditions on
|F| one cannot hope to prove better than %(F) > k

2k−t .

In the case of cross t-intersecting families, t > 2, we cannot apply Hilton’s Lemma.
To circumvent this difficulty we prove a similar albeit somewhat weaker inequality.

Proposition 21. Let n, k, `, t, s be integers, s > t > 2, k, ` > s. Suppose that F ⊂
(
[n]
k

)
and G ⊂

(
[n]
`

)
are cross t-intersecting. Assume that |G| >

(
n

`−s

)
. Then

|F| <
(
s− 1

t

)(
n− s− 1

k − t

)
+ 2s

(
n− t− 1

k − t− 1

)
. (21)

Moreover, if n > s(k − t), then

|F| <
(
s− 1

t

)(
n− s
k − t

)
+

(
2

s− 1

(
s

t− 1

)
+

(
s− 1

t− 1

)
+ 2

(
s

t+ 1

))(
n− s

k − t− 1

)
. (22)

Proof. Assume the contrary. Without loss of generality, we can suppose that F and G
are initial (Sij does not change |F|, |G|). Since |G| >

(
n

`−s

)
, by Theorem 9 we infer that G

is not pseudo s-intersecting. That is, there exists G ∈ G such that |G ∩ [2i + s]| < i + s
for all i = 0, 1, . . . , `− s. It follows that

(1, 2, . . . , s− 1, s+ 1, s+ 3, . . .) =: G0 ∈ G.

Let T0 ∈
(
[s−1]
t−1

)
. Then by the cross t-intersecting property

T0 ∪ (s, s+ 2, s+ 4, . . .) /∈ F .

Define T = T0 ∪ {s}. Then F(T, [s]) ⊂
(
[s+1,n]
k−t

)
and

E0 := (s+ 2, s+ 4, . . . , s+ 2(k − t)) /∈ F(T, [s]).

By Fact 8, F(T, [s]) is pseudo intersecting. Thus,

|F(T, [s])| 6
(

n− s
k − t− 1

)
. (23)

For R ⊂ [s],

|F(R, [s])| 6
(
n− s
k − |R|

)
. (24)

We shall use (24) for R with |R| > t and |R| = t but s /∈ R.
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Claim 22. For R ⊂ [s] with |R| = t−i and i > 1, F(R, [s]) is pseudo (2i+1)-intersecting.

Proof. Let

R̃ := (s+ 1, s+ 2, . . . , s+ 2i− 1, s+ 2i, s+ 2i+ 2, . . . , s+ 2(k − t)).

Set Q = [t − 1] ∪ (s, s + 2, . . . , s + 2(k − t)) and note |Q ∩ G0| = t − 1 whence Q /∈ F .
Since Q ≺ R ∪ R̃, R ∪ R̃ /∈ F , i.e., R̃ /∈ F(R, [s]). By Fact 8, we infer that F(R, [s]) is
pseudo (2i+ 1)-intersecting.

For |R| = t− i with 1 6 i 6 t, by Claim 22

|F(R, [s])| 6
(

n− s
k − (t− i)− 2i− 1

)
=

(
n− s

k − t− i− 1

)
.

Now

|F| =
∑
R⊂[s]

|F(R, [s])|

=
∑

R⊂[s],|R|6t−1

|F(R, [s])|+
∑

R∈([s]
t )

|F(R, [s])|+
∑

R⊂[s],|R|>t+1

|F(R, [s])|

6
∑

06i6t−1

(
s

i

)(
n− s

k − 2t+ i− 1

)
+

(
s− 1

t

)(
n− s
k − t

)
+

(
s− 1

t− 1

)(
n− s

k − t− 1

)

+
∑

t+16i6s

(
s

i

)(
n− s
k − i

)
. (25)

Using
(

n−s
k−2t+i−1

)
<
(

n−s
k−t−1

)
for i 6 t − 1 and

(
n−s
k−i

)
6
(

n−s
k−t−1

)
for i > t + 1, we conclude

that

|F| <
(
s− 1

t

)(
n− s
k − t

)
+
∑
06i6s

(
s

i

)(
n− s

k − t− 1

)
−
(
s− 1

t

)(
n− s

k − t− 1

)

6

(
s− 1

t

)(
n− s− 1

k − t

)
+ 2s

(
n− s

k − t− 1

)
.

This proves (21).
If n > s(k − t) then for 1 6 i 6 t− 1(

s
i

)(
n−s

k−2t+i−1

)(
s

i−1

)(
n−s

k−2t+i−2

) =
(s− i+ 1)(n− s− k + 2t− i+ 2)

i(k − 2t+ i− 1)

>
(s− t+ 2)(n− s− k + t+ 3)

(t− 1)(k − t− 2)

>
(s− t+ 2)(s− 1)(k − t− 1)

(t− 1)(k − t− 2)

> 2
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and (
n−s

k−t−2

)(
n−s

k−t−1

) =
k − t− 1

n− s− k + t+ 2
<

k − t− 1

(s− 1)(k − t− 1)
6

1

s− 1
.

It follows that ∑
06i6t−1

(
s

i

)(
n− s

k − 2t+ i− 1

)
<

(
s

t− 1

)(
n− s

k − t− 2

) ∞∑
i=0

2−i

= 2

(
s

t− 1

)(
n− s

k − t− 2

)
<

2

s− 1

(
s

t− 1

)(
n− s

k − t− 1

)
. (26)

For t+ 1 6 i 6 s− 1,(
s

i+1

)(
n−s

k−i−1

)(
s
i

)(
n−s
k−i

) =
(s− i)(k − i)

(i+ 1)(n− s− k + i+ 1)

6
(s− t− 1)(k − t− 1)

(t+ 2)(n− s− k + t+ 2)

<
(s− t− 1)(k − t− 1)

(t+ 2)(s− 1)(k − t− 1)

<
1

2
.

It follows that∑
t+16i6s

(
s

i

)(
n− s
k − i

)
<

(
s

t+ 1

)(
n− s

k − t− 1

) ∞∑
i=0

2−i = 2

(
s

t+ 1

)(
n− s

k − t− 1

)
. (27)

Combining (25), (26) and (27), we conclude that

|F| < 2

s− 1

(
s

t− 1

)(
n− s

k − t− 1

)
+

(
s− 1

t

)(
n− s
k − t

)
+

(
s− 1

t− 1

)(
n− s

k − t− 1

)
+ 2

(
s

t+ 1

)(
n− s

k − t− 1

)
=

(
s− 1

t

)(
n− s
k − t

)
+

(
2

s− 1

(
s

t− 1

)
+

(
s− 1

t− 1

)
+ 2

(
s

t+ 1

))(
n− s

k − t− 1

)
.

Consider the obvious construction:

G =

{
G ∈

(
[n]

`

)
: [s] ⊂ G

}
, F =

{
F ∈

(
[n]

k

)
: |F ∩ [s]| > t

}
.
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Then F ,G are cross t-intersecting and

|G| =
(
n− s
`− s

)
, |F| =

(
s

t

)(
n− s
k − t

)
+
∑
t<j6s

(
s

j

)(
n− s
k − j

)
,

showing that (21) does not hold for |G| 6
(
n−s
`−s

)
.

Corollary 23. Let F ⊂
(
[n]
k

)
be t-intersecting with n > (t + 2)(k − t) and |F| > (t +

1)
(

n−1
k−t−1

)
. If %(F) < t

t+1
, then for every P ∈

(
[n]
2

)
,

|F(P )| 6 (t+ 1)

(
n− t− 2

k − t− 2

)
+

5t2 + 19t+ 24

6

(
n− t− 3

k − t− 3

)
. (28)

Proof. If there exists {x, y} ⊂ [n] such that

|F(x, y)| > (t+ 1)

(
n− t− 2

k − t− 2

)
+

5t2 + 19t+ 24

6

(
n− t− 3

k − t− 3

)
> (t+ 1)

(
n− t− 4

k − t− 2

)
+

(
2

t+ 1

(
t+ 2

t− 1

)
+

(
t+ 1

t− 1

)
+ 2

(
t+ 2

t+ 1

))(
n− t− 4

k − t− 3

)
,

note that F(x, y) ⊂
(
[n]\{x,y}

k−2

)
, F(x̄, ȳ) ⊂

(
[n]\{x,y}

k

)
are cross t-intersecting, by applying

Proposition 21 with s = t+ 2 we infer

|F(x̄, ȳ)| 6
(

n− 2

k − t− 2

)
.

Since %(F) < t
t+1

implies

|F(x̄)|, |F(ȳ)| > 1

t+ 1
|F| >

(
n− 1

k − t− 1

)
,

it follows that

F(x̄, y) > |F(x̄)| − |F(x̄, ȳ)| >
(

n− 2

k − t− 1

)
and

F(x, ȳ) > |F(ȳ)| − |F(x̄, ȳ)| >
(

n− 2

k − t− 1

)
.

But F(x̄, y), F(x, ȳ) are cross t-intersecting. This contradicts Corollary 11.

Lemma 24. Let F ⊂
(
[n]
k

)
be initial, t-intersecting, n > 2(t + 1)(k − t) and |F| >

2t(t+ 1)(t+ 2)
(
n−t−4
k−t−2

)
then

%(F) >
t

t+ 1
.

Proof. Consider a subset P ⊂ [t+ 1], |P | 6 t− 1.
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Claim 25. F(P, [t+ 1]) is 1 + 2(t− |P |)-intersecting.

Proof. Suppose for contradiction that F̄1, F̄2 ∈ F(P, [t + 1]) satisfy F̄1 ∩ F̄2 = D with
|D| 6 2(t − |P |). Since F is t-intersecting, we infer |D| > t − |P |. If |D| = t − |P | then
choose y ∈ D and x ∈ [t + 1] \ P and set F1 = F̄1 ∪ P , F2 = (F̄2 ∪ P ∪ {x}) \ {y}.
By initiality F2 ≺ F̄2 ∪ P implies F2 ∈ F . But |F1 ∩ F2| = |P | + |D| − 1 = t − 1, a
contradiction.

If |D| > t + 1 − |P |, then choose E ⊂ D, |E| = t + 1 − |P | and set F1 = F̄1 ∪ P ,
F2 = (F̄2 ∪ [t+ 1]) \ E. Then F1 ∩ F2 = P ∪D \ E whence

|F1 ∩ F2| = |P |+ |D| − |E| 6 |P |+ 2t− 2|P | − (t+ 1− |P |) = t− 1.

Now F1 ∈ F and F̄2 ∪P ∈ F by definition and F2 ≺ F̄2 ∪P . Hence F2 ∈ F contradicting
the t-intersecting property.

Define Fi = F([t+ 1] \ {i}, [t+ 1]). By initiality

F1 ⊂ F2 ⊂ . . . ⊂ Ft+1.

Apply Claim 25 with P = [t + 1] \ {1}, F1 is intersecting. Thus by (4) |∂F1| > |F1|. By
initiality ∂F1 ⊂ F0 := F([t+ 1]). Then

|F| = |F0|+ |F1|+ |F2|+ · · ·+ |Ft+1| > (t+ 2)|F1|. (29)

For any P ∈
(
[2,t+1]
t−j

)
, by Claim 25 we know F(P, [t + 1]) is (2j + 1)-intersecting. Note

that n > 2(t+ 1)(k − t) > (2j + 2)(k − t− j) for j = 1, . . . , t. By (1), we infer

|F(P, [t+ 1])| 6
(
n− t− 1− 2j − 1

k − (t− j)− 2j − 1

)
=

(
n− t− 2− 2j

k − t− 1− j

)
.

Note that F(P, [t+ 1]) is (k − t+ j)-uniform and j > k − t implies 2j + 1 > k − t+ j. It
follows that |F(P, [t+ 1])| = 0 for j > k − t. Thus,

|F(1̄)| =
∑

P⊂[2,t+1]

|F(P, [t+ 1])|

=|F1|+
∑

06i6t−1

∑
P∈([2,t+1]

i )

|F(P, [t+ 1])|

6|F1|+
∑

16j6min{t,k−t−1}

(
t

t− j

)(
n− t− 2− 2j

k − t− 1− j

)
.

For k = t+ 2, we have

|F(1̄)| 6 |F1|+ t

(
n− t− 4

k − t− 2

)
.
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For 2 6 j 6 min{t, k − t− 1},(
t
j

)(
n−t−2−2j
k−t−1−j

)(
t

j−1

)(
n−t−2j
k−t−j

) =
(t− j + 1)(k − t− j)(n− k − j)
j(n− t− 2j)(n− t− 2j − 1)

6
(t− 1)(k − t− 2)(n− k − 2)

2(n− 3t)(n− 3t− 1)
.

Since n > 2(t+ 1)(k − t) and k > t+ 3 implies that

n− k − 2

n− 3t
< 2,

(t− 1)(k − t− 2)

n− 3t− 1
<

1

2
,

it follows that
(
t
j

)(
n−t−2−2j
k−t−1−j

)
< 1

2

(
t

j−1

)(
n−t−2j
k−t−j

)
. Thus,

|F(1̄)| 6 |F1|+
∑
16j6t

(
t

t− j

)(
n− t− 2− 2j

k − t− 1− j

)

< |F1|+ t

(
n− t− 4

k − t− 2

) ∞∑
i=0

2−i

= |F1|+ 2t

(
n− t− 4

k − t− 2

)
.

By (29) and |F| > 2t(t+ 1)(t+ 2)
(
n−t−4
k−t−2

)
, it follows that

|F(1̄)| 6 1

t+ 2
|F|+ 2t

(
n− t− 4

k − t− 2

)
6

1

t+ 2
|F|+ 1

(t+ 1)(t+ 2)
|F| = 1

t+ 1
|F|.

Thus the lemma follows.

Proof of Theorem 5. Suppose to the contrary that |F| > (t + 1)
(

n−1
k−t−1

)
and %(F) 6 t

t+1
.

Since n > 2t(t+ 2)k > 4(t+ 2)k, we infer

|F| > (t+ 1)
n− 1

k − t− 1

(
n− 2

k − t− 2

)
> 4(t+ 1)(t+ 2)

(
n− t− 2

k − t− 2

)
. (30)

Shift F ad extremis for %(F) 6 t
t+1

and let H be the graph formed by the shift-resistant

pairs. For every P ∈
(
[n]
2

)
, by (28) and n > 2t(t+ 2)k > 5t2+19t+24

6
k we infer

|F(P )| < (t+ 1)

(
n− t− 2

k − t− 2

)
+

5t2 + 19t+ 24

6

(
n− t− 3

k − t− 3

)
< (t+ 2)

(
n− t− 2

k − t− 2

)
. (31)

Claim 26. H is intersecting.

Proof. Suppose that there are disjoint pairs (a1, b1), (a2, b2) ∈ H. Set Gi = {F ∈ F : F ∩
{ai, bi} 6= ∅}, i = 1, 2. Since %(Saibi(F)) > t

t+1
|F|, we infer |Gi| > t

t+1
|F|. By (31) we

have

|G1 ∩ G2| 6
∑
i=1,2

∑
j=1,2

F({ai, bj}) < 4(t+ 2)

(
n− t− 2

k − t− 2

)
.
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It follows that

|F| > |G1|+ |G2| − |G1 ∩ G2| >
2t

t+ 1
|F| − 4(t+ 2)

(
n− t− 2

k − t− 2

)
(30)
>

2t

t+ 1
|F| − 1

t+ 1
|F| > |F|,

a contradiction.

Note that n > 2t(t+ 2)k implies

|F| > (t+ 1)

(
n− 1

k − t− 1

)
> 2t(t+ 1)(t+ 2)

(
n− t− 4

k − t− 2

)
. (32)

By Lemma 24, we may assume that H 6= ∅. For convenience assume that (n− 1, n) ∈ H.
Let

A =

{
A ∈

(
[n− 2]

k − 1

)
: A ∪ {x} ∈ F with x = n− 1 or x = n

}
, B =

(
[n− 2]

k

)
∩ F .

Since %(Sn−1,n(F)) > t
t+1
|F| implies

|F(n− 1, n)|+ |F(n− 1, n) ∪ F(n− 1, n)| > t

t+ 1
|F|,

by (31) and t > 2 we infer

A(1̄, 2̄) >
t

t+ 1
|F| − |F(n− 1, n)| −

∑
i∈{1,2},j∈{n−1,n}

|F(i, j)|

>
t

t+ 1
|F| − 5(t+ 2)

(
n− t− 2

k − t− 2

)
(32)

> 4t(t+ 2)

(
n− t− 2

k − t− 2

)
− 5(t+ 2)

(
n− t− 2

k − t− 2

)
(9)

> 3(t+ 2) · 1

2

(
n− 3

k − t− 2

)
>

(
n− 4

k − t− 2

)
. (33)

Fix R ⊂ [2] with |R| 6 1. Since A,B are initial and cross t-intersecting, by Proposition
7 we infer that A(1̄, 2̄) and B(R, [2]) are cross (t+ 2− |R|)-intersecting. By (33) we know
that A(1̄, 2̄) is not pseudo (t + 2 − |R|)-intersecting. By Proposition 10 we infer that
B(R, [2]) is pseudo (t+ 3− |R|)-intersecting. Therefore,

|B(R, [2])| 6
(

n− 4

k − |R| − (t+ 3− |R|)

)
=

(
n− 4

k − t− 3

)
.
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Note that (31) implies B([2]) < (t+ 2)
(
n−t−2
k−t−2

)
. Thus,

|B| =
∑
R⊂[2]

|B(R, [2])|

< 3

(
n− 4

k − t− 3

)
+ (t+ 2)

(
n− t− 2

k − t− 2

)
=

3(k − t− 2)

n− 3

(
n− 3

k − t− 2

)
+ (t+ 2)

(
n− t− 2

k − t− 2

)
(9)

6
6(k − t− 2)

n− 3

(
n− t− 2

k − t− 2

)
+ (t+ 2)

(
n− t− 2

k − t− 2

)
< (t+ 3)

(
n− t− 2

k − t− 2

)
.

Then %(F) 6 t
t+1

implies

|F(n− 1, n)| = |F(n− 1)| − |B| > 1

t+ 1
|F|− (t+ 3)

(
n− t− 2

k − t− 2

)
(30)
> (3t+ 5)

(
n− t− 2

k − t− 2

)
and

|F(n− 1, n)| = |F(n̄)| − |B| > 1

t+ 1
|F| − (t+ 3)

(
n− t− 2

k − t− 2

)
(30)
> (3t+ 5)

(
n− t− 2

k − t− 2

)
.

Now by (31)

|F({1, n− 1}, n)| > |F(n− 1, n)| − |F(1, n)| > (2t+ 3)

(
n− t− 2

k − t− 2

)
and

|F({1, n}, n− 1)| > |F(n− 1, n)| − |F(1, n− 1)| > (2t+ 3)

(
n− t− 2

k − t− 2

)
.

By (9),

(2t+ 3)

(
n− t− 2

k − t− 2

)
>

(2t+ 3)

2

(
n− 3

k − t− 2

)
>

(
n− 3

k − t− 2

)
,

this contradicts the fact that F({1, n− 1}, n),F({1, n}, n−1) ⊂
(
[2,n−2]
k−1

)
are cross (t+1)-

intersecting. Thus the theorem holds.
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