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Abstract

Let χ(En) denote the chromatic number of the Euclidean space En, i.e., the
smallest number of colors that can be used to color En so that no two points unit
distance apart are of the same color. We present explicit constructions of colorings
of En based on sublattice coloring schemes that establish the following new bounds:
χ(E5) 󰃑 140, χ(En) 󰃑 7n/2 for n ∈ {6, 8, 24}, χ(E7) 󰃑 1372, χ(E9) 󰃑 17253, and
χ(En) 󰃑 3n for all n 󰃑 38 and n ∈ {48, 49}.
Mathematics Subject Classifications: 05C15, 11H31, 05B40, 52C17

1 Introduction

We denote by χ(A) the chromatic number of A ⊂ En, which is the least number of
colors needed to color A so that any two points distance one apart receive different colors.
Determining χ(En) is a very challenging question, which is solved only for the trivial case
n = 1, where χ(E1) = 2. For n = 2 this problem is known as Hadwiger-Nelson problem.
Using a hexagonal tiling, it is not hard to show χ(E2) 󰃑 7, and the current best lower
bound χ(E2) 󰃍 5 was obtained only relatively recently by de Grey [10].

There has been considerable attention paid to the lower estimates of χ(En) for small
n, see, e.g. [5, Sect. 5.9], [16] or [3], and the references therein. However, it appears that
the upper estimates are almost unstudied. In this work we establish a number of new
upper bounds on χ(En) and hope to encourage further research in this direction.

Asymptotically as n → ∞ the best known bounds on χ(En) are

(1.239 + o(1))n 󰃑 χ(En) 󰃑 (3 + o(1))n,
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obtained by Raigorodskii [19] and Larman and Rogers [13], respectively, where the o(1)
terms are not quantified. Based on the work of Prosanov [17] the o(1) term in the upper
bound can be specified to be χ(En) 󰃑 (1 + o(1))n lnn 3n, see Section 5.

Let us summarize the previously best known upper bounds on χ(En) for small di-
mensions. The bound χ(E3) 󰃑 15 was established by Coulson [7] and, independently,
by Radoičić and Tóth [18]. Both constructions were based on coloring the interiors of
Voronoi cells of a certain lattice Λ with the same color (for a brief background on lat-
tices the reader may consult Section 2). The choice of the color, however, was performed
differently: in [7], coset membership w.r.t. a sublattice Λ′ was used (sublattice coloring
scheme), while in [18] a linear mapping from the lattice to Z15 was used (linear coloring
scheme). Extensions to n = 4 were mentioned without proofs: χ(E4) 󰃑 54 in [18], and
χ(E4) 󰃑 49 in [8]. We prove that χ(E4) 󰃑 49 in Theorem 3.

We note that the standard two-colouring of E1 and the hexagonal 7-colouring of E2 are
both sublattice colouring schemes as well as they are examples of linear coloring schemes.
Additionally, every linear coloring scheme is a sublattice coloring scheme. However, the
sublattice coloring scheme according to Λ′ = 2Λ is not in general a linear coloring scheme.

The technique of Radoičić and Tóth [18], i.e. linear coloring schemes based on A∗
n

lattice, was studied with computer assistance for the cases n = 5 and n = 6 by the con-
tributors “ag24ag24” (de Grey) and “Philip Gibbs” in Polymath 16 project discussion [15].
Namely, it was announced that χ(E5) 󰃑 156 and χ(E6) 󰃑 448.

Using computer assistance, we found sublattice coloring schemes for the lattices A∗
5,

E∗
7 and A∗

9 yielding the following result.

Theorem 1. χ(E5) 󰃑 140, χ(E7) 󰃑 1372, χ(E9) 󰃑 17253.

Our next result relies on the following fact: if there exists a lattice Λ in En with
covering-packing ratio not exceeding 2 (see Section 2 for definitions), then a sublattice
coloring scheme (with a sublattice 3Λ) gives χ(En) 󰃑 3n. Using known results on lam-
inated lattices and a certain inequality estimating the covering radius, we obtained the
following.

Theorem 2. χ(En) 󰃑 3n for any n 󰃑 38 and for n ∈ {48, 49}.

For even dimensions where there exists a lattice with covering-packing ratio at most
3/2, and some additional properties are known, we can do much better using an appro-
priate representation of such a lattice as an Eisenstein lattice (a complex lattice over the
ring Z[e2πi/3]). This approach also recovers the known bounds for n = 2 and n = 4 in a
unified way.

Theorem 3. χ(En) 󰃑 7n/2 for n ∈ {2, 4, 6, 8, 24}.

We remark that the proofs of Theorems 2 and 3 do not require computer assistance.
We also note, that Theorem 3 gives the upper bound χ(E24) 󰃑 712 which also implies the
bounds χ(En) 󰃑 712 for n ∈ {22, 23}. In these dimensions, 712 is smaller than the upper
bound 3n that can be obtained from Theorem 2.
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The current best known upper bounds on χ(En) for small n, including the results
obtained in this paper, are summarized in Table 1. Note that the gap between the lower
(see, e.g. [16, Section “Best known results for the chromatic number in higher dimensions”]
or [3, Table 1]) and the upper bounds on chromatic number is large and grows very quickly,
namely, for the first few n the known estimates are: 6 󰃑 χ(E3) 󰃑 15, 9 󰃑 χ(E4) 󰃑 49,
9 󰃑 χ(E5) 󰃑 140, 12 󰃑 χ(E6) 󰃑 343, 16 󰃑 χ(E7) 󰃑 1372, 19 󰃑 χ(E8) 󰃑 2401.

n χ(En) 󰃑 references

2 7 John Isbell, see [23, p. 29]
3 15 [7], [18]

4 49
mentioned in [8];

proof in Theorem 3
5 140 Theorem 1
6 343 Theorem 3
7 1372 Theorem 1
8 2401 Theorem 3
9 17253 Theorem 1

10 󰃑 n 󰃑 21 3n Theorem 2
22 󰃑 n 󰃑 24 712 Theorem 3

25 󰃑 n 󰃑 38, n = 48, 49 3n Theorem 2

Table 1: Upper bounds on χ(En) for small n

We give the necessary preliminaries in the next section. Theorem 1 is proved in
Section 3, Theorems 2 and 3 are proved in Section 4. In Section 5 we deduce an upper
bound on χ(En) valid in all dimensions n. The concluding Section 6 lists some open
questions.

The code and the datasets used in the proof of Theorem 1 are available in the GitHub
repository, https://github.com/andriyprm/ubcnessd/releases/tag/v1.

2 Preliminaries

For x, y ∈ En, we denote by x·y the dot product in En and by |x| := (x·x)1/2 the Euclidean
norm of x. For two sets A,B ⊂ En we set dist (A,B) := inf{|x− y| : x ∈ A, y ∈ B} and
extend the notation to the one-point sets by dist (A, b) := dist (A, {b}). We also define
B(R) := {x ∈ En : |x| < R} and B[R] := {x ∈ En : |x| 󰃑 R}.

2.1 Lattices

For a real m × n matrix M of rank n, a lattice Λ generated by M is the set Λ = MZn.
The rank of a lattice Λ is n, and if M is a full rank square matrix, then Λ is said to be
full rank.
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A lattice Λ ⊂ Em forms a discrete additive subgroup in Em. An additive subgroup of
Λ is called a sublattice. It is not hard to see that Λ′ is a sublattice of Λ generated by M if
and only if Λ′ = MCZn for some m×m integer matrix C. The index of Λ′ (with respect
to Λ) is an index of Λ′ as a subgroup of Λ. We use the notation |Λ/Λ′| for the index and
note that it is equal to | detC|, provided C is not singular.

For a lattice Λ generated by a matrix M , a fundamental parallelepiped P is an image
of [0, 1]n under M : En → Em. If M is a full rank square matrix, then Λ + P tessellates
En.

The Voronoi cell of a lattice Λ around the origin is the set

V = V (Λ) = {x ∈ Em : |x| 󰃑 |x− z| for all z ∈ Λ}.

If M is a full rank square matrix, then the Voronoi cell V = V (Λ) is a convex centrally-
symmetric body, such that Λ+ V tessellates Em. Since the inequalities x · z 󰃑 |z|2/2 and
|x| 󰃑 |x− z| are equivalent, V can be represented as the intersection of half spaces

V =
󰁟

z∈Λ\{0}

{x : |x| 󰃑 |x− z|} =
󰁟

z∈Λ\{0}

{x ∈ Em : x · z 󰃑 |z|2/2}. (1)

The norm of the lattice Λ is the length of the shortest nonzero vector in Λ.
Let Λ be a full rank lattice in En. The packing radius of Λ is the largest r such that

Λ+B(r) is a disjoint union of balls in En, i.e. balls B(r) centered at points of Λ pack into
En. The covering radius of Λ is the minimum over all R such that Λ + B[R] = En, i.e.
the balls B[R] centered at points of Λ cover the entire En. The ratio between the covering
and the packing radii of Λ is called the covering-packing ratio of Λ.

If V is the Voronoi cell of a full rank Λ, then the packing radius of Λ is the largest
radius of a ball that can be inscribed in V and covering radius is the smallest radius of a
ball that contains V . Packing radius of any lattice Λ is equal to half of the norm of Λ.

An interested reader is referred to [6] for further background on lattices.

2.2 Coloring almost all of the space

First we prove that sets of measure zero have no effect on the chromatic number χ(En).
We include the proof of this folklore result for completeness.

Proposition 4. Let A be a set of Lebesgue measure zero in En, then χ(En) = χ(En \A).

Proof. Assume the contrary, namely that χ(En) > χ(En \ A). According to de Bruijn–
Erdős theorem [9], there exists a finite geometric graph G (edges are pairs of points
distance 1 apart), such that χ(G) = χ(En). Fix a geometric embedding of the set of
vertices of G into En, to which we will simply refer as G. Let c be a proper coloring of
En \ A into χ(En \ A) colors. Then for any x ∈ En, x + G contains a point of A, since
otherwise G can be properly colored according to c. In particular, for every x ∈ B(1)
there is some v ∈ G, such that x + v ∈ A, which implies that x ∈ (v + B(1)) ∩ A − v.
Consequently,

B(1) ⊂
󰁞

v∈G

((v + B(1)) ∩ A− v).
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Now, the measure of B(1) is nonzero and the measure of each (v+B(1))∩A−v is zero. Since
G is finite, we derive a contradiction with the assumption that χ(En) > χ(En \ A).

2.3 Sublattice coloring schemes

Let Λ be a full rank lattice in En, Λ′ be a sublattice of Λ, V be the Voronoi cell of Λ about
the origin and int (V ) be the interior of V . A sublattice coloring c(Λ,Λ′) is a coloring of
almost all of En into |Λ/Λ′| colors in which each point of v + int (V ), where v ∈ Λ, is
colored according to the equivalence class of v in Λ/Λ′. Note that ∪v∈Λ(v+V ) tessellates
En, so the uncolored set ∪v∈Λ(v + ∂V ), where ∂V is the boundary of V , has Lebesgue
measure zero in En, which makes Proposition 4 applicable for sublattice colorings. More
precisely, if we define the sublattice coloring chromatic number as

χs(En,Λ,Λ′, ℓ) :=

󰀻
󰁁󰀿

󰁁󰀽

|Λ/Λ′|, if no two points distance ℓ apart receive the same colour

acording to c(Λ,Λ′) ,

∞, otherwise,

then χ(En) 󰃑 χs(En,Λ,Λ′, ℓ).
Coulson [7] used a weaker version of the following proposition to prove that χ(E3) 󰃑 15.

Proposition 5. Let Λ be a full rank lattice in En, V be the Voronoi cell of Λ about the
origin and R be the covering radius of Λ. If Λ′ is a sublattice of Λ such that for any
v ∈ Λ′ \ {0} we have dist (V, v + V ) 󰃍 2R, then χ(En) 󰃑 |Λ/Λ′|.

Proof. We need to show that χs(En,Λ,Λ′, 2R) = |Λ/Λ′|. Suppose to the contrary that
according to c(Λ,Λ′) there exist monochromatic points x and y distance 2R apart. For
each v ∈ V we have that v + int (V ) is a subset of the ball v + B(R) of diameter 2R. So
for some different v, u ∈ Λ we have x ∈ v + int (V ) and y ∈ u+ int (V ). Then, according
to the construction of c(Λ,Λ′), we must have v− u ∈ Λ′. We obtain a contradiction since
2R 󰃑 dist (V, v − u + V ) = dist (v + V, u + V ) < |x − y| = 2R, where the last inequality
is strict since x belongs to v + int (V ).

Proposition 6. If there exists a full rank lattice Λ in En with covering-packing ratio not
exceeding 2, then χ(En) 󰃑 3n.

Proof. Without loss of generality, assume that the packing radius of Λ is 1. Then the
covering radius R is at most 2. Let V be the Voronoi cell of Λ around the origin. For any
v ∈ Λ \ {0}, we have 2V ⊂ {t ∈ En : t · v/|v| 󰃑 |v|} (see (1)). Therefore,

dist (V, 3v + V ) = dist (2V, 3v) 󰃍 dist (Projv(3v),Projv(2V )) 󰃍 dist (3v, v) = 2|v| 󰃍 4.

So dist (V, 3v + V ) 󰃍 2R, and by Proposition 5 with Λ′ = 3Λ we get χ(En) 󰃑 3n.

Remark 7. It is well-know that in any dimension there exist lattices with covering-packing
ratio less than 3 (see [2], [20]). In [12, Theorem 5.2.3] it was proved that lattices with
covering-packing ratio not exceeding

√
21/2 ≈ 2.29 exist in any dimension. By considering
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such lattices, one can follow the lines of the proof of Proposition 6 (with Λ′ = 4Λ) and
show that in any dimension χ(En) 󰃑 4n. This bound could be potentially better in small
dimensions than the current best asymptotic upper bound (3 + o(1))n .

Let ω = e2πi/3 be a primitive cubic root of unity, E = Z[ω] be the ring of Eisenstein
integers. Recall [6, p. 54] that a E-lattice (or Eisenstein lattice) is a set of the form

{ξ1v1 + · · ·+ ξnvn : ξ1, . . . , ξn ∈ Z[ω]} ⊂ Cn ,

where v1, . . . , vn ∈ Cn are some linearly independent vectors. Any E-lattice can be re-
garded as a usual lattice of rank 2n in E2n that has an automorphism of order 3 without
nonzero fixed points, an automorphism given by the multiplication by ω. Note that mul-
tiplication by a a + bω, where a, b ∈ R, acts on a E-lattice Λ as a rotation followed by a
homothety with the scaling factor |a+ bω| =

√
a2 − ab+ b2. Therefore if Λ′ = (a+ bω)Λ,

then |Λ/Λ′| = |a+ bω|2n.

Theorem 8. If there exists a E-lattice Λ in Cn with covering-packing ratio not exceeding
3/2, then χ(E2n) 󰃑 7n.

Proof. Set Λ′ = αΛ, where α = 3 + ω. Let V be the Voronoi cell of Λ around the origin.
Assume that the packing radius of Λ is 1 and the covering radius of Λ is R 󰃑 3/2.

For u, v ∈ Cn, let “·” denote the real inner product between vectors u, v when those
vectors are embedded in E2n. In other words, if u, v are viewed as 1× n complex vectors,
then u · v = Re(uvT ). With this notation, for any v ∈ Λ \ {0}, we have

dist (V,αv + V ) = dist (2V,αv) 󰃍 dist (Projv(αv),Projv(2V ))

󰃍 (αv) · v
|v| − |v| = (Re(α)− 1)|v|.

Recall that α = 3 + ω, so dist (V,αv + V ) 󰃍 3
2
|v| 󰃍 3 󰃍 2R. Since α = 3 + ω has norm√

7, we have |Λ/Λ′| = 7n, and χ(E2n) 󰃑 |Λ/Λ′| = 7n by Proposition 5.

Remark 9. By using 2V ⊂ {t ∈ E2n : t·u 󰃑 |u|2} not only for u = v but also for u = −w2v,
it is possible to prove the result of Theorem 8 under a slightly weaker assumption that the
covering-packing ratio does not exceed

󰁳
7/3 ≈ 1.5275. We are not aware of any lattices

that would utilize this strengthening, so we have chosen to present the weaker but simpler
statement.

3 Computer assisted constructions for n ∈ {5, 7, 9}

In this section we prove Theorem 1 using sublattice coloring schemes by explicitly pro-
viding the required lattices and sublattices. The verification is computer assisted and will
be described below together with the required mathematical content.

Proposition 5 is the main tool in our proof of Theorem 1. However, verifying the
assumption “dist (v, v + V ) 󰃍 2R for all v ∈ Λ′ \ {0}” is computationally costly. Despite
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this, if a symmetry group G of lattice Λ contains a family of reflections, then verification
of the assumption “dist (v, v + V ) 󰃍 2R for all v ∈ Λ′ \ {0}” can be reduced to taking v
only from a certain polyhedral convex cone K generated by G. Moreover, the intersection
V1 of the Voronoi cell V of Λ with the cone K is a polyhedron which may have significantly
fewer faces than the Voronoi cell V itself. So instead of verifying “dist (v, v+V ) 󰃍 2R for
all v ∈ Λ\{0}” we will verify a computationally cheaper assumption “dist (v, v+V1) 󰃍 2R
for all v ∈ K ∩ Λ \ {0}”. This approach is formally summarized in Lemma 10.

3.1 Verification and constructions

Working over the rational field allows us not to worry about precision in computations.
However, to do that we sometimes need to consider rank n lattices embedded in En+1. We
will consider lattices A∗

5, E
∗
7 , A

∗
9 which, for a corresponding n, have only irrational bases

in En but can be embedded with a rational basis in En+1. For instance, a dilation of the
triangular lattice A∗

2 can be embedded in E3 using a basis (1,−1, 0), (1, 0,−1), while in
E2 it does not have a rational basis.

Let Λ be a lattice of rank n in Em, i.e. Λ = MZn for a m× n generator matrix M of
rank n. Let X = MEn be the real subspace of Em spanned by Λ, V be the Voronoi cell
of Λ around the origin restricted to X and R be the covering radius of Λ.

We can extend (1) as follows:

V =
󰁟

z∈Λ\{0}

{x ∈ X : x · z 󰃑 |z|2/2} =
󰁟

z∈Λ\{0}, |z|󰃑2R

{x ∈ X : x · z 󰃑 |z|2/2}. (2)

We use certain symmetries available in the lattices under consideration. Suppose
H = {x ∈ Em : x · w = 0}, |w| = 1, is a hyperplane in Em containing the origin. The
reflection about H is the isometry Rw acting as Rw(x) = x− 2(x · w)w.

Lemma 10. Suppose W is a finite family of unit vectors in Em such that Rw(Λ) = Λ
for any w ∈ W . Let G be the group of isometries of X generated by the reflections
{Rw : w ∈ W}. Assume that the cone K := {x ∈ X : x · w 󰃍 0 ∀w ∈ W} has non-empty
relative interior, and let V1 := K ∩ V . Then,
(i) for any x ∈ X there exists g ∈ G such that g(x) ∈ K and dist (V, x + V ) =
dist (V, g(x) + V ).
(ii) for any x ∈ K we have dist (V, x+ V ) = 2 dist (V1, x/2);

(iii) V1 =
󰁟

z∈K∩Λ\{0}, |z|󰃑2R

{x ∈ K : x · z 󰃑 |z|2/2}.

Proof. We need the following facts, which are immediate by considering the squares of
the required inequalities, and using the formula for Rw(t):
(a) If |w| = 1, z ·w > 0 and t ·w < 0 (i.e. if z and t are on different sides of the hyperplane
{x : x · w = 0}), then |z − t| > |z −Rw(t)|.
(b) If |w| = 1, z ·w 󰃍 0 and t·w < 0 , then |z−t| > |z−(Rw(t)+t)/2|. (In geometric terms,
(Rw(t) + t)/2) = t− (t · w)w is the projection of t onto the hyperplane {x : x · w = 0}.)
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Proof of (i). Observe that G is finite. Indeed, all elements of G are isometries of X
(and of Λ). For any R′ > 0, if B(R′) is the set of all bases of Λ with maximal length of
basis vectors not exceeding R′, then B(R′) is an invariant set under G. Now, since B(R′)
is finite and every isometry is uniquely determined by the image of some fixed base, we
may conclude that G is finite. Similar arguments for establishing finiteness of G can be
found in the proof of [11, Lemma 4.3].

Let z be any point in the relative interior of K, then z · w > 0 for any w ∈ W . Given
x ∈ X, let g0 ∈ G be such that |z − g0(x)| = min{|z − g(x)| : g ∈ G}. If g0(x) ∈ K, we
found the required g = g0. Otherwise, there exists w ∈ W such that g0(x) · w < 0. Then
by (a), |z − Rw(g0(x))| < |z − g0(x)|, a contradiction with the choice of g0. Hence, for
g = g0, we have g(x) = g0(x) ∈ K.

Finally, since V is origin-symmetric, dist (V, x+V ) = dist (2V, x). Moreover, G is also
a group of symmetries of V , so dist (2V, x) = dist (g0(2V ), g0(x)) = dist (2V, g0(x)), and
so dist (V, x+ V ) = dist (V, g0(x) + V ).

Proof of (ii). By symmetry and convexity of V , dist (V, x + V ) = dist (2V, x) =
2dist (V, x/2). It remains to show that dist (V, x/2) = dist (V1, x/2). Since V1 ⊂ V ,
dist (V, x/2) 󰃑 dist (V1, x/2), so we are left with establishing the converse inequality.

Suppose to the contrary dist (V, x/2) < dist (V1, x/2) and let t ∈ V \K be such that
dist (V, x/2) = |x/2 − t|. Since t ∕∈ K, there is w ∈ W such that t · w < 0. Since Rw is
a symmetry of Λ, it is also a symmetry of V , and so Rw(t) ∈ V . Since V is convex, we
have (Rw(t) + t)/2 ∈ V , and so by (b)

dist (V, x/2) 󰃑 |x/2− (Rw(t) + t)/2| < |x/2− t| = dist (V, x/2),

a contradiction to the assumption that t ∈ V \K.
Proof of (iii). By (2), clearly

V1 =
󰁟

z∈Λ\{0}, |z|󰃑2R

{x ∈ K : |x| 󰃑 |x− z|} ⊂
󰁟

z∈K∩Λ\{0}, |z|󰃑2R

{x ∈ K : |x| 󰃑 |x− z|} =: V ′
1 ,

so we only need to establish the converse inclusion V ′
1 ⊂ V1. We will show that if x ∈ K\V1,

then x ∕∈ V ′
1 .

Suppose that x ∈ K \ V1, i.e. x ∈ K and there is t ∈ Λ ∩ B[2R], such that dist(Λ ∩
B[2R], x) = |t−x| and |t−x| < |x|. Let ε = (|x|−|t−x|)/3 > 0. Since x ∈ K, by continuity
there is y from the relative interior of K, |y − x| < ε, such that |y| > dist(Λ ∩ B[2R], y).
Let t′ ∈ Λ, |t′| 󰃑 2R be such that |y − t′| = dist(Λ ∩ B[2R], y), then t′ ∕= 0.

We now show that t′ ∈ Λ∩K. Indeed, if this is not the case, there is w ∈ W such that
t′ ·w < 0. But since w · y > 0, by (a) we have |y − t′| > |y −Rw(t

′)|. Finally, Rw(t
′) ∈ Λ,

|Rw(t
′)| = |t′| 󰃑 2R, and Rw(t

′) is closer to y then t′ is, which contradicts the definition
of t′. Therefore, t′ ∈ Λ ∩K.

Now,

|t′ − x| 󰃑 |t′ − y|+ |y − x| 󰃑 |t− y|+ |y − x| 󰃑 |t− x|+ 2|y − x| 󰃑 |t− x|+ 2ε.

Finally, we have |x|− |t′ − x| 󰃍 |x|− |t− x|− 2ε = ε. So for t′ ∈ K ∩Λ \ {0} we have
|x| > |t′ − x|. Since |t′| 󰃑 2R we conclude x ∕∈ V ′

1 .
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With the intention to apply Proposition 5 to some sublattice Λ′ of Λ, we need to be
able to verify if Λ′ ⊂ Λ contains no elements of a forbidden set

F := {x ∈ Λ \ {0} : dist (V, x+ V ) < 2R}. (3)

Due to (i),(ii) of Lemma 10, it suffices to compute the set

F1 = {x ∈ K ∩ Λ \ {0} : dist (V1, x/2) < R}. (4)

Then we have F =
󰁖

g∈G g(F1). Since the group G will usually have a simple structure
(e.g. consists of all permutations of the coordinates), computing F as a union of g(F1)
is faster than computing F directly. It is also easy to observe that any x in F1 or in
a forbidden set F has norm less than 4R, which allows to further restrict the initial
candidates when F1 is constructed.

Now let us describe how we compute the distance from a point y to a polytope P in Em.
There are known algorithms for this, see, e.g [26], which might be faster, but we wanted
to ensure exact computations and ease of implementation with the routines available in
SageMath. Each k-dimensional face f of P is the intersection of a k-dimensional affine
space a(f) + A(f)Ek with P , where a(f) ∈ Em and A(f) is the corresponding m × k
matrix of rank k. If A(f)+ denotes the Moore-Penrose inverse of A(f) (see, e.g. [25]),
then B(f) = A(f)A(f)+ is the matrix of the projection operator on the range of A(f),
and so we have the following formula:

dist (y, P ) = min{|(I−B(f))(y−a(f))| : f is a face of P and a(f)+B(f)(y−a(f)) ∈ f}.

If all vertices of P have rational coordinates, then A(f), A(F )+, and B(f) have rational
entries and can be computed precisely.

Finally, for a given sublattice Λ′ ⊂ Λ, we would like to verify if Λ′ ∩ F = ∅, in which
case χ(X) 󰃑 |Λ/Λ′| by Proposition 5 (recall that X = MEn is a real n-dimensional space
generated by Λ). This is performed using the following proposition that lists necessary and
some sufficient conditions for Λ′∩F = ∅. With slight abuse of notation, we denote byM−1

the inverse map of the linear mapping from En to X defined by x 󰀁→ Mx. The mapping
M−1 is well-defined as X = MEn and the rank of M equals to n. Set 󰁨F := M−1F .

Proposition 11. Suppose Λ′ = MCZn for a non-singular n × n matrix C with integer
entries, and let s be a positive integer. If Λ′ ∩ F = ∅, then necessarily:
(i) Cλ ∕∈ 󰁨F for any λ = (λ1, . . . ,λn) ∈ Zn with λ1 + · · ·+λn 󰃍 0 and |λj| 󰃑 s, 1 󰃑 j 󰃑 n.
Further, we have Λ′ ∩ F = ∅ if and only if either (ii) or (iii) holds, where:

(ii) Cλ ∕∈ 󰁨F for any λ ∈ Zn with λ1 + · · ·+ λn 󰃍 0 and |λj| 󰃑 mjγ, 1 󰃑 j 󰃑 n, where mj

is the (Euclidean) norm of the j-th row of C−1 and γ = max{|f | : f ∈ 󰁨F};
(iii) C−1f ∕∈ Zn for any f = (f1, . . . , fn) ∈ 󰁨F with f1 + · · ·+ fn 󰃍 0.

Proof. Notice that Λ′ ∩ F = ∅ is equivalent to the statement that “for any λ ∈ Zn,
MCλ ∕∈ F”,and also to the statement “Cλ ∕∈ 󰁨F for all λ ∈ Zn”. So, necessity of (i) now
follows.
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For (ii) and (iii), origin-symmetry of Λ′, F and 󰁨F allows to impose the conditions
λ1 + · · ·+ λn 󰃍 0 and f1 + · · ·+ fn 󰃍 0. Equivalence of Λ′ ∩ F = ∅ and (iii) is now clear.

For (ii), consider the equation Cλ = f , for some f ∈ 󰁨F , then λ = C−1f . If vj is the j-th
row of C−1, then λj = vj · f and by the Cauchy-Schwartz inequality |λj| 󰃑 mj|f | 󰃑 mjγ.

So, in order to verify that Cλ ∕∈ 󰁨F for all λ ∈ Zn, it is sufficient to consider only λ such
that |λj| 󰃑 mjγ, 1 󰃑 j 󰃑 n. Therefore (ii) is equivalent to Λ′ ∩ F = ∅.

Informally, if Λ′ has a vector in F , it is likely to have “small” coefficients of its repre-
sentation, so it makes sense to begin verification with (i). We found that choosing s = 2
for n = 5 worked well, while for larger n we usually selected s = 1. After (i) is verified
and no vectors in F is found, we choose to proceed with either (ii) or (iii) depending on
the numbers of required evaluations of Cλ or of C−1f .

Proof of Theorem 1. We will apply Proposition 5.
Suppose first that n ∈ {5, 9}. We consider a lattice Λ which is an (n+1)-dilation of the

lattice A∗
n, see [6, Sect. 4.6.6, p. 115]. Then the covering radius of Λ is R =

󰁴
n(n+1)(n+2)

12
.

More precisely, we set Λ = MZn ⊂ En+1, where

M =

󰀳

󰁅󰁅󰁅󰁅󰁃

−n 1 . . . 1
1 −n . . . 1

. . .
1 1 . . . −n
1 1 . . . 1

󰀴

󰁆󰁆󰁆󰁆󰁄
.

The matrices Cn generating required sublattices by Λ′ = MCnZn are given as follows:

C5 =

󰀳

󰁅󰁅󰁅󰁅󰁃

−2 1 −2 −1 0
−3 1 0 −1 −2
0 1 1 −1 −3

−2 0 −2 2 −2
−2 −2 0 0 −2

󰀴

󰁆󰁆󰁆󰁆󰁄
,

C9 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0 0 −3 1 0 0 −1 1 0
1 0 −3 1 1 0 −1 4 1
0 0 −2 1 0 −1 −1 1 3
0 0 −3 4 0 0 −1 1 0
0 3 −3 1 0 0 −1 1 0
3 0 −3 1 0 0 2 1 0
0 0 −4 2 0 3 −1 2 0
0 0 −3 1 3 0 −1 1 0

−1 0 −3 1 −1 1 1 1 −1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

.

The verification of the hypothesis of Proposition 5 was performed on a computer. We
generate the forbidden set F (see (3)) by first generating F1 (see (4)). We then use Lemma
10 with a groupG generated by all reflections that swap pairs of coordinates xi ↔ xj where
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1 < i 󰃑 j < n and a reflection x 󰀁→ (−x). Finally we use Proposition 11 (iii), to verify
that obtained sublattice Λ′ has no forbidden nodes, see the “59dimAnstar” SageMath
script at [1].

For n = 7, we use the E∗
7 lattice with R =

󰁳
7/8, see [6, Sect. 4.8.2, p. 125]. Set

Λ = MZ7 ⊂ E8, where

M =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

−1 0 0 0 0 0 −3
4

1 −1 0 0 0 0 −3
4

0 1 −1 0 0 0 1
4

0 0 1 −1 0 0 1
4

0 0 0 1 −1 0 1
4

0 0 0 0 1 −1 1
4

0 0 0 0 0 1 1
4

0 0 0 0 0 0 1
4

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

.

A required sublattice is Λ′ = MC7Z7, where

C7 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0 −4 −5 −3 −4 −4 −1
−1 −5 −10 −7 −5 −5 −4
−2 −2 −9 −4 −5 −4 −4
−3 −2 −5 −4 −4 −1 −3
−1 −1 −4 −1 −3 0 −3
−2 0 −1 0 0 0 0
0 4 6 4 4 4 4

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

.

The verification of the hypothesis of Proposition 5 was performed on a computer by first
using Lemma 10 with a group G generated by all reflection xi ↔ xj when 1 󰃑 i < j 󰃑 6
and two reflections x7 ↔ x8, x 󰀁→ (−x), and then using Proposition 11 (iii), see the
“7dimE7star” SageMath script at [1].

3.2 Sublattice search strategies

For a given lattice, when the dimension is relatively small (e.g. n = 5), it is compu-
tationally feasible to check all possible sublattices (of certain index) exhaustively, see
Proposition 12. If the dimension is larger or we are interested in getting a result quickly,
then we used a combination of the following two approaches (neither of which guarantees
that the obtained Λ′ has the smallest possible index).

Randomized search among short non-forbidden nodes. Recall that the basis
vectors of the desired sublattice are not elements of the forbidden set F . Since our goal
is minimizing the index of the sublattice, which equals to the volume of the fundamental
parallelepiped of the sublattice, it is natural to search for the basis among short vectors.
To this end, we sort the non-zero lattice nodes which are not in F in ascending order by
length. Let G be the set of N smallest such non-forbidden nodes. Then we randomly
and uniformly draw n samples from G to form a basis for the sublattice and check as
outlined in Proposition 11 whether the resulting sublattice is suitable. The choice of the
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parameter N is performed in experimental manner: if N is too small, there will not be a
good sublattice basis among elements of G; while if N is too large, then it may take too
much time for the random samples to find a good sublattice.

“Gradient” descent. Once we have found a good sublattice Λ′, we take one of the
vectors generating it and substitute it with other short non-forbidden nodes, choosing one
that minimizes the index of the resulting Λ′ while satisfying Λ′ ∩F = ∅. This is repeated
for all vectors generating Λ′ (possibly multiple times) until no further improvement of the
index is possible (using the short non-forbidden nodes).

3.3 Lower bounds in small dimensions

A general lower bound by Coulson [7, Th. 4.5] is χs(En,Λ,Λ′, ℓ) 󰃍 2n+1−1, so one cannot
improve the inequality χ(E3) 󰃑 15 using a sublattice coloring. The lower bounds on
sublattice colorings we give below are for specific lattices Λ and only for the case when
the excluded distance ℓ is twice the covering radius of the lattice.

Existence of linear coloring using A∗
4 lattice yielding χ(E4) 󰃑 54 was stated in [18]. A

better bound χ(E4) 󰃑 49 achieved by a sublattice coloring was stated in [8] without proof.
We prove this bound in Theorem 8 using the D4 lattice (see [6, p. 118]). We verified that
one cannot do better, and we also perform similar analysis for A∗

4 and A∗
5.

Proposition 12. If R is the covering radius of a lattice Λ ∈ {D4, A
∗
4, A

∗
5}, then the

smallest values of sublattice chromatic numbers (over all possible sublattices Λ′) are given
in Table 2.

n Λ min
Λ′

χs(En,Λ,Λ′, 2R)

4 D4 49
4 A∗

4 54
5 A∗

5 140

Table 2: Smallest values of sublattice chromatic numbers for Λ ∈ {D4, A
∗
4, A

∗
5}.

Proof. The proof is by computer search. For sublattice colorings, see the scripts “4dim
exh sublattice ...” and “5dim exh sublattice A5star” at [1], with the outputs for each
possible index value for the 5-dimensional case given in the “exh 5 results” folder at [1].
The main idea is that all possible sublattices of a given lattice can be obtained by Λ′ = CΛ
where an integer matrix C is in the Hermite normal form [24]. All such matrices C of
given determinant can be generated and the resulting sublattices tested using Lemma 10
and Proposition 11. We use a slightly modified version of the Hermite normal form where
the entries above a pivot l are from the set −⌊ l

2
⌋+ {0, . . . , l− 1} instead of {0, . . . , l− 1}.

This increases the chances that there is a “small” linear combination of the vectors from
the sublattice basis (see (i) of Proposition 11) which belongs to the forbidden nodes, and
speeds up the computations.
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We believe that in general the number |F | of forbidden nodes is an indicator of how
good a sublattice coloring scheme can be, the smaller the better. For instance, when
n = 5 we have |F | = 3060 for D5, while |F | = 1984 for A∗

5. The sublattice schemes we
found for D5 are much worse than those for A∗

5.
Computer verification of the new upper bounds on χ(En) for n ∈ {5, 7, 9} takes less

than two hours in a single thread mode on a modern personal computer. Generation of
all forbidden nodes for n = 9 takes about half an hour, but attempting this for n = 10
would require significantly much more time and memory resources, and, in addition to
that, we would then need to search for a good sublattice. It might be feasible to use
our computational techniques (which are amenable to parallelization) for n = 10 with a
supercomputer to improve χ(E10) 󰃑 310. An exhaustive search for the best chromatic
sublattice number for A∗

5 (Proposition 12) can be performed on a modern personal work-
station, but is lengthy, taking about a month using 12 threads in parallel. One can refer to
the file “running times.txt” in [1] for more details regarding running times of the scripts.

4 Constructions using covering-packing ratio

In this section we will prove Theorems 2 and 3 using Proposition 6 and Theorem 8,
respectively, by describing certain appropriate lattices.

4.1 Laminated lattices and proof of Theorem 2

A laminated lattice Λn is a full rank lattice in En that is obtained recursively in the fol-
lowing way. Λ1 = 2Z, and a laminated lattice Λn+1 is a full rank lattice in En+1 containing
some laminated Λn, such that the packing radius of Λn+1 is equal to 1 and the volume
of Voronoi cell of Λn+1 is the smallest possible among all such lattices. Geometrically,
one can think of Λn+1 as a lattice obtained by gluing layers of Λn as “tightly” as possible
while keeping the packing radius equal to 1.

Notice that the laminated lattice Λn may not be unique, so Λn formally is a collection
of lattices. For example for n 󰃑 24 laminated lattices Λn are unique, except for n = 11 (2
lattices Λmin

11 ,Λmax
11 ), n = 12 (Λmin

12 ,Λmid
12 ,Λmax

12 ) and n = 13 (Λmin
13 ,Λmid

13 ,Λmax
13 ), see [6, Figure

6.1]. Moreover, Λ14 does not contain Λmid
13 as a sublattice; however, Λ14 can be constructed

from either Λmin
13 or Λmax

13 , so not every Λn is a subset of the subsequent Λn+1.
Additionally, since the packing radius of any Λn is equal to 1, the covering-packing ratio

of any Λn coincides with the covering radius. A comprehensive exposition on laminated
lattices can be found in [6, Ch. 6].

Proposition 13. The covering-packing ratios of laminated lattices in dimensions 9 󰃑
n 󰃑 38 satisfy the equalities or the upper bounds given in Table 3.

Proof. Let ρn denote the greatest covering radius of any laminated lattice Λn. By [6, Th. 1,
p. 164], we obtain the exact values of ρn for n ∈ {9, 10, 11, 12, 16, 24, 25, 26, 27, 28, 32} as
listed in Table 3. More precisely, these values are equal to the so-called subcovering radius
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n covering-packing ratio n covering-packing ratio

9
󰁳

5/2 ≈ 1.581138 24
√
2 ≈ 1.414213

10
󰁳

8/3 ≈ 1.632993 25
󰁳

5/2 ≈ 1.581138

11
√
3 ≈ 1.732050 26

󰁳
8/3 ≈ 1.632993

12
√
3 ≈ 1.732050 27

√
3 ≈ 1.732050

13
√
13/2 ≈ 1.802776 28

√
3 ≈ 1.732050

14 󰃑
√
55/4 ≈ 1.854050 29

√
13/2 ≈ 1.802776

15 󰃑
󰁳

173/48 ≈ 1.898465 30 󰃑
√
55/4 ≈ 1.854050

16
√
3 ≈ 1.732050 31 󰃑

󰁳
173/48 ≈ 1.898465

17
√
13/2 ≈ 1.802776 32

√
3 ≈ 1.732050

18 󰃑
√
55/4 ≈ 1.854050 33

√
13/2 ≈ 1.802776

19 󰃑
󰁳

173/48 ≈ 1.898465 34 󰃑
√
55/4 ≈ 1.854050

20 󰃑
󰁳

179/48 ≈ 1.931106 35 󰃑
󰁳

173/48 ≈ 1.898465

21 󰃑
󰁳

185/48 ≈ 1.963204 36 󰃑
󰁳

179/48 ≈ 1.931106

22 󰃑
󰁳

379/96 ≈ 1.986937 37 󰃑
󰁳

185/48 ≈ 1.963204

23 󰃑 1.936501 38 󰃑
󰁳

379/96 ≈ 1.986937

Table 3: Covering-packing ratios of laminated lattices Λn. In the dimensions where Λn is
not unique the maximum possible covering ratio is listed. If covering radius is not known,
an upper bound on the covering ratio is listed (blue values).

hn from [6, Table 6.1] provided hn 󰃑
√
3 (see the caption description of the Table 6.1 [6]

and [6, Th. 1, p. 164] for more details).

Next we note (see [6, p. 163]) that each Λn can be represented in En as ∪j∈ZΛ
(j)
n−1,

where Λ
(j)
n−1 is a translate of a certain laminated lattice such that any point of Λ

(j)
n−1 has

n-th coordinate equal to j
√
πn−1. The values of πn−1 are given in [6, Table 6.1]. Now

for any point x = (x1, . . . , xn) ∈ En we can find j minimizing |xn − j
√
πn−1| and then a

lattice node y ∈ Λ
(j)
n−1 with |(x1, . . . , xn−1, j

√
πn−1)− y| 󰃑 ρn−1. This yields

ρn 󰃑
󰁵

πn−1

4
+ ρ2n−1. (5)

Starting with the already obtained values of ρn for n ∈ {12, 16, 28, 32}, consecutive appli-
cations of (5) imply the upper bounds on ρn for all the remaining values of n in Table 3
except for n = 23. The equalities for n ∈ {13, 17, 29, 33} follow from the lower bound
hn 󰃑 ρn and the values of hn given in [6, Table 6.1].

Finally, the inequality for n = 23 is a consequence of the computational result [22,
Table 2], where the covering density θ(Λ23) = 7609.03133 is listed. The formula for the

covering density is θ(Λ23) = (ρ23)23|B[1]|
det(Λ23)

. Interestingly enough, the determinant det(Λ23)

of a lattice in [22] is defined to be the determinant of the generating matrix M , while
the determinant λ23 of Λ23 in [6] is defined to be the determinant of the Gram matrix
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MMT . So we have det(Λ23) =
√
λ23, and λ23 = 4 as listed in [6, Table 6.1]. Therefore,

θ(Λ23) = (ρ23)23|B[1]|
2

. Finally, using the formula for the volume of the unit ball |B[1]| in
dimension 23, we get ρ23 󰃑 1.936501.

Remark 14. In [22], numerical values of ρn appear to match hn for n ∈ {14, 15, 18, 23},
which suggests that possibly ρn = hn in these cases. However, it is not clear from [22]
whether the computations were performed using exact arithmetic and the results were
converted to numerical ones only at the end. Also, according to [22], the covering radius
ρmid
13 of Λmid

13 satisfies ρmid
13 ≈

√
3 < ρ13 =

√
13/2. However, Λmid

13 is not contained in Λ14

(see [6, Figure 6.1]), so (5) is not applicable when n = 14 and ρ13 is replaced by ρmid
13 .

Laminated lattices provide a recursive construction that allows us to obtain lattices
with a small covering-packing ratio. We now will consider how the covering-packing ratio
behaves when we take a sum of lattices.

First, one can consider a direct (orthogonal) sum of two lattices Λ1 and Λ2 defined by
Λ1 ⊕ Λ2 = {(v, u) : v ∈ Λ1, u ∈ Λ2}. If Λ1 and Λ2 are full rank lattices in En and Em

respectively, both with packing radius 1, then Λ1 ⊕ Λ2 is a full rank lattice in En+m with
packing radius 1. Moreover if covering radii of Λ1, Λ2 are ρ1 and ρ2 respectively, it can
be easily seen that the covering radius of Λ1 ⊕ Λ2 does not exceed

󰁳
ρ21 + ρ22. This way,

by using the Leech lattice Λ24, we obtain a lattice Λ24 ⊕ Λ24 with covering-packing ratio
at most 2 in dimension n = 48.

A slightly better direction would be to consider a π/3-sum of two lattices, instead of
the direct sum (see (6) for the definition). We summarize this approach in the following
proposition.

Proposition 15. For i = 1, 2 let Λi be a full rank lattice in Eni with a covering-packing
ratio ρi. Provided n1 󰃍 n2, there exists a full rank lattice Λ in En1+n2 with the covering-

packing ratio not exceeding
󰁴

ρ21 +
3
4
ρ22.

Proof. We write (x, y) ∈ En1+n2 with x ∈ En1 and y ∈ En2 . Define a lift operation
L : En2 → En1 by f(y) = (y, 0, . . . , 0).

Assume that packing radii of lattices Λ1 and Λ2 are equal to 1. Let Λ be a π/3-sum
of lattices Λ1 and Λ2 defined by

Λ =

󰀫󰀣
x+

Ly

2
,

√
3

2
y

󰀤
: x ∈ Λ1, y ∈ Λ2

󰀬
. (6)

It is easy to see that Λ is a full rank lattice in En1+n2 .
Now we show that the packing radius of Λ is equal to 1. It is enough to show that

any nonzero vector v = (x+ Ly
2
,
√
3
2
y) of Λ has length at least 2. We have

|v|2 =
󰀏󰀏󰀏󰀏x+

Ly

2

󰀏󰀏󰀏󰀏
2

+

󰀏󰀏󰀏󰀏󰀏

√
3

2
y

󰀏󰀏󰀏󰀏󰀏

2

= |x|2 + x · Ly + |y|2 󰃍 |x|2 − |x| |y|+ |y|2 .
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Now, if one of x or y is a zero vector, then clearly |v|2 󰃍 4. If both x and y are non-zero,
then |x| 󰃍 2, |y| 󰃍 2, and so

|v|2 󰃍 1

2
|x|2 + 1

2
|y|2 󰃍 4.

To estimate the covering radius of Λ, let (x̂,
√
3
2
ŷ) be an arbitrary point of En1+n2 .

Since the covering radius of Λ2 is ρ2, let y ∈ Λ2 be such that |ŷ − y| 󰃑 ρ2. Similarly let

x ∈ Λ1 be such that
󰀏󰀏x̂− x− Ly

2

󰀏󰀏 󰃑 ρ1. Then (x+ Ly
2
,
√
3
2
y) ∈ Λ and

󰀏󰀏󰀏󰀏󰀏(x̂,
√
3

2
ŷ)− (x+

Ly

2
,

√
3

2
y)

󰀏󰀏󰀏󰀏󰀏 󰃑
󰁵

ρ21 +
3

4
ρ22.

Note that when Λ1 = Λ2 = 2Z and Λ is a π/3-sum of Λ1 and Λ2, we can find copies
of Λ1,Λ2 in Λ (by taking y = 0, x = 0 respectively). Moreover, the angle between these
copies of Λ1 and Λ2 in Λ is π/3, which is why we say that Λ is a π/3-sum of Λ1 and Λ2

(similarly to orthogonal sum Λ1 ⊕Λ2, where the corresponding angle is π/2). We remark
that the smaller value of the angle (less than π/3) in the proof of Proposition 15 would
violate the requirement for the packing radius of the resultant sum to be equal to 1, so
π/3 is the optimal angle in this context.

Proof of Theorem 2. Due to Proposition 6, it suffices to show the existence of a lattice
with covering-packing ratio at most 2 for each required dimension n.

For n 󰃑 8 the lattices with the smallest known covering-packing ratio are listed
in [21, Table 3, Table 4]; the ratios are strictly smaller than 2. For 9 󰃑 n 󰃑 38, we
use Proposition 13.

For n = 48, by Proposition 15 the π
3
-sum Λ = Λ24 ⊕π/3 Λ24 of two Leech lattices has

the covering-packing ratio at most
󰁴

7
2
. (Note that Λ = Λ24 ⊕ Λ24 can also be used as it

has the covering-packing ratio at most 2.)
Finally, for n = 49, by Proposition 15 the π

3
-sum Λ = Λ25 ⊕π/3 Λ24 of two laminated

lattices has the covering-packing ratio not exceeding 2.

4.2 Eisenstein lattices and proof of Theorem 3

Proof of Theorem 3. By Theorem 8, for each dimension in question we only need to find
an Eisenstein lattice with covering-packing ratio at most 3/2. We list suitable lattices in
Table 4.

5 Upper bound on chromatic number in all dimensions

In his paper [17] Prosanov considered covering of En by translates of dilated Voronoi cells
of an appropriately chosen multilattice. Prosanov considered the chromatic number of En
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n lattice covering-packing ratio reference

2 A2 2/
√
3 [6, p. 110]

4 D4

√
2 [6, p. 119]

6 E∗
6

√
2 [6, p. 127]

8 E8

√
2 [6, p. 121, p. 161]

24 Λ24

√
2 [6, p. 161]

Table 4: Eisenstein lattices with covering-packing ratio at most 3/2 for n ∈ {2, 4, 6, 8, 24}.

with respect to a metric generated by a general convex centrally-symmetric body K. For
our consideration, we take K to be the unit ball, i.e. K = B[1].

Following the notation of [17], let Ω be a lattice and Φ be a multilattice obtained by
q shifts of Ω, i.e. Φ =

󰁖q
i=1 xi + Ω, where x1, . . . , xq are some vectors in En. A tilling Ψ

of En by convex polytopes is said to be associated with Φ if there is a bijection between
Φ and Ψ such that for every x ∈ Φ and a corresponding ψx ∈ Ψ we have x ∈ ψx. Note
that a natural choice of Ψ associated to Φ are Voronoi cells of Φ.

The tiling parameter is defined to be

γ(Φ,Ψ) = inf

󰀝
β

α
: for all x ∈ Φ,αB[1] + x ⊂ ψx ⊂ βB[1] + x

󰀞
,

and
γ(k) = inf

Φ,Ψ,q(Φ)󰃑k
γ(Φ,Ψ).

Note, that γ(Φ,Ψ) corresponds to a covering-packing ratio of Φ when Ψ are Voronoi
cells of Φ, and so γ(k) is the smallest possible covering-packing ratio of a k-multilattice
in En.

Prosanov [17] proved that (for n 󰃍 3 and any k)

χ(En) 󰃑 (1 + γ(k))n
󰀕
1 +

2

lnn

󰀖
(1 + n ln(4n · lnn · γ(k)) + ln k) . (7)

He then deduced that χ(En) 󰃑 (3 + o(1))n by:

• taking Ω = Zn;

• taking Φ to be centers of unit spheres that pack into a unit torus and taking Ψ to
be Voronoi cells of Φ, which gives k = q(Φ) 󰃑 nO(n) and γ(k) 󰃑 2;

• using inequality (7), the bound becomes χ(En) 󰃑 3n(n+O(n)) lnn.

We note that one can get rid of the O(n) term in Prosanov’s bounds by choosing
initial Ω to have a low covering-packing ratio. Recall that Butler [4] showed that there
are lattices with covering packing ratio 2 + o(1). Let Ω be such a lattice and let T be
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a torus obtained by identifying the opposite sides of fundamental parallelepiped of Ω.
Consider a maximal packing of unit spheres into T and let x1, . . . , xq be the centers of
these spheres. Since Ω has a covering-packing ratio 2 + o(1), the volume argument yields
q 󰃑 (2 + o(1))n. So for Φ =

󰁖q
i=1 Ω + xi, Ψ – Voronoi cells of Φ, and k = q(Ψ) we have

γ(k) 󰃑 2 and k = (2 + o(1))n. Therefore inequality (7) yields

χ(En) 󰃑 (1 + o(1))3nn lnn.

Note that one can get an explicit bound if Ω is taken to be a lattice with a covering-
packing ratio at most

√
21/2 ≈ 2.2913, existence of which in any dimension n was estab-

lished by Henk [12]. In this case for any n we have

χ(En) 󰃑 3n
󰀕
1 +

2

lnn

󰀖󰀓
1 + n ln(8n · lnn) + n ln

√
21/2

󰀔
.

6 Open questions

Question 16. Do there exist better sublattice coloring schemes (perhaps for other lat-
tices) than those in Theorems 1 and 3 for 4 󰃑 n 󰃑 9?

We believe that the answer is negative for n = 4, 5, i.e. minχs(E4,Λ,Λ′, ℓ) = 49
and minχs(E5,Λ,Λ′, ℓ) = 140, where the minima are taken over all full rank lattices Λ,
sublattices Λ′ and all ℓ > 0.

Question 17. Is it possible to extend the result of Theorem 3 to other dimensions? In
particular, does there exist an Eisenstein lattice with covering-packing ratio at most 3/2
in dimension other than those listed in Theorem 3?

Question 18. Is it possible to obtain a new upper bound on χ(En) for some n using
a modification of the technique of Theorem 8, perhaps using Hurwitz quaternionic inte-
gers [6, Sect.2.2.6, p. 53]?

Everywhere below in this section R denotes the covering radius of a lattice Λ.

Question 19. Is it true that for every n there exists a full rank lattice Λ and a sublattice
Λ′ ⊂ Λ such that χs(En,Λ,Λ′, 2R) < 3n?

An affirmative answer immediately implies χ(En) < 3n. The results in this paper give
an affirmative answer for n 󰃑 9.

Question 20. Find all dimensions n for which there exists a full rank lattice in En with
covering/packing ratio at most 2.

For any such dimension we immediately have χ(En) 󰃑 χs(En,Λ, 3Λ, 2R) = 3n by
Proposition 6. It is believed (see [21, Problem 4.1], [27, Problem 1.1, 1.2], [14, Question
3.2], [5, p.63 Problem 6]) that for a sufficiently large n any lattice in En has cover-
ing/packing ratio at least 2, i.e. there are non-lattice packings of En which are denser
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than lattice packings. Notice that discrete sets with covering-packing ratio at most 2
having non-lattice structure can be easily constructed in any dimension using maximal
separated sets on a torus. On the other hand, existence of a lattice Λ in En with a
covering-packing ratio 2 + o(1) as n → ∞ was established by Butler [4].

Question 21. Find all n such that there exists a laminated lattice Λn with covering
radius at most 2.

We know that all dimensions n up to 38 satisfy this property.
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Cecil Rousseau.

[24] Wikipedia contributors, Hermite normal form, available at https://en.wikipedia.org/wiki/

Hermite_normal_form. Accessed on November 25, 2021.

[25] Wikipedia contributors, Moore-Penrose pseudoinverse, available at https://en.wikipedia.org/

wiki/Moore-Penrose_inverse. Accessed on November 29, 2021.

[26] P. Wolfe, Finding the nearest point in a polytope, Math. Programming 11 (1976), no. 2, 128–149.

[27] C. Zong, From deep holes to free planes, Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 4, 533–555.

the electronic journal of combinatorics 31(2) (2024), #P2.35 20

https://dustingmixon.wordpress.com/2018/05/10/polymath16-fifth-thread-human-verifiable-proofs/
https://asone.ai/polymath/index.php?title=Hadwiger-Nelson_problem
https://en.wikipedia.org/wiki/Hermite_normal_form
https://en.wikipedia.org/wiki/Moore-Penrose_inverse

