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Abstract

For positive integers n > k > t let ([Z}) denote the collection of all k-subsets of

the standard n-element set [n] = {1,...,n}. Subsets of ([Z]) are called k-graphs.
A k-graph F is called t-intersecting if |[F'N F'| > t for all F,F' € F. One of the
central results of extremal set theory is the Erdés-Ko-Rado Theorem which states
that for n > (k—t+ 1)(¢t + 1) no t-intersecting k-graph has more than (Z:i) edges.
For n greater than this threshold the ¢-star (all k-sets containing a fixed ¢-set) is
the only family attaining this bound. Define F(i) = {F'\ {i}: i € F € F}. The
quantity o(F) = Jnax |F(7)|/|F| measures how close a k-graph is to a star. The

U

main result (Theorem 1.3) shows that o(F) > 1/d holds if F is l-intersecting,
| F| > 2dq2d+1 (Z:gj) and n > 4(d — 1)dk. Such a statement can be deduced from
earlier results, however only for much larger values of n/k and/or n. The proof is
purely combinatorial, it is based on a new method: shifting ad extremis. The same
method is applied to obtain a nearly optimal bound in the case of ¢ > 2 (Theorem
1.4).

Mathematics Subject Classifications: 05D05

1 Introduction

For positive integers n > k, let [n] = {1,...,n} be the standard n-element set and ([Z])

the collection of its k-subsets. A family F C ([Z]) is called t-intersecting if |[FNF'| >t
for all F, " € F and t a positive integer. In the case t = 1 we usually omit ¢ and speak of
intersecting families. Let us recall one of the fundamental results of extremal set theory.

Theorem 1 (Exact Erdés-Ko-Rado Theorem ([2], [4], [18])). Let k > ¢t > 0, n >
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no(k,t) = (k—t+1)(t+1). Suppose that F C ([Z}) is t-intersecting. Then

F1< () 0

Let us note that |S(n, k,t)| = (}~}) holds for the full star

S(n, k,t) = {s e <[Z]) L[] € s}

and for n > ng(k,t) up to isomorphism S(n, k,t) is the only family to achieve equality in
(1). The exact bound ngy(k,t) = (k —t + 1)(t + 1) is due to Erdds, Ko and Rado in the
case t = 1. For t > 15 it was established in [4]. Wilson [18] closed the gap 2 <t < 14 by
a proof valid for all ¢ > 1.

Let us recall some standard notation. Set NF = N{F: F € F}. If |NF| > ¢ then F
is called a t-star, for t = 1 we usually omit the 1. If NF = ) then we call F a non-trivial
family:.

For a subset £ C [n] and a family F C ([Z]), define

F(E)={F\E:ECFeF}, F(E)={FeF: FnE=10}.

In the case F = {i} we simply use F(i) and F(i) to denote F({i}) and F({i}), respec-
tively. In analogy,

F(u,v,w) :={F\{u,v}: FeF,Fn{uv,w}={u,v}}.

Let us define the quantity
()] :
o(F) :max{—: 1<i<ny.
7]

Since o(F) = 1if and only if F is a star, in a way o(F) measures how far a family is from
a star.

A set T is called a t-transversal of F if [TNF| >t for all F € F. If F is t-intersecting
then each F' € F is a t-transversal. Define

7,(F) = min{|T|: T is a t-transversal of F}.
For t = 1 we usually omit the 1.

Proposition 2. If F is t-intersecting, then

t
T(F)
Proof. Fix a t-transversal T' of F with |T| = 7(F). Then

o(F) >

tF| <) |F6)| < |T) - max{|F(i)|: i € T},

i€T
implying (2). ]
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Obviously, 7:(F) = t if and only if F is a t-star.

Example 3. For n > k >t > 0 define

A(n, k,t) = {Ae ([Z]>: |AN [t + 2] >t+1}.

Clearly, A = A(n, k, t) is t-intersecting, o(A) = Hﬁ—g(l), 7:(F) = t+1. We should note

that for 2k —t <n < (k—t+1)(t+1), |A] > (}~}) with equality for n = (k—t+1)(t+1).

In [3] it was shown that for any positive € and n > ny(k,t,¢), o(F) < 1 — ¢ implies
| F| < | A| for any t-intersecting family F C (). The value of n, (k, , ) is implicit in [3].
With careful calculation (cf. e.g. [10]) for fixed € > 0 one can prove a bound quadratic
in k. Dinur and Friedgut [1] introduced the so-called junta-method that leads to strong
results for n > ck, however the value of the constant is large and it is further dependent
on the particular problem (the same is true for the recent advances of Keller and Lifschitz
16)).

The aim of the present paper is to prove some similar results concerning o(F) for
t-intersecting families for n > ck with relatively small constants c. Let us state here our

main result for the case t = 1.

Theorem 4. Let n, k,d be integers, k > d > 2, n > 4(d—1)dk. If F C ([Z]) is intersecting

and |F| > 24d?1 (1297 1) | then o(F) > 1.

Let us stress once more that o(F) > < follows from the results of [3] and [1] however
only for much larger value of n.
For t > 2, we obtain the following result.

Theorem 5. Let F C ([Z]) be a t-intersecting family with t > 2. If |F| > (t + 1)(1;:—11)
and n > 2t(t + 2)k, then o(F) > 5.

2 Preliminaries

In this section, we recall some useful results that are needed in our proofs.
Define the lezicographic order A < B for A, B € ([Z]) by A <; B if and only if
min{i: i € A\ B} <min{i:i € B\ A}. Eg., (1,2,9) <; (1,3,4). Forn > k > 0 and

(Z) > m > 0 let L(n,k, m) denote the first m sets A € ([Z]) in the lexicographic order.

For X C [n] with |X| > %k > 0 and (l)kf‘) > m > 0, we also use L(X, k,m) to denote the
first m sets A € ()k( ) in the lexicographic order.

For A C ([Z]) and B C ([’g]), we say that A, B are cross t-intersecting if |ANB| >t
for every A € A and B € B. A powerful tool is the Kruskal-Katona Theorem ([17, 15]),
especially its reformulation due to Hilton [12].

Hilton’s Lemma ([12]). Let n,a,b be positive integers, n > a + b. Suppose that
A C ([Z]) and B C (["]) are cross-intersecting. Then L(n,a,|A|) and L(n,b, |B|) are

b
cross-intersecting as well.

THE ELECTRONIC JOURNAL OF COMBINATORICS 31(2) (2024), #P2.33 3



For F C ([Z}) define the /th shadow of F,
OF ={G:|G| =k — ¢, IF € F such that G C F}.

For ¢ =1 we often omit the superscript.
The following statement goes back to Katona [15]. Let us include the very short proof.

Proposition 6. Let F C ([z]) be an initial famaly. Then
OF(1) c F(1). (3)

Proof. Indeed, if E C F € F(1) and E = F \ {j}. Then by initiality E U {1} € F, i.e.,
EeF(1) O

The Katona Intersecting Shadow Theorem gives an inequality concerning the sizes of

a t-intersecting family and its shadow.

Katona Intersecting Shadow Theorem ([14]). Suppose that n > 2k — ¢, ¢t > ( > 1.
Let 0 # A C ([Z]) be a t-intersecting family. Then

(i)

(*")
[2k—1]

with equality holding if and only if F is isomorphic to ( A )
Let us recall an important operation called shifting introduced by Erdés, Ko and Rado
[2]. For F C ([Z]) and 1 <7 < j < n, define

10°A| > | A

(4)

Sii(F) ={S;(F): F € F},

where
S, (F) :{ (NP Ui}, jeFi¢ Fand (F\{j})U{i} ¢ F;

F, otherwise.

It is well known (cf. [5]) that shifting preserves the t-intersecting property.

Let (x1,...,2x) denote the set {zy,...,x;} where we know or want to stress that
x1 < ... <z Let us define the shifting partial order < where P < @ for P = (z1,...,xy)
and Q = (y1,...,yx) if and only if x; < y; for all 1 < i < k. This partial order can be
traced back to [2]. A family F C ([Z]) is called initial if F < G and G € F always imply
F € F. Note that an initial family F satisfies S;;(F) = F for all 1 < i < j < n. By
repeated shifting one can transform an arbitrary k-graph into a shifted k-graph with the
same number of edges. Note also that |F(1)| > |F(2)| > ... > |F(n)| for an initial family.

We need the following property of initial families.

Proposition 7. Suppose that F C ([Z]) 15 1nitial and t-intersecting. Let r < s < k — 1t

and let R C [s] with |R| =r. Then F([s]), F(R,[s]) are cross (t + s — r)-intersecting.
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Proof. Suppose for contradiction that there exist F' € F([s]), F' € F(R,][s]) such that
|[FNF'| =t+j<t—1+s—r. Let EC FNF' and T C [s]\ R with |E| = |T| = j+1. Then
F" := FUT\FE satisfies " < F whence I € F. However |F'NF"| = |[FNF'|—|E| = t—1,
the desired contradiction. O

We need a notion called pseudo t-intersecting, which was introduced in [7]. A family
F C ([Z]) is said to be pseudo t-intersecting if for every F' € F there exists 0 <i < k —t
such that |[F'N[2i+t]] > i+t

Fact 8. Let F C ([Z]) be an initial family. If [t —1U{t+1,t+3,...,2k—t+1} & F,
then F 1is pseudo t-intersecting.

Proof. Indeed, otherwise if F is pseudo t-intersecting then there exists F' € F such that
|FN[2i+t]| <i+tholds for all i =0,1,...,k —t. By initiality it follows that

t—1U{t+1,t+3,....,2k—t+1} € A,
a contradiction. ]

Theorem 9 ([4]). Let F C (["]) be an initial family with 0 < t < k. If F is pseudo

k
t-intersecting, then
n
1< (,",) )

The following property is proved in [7]. Let us include a proof as well.

Proposition 10 ([7]). Let n > max{2a —t,2b — t}. If A C ([Z]), B C ([Z]) are cross
t-intersecting and both initial, then either both A and B are pseudo t-intersecting, or one
of them is pseudo (t + 1)-intersecting.

Proof. 1f A is not pseudo t-intersecting, then there exists A € A such that |AN[2i+t]| <
1+t holds for all i = 0,1,...,a — t. By initiality it follows that

A=t —1U{t+1,t+3,...;t+2(a—-t+1) -1} € A
Similarly, if B is not pseudo (¢ + 1)-intersecting then
By :=[tju{t+2,t+4,...,20—t} € B.

Note that |Ag N By| = t — 1. By the cross t-intersecting property, we infer that if B is not
pseudo (¢ + 1)-intersecting then A is pseudo t-intersecting. Similarly, if A is not pseudo
(t 4+ 1)-intersecting then B is pseudo t-intersecting. Thus the proposition follows. O

The following inequalities for cross t-intersecting families can be deduced from Propo-
sition 10.

ot
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Corollary 11 ([4]). Suppose that A,B C ([Z]) are cross t-intersecting, |A| < |B|. Then
either

Bl<(,",)o ()

A< () )

We need the following inequalities concerning binomial coefficients.

Proposition 12 ([11]). Let n, k,i be positive integers. Then

n—1 n—1ik (n
> k.
( i > > — (k)’ for n > ik (8)

Corollary 13. Let n, k,t be positive integers. If n > 2(t — 1)(k —t) and k >t > 2, then
n—t—2 1/ n—3
> — .
(k—t—2)/2<k—t—2) ©)

n=2t—1)k—t) =20t - 1)(k—t—2)+4(t —1)>2(t — 1)k —t —2) +3.

Proof. Note that

By (8) we have
(000 s e )5 ) o

3 Shifting ad extremis and the proof of Theorem 4

Note that for initial families one can deduce Theorem 4 under much milder constraints
(cf. [8]). The problem is that one cannot transform a general family into an initial family
without increasing o(F). To circumvent this difficulty we are going to apply the recently
developed method of shifting ad extremis.

Let us define formally the notion of shifting ad extremis developed recently (cf. [6]).
It can be applied to one, two or several families. For notational convenience we explain
it for the case of two families in detail.

Let F C ([Z}), g C ([Z]) be two families and suppose that we are concerned, as usual
in extremal set theory, to obtain upper bounds for |F|+ |G|, |F||G| or some other function
f of |F| and |G|. For this we suppose that F and G have certain properties (e.g., cross-
intersecting and non-trivial). Since |S;;(#H)| = |H| for all families H, it is convenient
to apply S;; simultaneously to F and G. Certain properties, e.g., t-intersecting, cross-
intersecting or v(F) < r are known to be maintained by S;;. However, some other
properties may be destroyed, e.g., non-triviality, o(G) < ¢, etc. Let P be the collection of
the latter properties that we want to maintain.
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For any family H, define the quantity

wM) =) > i

HeM icH
Obviously w(S;;(H)) < w(H) for 1 < i < j < n with strict inequality unless S;;(H) = H.

Definition 14. Suppose that F C ([Z]), G C ([Z‘]) are families having property P. We
say that F and G have been shifted ad extremis with respect to P if S;;(F) = F and
Sij(G) = G for every pair 1 < i < j < n whenever S;;(F) and S;;(G) also have property
P.

Let us show that we can obtain shifted ad extremis families by the following shifting
ad extremis process. Let F, G be cross-intersecting families with property P. Apply the
shifting operation S;;, 1 <17 < 7 < n, to F,§ simultaneously and continue as long as the
property P is maintained. By abuse of notation, we keep denoting the current families
by F and G during the shifting process. If S;;(F) or S;;(G) does not have property P,
then we do not apply S;; and choose a different pair (¢', j'). However we keep returning to
previously failed pairs (i, 7), because it might happen that at a later stage in the process
Si; does not destroy property P any longer. Note that the quantity w(F) + w(G) is a
positive integer and it decreases strictly in each step. This guarantees that eventually we
shall arrive at families that are shifted ad extremis with respect to P.

Let F, G be shifted ad extremis families. A pair (i, j) is called shift-resistant if either
Sij(F) # F or 55(9) # 6.

In the case of several families, F; C (EZ]), 1 <4 < r. It is essentially the same. One

important property that is maintained by simultaneous shifting is overlapping, namely
the non-existence of pairwise disjoint edges Fy € Fi, ..., F. € F,. (cf. [13]).
Proof of Theorem 4. Let F C ([Z]) be intersecting, |F| > 2¢d?¢*! (Z:Zj) and o(F) <
Without loss of generality, we may assume that F is shifted ad extremis for o(F) <
Then S;;(F) # F implies o(S;;(F)) > . Thus, if a pair (i,7) is shift-resistant then
\F @)+ [FG) > [Fl/d.

Let Py, ..., P; be a maximal collection of pairwise disjoint shift-resistant pairs, P, =
(i, y:), 1 <i < s. Clearly,

SIS

> (F @)l + | Fy)) = %!fl- (10)

1<i<s
For a pair of subsets £y C E, let us use the notation
F(Ey,E)={F\E: FeF, FNE=Ey}.
Note that F(E, E) = F(E) and F(0, E) = F(E).
Claim 15. For all D € (1),
[F(D)] = (d = DIFD)|. (11)
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Proof. For any subset E' C [n] note the identity

Y IF@I= Y Y AFELBlI= Y Y IF(ELE)+IEIF(E,E)

ekl 1<G<|E| Eje(?) 1<G<|E|-1 B, E(])

> Y |FE B+ (B - DIFE).

E/CE,|E'|>1

By > |F(E',E)| =|F|, we infer that

E'CE

Y 1F@) > |1F = |FE) + (|B] - DIF(E)]. (12)

zelR

If |[E| = d, then o(F) < % implies that the left hand side of (12) is less than |F|.

Comparing with the right hand side yields (11). O
Claim 16. For all D € ([n])

F(D)| <d(z:j:i). (13)

Proof. For convenience assume that D = [n — d + 1,n|. Then F(D) C ([Z:Z])’ }“(ﬁ) C
("4 and F(D), F(D) are cross-intersecting. If

n—d—1 n—d—j n—2d—2
>
|F(D)|/d(k—d—1) > 2 (k—d—1)+(k—d—2>’
1<y<d
then L(n —d,k —d,|F(D)|) contains

{Ae <[Z:Z]):Aﬂ[d] #@}U{Ae ([d+k1’_nd_d]):{d+1,d+2} cA}.

By Hilton’s Lemma, we have

L(n—d,k,|FD)|) c {Be ([”;d]) [d] B and BN {d+ 1,d+2}7é(2)}.

It follows that

contradicting (11). O
Claim 17.

s<d*—d. (14)
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Proof. Assume that s > d* —d+ 1. Define E = PLU...U Pg_gqy; and
Fi={FeF:|FNE|=j}
Clearly |E| = 2(d* —d + 1) and

Fil= > |F(E; Bl (15)
Be(5)
By (13) we have
2(d?* —d+1 n—d-—1
£ (MY

Note that for any set F' € F with FNE = E; and d < j < |E|, F is counted (fi) times
in Y |F(D)|. By (15) and () > j for j > d, it follows that
De(3)

S irol- ¥ % ()Fselzimi X s
De(?]

=) d<<IEl Bie(7) d<j<|E|

By (13) we obtain that

Fal+ X0 AIFEI< Y IFD) < (2<dz _dd+1>)d(v;:jj), (16)

d<j<|B] De (%)

Applying (10) with s = d*> —d + 1,

d®> —d+1 .
———F <Y IF@I= Y iIF

z€EFE 1<j<|E)|
<(d=10) D |FI+I1F+ D iIF
1<j<d d<j<|E|
(16) A2 —d+1)\ (n—d—1
T ]

It follows that 2(d? —d + 1) d—1
2 —a+t noan
|ﬂ<d( d )(k—d—1>'

Let ¢(d) = d? (2(’12;”1)). For d > 4, since e < 4971 < d*!, using (}) < (%)k we have

C(d) < 2deddd+2 < 2dd2d+1,

contradicting our assumption |F| > 2dd2d+1(2:§j). For d = 2,3, it can be checked

directly that c(d) < 2¢d***1, contradicting our assumption as well. O
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Fix X C [n] with |X| =2d*> —2d and P, U---U P, C X. Define
T ={T c[n: |T| <d, |F(T)| > (2d*) " F[}.

By (10), there exists x € X such that

F@)] > 5ol > 517,

implying 7 # (. By (13) and |F| > 2¢d*+1 (2 =%~ 1), we know that for every D € (["})

o)l <a} 47 1) < ey

Thus |T| < d—1foreach T € T.
Now choose 7" € T such that |T'| = ¢ is maximum. Clearly ¢ > 1. Note that the
maximality of ¢ implies that for every Z C [n] with t < |Z| < d

F(Z)] < (2d%) 77| F. (17)
Set A=F(T,XUT)and U = [n|\ (X UT). Assume that
U={uy,ug,...,up}t with u; <ug < -+ < ty,.

Let Q = {u1,ug, ..., us¢}. Note that A(Q) = F(T,X UT UQ). By (17) we have

A@I = 1FD) = )Y IFTU{a})

ze(X\TUQ
> (2d%) 7Y F| — (2d* — 2d 4 2d — t)(2d*) "V | F|
t
- (2d2)t+1|f|'
Then by |F| > 2¢d?*1(7~9"1) we infer that
— n—d—1 n—d—1
= ) 1
|A<Q)’>(k—d—1) <(k:—t)—(d+1—t)) (18)
Claim 18. For every S C X\ T,
—d—1-|95]
xum)| < 2@t (" . 1
Fsxun< (32071 (19)
Proof. Let B = F(S,XUT). Recall that Py, P, ..., P is a maximal collection of pairwise
disjoint shift-resistant pairs and P, U P, U---U Py C X. Then F is initial on [n] \ X.
It follows that A C (["]\ (XUT) ) B C ([n]; )|(;|T)) are initial and cross-intersecting. For any
R C Q with |R| = r < d, we have A(Q) C (["}\()k(ftTUQ) and B(R,Q) C ([" \()T;TUQ))

THE ELECTRONIC JOURNAL OF COMBINATORICS 31(2) (2024), #P2.33 10



By Proposition 7, we infer that A(Q), B(R, Q) are cross (2d —t — r + 1)-intersecting.
Since r < d implies 2d —t —r+1>d+ 1 —t, by (18) and (5) we see that A(Q) is not
pseudo (2d —t — r + 1)-intersecting. By Proposition 10, it follows that B(R, Q) is pseudo

(2d — t — r + 2)-intersecting. Thus by (5) we have

n—|XUTUQ| n—[XUTuQ)
B(R,Q)| < = ‘
[B(E. Q)| (k_uq_r—@d—t—r+m) (f—2d—2+r%5
Since t <d—1, [XUTUQ| > S| +2d—t > S| +d+1 and
d—1—
n d2 Sl S h—d—1—|8| > k—2d—24¢-8]

we infer that

n—d—1-|5| n—d-1-|5|
< .
IB(R, Q)| < (k—2d—2+t_|5|> < (k—d—1—|5|

Moreover, |B(R)| < (Z:Zj:“gf) for |R| = d + 1. Thus,

Bl=> IBR.Q|= > IBRQI+ Y  IBRQ)

RCQ RCQ,|R|<d RCQ,|R|>d+1
< ) BRI+ Y |BR)
RCQ,|R|<d RCQ,|R|=d+1

-y 2d =1\ (n—d=1—|S[\ (24—t n—d=1-]S|
: i k—d—1—19| d+1)\k—d—1-18|
0<i<d

n—d—1—|S\) (2d—1>
< 4

i) X (7

_ —d—1-15]
g 22d 17 . 0
(k—d—1—|sr>
By (19),
— X\T 4fn—d—-1—-j
FD)|= ) |FS,XuD)|< ) (’ \ ')22d 1(k_d_1_ )
SCX\T 0<5<|X\T| J J
2d? — 2d n—d—1-j
SN Gl v )
0 <[X\T| J hmd=1=7
Note that n > 4d(d — 1)k implies
2d%—2d\ (n—d—2—j . .

Crir ) (oamay) a2 =24 —j)(k—d—1—j) _ (2 —2d)k _1
2d2—2d\ (n—d—1—j3\ i —d—1—3 =90
(G T G 1) w2
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It follows that

2% —2d\ (n—d—1—j n—d—1 . n—d—1
S Y 2i=2 .
| ( j )(k—d—l—j><(k—d—1) . (k—d—l)
0<<|X\T| 0Sisoo

Thus,

O <2 (377 ) < 417

and therefore g1

Y IF @) = |F| - |F(T)| > — Il

zeT
Since |T'| =t < d—1, there exists some z € T with | F(z)| > 1|F], contradicting o(F) <
Thus the theorem holds.

mEl

4 Proof of Theorem 5

In this section we consider the maximum degree ratio problem for t-intersecting families.
Let us recall the t-covering number 7(F):

7(F)=min{|T|: |TNF|>tforal F e F}.
It should be clear that 7(F) =t if and only if F is a t-star. Proposition 2 yields

t
7i(F)

o(F) = (20)

for any t-intersecting family F C ([Z}).

We say that a t-intersecting family F is saturated if any addition of an extra k-set to
F would destroy the t-intersecting property.

In the case 7,(F) =t + 1 one can improve on (20).

Proposition 19. Suppose that F C ([Z}) is t-intersecting, n > 2k, 7,(F) < t+1 and F

~ t+1
is saturated. Then o(F) > 5.

Proof. Without loss of generality let [t + 1] be a t-transversal of F, i.e., |[FN[t+1]| > ¢
for all ' € F. Define

F={F\[t+1]: FEF,FAt+1=[t+1]\{i}}

and Fo = F([t + 1]). By saturatedness Fy = ([;J_rffl]) Obviously, F;, F; are cross-

intersecting for 1 < i < j < ¢+ 1. By Hilton’s Lemma, min{|F;|, | 7|} < (}Z_%). Assume
by symmetry |Fi| < |[Fo| < ... < |Fipq]. Then

n—t—2 n—t—1
< = ,
|]:1|\<k—t—1)<(k:—t—1> ol
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Note that
| F)| = [Fal + - + [Fosa| + | Fol > (t + DA, [FO)| = |Fl.

Thus
| F(1)] >t+1
|IF)[+|FO)] "~ t+2

o(F) =
0

Remark 20. Considering all k-subsets of [2k — t] shows that without some conditions on

|F| one cannot hope to prove better than o(F) > %

In the case of cross t-intersecting families, ¢ > 2, we cannot apply Hilton’s Lemma.
To circumvent this difficulty we prove a similar albeit somewhat weaker inequality.

Proposition 21. Let n,k, 0, t,s be integers, s >t > 2, k, ¢ > s. Suppose that F C ([Z])
and G C ([’Z}) are cross t-intersecting. Assume that |G| > (,",). Then

uw<(&;§<”;f;1)+f(zjiji> 1)
Moreover, if n > s(k —t), then
A< ()G () + (o) +2(in) () e

Proof. Assume the contrary. Without loss of generality, we can suppose that F and G
are initial (S;; does not change |F|,|G|). Since |G| > (,",), by Theorem 9 we infer that G
is not pseudo s-intersecting. That is, there exists G € G such that |G N [2i + s]| <i+ s
foralli=0,1,...,¢ —s. It follows that

(1,2,...,s—=1,s+1,s+3,...) =Gy €G.
Let Ty € ([ij}). Then by the cross t-intersecting property
ToU(s,s+2,s+4,...) ¢ F.
Define T'= Ty U {s}. Then F(T,[s]) C ([5;1;”]) and
Ey:=(s+2,s+4,...,s+2(k—1t)) ¢ F(T,[s]).
By Fact 8, F(T,[s]) is pseudo intersecting. Thus,

i< (7)) 2

—t—1
For R C |[s],

n—s
< . 24
(R, [s])] (k— |R|> (24)
We shall use (24) for R with |R| >t and |R| =t but s ¢ R.
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Claim 22. For R C [s] with |R| =t—i andi > 1, F(R,[s]) is pseudo (2i+1)-intersecting.
Proof. Let
Ri=(s+1,5+2,...,s+2—1,5+2,s+2+2,...,5+2(k—1)).

Set @ = [t —1]U(s,8+2,...,5+2(k —1)) and note |Q N Go| =t — 1 whence Q ¢ F.
Since Q@ < RU R, RURgé]: i.e., R ¢ F(R,[s]). By Fact 8, we infer that F(R,[s]) is
pseudo (2i + 1)-intersecting. O

For |R| =t — ¢ with 1 < < t, by Claim 22

PR LT < (k—(tilz’_)i%—l) - (k—TtL:j—l)

IFl=> |F(R

RC[s]

. D+ Y IFE > IFR )

RC[s],|R|<t—1 Rre() RC[s],\R|>t+1

<> () <k_;;i._1)+($;1) (:::)+(§:1) (")
+ 2 (065 )

< (kr_zz_sl) fori <t—1 and (Z:f) < (k’:fl) for i > t + 1, we conclude

Now

Using (
that

kdrrie1)
A<(C)GD 2 O6E) - ()G
<)) ()

This proves (21).
Ifn>s(k—t)thenforl <i<t—1

(?)(k—;t:rsz‘—l) _ (s—i+1)(n—s—k+2t—i+2)

() ik—2t+i—1)

k—2t+1—2

(s—t+2)(n—s—k+t+3)
- (t—1)(k—t—2)

(s—t+2)(s—1)(k—t—1)
(t—1)(k—t—2)

> 2
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and
(") k—t—1 k—t—1 1

< .
(") n—s—k+t+2<(s—1)(k—t—1)\5—1

2060 ) () S
7))

2 s n—s
< . 26
s—l(t—l)(k—t—l) (26)
Fort+1<i<s—1,

(HS-1) (1;:—51) _ (s —i)(k —1i)
)G (i+1)(n—s—k+i+1)
(s—t—1)(k—t—1)
S (t+2(n—s—k+t+2)
(s—t—1)(k—t—1)
S UG-k —t—1)

It follows that

<1
5
It follows that
s\ [n—s s n—s > i s n—s
Z (i)(k—i)<(t+1>(k—t—1)z2 _2(t+1>(k—t—1)' (27)
t+1<i<s 1=0
Combining (25), (26) and (27), we conclude that
Fl < 2 s n—s . s—=1\[/n—s . s—1 n—s
s — t—1 k—t—1 t k—t t—1 k—t—1
S n—s
2
2,00
s—1\/n—s 2 S s—1 S n—s
p— 2 . D
(G ) Co) 20 ) )
Consider the obvious construction:

Qz{Ge(@):[s]CG},]—“:{Fe([Z]>:|Fﬂ[s]|>t}.
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Then F,G are cross t-intersecting and

a-(70) =062 06

showing that (21) does not hold for |G| < (}72).

Corollary 23. Let F C ([Z]) be t-intersecting with n > (t + 2)(k — t) and |F| > (t +
1)(," ). If o(F) < £, then for every P € (["]),

k—t—1 t+17 2

(28)

n—t—2 5t2 419t +24 (n—t — 3
P)<(t+1 S el .
Pl < (t+ ><k—t—2) 6 (k—t—3>

Proof. 1f there exists {x,y} C [n] such that

n—t—2 5t24+19t+24 (n—t —3
t+1 - - =
LI ] () E e (Y

S (4 1) n—t—4 n 2 [(t+2 L t+1 49 t+2 n—t—4
k—t—2 t+1\t—1 t—1 t+1 k—t—3)’
note that F(z,y) C ([n];{féy}), F(z,y) C ([n}\f’y}) are cross t-intersecting, by applying
Proposition 21 with s =t + 2 we infer

Fenl<(,"2,)

Since o(F) < 77 implies

_ _ 1 n—1
@l F@1 > = (),

it follows that

F@y) 2 |7@) - 7@, 9) > (kﬁi 1)

and

Fag) > 17 - 1F@al> ("2,

But F(z,y), F(x,y) are cross t-intersecting. This contradicts Corollary 11.

Lemma 24. Let F C ([Z]) be initial, t-intersecting, n = 2(t + 1)(k — t) and |F| >

2t(t+1)(t +2)(}-175) then

Proof. Consider a subset P C [t+ 1], |[P| <t— 1.
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Claim 25. F(P,[t + 1]) is 1 + 2(t — | P|)-intersecting.

Proof. Suppose for contradiction that Fy, Fy € F(P,[t + 1]) satisfy Fy N Fy = D with
|D| < 2(t — |P|). Since F is t-intersecting, we infer |D| >t — |P|. If |D| =t — |P| then
choose y € Dand v € [t+ 1]\ Pand set F} = FyUP, I, = (F,UP U {z})\ {y}.
By initiality F» < F, U P implies F, € F. But |[F;NF| = |P|+|D|-1=t-1,a
contradiction.

If |[D| > t+1—|P|, then choose E C D, |[E| =t+1—|P| and set I}, = F; UP,
F2 = (FQU[t+1])\E Then F1HF2 :PUD\EWhence

IR N Ey| = |P|+|D|—|B| <|P|+2t—2|P|— (t+1—|P|) =t — 1.

Now F; € F and Fy, U P € F by definition and F, < F, U P. Hence F, € F contradicting
the t-intersecting property. O]

Define F; = F([t + 1]\ {¢}, [t + 1]). By initiality
FLCFHKC... Cft+1.

Apply Claim 25 with P = [t + 1] \ {1}, F; is intersecting. Thus by (4) |0F:| > |Fi1|. By
initiality 0F; C Fo := F([t + 1]). Then

[ Fl = [Fol + [ Aol + |1 Fal + -+ [Foga] = (8 +2)] A (29)

For any P € ([Q’tH]), by Claim 25 we know F(P,[t + 1]) is (25 + 1)-intersecting. Note

t—j

that n > 2(t+ 1)(k—t) > (2j+2)(k—t —j) for j=1,...,t. By (1), we infer

n—t—1-2j—1 n—t—2—2j
F(Pt+1]) < = '
Ferenis ({757 = ()
Note that F(P, [t + 1)) is (k —t + j)-uniform and j > k — ¢ implies 2j +1 > k —t 4 j. It
follows that |F(P, [t + 1])| = 0 for j > k —t. Thus,

FOI= Y |FPt+1])

PC[2,t+1]

=R+ Y, Y |FEE+1)

0<ei<t—1 PE([Q,tgrl])
t \(n—t—2-2j
Al ) Q—J)(k—t—l—j)
1<j<min{t,k—t—1}

For k =t + 2, we have

_ n—t—4
1) < t .
Fol<izl () 7))
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For 2 < j < min{t,k —t — 1},

(DO =t Dk —t =)=k —j) _ (= Dkt =2)(n—k-2)

( )(Ztti])_ jn—t—2)(n—t—-2j—1) 2(n —3t)(n — 3t —1)

Since n > 2(t + 1)(k — t) and k > t + 3 implies that

n—k—2 t-—1)(k-t-2) 1
3t P aosio1 2
it follows that ( )(Tz tt 21 2;) < é(ytl) (7;C ) Thus,

_ t n—t—2-—2j
1) < . ;
F(D) |ﬂ|+z<t_])(k_t_1_j)
1<t
<|f1|+t( )ZQ

n—t—4
= 2 .
‘fl‘—F t(k)—t—Q)

By (29) and |F| > 2¢(t + 1)(t + 2)(1~/73), it follows that

k—t—2
_ t—4 1 1
1 — 2t S = )
Fl < t+2|]:|jL (k—t—2> t+2|]:| (t+1)(t+2)|]:| t+1|]:|
Thus the lemma follows. OJ

Proof of Theorem 5. Suppose to the contrary that |F| > (¢ + 1) (k’i;ll) and o(F) < 77
Since n > 2t(t + 2)k > 4(t + 2)k, we infer

7 >(t+1>k”_—;_11(k7:32> >4(t+1)(t+2)(2:§:§). (30)

Shift F ad extremis for o(F) < il and let H be the graph formed by the shift-resistant

pairs. For every P € ([;L]), by (28) and n > 2¢(t + 2)k > wk we infer

F(P )|<(t+1)(k_z:§>+5t2+1++24<2:z:§)<(t+2)(::i:§). (31)

Claim 26. H is intersecting.

Proof. Suppose that there are disjoint pairs (al, b1), (az,be) € H. Set G; ={F € F: FnN
{ai,bi} # 0}, 1 = 1,2. Since oS, (F)) > 75| F|, we infer |G;| > 5|F|. By (31) we
have

|G1 N Gs| < Z Z}"({ai,bj}) <4(t+2)(::§:;).

i=1,2 j=1,2

t+1
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It follows that

2t —t—2
F| > (G| + 1G] — |61 N Gl >t+—1|]-“|—4(t+2)(n )

k—t—2
(30) 2t 1
> ——Fl = = IFI = |F],
t+1 t+1
a contradiction. ]
Note that n > 2¢(t + 2)k implies
n—1 n—t—4
t+1 20t + 1)(t + 2 . 32
F1> (") e nera (2, 0)) (52)

By Lemma 24, we may assume that H # (). For convenience assume that (n — 1,n) € H.
Let

A:{Ae(i:iD:Auu}efwmlx:n—1mm:n},6:(m;ﬂ)mf

Since 0(Sp—1.n(F)) > 7=|F| implies

i

1
- t

by (31) and ¢ > 2 we infer

- = t
A(1,2) > —
(1,2) t+1

[ F| = [F(n=1,n)] - > [ F ()l

1e{1,2},je{n—1,n}

t n—t—2
> — —5(t+2
t+1|f| 5+ )<k—t—2)

(32) n—t—2 n—t—2
> _
/4t(t+2)(k—t—2> 5(t+2)<k—t—2)

) 1 n—3
> 3(t+2)- =
3t + )Q(k—t—Q)

n—4
. 33
>(k—t—2> (33)
Fix R C [2] with |R| < 1. Since A, B are initial and cross t-intersecting, by Proposition
7 we infer that A(1,2) and B(R, [2]) are cross (¢t + 2 — | R|)-intersecting. By (33) we know

that A(1,2) is not pseudo (¢ + 2 — |R|)-intersecting. By Proposition 10 we infer that
B(R,[2]) is pseudo (t + 3 — |R|)-intersecting. Therefore,

BRI < (" rsm) = ()

THE ELECTRONIC JOURNAL OF COMBINATORICS 31(2) (2024), #P2.33 19



Note that (31) implies B([2]) < (¢t +2)(7~/~7). Thus,

Bl=")_ IB(R.[2])

RC[2]

<3<ki;f3)+(r+m(z:z:§)

() e ()

<(t+$(z:i:§>

Then o(F) < 5 implies

- - 1 n—t—2\ (30 n—t—2
rf<n—1,n>r—\f<n—1>\—|81>H—1\fr—<t+3>(k_t_2) > <3t+5>(k_t_2)

and

|f@r—Lﬁﬂ:LF@N_¢B|>;%Tuq_(ﬁ+$<n—t—2)Q?(%%Jw<n—t—2)

k—t—2 k—t—2
Now by (31)
- n—t—2
|IF{L,n=1}n)| > [F(n—1,n)| = |F(1,n)| > (2t + 3) (k—t— 2)
and
FALn}.n = 1) > |Fn—1,7)| - [F(1,n—1)] > (2t +3) (Z:ﬁjﬁ)-
By (9),

n—t—2 (2t+3)/ n—3 n—3
2t+ 3 = > ,
(2t + ><k—t—2) > (k—t—Q) <k—t—2)
this contradicts the fact that F({1,n — 1},n), F({1,n},n—1) C ([2,’;:2}) are cross (t+1)-
intersecting. Thus the theorem holds.
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