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Abstract

Let spex(n, F ) be the maximum spectral radius over all F -free graphs of order
n, and SPEX(n, F ) be the family of F -free graphs of order n with spectral radius
equal to spex(n, F ). Given integers n, k, p with n > k > 0 and 0 6 p 6 b(n− k)/2c,
let Spn,k be the graph obtained from Kk∇(n − k)K1 by embedding p independent
edges within its independent set, where ‘∇’ means the join product. For n > ` >
4, let Gn,` = S0

n,(`−2)/2 if ` is even, and Gn,` = S1
n,(`−3)/2 if ` is odd. Cioabă,

Desai and Tait [SIAM J. Discrete Math. 37 (3) (2023) 2228-2239] showed that
for ` > 6 and sufficiently large n, if ρ(G) > ρ(Gn,`), then G contains all trees of
order ` unless G = Gn,`. They further posed a problem to study spex(n, F ) for
various specific trees F . Fix a tree F of order ` > 6, let A and B be two partite
sets of F with |A| 6 |B|, and set q = |A| − 1. We first show that any graph
in SPEX(n, F ) contains a spanning subgraph Kq,n−q for q > 1 and sufficiently
large n. Consequently, ρ(Kq,n−q) 6 spex(n, F ) 6 ρ(Gn,`), we further respectively
characterize all trees F with these two equalities holding. Secondly, we characterize
the spectral extremal graphs for some specific trees and provide asymptotic spectral
extremal values of the remaining trees. In particular, we characterize the spectral
extremal graphs for all spiders, surprisingly, the extremal graphs are not always the
spanning subgraph of Gn,`.

Mathematics Subject Classifications: 05C05; 05C35; 05C50

1 Introduction

Given a graph G, let A(G) be its adjacency matrix, and ρ(G) or ρ(A(G)) be its spectral
radius (i.e., the largest eigenvalue of A(G)). Given a graph family F , a graph is said to
be F-free if it does not contain any copy of F ∈ F . For convenience, we write F -free
instead of F -free if F = {F}. In 2010, Nikiforov [20] proposed the following Brualdi-
Soheid-Turán type problem: What is the maximum spectral radius in any F -free graph of
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order n? The aforementioned value is called the spectral extremal value of F and denoted
by spex(n, F ). An F -free graph G is said to be extremal with respect to spex(n, F ), if
|V (G)| = n and ρ(G) = spex(n, F ). Denote by SPEX(n, F ) the family of extremal graphs
with respect to spex(n, F ). In the past decades, the Brualdi-Soheid-Turán type problem
has been studied by many researchers for many specific graphs, such as complete graphs
[18, 24], odd cycles [19], even cycles [2, 18, 26, 27], paths [20] and wheels [3, 28]. For more
information, we refer the reader to [4, 9, 12, 13, 14, 15, 21, 22, 23].

Fix a tree F of order ` > 4, let A and B be two partite sets of F with |A| 6 |B|, and
set q = |A| − 1. If q = 0, then we can see that F is a star, and the spectral extremal
result is trivial. It remains the case q > 1. Obviously, Kq,n−q is F -free. Then it is natural
to consider the following result, which will be frequently used in the following.

Theorem 1. For q > 1 and sufficiently large n, any graph in SPEX(n, F ) contains a
spanning subgraph Kq,n−q.

Given integers n, k, p with n > k > 0 and p ∈ {0, 1, . . . , b(n − k)/2c}, let Spn,k be the
graph obtained from Kk∇(n− k)K1 by embedding p independent edges into (n− k)K1,
where ‘∇’ means the join product. For n > ` > 4, set Gn,` = S0

n,(`−2)/2 if ` is even

and Gn,` = S1
n,(`−3)/2 otherwise. Nikiforov [20] posed the following conjecture, which is a

spectral version of the well-known Erdős-Sós conjecture that any graph of average degree
larger than `− 2 contains all trees of order `.

Conjecture 2. ([20]) Let ` > 6 and G be a graph of sufficiently large order n. If
ρ(G) > ρ(Gn,`), then G contains all trees of order ` unless G ∼= Gn,`.

The validity of Conjecture 2 for P` was proved by Nikiforov [20], for all brooms was
proved by Liu, Broersma and Wang [16], for the family of all `-vertex trees with diame-
ter at most 4 was proved by Hou, Liu, Wang, Gao and Lv [10] when ` is even and Liu,
Broersma and Wang [17] when ` is odd. Very recently, Cioabă, Desai and Tait [1] com-
pletely solved Conjecture 2. Thus, Conjecture 2 for the family of all `-vertex trees with
given diameter is true. Now we give a slightly stronger result.

Theorem 3. Let ` > 6 and d ∈ {4, 5, . . . , `− 1}, and let G be a graph of sufficiently large
order n.
(i) If at least one of ` and d is even, then there exists a tree F of order ` and diameter d
such that SPEX(n, F ) = {Gn,`}.
(ii) If both ` and d are odd and ρ(G) > ρ(S0

n,(`−3)/2), then G contains all trees of order `

and diameter d unless G ∼= S0
n,(`−3)/2.

It is interesting to find all trees F satisfying SPEX(n, F ) = {Gn,`}.

Question 4. For sufficiently large n, which tree F of order ` > 6 can satisfy SPEX(n, F ) =
{Gn,`}?

A covering of a graph is a set of vertices which meets all edges of the graph. Let β(G)
denote the minimum number of vertices in a covering of G. Set δ := min{dF (x) : x ∈ A}.
Inspired by the work of Cioabă, Desai and Tait, we provide an answer to Question 4.
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Theorem 5. Let n be sufficiently large, and F be a tree of order ` > 4.
(i) For even `, SPEX(n, F ) = {S0

n,(`−2)/2} if and only if β(F ) = `/2.

(ii) For odd `, SPEX(n, F ) = {S1
n,(`−3)/2} if and only if β(F ) = (`− 1)/2 and δ > 2.

In [1], Cioabă, Desai and Tait also proposed the following question.

Question 6. ([1]) For sufficiently large n, what is the exact value of spex(n, F ) for a tree
F of order ` > 6?

Now we give partial answers to Question 6 in Theorems 7 and 8.

Theorem 7. If q > 1 and δ > 2, then S1
n,q is F -free. Moreover, for sufficiently large n,

q − 1

2
+

√
qn− 3q2 + 2q − 1

4
< spex(n, F ) 6 ρ(J) =

√
qn+

q + δ − 2

2
+O(

1√
n

),

where J =

[
q − 1 n− q
q δ − 1

]
.

Obviously, β(F ) 6 |A| = q + 1. If β(F ) = q + 1, then let A = {Kq+1} and otherwise,

A = {F [S] | S is a covering of F with |S| 6 q}.

Denote by ex(n,A) the maximum size in any A-free graph of order n, and EX(n,A) the
family of n-vertex A-free graphs with ex(n,A) edges. Now we give the characterization
of the spectral extremal graphs with respect to spex(n, F ) when δ = 1.

Theorem 8. For q > 1 and sufficiently large n, SPEX(n, F ) ⊆ H(n, q,A) if and only if
δ = 1, where H(n, q,A) = {QA∇(n− q)K1 | QA ∈ EX(q,A)}. Furthermore,
(i) SPEX(n, F ) = {Kq,n−q} if and only if δ = 1 and EX(q,A) = {qK1};
(ii) SPEX(n, F ) = {S0

n,q} if and only if δ = 1 and β(F ) = q + 1.

Particularly, we shall show that SPEX(n, Sa+1,b+1) = {Ka,n−a} for sufficiently large n,
where 1 6 a 6 b and Sa+1,b+1 is obtained from K1,a and K1,b by joining the centers with
a new edge. If F = Sa+1,b+1, then q = a, δ = 1 and β(F ) = 2. By the definition of A, we
can see that EX(a,A) = {aK1}. By Theorem 8 (i), SPEX(n, F ) = {Ka,n−a}.

However, it seems difficult to determine SPEX(n, F ) when δ > 2, and so we leave this
as a problem. In the following, we provide asymptotic spectral extremal values of all trees.

Note that ρ(Kq,n−q) =
√
q(n− q). From [20] we know ρ(S0

n,q) = q−1
2

+
√
qn− 3q2+2q−1

4
.

Combining these with Theorems 7 and 8, we have

spex(n, F ) =
√
qn+O(1). (1)

A tree of order ` > 4 is said to be a spider if it contains at most one vertex of
degree at least 3. The vertex of degree at least 3 is called the center of the spider (if
any vertex is of degree 1 or 2, then the spider is a path and any vertex of degree two
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can be taken to be the center). A leg of a spider is a path from the center to a leaf,
and the length of a leg is the number of its edges. Let k > 2 and let F be a spider of
order 2k + 3 with r legs of odd length and s legs of length 1. If r > 3 and s > 1, then
q = |A| − 1 = 1

2
((2k + 3)− (r + s)− 1) 6 k − 1. By (1), we get

spex(n, F ) =
√
qn+O(1) <

√
kn+O(1) = ρ(S0

n,k)

for sufficiently large n. This means that every graph G of order n with ρ(G) > ρ(S0
n,k)

contains F as a subgraph. Then we can derive the following result on spiders, which was
originally proved by Liu, Broersma and Wang [16].

Corollary 9. ([16]) Let k > 2 and let F be a spider of order 2k + 3 with r legs of odd
length and s legs of length 1. If r > 3, 2s − r > 2 and n is sufficiently large, then every
graph G of order n with ρ(G) > ρ(S0

n,k) contains F as a subgraph.

The Erdős-Sós conjecture has been confirmed for some special families of spiders (see
[5, 6, 7, 25]). Recently, Fan, Hong and Liu [8] has resolved this conjecture for all spiders.
The spectral Erdős-Sós conjecture has also been confirmed for several classes of spiders
(see [16]). In this paper, we completely characterize SPEX(n, F ) for all spiders F with
q > 1.

Theorem 10. Let r1, r2, r3, r, s and ` be non-negative integers with r = r1 + r2 + r3 and
` > 4, and let F be a spider of order ` with r1 legs of odd length at least 5, r2 legs of length
3, r3 legs of length 1 and s legs of even length. Let n be sufficiently large. Then

SPEX(n, F ) =



{S0
n,(`−r−1)/2} if s > 1 and r > 1,

{S1
n,(`−3)/2} if s > 1 and r = 0,

{S1
n,(`−r−1)/2} if s = 0 and r1 > 1,

{Sr−1n,(`−r−1)/2} if s = 0, r1 = 0, r2 > 1 and r3 ∈ {0, 1},
{Sb(2n−`+r+1)/4c

n,(`−r−1)/2 } if s = 0, r1 = 0, r2 > 1 and r3 > 2.

2 Proof of Theorem 1

Before beginning our proof, we first give some notations not defined previously. Let G be a
simple graph. We use V (G) to denote the vertex set, E(G) the edge set, |V (G)| the number
of vertices, e(G) the number of edges, ν(G) the maximum number of independent edges,
respectively. Given a vertex v ∈ V (G) and two disjoint subsets S, T ⊆ V (G). Denote by
NG(v) the set of neighbors of v in G, and let NS(v) = NG(v)∩S, dS(v) = |NS(v)|. Let G[S]
(resp. G−S) be the subgraph of G induced by S (resp. V (G)\S). Denote by G[S, T ] the
bipartite subgraph of G with vertex set S ∪T that consists of all edges with one endpoint
in S and the other endpoint in T , and let e(S) = |E(G[S])| and e(S, T ) = |E(G[S, T ])|.
Since |A|+ |B| = ` and |A| 6 |B|, we have |A| 6 `/2. Moreover,

β(F ) 6 |A| 6 `

2
. (2)
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By the definition of q, we obtain

F 6⊆ Kq,n−q and F ⊆ Kq+1,`. (3)

A standard graph theory exercise shows that for any tree F with ` > 2 vertices,

1

2
(`− 2)n 6 ex(n, F ) 6 (`− 2)n. (4)

In this section, we always assume that n is sufficiently large and G? is an extremal
graph with respect to spex(n, F ), and let ρ? denote its spectral radius. By the Perron-
Frobenius theorem, there exists a non-negative eigenvector X = (x1, . . . , xn)T correspond-
ing to ρ?. Choose a vertex u? ∈ V (G?) with xu? = max{xi | i = 1, 2, . . . , n} = 1. We also
choose a positive constant ε and a positive integer φ satisfying

ε <
1

(2`)4
and

3

(2`)φ−1
< min

{
qε,

ε

4`

}
, (5)

which will be frequently used later. First, we give a rough estimation on ρ?.

Lemma 11. For sufficiently large n, we have ρ? >
√
q(n− q).

Proof. By (3), Kq,n−q is F -free. Hence, ρ? > ρ(Kq,n−q) =
√
q(n− q) as G? is an extremal

graph with respect to spex(n, F ), as desired.

Set Lη = {u ∈ V (G?) | xu > (2`)−η} for some positive integer η. We shall constantly
give an upper bound of |Lη| and a lower bound for degrees of vertices in Lη (see Lemmas
12–14).

Lemma 12. For every positive integer µ, we have |Lµ| 6 (2`)µ+2.

Proof. By Lemma 11, for some positive integer η, we get√
q(n− q)
(2`)η

6 ρ?xu =
∑

v∈NG? (u)

xv 6 dG?(u)

for each u ∈ Lη. Summing this inequality over all vertices in Lη, we obtain

|Lη|
√
q(n− q) · 1

(2`)η
6

∑
u∈V (G?)

dG?(u) 6 2ex(n, F ) 6 2(`− 2)n.

Consequently, |Lη| 6 n0.6 for sufficiently large n.
Given an arbitrary vertex u ∈ V (G?) and a positive integer i, let Ni(u) denote the set

of vertices at distance i from u in G?. For simplicity, we use Ni, L
η
i and Lηi instead of

Ni(u), Ni(u) ∩ Lη and Ni(u) \ Lη, respectively. By Lemma 11, we have

q(n− q)xu 6 (ρ?)2xu = dG?(u)xu +
∑
v∈N1

∑
w∈N1(v)\{u}

xw. (6)
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Since N1(v)\{u} ⊆ N1∪N2, we get (N1(v)\{u})∩Lη ⊆ Lη1∪L
η
2 and (N1(v)\{u})∩Lη ⊆

Lη1∪L
η
2. Now we divide

∑
v∈N1

∑
w∈N1(v)\{u} xw into two cases w ∈ Lη1∪L

η
2 or w ∈ Lη1∪L

η
2.

Clearly, N1 = Lη1 ∪ L
η
1. In the case w ∈ Lη1 ∪ L

η
2,∑

v∈N1

∑
w∈(Lη1∪L

η
2)

xw 6
(
2e(Lη1) + e(Lη1, L

η
2)
)

+
∑
v∈Lη1

∑
w∈(Lη1∪L

η
2)

xw. (7)

By |Lη| 6 n0.6 and (4), we have

2e(Lη1) + e(Lη1, L
η
2) 6 2e(Lη) 6 2`|Lη| 6 2`n0.6. (8)

Now we deal with the case w ∈ Lη1 ∪L
η
2. Recall that xw 6 1

(2`)η
for w ∈ Lη1 ∪L

η
2. Then

∑
v∈N1

∑
w∈Lη1∪L

η
2

xw 6
(
e(Lη1, L

η
1 ∪ L

η
2) + 2e(Lη1) + e(Lη1, L

η
2)
) 1

(2`)η
6

n

(2`)η−1
, (9)

where e(Lη1, L
η
1 ∪ L

η
2) + 2e(Lη1) + e(Lη1, L

η
2) 6 2e(G?) 6 2ex(n, F ) 6 2`n by (4).

Combining (6)-(9), we obtain

qnxu < q2xu + dG?(u) + 2`n0.6 +
∑
v∈Lη1

∑
w∈(Lη1∪L

η
2)

xw +
n

(2`)η−1

< dG?(u) +
∑
v∈Lη1

∑
w∈(Lη1∪L

η
2)

xw +
2n

(2`)η−1
. (10)

Now we show that dG?(u) > n
(2`)µ+1 for any u ∈ Lµ. By (4), we have

e
(
Lη1, L

η
1 ∪ L

η
2

)
6 `
(
|Lη1|+ |L

η
1 ∪ L

η
2|
)
6 `dG?(u) +

n

(2`)η−1
, (11)

where the last inequality holds as |Lη1| 6 dG?(u), |Lη| 6 n0.6 and n is sufficiently large.
Combining (10) and (11), we obtain qnxu < (`+ 1)dG?(u) + 3n

(2`)η−1 . Clearly, xu > 1
(2`)µ

as
u ∈ Lµ. Combining these with η = µ+ 2 we obtain

(`+ 4)n

(2`)µ+1
6

qn

(2`)µ
6 (`+ 1)dG?(u) +

3n

(2`)µ+1
,

where the first inequality holds as q > 1 and ` > 4. Consequently, dG?(u) > n
(2`)µ+1 .

Summing this inequality over all vertices in Lµ, we obtain

|Lµ| n

(2`)µ+1
6
∑
u∈Lµ

dG?(u) 6 2e(G?) 6 2ex(n, F ) 6 2`n,

which leads to |Lµ| 6 (2`)µ+2, completing the proof.

the electronic journal of combinatorics 31(2) (2024), #P2.34 6



Lemma 13. For every positive integer µ and every u ∈ Lµ, we have dG?(u) > (xu − ε)n.

Proof. Let Lη1
′
be the subset of Lη1 in which each vertex has at least q neighbors in Lη1∪L

η
2.

We first claim that |Lη1
′
| 6 `

(|Lη1∪Lη2 |
q

)
. If |Lη1 ∪ L

η
2| 6 q − 1, then Lη1

′
is empty, as desired.

Now we deal with the case |Lη1 ∪L
η
2| > q. Suppose to the contrary that |Lη1

′
| > `

(|Lη1∪Lη2 |
q

)
.

For every vertex v ∈ Lη1
′
, we can select a q-subset Lv such that Lv ⊆ (Lη1 ∪ L

η
2) ∩NG?(v).

Clearly, there are exactly
(|Lη1∪Lη2 |

q

)
q-subsets in Lη1 ∪ L

η
2. By b|Lη1

′
|/
(|Lη1∪Lη2 |

q

)
c > ` and the

pigeonhole principle, there exist ` vertices v1, v2, . . . , v` in Lη1
′
such that Lv1 = Lv2 = · · · =

Lv` . It is not hard to check that G?[{u} ∪ Lv1 , {v1, . . . , v`}] ∼= Kq+1,`. Hence, G? contains
a copy of Kq+1,`, and so contains a copy of F by (3), which gives a contradiction. The
claim holds. Thus,

e(Lη1, L
η
1 ∪ L

η
2) 6 (q − 1)|Lη1 \ L

η
1

′
|+ |Lη1 ∪ L

η
2||L

η
1

′
| 6 (q − 1)dG?(u) +

n

(2`)η−1
, (12)

where the last inequality holds because both |Lη1 ∪ L
η
2| 6 |Lη| and |Lη1

′
| 6 `

(|Lη1∪Lη2 |
q

)
are

constants. Combining (10) and (12), we have qnxu 6 qdG?(u) + 3n
(2`)η−1 . Setting η = φ, by

(5) we get dG?(u) > (xu − ε)n.

Lemma 14. For every u ∈ L1, xu > 1− ε and |N1(u)| > (1− 2ε)n. Moreover, |L1| = q.

Proof. We first show the lower bounds of xu and |N1(u)| for any u ∈ L1. Suppose to the
contrary that there exists a vertex u0 ∈ L1 with xu0 < 1 − ε. Since u0 ∈ L1, we have
xu0 >

1
2`

. By Lemma 13, we get

|N1(u
?)| > (1− ε)n and |N1(u0)| >

(
1

2`
− ε
)
n.

For convenience, we set Lφi = Ni(u
?) ∩ Lφ and Lφi = Ni(u

?) \ Lφ. By Lemma 12, |Lφ| 6
(2`)φ+2. Hence, |Lφ1 | > |N1(u

?)| − |Lφ| >
(
1− 2ε

)
n. Consequently, by (5)∣∣Lφ1 ∩N1(u0)

∣∣ > ∣∣Lφ1 ∣∣+
∣∣N1(u0)

∣∣− n >
( 1

2`
− 3ε

)
n >

n

4`
. (13)

From (13) we can see that u0 has a neighbor in Lφ1 , which is also a neighbor of u?.
Thus, u0 ∈ N1(u

?)∪N2(u
?). Note that u0 ∈ L1 ⊆ Lφ. Thus, u0 ∈ Lφ1 ∪L

φ
2 . Now, applying

u = u? and η = φ to (10) gives

qn 6 |N1(u
?)|+ 2n

(2`)η−1
+ e
(
Lφ1 , (L

φ
1 ∪ L

φ
2) \ {u0}

)
+ e
(
Lφ1 , {u0}

)
xu0

6 |N1(u
?)|+ 2n

(2`)η−1
+ e
(
Lφ1 , L

φ
1 ∪ L

φ
2

)
+ e
(
Lφ1 , {u0}

)(
xu0 − 1

)
,

where xu0 − 1 < −ε by the previous assumption. Combining this with (12) and setting
η = φ, we have

qn 6 q|N1(u
?)|+ 3n

(2`)φ−1
− εe

(
Lφ1 , {u0}

)
,
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which yields that
∣∣Lφ1 ∩N1(u0)

∣∣ = e
(
Lφ1 , {u0}

)
< n

4`
by (5), contradicting (13). Therefore,

xu > 1− ε for each u ∈ L1. Furthermore, it follows from Lemma 13 that for each u ∈ L1,
|N1(u)| > (1− 2ε)n.

Finally, we prove that |L1| = q. We first suppose |L1| > q+ 1. Note that every vertex
u ∈ L1 has at most 2εn non-neighbors. By (5), we can see that any q + 1 vertices in L1

have at least n− 2(q+ 1)εn > n
2

common neighbors. Hence, G? contains a copy of Kq+1,`,
and so contains a copy of F by (3), which gives a contradiction. Thus, |L1| 6 q.

Next, suppose that |L1| 6 q − 1. Choose an arbitrary integer η > 2. Since u? ∈
L1 \ (Lη1 ∪ L

η
2), we have |(Lη1 ∪ L

η
2) ∩ L1| 6 q − 2. We can further obtain that

e
(
Lη1, (L

η
1 ∪ L

η
2) ∩ L1

)
6 |Lη1| · |(L

η
1 ∪ L

η
2) ∩ L1| 6 (q − 2)n.

By (4), we have e
(
Lη1, (L

η
1 ∪L

η
2) \L1

)
6 e(G?) < `n. Furthermore, by the definition of L1,

we know that xw <
1
2`

for each w ∈ (Lη1 ∪ L
η
2) \ L1. Applying u = u? to (10) gives

qn 6 dG?(u
?) +

∑
v∈Lη1

∑
w∈(Lη1∪L

η
2)

xw +
2n

(2`)η−1

6
(
|N1(u

?)|+ 2n

(2`)η−1
+e
(
Lη1, (L

η
1 ∪ L

η
2) ∩ L1

))
+e
(
Lη1, (L

η
1 ∪ L

η
2) \ L1

) 1

2`

6
(
n+

2n

2`

)
+ (q − 2)n+ `n · 1

2`

6

(
q − 1

4

)
n (as ` > 4),

which gives a contradiction. Therefore, |L1| = q.

For convenience, we use L, Li and Li instead of L1, Ni(u) ∩ L1 and Ni(u) \ L1,
respectively. Now, let R1 be the subset of V (G?) \ L in which every vertex is a non-
neighbor of some vertex in L and R = V (G?) \ (L ∪ R1). Thus, |R1| 6 2εn|L| 6 n

(2`)3

by (5), and so |R| = n − |L| − |R1| > n
2
. Now, we prove that the eigenvector entries of

vertices in R ∪R1 are small.

Lemma 15. Let u ∈ R ∪R1. Then xu 6 1
2`2

.

Proof. For any vertex u ∈ R ∪R1, we can see that

dR(u) 6 `− 1. (14)

Indeed, if dR(u) > `, then G?[NR(u)∪ {u} ∪L] contains a copy of Kq+1,`, and so contains
a copy of F by (3), a contradiction. By Lemma 14 and (2), |L| = q 6 (`− 2)/2. Then,

dG?(u) = dL(u) + dR(u) + dR1(u) 6
3

2
`+ dR1(u).

Note that |R1| 6 n
(2`)3

and e(R1) 6 `|R1| by (4). Thus,

ρ?
∑
u∈R1

xu 6
∑
u∈R1

dG?(u) 6
∑
u∈R1

(
3

2
`+ dR1(u)

)
6

3

2
`|R1|+ 2e(R1) 6

7

2
`|R1| 6

7n

16`2
,
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which yields
∑

u∈R1
xu 6 7n

16`2ρ?
. Combining |L| 6 (`− 2)/2 and (14), we obtain

ρ?xu =
∑

v∈NG? (u)

xv 6
∑

v∈NL(u)

xv +
∑

v∈NR(u)

xv +
∑

v∈NR1
(u)

xv 6
3

2
`+

7n

16`2ρ?
.

Note that ρ? >
√
q(n− q) >

√
n− 1. Dividing both sides by ρ?, we get

xu6
3`

2ρ?
+

7n

16`2(ρ?)2
6

3`

2
√
n− 1

+
7n

16`2(n− 1)
6

1

2`2
,

where the last inequality holds as n is sufficiently large, as desired.

Now we complete the proof of Theorem 1.

Proof of Theorem 1 . From (4) we know that e(R1) 6 `|R1|. Then there exists a

vertex v1 ∈ R1 with dR1(v1) 6 2e(R1)
|R1| 6 2`. We modify the graph G? by deleting all

edges incident to v1 and joining v1 to all vertices in L to obtain the graph G??. We
first claim that G?? is F -free. Suppose to the contrary, then G?? contains a subgraph F ′

isomorphic to F . From the modification, we can see that v1 ∈ V (F ′). Since |R| > n
2
,

we have |R \ V (F ′)| > |R| − ` > `. Then there exists a vertex w1 ∈ R \ V (F ′). Clearly,
NG??(v1) = L ⊆ NG??(w1). This indicates that a copy of F is already present in G?, which
gives a contradiction. Hence, G?? is F -free.

Now we claim that ρ(G??) > ρ?. By (14) and Lemma 15, we have∑
w∈NL∪R∪R1

(v1)

xw 6 (q − 1) +
∑

w∈NR(v1)

xw +
∑

w∈NR1
(v1)

xw 6 (q − 1) + 3` · 1

2`2
, (15)

By Lemma 14,
∑

w∈L xw > q(1− ε). Combining this with (15) and (5), we have

ρ(G??)− ρ? > 2

XTX
xv1

∑
w∈L

xw −
∑

w∈NL∪R∪R1
(v1)

xw

 > 0.

If ρ(G??) = ρ?, then xv1 = 0 and X is also a non-negative eigenvector of G?? corresponding
to ρ?. This implies that ρ(G??)xv1 =

∑
w∈L xw > q(1−ε), and so xv1 > 0, a contradiction.

Thus, ρ(G??) > ρ?, contradicting that G? is an extremal graph with respect to spex(n, F ).
Therefore, R1 is empty, and thus G? contains a spanning subgraph Kq,n−q, completing
the proof.

3 Proofs of the remaining theorems

In this section, we first record several technique lemmas that we will use.
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Lemma 16. ([21]) Let H1 be a graph on n0 vertices with maximum degree d and H2 be a
graph on n− n0 vertices with maximum degree d′. H1 and H2 may have loops or multiple
edges, where loops add 1 to the degree. Let H = H1∇H2. Define

J? =

[
d n− n0

n0 d′

]
.

Then ρ(H) 6 ρ(J?).

The well–known König–Egerváry theorem is as follows.

Lemma 17. ([11]) For any bipartite graph G, we have β(G) = ν(G).

By the proof of Theorem 1, we can see that G? = G?[L]∇G?[R]. We then give three
lemmas to characterize G?[L] and G?[R], which help us to present an approach to prove
the remaining theorems.

Lemma 18. Let n be sufficiently large and H be a graph of order q. Then H∇(n− q)K1

is F -free if and only if H is A-free. Furthermore, if G?[L] ∼= Kq, then β(F ) = q + 1.

Proof. Suppose first that H is A-free. Then we show that H∇(n− q)K1 is F -free. Oth-
erwise, embed F into H∇(n− q)K1 and set S = V (F ) ∩ V (H). Then S is a covering set
of F . By the definition of A, F [S] ∈ A. However, F [S] ⊆ H[S], which contradicts that
H is A-free. Hence, H∇(n− q)K1 is F -free. Suppose then that H is not A-free. By the
definition of A, there exists a covering set S of F such that |S| 6 q and F [S] ⊆ H. We
can further find that H∇(n − q)K1 contains a copy of F . Therefore, H∇(n − q)K1 is
F -free if and only if H is A-free.

By Theorem 1, G?[L]∇(n− q)K1 ⊆ G?. Since G? is F -free, so does G?[L]∇(n− q)K1.
Thus, G?[L] is A-free. Assume that G?[L] ∼= Kq. Now we prove that β(F ) > q + 1. If
not, then there exists a covering set S of F with |S| = β(F ) 6 q. Clearly, F [S] ⊆ Kq

and F [S] ∈ A. It follows that G?[L] contains a member of A, contradicting that G?[L]
is A-free. Hence, β(F ) > q + 1. This, together with β(F ) 6 |A| = q + 1, gives that
β(F ) = q + 1. This completes the proof.

Given a non-nagative integer p 6 b/2, let Kp
a,b be the graph obtained from aK1∇bK1

by embedding p independent edges into the partite set of size b.

Lemma 19. Let n be sufficiently large and δ = 1. Then e(G?[R]) = 0 and G?[L] ∈
EX(q,A).

Proof. Since δ = 1, there exists a vertex v ∈ A of degree 1 in F . Let A′ = A \ {v}
and B′ = B ∪ {v}. Obviously, |A′| = q and F [B′] consists of an edge and some isolated
vertices, which implies that F ⊆ K1

q,`−q. If e(G?[R]) > 1, then G? must contain a copy of
K1
q,n−q, and so contains a copy of F , a contradiction. Thus, e(G?[R]) = 0.
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By Lemma 18, G?[L] is A-free, which implies that e(G?[L]) 6 ex(q,A). Now we
prove that e(G?[L]) = ex(q,A). Suppose to the contrary, then e(G?[L]) < e(QA), where
QA ∈ EX(q,A). Clearly, e(QA) 6 e(Kq) =

(
q
2

)
. By Lemma 14 and (5), we have∑

uv∈E(QA)

xuxv −
∑

uv∈E(G?[L])

xuxv > e(QA)(1− ε)2 − e(G?[L])

> e(QA)− 2εe(QA)− e(G?[L])

> 1− 2ε

(
q

2

)
> 0.

Consequently,

ρ(QA∇(n− q)K1)− ρ(G?) >
1

XTX
XT(A(QA∇(n− q)K1)− A(G?))X

>
2

XTX

 ∑
uv∈E(QA)

xuxv −
∑

uv∈E(G?[L])

xuxv


> 0.

By Lemma 18, QA∇(n− q)K1 is F -free. However, this contradicts that G? is an extremal
graph with respect to spex(n, F ). Hence, e(G?[L]) = ex(q,A). From the proof in Lemma
18 we know that G?[L] is A-free. Therefore, G?[L] ∈ EX(q,A).

Lemma 20. Let n be sufficiently large and δ > 2. Then S1
n,q is F -free and e(G?[R]) > 1.

Proof. We first prove that S1
n,q is F -free, where Y1 is the set of dominating vertices of S1

n,q

and Y2 = V (S1
n,q) \ Y1. Otherwise, embed F into S1

n,q. Set Ai = A∩ Yi for each i ∈ {1, 2}.
Then A = A1 ∪A2. Since |A| = q+ 1 = |Y1|+ 1 > |A1|, we have A2 6= ∅. In the graph F ,
let B1 be the set of vertices in Y1 adjacent to at least one vertex in A2. Then, B1 ⊆ B,
and thus A1 ⊆ Y1 \ B1 as A1 ⊆ A. Obviously, S1

n,q[Y2] contains exactly one edge, say
e. Since F [A2 ∪ B1] is a forest, we have e(F [A2 ∪ B1]) 6 |A2| + |B1| − 1. On the other
hand, since δ > 2, we can see that e(F [A2 ∪ B1]) > 2|A2| − 1 if there exists a vertex in
A2 incident to e, and e(F [A2 ∪ B1]) > 2|A2| if there exists no vertex in A2 incident to e.
In both situations,

2|A2| − 1 6 e(F [A2 ∪B1]) 6 |A2|+ |B1| − 1,

which yields that |A2| 6 |B1|. Combining A1 ⊆ Y1 \B1, we obtain

q + 1 = |A| = |A1|+ |A2| 6 |Y1 \B1|+ |B1| = |Y1| = q,

a contradiction. Hence, S1
n,q is F -free. It follows that ρ(G?) > ρ(S1

n,q).
Now we prove that e(G?[R]) > 1. Otherwise, e(G?[R]) = 0, which implies that G? is

a proper subgraph of S1
n,q. Then, ρ(G?) < ρ(S1

n,q), contradicting ρ(G?) > ρ(S1
n,q). Hence,

e(G?[R]) > 1. This completes the proof.
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Combining Lemmas 19 and 20, we can directly get Theorem 8. Having Lemmas 16-20,
we are ready to complete the proofs of the remaining theorems.

Proof of Theorem 5. (i) Recall thatG? is an extremal graph with respect to spex(n, F )
and G? = G?[L]∇G?[R]. Suppose that SPEX(n, F ) = {S0

n,(`−2)/2}. Then, G?[L] ∼=
K(`−2)/2 and e(G?[R]) = 0. Since e(G?[R]) = 0, we have δ = 1 by Lemma 20. Since
G?[L] ∼= K(`−2)/2, by Lemma 18, we have β(F ) = q + 1 = `/2.

Conversely, if β(F ) = `/2, then β(F ) = |A| = |B| by (2). Then, δ = 1 as F is a
tree. Since β(F ) = |A| = q + 1, by the definition of A we obtain A = {Kq+1}, and
hence EX(q,A) = {K(`−2)/2}. By Lemma 19, G?[L] ∼= K(`−2)/2 and e(G?[R]) = 0, that is,
SPEX(n, F ) = {S0

n,(`−2)/2}, as desired.

(ii) Suppose SPEX(n, F ) = {S1
n,(`−3)/2}, that is, G?[L] ∼= K(`−3)/2 and e(G?[R]) = 1.

Since e(G?[R]) = 1, we have δ > 2 by Lemma 19. Since G?[L] ∼= K(`−3)/2, by Lemma 18,
we have β(F ) = q + 1 = (`− 1)/2.

Conversely, suppose β(F ) = (`− 1)/2 and δ > 2. Combining (2) gives |A| = q + 1 =
(`− 1)/2. We first claim that G?[R] is 2K2-free. Otherwise, G? contains a copy of K2

q,n−q.
Let v1, v2 be two endpoints of a longest path P in F . Since F is not a star, the path P is
of length at least 3, which implies that v1, v2 have no common neighbors. Since δ > 2, we
have v1, v2 ∈ B. Set A′ = B \ {v1, v2} and B′ = A ∪ {v1, v2}. Then A′ is an independent
set of F with |A′| = (`− 3)/2 = q, and F [B′] consists of two independent edges and some
isolated vertices. This indicates that F ⊆ K2

q,`−q. However, G? contains a copy of K2
q,n−q,

and so contains a copy of F , a contradiction. Hence, G?[R] is 2K2-free.
We then claim that G?[R] is P3-free. Since δ > 2, we have

`− 1 = e(F ) =
∑
v∈A

dA(v) > δ
`− 1

2
> `− 1.

This indicates that all vertices in A are of degree 2. Choose an arbitrary vertex v0 ∈ A.
Set A′′ = A \ {v0} and B′′ = B ∪ {v0}. Then A′′ is an independent set of F with
|A′′| = (`− 3)/2, and F [B′′] consists of a path of length 2 with center v0 and some
isolated vertices. This implies that G?[R] is P3-free.

Combining the above two claims, we can see that e(G?[R]) 6 1, and hence G? ⊆
S1
n,(`−3)/2 as q = (` − 3)/2. By δ > 2 and Lemma 20, S1

n,(`−3)/2 is F -free. Therefore,

G? ∼= S1
n,(`−3)/2. The result follows.

Proof of Theorem 3. For non-negative integers a, b, c with a > b + 1 and c > 1, let
S(a, b, c) be the spider with a − b − 1 legs of length 1, b legs of length 2 and one leg of
length c. Clearly,

|V (S(a, b, c))| = (a− b− 1) + 2b+ c+ 1 = a+ b+ c.

We can find integers α and γ such that 0 6 γ 6 1 and ` − d − 1 = 2α + γ. Then
S(α + γ + 2, α + 1, d− 2) is a spider of order ` and diameter d.

(i) Suppose first that ` is even. Whether d is even or not, we always obtain that
β(S(α + γ + 2, α + 1, d − 2)) = `/2. By Theorem 5 (i), SPEX(n, S(α + γ + 2, α +
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1, d − 2)) = {Gn,`}. Suppose now that ` is odd and d is even. It is not hard to check
that γ = 0, δ = 2 and β(S(α + γ + 2, α + 1, d − 2)) = (` − 1)/2. By Theorem 5 (ii),
SPEX(n, S(α + γ + 2, α + 1, d− 2)) = {Gn,`}, as desired.

(ii) Suppose that both ` and d are odd. Let F be a graph of order ` and diameter d.
Then two endpoints of a longest path in F belong to different partite sets, which implies
that δ = 1. On the one hand, β(S(α + γ + 2, α + 1, d − 2)) = q + 1 = (` − 1)/2. By
δ = 1 and Theorem 8, SPEX(n, S(α + γ + 2, α + 1, d − 2)) = {S0

n,(`−3)/2}. This means

that S0
n,(`−3)/2 does not contain a copy of S(α + γ + 2, α + 1, d− 2). On the other hand,

By δ = 1 and Lemma 19, e(G?[R]) = 0. Then, any graph in SPEX(n, F ) is a subgraph
of S0

n,q, and consequently, it is also a subgraph of S0
n,(`−3)/2 as q + 1 = |A| 6 (` − 1)/2.

This means that spex(n, F ) 6 ρ(S0
n,(`−3)/2), with equality if and only if G? ∼= S0

n,(`−3)/2.

Therefore, if ρ(G) > ρ(S0
n,(`−3)/2), then G contains all trees of order ` and diameter d

unless G ∼= S0
n,(`−3)/2, as desired.

Proof of Theorem 7. We first consider the lower bound. From [20] we know ρ(S0
n,q) =

q−1
2

+
√
qn− 3q2+2q−1

4
. This, together with Lemma 20, gives that

ρ(G?) > ρ(S1
n,q) > ρ(S0

n,q) =
q − 1

2
+

√
qn− 3q2 + 2q − 1

4
.

It remains the upper bound. We shall prove that ∆ 6 δ−1, where ∆ is the maximum
degree of G?[R]. Suppose to the contrary that there exists a vertex ũ ∈ R with dR(ũ) > δ.
Choose a vertex u0 ∈ A with dF (u0) = δ. Then we can embed F into G? by embedding
A \ {u0} into L, and embedding B ∪ {u0} into R such that ũ = u0. This contradicts that
G? is F -free. The claim holds. Applying d = q − 1, n0 = q and d′ = ∆ with Lemma 16,
we have ρ? 6 ρ(J?). By direct computation, we have

ρ(J?) =
q + ∆− 1

2
+

1

2

√
(q + ∆− 1)2 − 4((q − 1)∆− q(n− q)),

and

ρ(J) =
q + δ − 2

2
+

1

2

√
(q + δ − 2)2 − 4((q − 1)(δ − 1)− q(n− q)).

Since n is sufficiently large and ∆ 6 δ − 1, we obtain that

ρ? 6 ρ(J?) 6 ρ(J) =
√
qn+

q + δ − 2

2
+O(

1√
n

).

This completes the proof.

Proof of Theorem 10. Let v? be the center of the spider F , and let C denote the set
of vertices at odd distance from v? in F . Then C ∈ {A,B}. Combining Lemma 17, we
can observe that

δ =

{
1 if r > 1 and s > 1,
2 otherwise,

(16)
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and

β(F ) = ν(F ) = |A| =
{

(`− r + 1)/2 if r > 1,
(`− 1)/2 if r = 0.

(17)

We first give the following claim.

Claim 21. G?[R] is P3-free.

Proof. Since F is not a star, we can select a leg of length k > 2, say v?v1 · · · vk. Clearly,
vi ∈ A for some i ∈ {1, 2}. Set A′ = A \ {vi} and B′ = B ∪ {vi}. Then, A′ is an
independent set of F with |A′| = |A| − 1 = |L|, and F [B′] consists of a path of length 2
with center vi and some isolated vertices. Thus, G?[R] is P3-free.

Now we distinguish two cases to complete the proof.
Case 1. s > 1.

Suppose first that r > 1. By (16) and (17), we have δ = 1 and β(F ) = q + 1 =
(` − r + 1)/2. Combining Theorem 8, we have SPEX(n, F ) = {S0

n,(`−r−1)/2}, as desired.

Suppose then that r = 0. By (17), |L| = q = (` − 3)/2. Since s = dF (v?) > 2,
we can select two legs of even length, say v?v1v2 · · · v2k1−1v2k1 and v?w1w2 · · ·w2k2−1w2k2 .
Obviously, v2k1 , w2k2 ∈ B. Set A′ = B \ {v2k1 , w2k2} and B′ = A ∪ {v2k1 , w2k2}. Then,
A′ is an independent set of F with |A′| = |B| − 2 = (` − 3)/2, and F [B′] consists of
two independent edges and some isolated vertices. This implies that G?[R] is 2K2-free.
Combining Claim 21, we have e(G?[R]) 6 1, and thus G? ⊆ S1

n,(`−3)/2. On the other hand,

from (16) we get δ = 2. By Lemma 20, S1
n,(`−3)/2 is F -free. Thus, G? ∼= S1

n,(`−3)/2, as
desired.
Case 2. s = 0.

Obviously, r > 2. Since F is not a star, we have r1 + r2 > 1. Now, we divide the proof
into the following three subcases.
Subcase 2.1. r1 > 1.

Then, there exists a leg of length 2k+1 > 5, say v?v1 . . . v2k+1. Clearly, v?, v2, . . . , v2k ∈
A. Set A′ = (A\{v2, v4})∪{v3} and B′ = V (F )\A′. Then, A′ is an independent set of F
with |A′| = |A| − 1 = (`− r − 1)/2 by (17), and F [B′] consists of two independent edges
v1v2, v4v5 and some isolated vertices. This indicates that G?[R] is 2K2-free. Combining
Claim 21, we have e(G?[R]) 6 1, and thus G? ⊆ S1

n,(`−r−1)/2. On the other hand, since

δ = 2 by (16), by Lemma 20, S1
n,(`−r−1)/2 is F -free. Thus, G? ∼= S1

n,(`−r−1)/2, as desired.

Subcase 2.2. r1 = 0, r2 > 1 and r3 ∈ {0, 1}.
By (17), |A| = (` − r + 1)/2 and |B| = (` + r − 1)/2. Moreover, there are exactly

r leaves in F , say v1, v2, . . . , vr, which contains no common neighbors as r3 ∈ {0, 1}.
Obviously, v1, v2, . . . , vr ∈ B. Set A′ = B \ {v1, v2, . . . , vr} and B′ = A ∪ {v1, v2, . . . , vr}.
Then A′ is an independent set of F , and F [B′] consists of r independent edges and some
isolated vertices. Since |L| = |A′|, we can observe that G?[R] is rK2-free, and Srn,(`−r−1)/2
contains a copy of F . Combining Claim 21, we can see that G?[R] consists of at most
r − 1 independent edges and some isolated vertices, and thus G? ⊆ Sr−1n,(`−r−1)/2.
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Note that Srn,(`−r−1)/2 contains a copy of F . Then r′ 6 r, where r′ is the minimum

integer such that Sr
′

n,(`−r−1)/2 contains a copy of F . By (16), δ > 2. Then, from Lemma 20

we know that S1
n,(`−r−1)/2 is F -free, which implies that r′ > 2. Now we shall prove r′ = r.

Otherwise, r′ < r. Embed F into Sr
′

n,(`−r−1)/2, where Y1 is the set of dominating vertices of

Sr
′

n,(`−r−1)/2 and Y2 = V (Sr
′

n,(`−r−1)/2)\Y1. Set V (F )∩V (Y1) = A′ and V (F )∩V (Y2) = B′.

By the definition of r′, F [B′] contains exactly r′ independent edges, say e1, e2, . . . , er′ ,
and some isolated vertices. Contracting ei as a vertex for each i ∈ {1, . . . , r′} in F and
Sr
′

n,(`−r−1)/2, we obtain a corresponding spider F ′ and a corresponding graph S0
n−r′,(`−r−1)/2.

Then, F ′ ⊆ S0
n−r′,(`−r−1)/2 as F ⊆ Sr

′

n,(`−r−1)/2. Now we shall prove that S0
n−r′,(`−r−1)/2 is

F ′-free, which gives a contradiction. By Claim 21, any leg of F has at most one of these
independent edges. If r3 = 0, then F ′ has exactly r− r′ > 1 legs of length 3 and r′ legs of
length 2. If r3 = 1, then either F ′ has exactly r − 1− r′ legs of length 3, r′ legs of length
2 and one leg of length 1, or F ′ has exactly r − r′ > 1 legs of length 3 and r′ − 1 legs of
length 2. Let A′ and B′ be two partite sets of F ′ with |A′| 6 |B′|. In all situations, we
can see that |V (F ′)| = ` − r′, F ′ has exactly r − r′ > 1 legs of odd length and at least
r′ − 1 > 1 legs of length 2. Hence, min{dF ′(x) : x ∈ A′} = 1 and

β(F ′) = ν(F ′) = |A′| = ((`− r′)− (r − r′) + 1)/2 = (`− r + 1)/2.

By Theorem 8 (ii), we know that S0
n−r′,(`−r−1)/2 is F ′-free, a contradiction. Hence, r′ = r.

By the definition of r′, Sr−1n,(`−r−1)/2 is F -free. Recall that G? ⊆ Sr−1n,(`−r−1)/2. Then by the

definition of G?, we have G? ∼= Sr−1n,(`−r−1)/2, as desired.
Subcase 2.3. r1 = 0, r2 > 1 and r3 > 2.

Clearly, ` = 1 + 3r2 + r3 = 1 + r + 2r2, and consequently r2 = (` − r − 1)/2. By
Claim 21, G?[R] is P3-free. By (17), q = (` − r − 1)/2. Combining these with Theorem

1, G? ⊆ S
b(2n−`+r+1)/4c
n,(`−r−1)/2 . It suffices to show that S

b(2n−`+r+1)/4c
n,(`−r−1)/2 is F -free. Suppose to the

contrary that S
b(2n−`+r+1)/4c
n,(`−r−1)/2 contains a copy of F . Then embed F into S

b(2n−`+r+1)/4c
n,(`−r−1)/2 ,

where Y1 is the set of dominating vertices of S
b(2n−`+r+1)/4c
n,(`−r−1)/2 and Y2 = V (S

b(2n−`+r+1)/4c
n,(`−r−1)/2 )\Y1.

Set V (F )∩Y1 = A′ and V (F )∩Y2 = B′. Clearly, F −{v?} consists of r2 paths of length 2,

say P 1, P 2, . . . , P r2 , and r3 isolated vertices, say w1, w2, . . . , wr3 . Since S
b(2n−`+r+1)/4c
n,(`−r−1)/2 [Y2]

is P3-free, at least one vertex of P i belongs to A′ for each i ∈ {1, 2, . . . , r2}, and at least
one vertex of {v?, w1, w2} belongs to A′. It follows that |A′| > r2 + 1 = (` − r + 1)/2,

which contradicts that |A′| 6 |Y1| = (`− r − 1)/2. Hence, S
b(2n−`+r+1)/4c
n,(`−r−1)/2 is F -free.

This completes the proof of Theorem 10.
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