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Abstract

A graph class G has the strong Erdős–Hajnal property (SEH-property) if there
is a constant c = c(G) > 0 such that for every member G of G, either G or its
complement has Km,m as a subgraph where m 󰃍 ⌊c|V (G)|⌋. We prove that the
class of chordal graphs satisfy SEH-property with constant c = 2/9.

On the other hand, a strengthening of SEH-property which we call the colorful
Erdős–Hajnal property was discussed in geometric settings by Alon et al. (2005) and
by Fox et al. (2012). Inspired by their results, we show that for every pair F1, F2 of
subtree families of the same size in a tree T with k leaves, there exists subfamilies
F ′
1 ⊆ F1 and F ′

2 ⊆ F2 of size θ
󰀃
ln k
k |F1|

󰀄
such that either every pair of representatives

from distinct subfamilies intersect or every such pair do not intersect. Our results
are asymptotically optimal.

Mathematics Subject Classifications: Primary 05C69; Secondary 05C05, 05C35

1 Introduction

Background.

A classical conjecture of Erdős and Hajnal [10] asserts that if G is a graph on n vertices
which does not contain some fixed graph H as an induced subgraph, then G contains a
clique or an independent set on at least ⌊nδ⌋ vertices where δ > 0 is a constant depending
only on the graph H. In general we say that a graph class G has the Erdős–Hajnal property
if there exists a constant δ = δ(G) such that every graph in G on n > 1 vertices contains
a clique or an independent set of size nδ. (Here we use the term graph class to mean a
family of graphs that is closed under taking induced subgraphs.) [5, 10, 14]
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Rather than asking for a large clique or independent set, one variation of the Erdős–
Hajnal problem, asks for a large bi-clique as a subgraph in G or in the complement of G.
Here a bi-clique of size 2k is a complete bipartite graph whose vertex classes each consists
of k vertices.

A graph class G is said to have the strong Erdős–Hajnal property (SEH-property) if
there exists a constant ε = ε(G) > 0 such that every graph G ∈ G on n vertices or its
complement G contains bi-clique of size 2 ⌊εn⌋. It was shown in [1] that if a graph class
has the SEH-property, then it also has the Erdős–Hajnal property.1

It is known that the class of all H-free graphs satisfies the SEH-property if and only
if both H and its complement H are forest. (For a simple proof, see [8].) Actually, the
latter condition does not hold for any H on more than four vertices, and this shows the
restrictive aspect of the SEH-property in solving the Erdős-Hajnal conjecture. However,
the above classification of classes of H-free graphs satisfying the SEH-property can be
extended to find more graphs classes that are defined by a finite list of forbidden induced
subgraphs. Given a collection F of graphs, G is called F -free if G does not contain
any graph in F as an induced subgraph. In [7], it was revealed that if F is finite, then
the collection of F -free graphs has the SEH-property if and only if F contains (possibly
identical) two graphs H1 and H2 such that H1 and H2 are forests.

If F is an infinite collection, then the situation becomes more subtle and not much is
known in general. When F is the collection of all odd cycles of length at least five and
their complements (also called antiholes), then by the strong perfect graph theorem [6],
F -free graphs are precisely the perfect graphs, and they are known not to satisfy the
SEH-property [12]. On the other hand, excluding all subdivisions of a single graph H and
their complements guarantees the SEH-property [8]. By noting that every antihole on at
least six vertices contains C4 as an induced subgraph, this result (see also [3]) immediately
implies that the class of all chordal graphs have the strong Erdős-Hajnal property. Here,
the graph is chordal if it contains no induced cycle of length 4 or greater. See [7, 8] for
an overview on graph classes satisfying the SEH-property.

A number of graph classes arising from discrete geometry have been shown to have the
SEH-property, most notably are the cases of semi-algebraic graphs [1] and intersection
graphs of convex sets in the plane [15]. The goal of this paper is to study the SEH-
property and related properties for some specific graph classes, with a focus on the class
of chordal graphs, which is an extension of the class of interval graphs.

Our results.

The most general and powerful results regarding the SEH-property, typically do not give
particular good bounds on the constant ε (nor do they aim to do so). One of the goals
of this paper is to provide (asymptotically) optimal constants for the SEH-property with
respect to the following graph classes:

1The reader should be warned that the name “strong Erdős–Hajnal property” appears in the literature
in various contexts. Here we are using the terminology introduced in [15].
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• Interval graphs. An interval graph is the intersection graph of a finite family of
intervals on the real line. That is, each vertex can be represented by an interval and
two vertices are adjacent if and only if the corresponding intervals intersect.

• Cographs. A cograph (complement-reducible graph) is a graph that can be obtained
from a single vertex by complementation and disjoint union. Equivalently, it is a
graph which does not contain the path on four vertices as an induced subgraph.

• Chordal graphs. A chordal graph is a graph in which every cycle on four or more
vertices has a chord, that is, there are no induced cycle on four or more vertices.
Equivalently, a chordal graph is the intersection graph of a finite family of subtrees
of an ambient tree [16]. (This is called the subtree representation of the chordal
graph.)

Theorem 1. The following graph classes satisfy the strong Erdős–Hajnal property.

(1) Interval graphs with constant ε = 1/4.

(2) Cographs with constant ε = 1/4.

(3) Chordal graphs with constant ε = 2/9.

We now turn our attention to a variation of the SEH-property. We say that a graph
class G has the colorful Erdős–Hajnal property (CEH-property) if there exists a constant
εc = εc(G) > 0 such that for any graph G ∈ G on n vertices and for any partition of the
vertex set V (G) into parts of size ⌈n/2⌉ and ⌊n/2⌋, G or its complement G contains a
bi-clique of size 2

󰀇
εcn
2

󰀈
whose vertex classes belong to different parts of the given partition

of V (G). In other words, we ask not only for a large bi-clique in G or its complement G,
but for one that respects an arbitrarily preassigned equipartition of the vertex set of G.
See [1, 2, 11, 22] for more results related to the CEH-property.

It was shown in [1] that semi-algebraic graphs satisfy the CEH-property, but this gen-
eral and powerful result does not give particularly good bounds on the constant involved.
Our next goal is to determine (asymptotically) optimal constants for the CEH-property
with respect to the same graph classes as in Theorem 1. However, it will be evident that
the class of chordal graphs does not satisfy the CEH-property, and therefore we consider
a refinement of this class.

Recall that the leafage of a chordal graph G, denoted by ℓ(G), is the minimum number
of leaves of the ambient tree in a subtree representation of G. For an integer k 󰃍 2 let Tk

denote the family of chordal graphs whose leafage is at most k. That is,

Tk = {G : G is chordal with ℓ(G) 󰃑 k}.

This gives us an infinite chain T2 ⊂ T3 ⊂ · · · ⊂ T∞ where T2 is the class of interval graphs
and T∞ is the class of chordal graphs.

Theorem 2. The following graph classes satisfy the colorful Erdős–Hajnal property.
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(1) Interval graphs with constant εc = 1/3.

(2) Cographs with constant εc = 1/4.

(3) The class Tk with constant εc =
ln k
20k

.

Basic terminology and notation

As usual, a graph G is an ordered pair G = (V,E) consisting of a finite vertex set
V = V (G) and an edge set E = E(G) ⊂

󰀃
V
2

󰀄
. In particular, all graphs in this paper are

simple, having no loops and no parallel edges. The complement graph of a graph G is the
graph G = (V,

󰀃
V
2

󰀄
−E(G)). The disjoint union of two sets A and B is denoted by A∪· B,

and the disjoint union of two given graphs G1 = (V1, E1) and G2 = (V2, E2) is the graph
(V1 ∪· V2, E1 ∪· E2). With a slight abuse of notation we denote this by G1 ∪· G2.

A complete bipartite graph is simply called a bi-clique. A bi-clique Km,n is balanced
if m = n. We define the size of bi-cliques only for balanced ones and the size of Km,m is
2m.

Given a family F of nonempty sets, the intersection graph of F is a graph G = (V,E)
such that V = F and two vertices A and B are adjacent in G if and only if A ∩ B ∕= ∅.
Let G be the intersection graph of a family F of nonempty sets, and let F1 and F2 be
two disjoint subfamilies of F . We say F1 and F2 correspond to a bi-clique in G if every
member of F1 intersects every member of F2. Similarly, we say F1 and F2 correspond to
a bi-clique in G if every member of F1 is disjoint from every member of F2.

For a vertex v ∈ V (G), the neighborhood of v, denoted by N(v), is the set of all
vertices adjacent to v. The closed neighborhood of v is N [v] := N(v) ∪ {v}. The degree
of v, denoted by deg(v), is the number of adjacent vertices to v, and ∆(G) denotes the
maximum degree over all vertices in G.

For a tree T , a leaf of T is a vertex of degree 1 in T . Given a pair of vertices
u, v ∈ V (T ), we denote by PT (u, v) the unique path in T connecting u and v. More
generally, for a vertex set U = {u1, u2, . . . , un} ⊆ V (T ), the inclusion-minimal subtree
of T that contains U is denoted by TreeT (U) or TreeT (u1, u2, . . . , un). In other words,
TreeT (U) =

󰁖
u,v∈U PT (u, v).

Outline of paper.

In Section 2 we provide examples guaranteeing that the constants in Theorems 1 and 2
cannot be increased (except for the class Tk whose construction will be given later). In
Section 3 we prove two lemmas that will be useful in the proofs of both Theorems 1 and
2. The first one deals with “generic” subtree representations of chordal graphs and the
other is a basic lemma on cographs. The proof of Theorem 1 is given in Section 4, and
Section 5 contains the proof of Theorem 2 as well as a probabilistic construction that
shows that our bound for the class Tk is asymptotically tight. We wrap up in Section 6
with some final remarks and open problems.
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2 Optimality of constants in Theorem 1 and Theorem 2

Example. The constants in Theorem 1 can in general not be increased. Let us first consider
the case of interval graphs. Let G1 be the intersection graph of the intervals

I1 = [0, 1], I2 = [1, 2], I3 = [2, 3], I4 = [3, 4].

Note that G is a graph on four vertices and the largest bi-clique in G or G has size two.
We can make arbitrarily large examples by taking k copies of each of the intervals. The
resulting intersection graph has 4k vertices and the largest bi-clique in G or G has size
2k.

Next we give a construction for the case of cographs. Obviously a complete graph is
a cograph, and so the graph G = (Kk ∪· Kk ∪· Kk)∪· Kk is a cograph on 4k vertices and it
is easily checked that the largest bi-clique in G or its complement G has size at most 2k.

Finally, we give a construction for the case of chordal graphs by giving a subtree
representation. Let T = K1,3 and V (T ) = {v, u1, u2, u3} where v is the vertex of degree
3. Let G be the intersection graph of the following nine subtrees of T :

T1 = T2 = u1, T3 = T4 = u2, T5 = T6 = u3,

T7 = PT (u1, u2), T8 = PT (u1, u3), T9 = PT (u2, u3),

where PT (u, v) denotes the unique path in T connecting vertices u and v. Thus G is a
graph on nine vertices and it is easily checked that the largest bi-clique contained in G or
G has size four. To obtain arbitrarily large examples simply take k copies of each subtree.

Example. The constants in Theorem 2 can in general not be increased. Here we give
examples for the case of interval graphs and cographs. These are similar to the ones for
the SEH-property. For the class Tk we will give an asymptotic matching bound, but the
argument is a bit more involved and is given in section 5. Note that this implies that the
class of chordal graphs (which is the class T∞) does not satisfy the CEH-property for any
fixed constant εc > 0.

Here is a construction for interval graphs. Let G be the intersection graph of the
following intervals

I1 = [0, 1], I2 = [2, 3], I3 = [4, 5],

J1 = [1, 2], J2 = [3, 4], J3 = [5, 6],

and consider the partition of the vertex set of G containing the Im intervals in one part
and the Jm intervals in the other. Thus G is a graph on six vertices and it is easily seen
that the largest bi-clique in G that respects this given partition has size two. As before
we can make arbitrarily large example by taking k copies of each of the intervals.

Here is a construction for cographs. Let H denote the bipartite graph in Figure 1.
Note that the largest bi-clique that respects the vertex partition of H has size two.

Now consider the following cograph on vertices {v1, . . . , v8}. Let G1 be the graph
on {v1, v5} without an edge, let G2 be disjoint union of edges v2v6 and v3v7, and define
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v1 v2 v3 v4

v5 v6 v7 v8

Figure 1: The bipartite graph H.

G3 = G1∪· G2. Finally, let G4 be the edge v4v8 and let G5 = G3∪· G4. It is easily seen that
the induced bipartite subgraph between parts {v1, . . . , v4} and {v5, . . . , v8} is isomorphic
to H.

For each k 󰃍 1, a general example G on 8k vertices can be made by replacing each vi
by any cograph Hi on k vertices and partitioning U1 =

󰁖4
i=1 V (Hi) and U2 =

󰁖8
i=5 V (Hi).

Note that Hi can be any cograph because its edges disappear when we restrict G to the
edges between two parts U1 and U2.

3 Auxiliary results

We start this section with a simple lemma regarding subtree representations of chordal
graphs. This will be useful later on in the proofs of Theorems 1 and 2. Recall that Tk is
the class of chordal graphs with leafage at most k.

Lemma 3. Any graph G ∈ Tk has a subtree representation as the intersection graph of a
family {Ti} of subtrees of an ambient tree T where

(i) The ambient tree T has k leaves and maximum degree 3.

(ii) No two subtrees Ti and Tj share a common leaf.

Proof. The fact that G has a subtree representation in an ambient tree T with at most k
leaves follows from the well-known result of Gavril [16] and the definition of ℓ(G). We fix
such a subtree representation {Ti} and show how to modify the ambient tree T and the
subtree representation without changing the intersection graph.

We first show how to reduce the maximum degree of the ambient tree T . Fix a vertex
v ∈ V (T ) of degree d 󰃍 4. Let C1, C2, . . . , Cd be the components of T − v, and let ui

be the unique neighbor of v in Ci for each i ∈ [d]. Introduce new vertices v1, v2, . . . , vd
connected by edges such that they form a path P .

We construct new tree T ′ on the vertex set (V (T )− {v}) ∪ {v1, v2, . . . , vd}. Edges in
each Ci remain the same in T ′, each ui is connected to vi by an edge, and finally add the
edges of P to T ′. In other words,

E(T ′) = E(C1) ∪ E(C2) ∪ · · · ∪ E(Cd) ∪ {u1v1, . . . , udvd} ∪ E(P ).

It is obvious that T ′ is a tree. Now we construct the new subtree family {T ′
i}. If the

original subtree Ti contains the vertex v, then we set V (T ′
i ) = (V (Ti) − {v}) ∪ {v1,
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. . ., vd}. Otherwise we set V (T ′
i ) = V (Ti). Finally let T ′

i be the minimal subtree of T ′

that contains the vertices V (T ′
i ). It is easily seen that {Ti} and {T ′

i} have isomorphic
intersection graphs.

Note that the new vertices v1, . . . , vd all have degree at most 3 in T ′, and that T ′ has
the same number of leaves as T . Therefore repeating the process until there are no more
vertices of degree greater than 3 proves claim (i).

To prove claim (ii), suppose v ∈ V (T ) is a common leaf of Ti and Tj. If v is a leaf of
T , then we first modify T as follows; add a new vertex u to T and connect it to v. (We
do not change any subtrees yet.) If v is not a leaf of T , then T remains unchanged.

Now let u be a neighbor of v which is not a vertex of Ti (which must exist after possibly
making the change above). Subdivide the edge uv once; so the edge uv is replaced by the
path uwv (in both T and every subtree containing the original edge uv), then add the
edge vw to Ti. Note that these modifications maintain claim (i).

In effect, this reduces the total number of common leaves between subtrees, while the
intersection graph remains the same. We repeat the same procedure until no two subtrees
share a common leaf.

The next lemma concerning cographs will be needed for the proofs of both Theorems
1 and 2. Consider a vertex v of a graph G and subset W ⊂ V (G) \ {v}. We say that W
conforms to v if either W ⊂ N(v) or W ∩N(v) = ∅.

Lemma 4. Let G be a cograph on the vertex set V . For any nonempty vertex set U ⊆ V ,
there exists a subset W ⊆ V such that

(i) 1
4
|U | 󰃑 |U ∩W | 󰃑 max{1

2
|U | , 1}.

(ii) For every v ∈ V −W , W conforms to v.

Proof. Let P denote the class of all cographs. Recall the recursive definition of P :

(i) The graph K1 on one isolated vertex belongs to P .

(ii) If G ∈ P , then its complement G also belongs to P .

(iii) If G,H ∈ P , then their disjoint union G ∪· H also belongs to P .

For our given graph G ∈ P we recursively define sequences of cographs {Gi} and {Hi}
as follows. Start by setting G1 = G. For Gi with i 󰃍 1 and |V (G)| 󰃍 2, either Gi or
Gi equals the disjoint union of two cographs Gi+1 ∪· Hi+1 by the recursive construction of
Gi. Select Gi+1 so that |U ∩ V (Gi+1)| 󰃍 |U ∩ V (Hi+1)|. Since the order of Gi is strictly
decreasing in i, the sequence {Gi} is finite and terminates when Gm = K1 for some integer
m 󰃍 1. This defines the two sequences G1, G2, . . . , Gm and H2, H3, . . . , Hm.

Note that if |U | = 1, then we can prove the lemma simply by taking W = V . Thus
we may assume |U | 󰃍 2.

If there exists an i 󰃍 2 such that 1
4
|U | 󰃑 |U ∩ V (Hi)| 󰃑 1

2
|U |, then pick the smallest

such i and set W = V (Hi).
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If no such i exists, then we must have |U ∩ V (Hi)| < 1
4
|U | for every 2 󰃑 i 󰃑 m. The

case that |U ∩ V (Hi)| > 1
2
|U | can not happen since this would contradict the disjointness

of U ∩ V (Gi) and U ∩ V (Hi). We have |U ∩ V (G1)| = |U | and |U ∩ V (Gm)| 󰃑 1, so there
is some i such that |U ∩ V (Gi)| > 1

2
|U | but |U ∩ V (Gi+1)| 󰃑 1

2
|U |. Now we know that

|U ∩ V (Gi+1)| = |U ∩ V (Gi)|− |U ∩ V (Hi+1)| > 1
2
n− 1

4
n = 1

4
n,

and we set W = V (Gi+1).

It remains to show that for every v ∈ V − W , W conforms to v. First consider the
case W = V (Gi) for some i. By the construction of the sequence {Gi}, we have the series
of inclusions V (G1) ⊃ V (G2) ⊃ · · · ⊃ V (Gi−1) ⊃ V (Gi). Let j be the largest index such
that v ∈ V (Gj). Obviously 1 󰃑 j < i, and since V (Gj) = V (Gj+1) ∪· V (Hj+1), the choice
of j implies that v ∈ V (Hj+1). As Gj+1∪· Hj+1 equals Gj or Gj, V (Gj+1) conforms to any
vertex in V (Hj+1). This shows the desired property since W = V (Gi) ⊆ V (Gj+1).

The remaining case W = V (Hi) for some i can be proved in a similar way, since every
v ∈ V −W is either in V (Gi) or in V (Hj) for some 1 󰃑 j < i.

4 The strong Erdős–Hajnal property

In this section we prove Theorem 1. The cases of interval graphs and cographs are simple
and will be treated first. The case of chordal graphs is more involved and takes up the
majority of the proof.

Proof of Theorem 1 for interval graphs. Let G be an interval graph on n vertices. We first
show that it suffices to prove assuming that G has a representation as the intersection
graph of a family F = {Ij}nj=1 of compact intervals on the real line such that no two
intervals share a common endpoint. Let F = {Ij}nj=1 be a representation of G. For every
nonempty intersection of intervals in F choose a point and let P be the collection of such
points. Replacing each Ij by conv(Ij ∩ P ) which is a compact interval does not change
the intersection graph of F . This yields a subtree representation of G where the ambient
tree is the path on P joining all consecutive pairs by size and each Ij is represented as
the induced path on Ij ∩ P . By Lemma 3 we have a subtree representation of G without
any pair of subtrees sharing a common leaf. Moreover the maximum degree of ambient
tree remains the same, thus the subtrees are subpaths of a long path. Embedding this
representation into the real line yields the desired representation by intervals.

For a point x ∈ R, let L(x) denote the number of intervals Ij whose rightmost endpoint
is strictly less than x, and let R(x) denote the number of intervals whose leftmost endpoint
is strictly greater than x. Observe that for all sufficiently small x we have L(x) = 0 and
R(x) = n, and for all sufficiently large x we have L(x) = n and R(x) = 0. Since the
intervals all have distinct endpoints it follows that L(x) is weakly increasing and changes
in increments of 1, while R(x) is weakly decreasing and changes in increments of -1.
Moreover these changes happen at distinct x-values. Therefore there exists a point x0

such that M = L(x0) = R(x0). If M 󰃍 n/4 then there is a bi-clique in G of size 2⌊n/4⌋.
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If M < n/4 then G contains a clique of size n/2 and consequently G contains a bi-clique
of size 2⌊n/4⌋.

Proof of Theorem 1 for cographs. We apply Lemma 4 to U = V (G). This gives us a
subset W ⊆ V with 1

4
n 󰃑 |W | 󰃑 1

2
n such that W conforms to every v ∈ V −W . Note

that |V −W | 󰃍 1
2
n, therefore there exists a subset X ⊂ V −W with |X| 󰃍 n/4 such that

either W ⊂ N(x) for every x ∈ X, or W ∩N(x) = ∅ for every x ∈ X. This implies G or
G contains a bi-clique of desired size.

Proof of Theorem 1 for chordal graphs. Let G be a chordal graph on n vertices, and for
contradiction, we assume that neither G nor G contains a bi-clique of size 2

󰀇
2
9
n
󰀈
. By

Lemma 3 we may assume that G has a subtree representation as an intersection graph
of a family of subtrees F = {Ti}ni=1 of an ambient tree T where ∆(T ) 󰃑 3 and no two
subtrees Ti and Tj share a common leaf. We may assume the maximum degree ∆(T ) = 3,
otherwise T is a path (or possibly a single vertex) and therefore G is an interval graph
which was treated above.

For each v ∈ V (T ), let Fv ⊂ F be the collection of subtrees that contain the vertex v.
If |Fv| 󰃍 4

9
n 󰃍 2

󰀇
2
9
n
󰀈
for some v, then the members of Fv form a clique in G and we are

done. Therefore assume |Fv| < 4
9
n for every v.

For any vertex v ∈ V (T ), let C1(v), C2(v), C3(v) be the components of T − v, and
let Fi(v) ⊂ F be the family of subtrees contained in Ci(v). (Note that we allow for
the possibility that some of the Ci(v) and/or Fi(v) are empty.) Clearly, for every vertex
v ∈ V (T ) we have F = Fv ∪· F1(v) ∪· F2(v) ∪· F3(v).

Claim 5. There exists a degree 3 vertex v ∈ V (T ) such that 1
9
n 󰃑 |Fi(v)| 󰃑 2

9
n for every

i = 1, 2, 3.

Proof of Claim 5. For every vertex v let us label the components Ci(v) such that |F1(v)| 󰃍
|F2(v)| 󰃍 |F3(v)|. We first show if there is no vertex that satisfies the claim, then we have
|F1(v)| 󰃍 2

9
n > |F2(v)| 󰃍 |F3(v)| for every vertex v ∈ V (T ). To see why, assume there is

a vertex v such that |F1(v)| < 2
9
n. If deg(v) < 3, then

|F | = |Fv|+ |F1(v)|+ |F2(v)|+ |F3(v)| 󰃑 4
9
n+ 2

9
n+ 2

9
n+ 0 < n = |F |,

which is a contradiction. Therefore we have deg(v) = 3, and for every i = 1, 2, 3, we get

|Fi(v)| 󰃍 |F3(v)| = |F |− |Fv|− |F1(v)|− |F2(v)| > n− 4
9
n− 2

9
n− 2

9
n = 1

9
n,

but then v is a vertex satisfying the claim. Consequently we must have |F1(v)| 󰃍 2
9
n. If

also |F2(v)| 󰃍 2
9
n, then F1(v) and F2(v) correspond to a bi-clique in G of the desired size,

and therefore |F1(v)| 󰃍 2
9
n > |F2(v)| 󰃍 |F3(v)|.

Now consider the following orientation of the edges of T . For any given v ∈ V (T ),
let u be the (unique) neighbor of v contained in C1(v) that is adjacent v, and assign
the orientation −→vu. By the observations in the previous paragraph, every vertex has a
unique outgoing edge. Furthermore we claim that every edge will be assigned a unique
orientation. This is because if an edge uv ∈ E(T ) is assigned either no orientation or
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both orientations, then C1(v) and C1(u) are disjoint, which implies that F1(v) and F1(u)
correspond to a bi-clique in G of the desired size.

Thus, if there is no vertex satisfying the claim, then we obtain an orientation of the
edges of T in which each vertex has a unique outgoing edge, which is impossible. 󰃈

Now fix a vertex v ∈ V (T ) satisfying the condition in Claim 5, and let ui denote the
unique neighbor of v in the component Ci(v). For every w ∈ V (T ) − {v}, we label the
components Ci(w) of T −w (some of which may be empty) such that C1(w) contains the
vertex v, and define C23(w) as the induced subgraph of T on V (T ) − V (C1(w)). Define
Γ(w) to be the collection of subtrees in F which are contained in either C2(w) or C3(w),
that is, Γ(w) = F2(w)∪F3(w), and let Γ+(w) be the collection of subtrees in F contained
in C23(w). Note that according to this new notation, we have Γ+(ui) = Fi(v) for every
i = 1, 2, 3.

Claim 6. For every i = 1, 2, 3, there is a vertex wi ∈ V (Ci(v)) that satisfies the following:

(i) |Γ+(wi)| 󰃍 1
9
n

(ii) |F2(wi)| , |F3(wi)| < 1
9
n.

Proof of Claim 6. Fix an i ∈ {1, 2, 3} and set v1 := ui. By the choice of v we have
1
9
n 󰃑 |Γ+(v1)| 󰃑 2

9
n, and we are done if both |F2(v1)| and |F3(v1)| are strictly less than

1
9
n. Otherwise, we may assume that |F2(v1)| > 1

9
n > |F3(v1)| and we set v2 as the unique

neighbor of v1 in the component C2(v1). We repeat the same argument to define vj+1 ∈
C2(vj) adjacent to vj whenever |F2(vj)| > 1

9
n. Note that F2(vj) = Γ+(vj+1) ⊇ F2(vj+1) if

both vj and vj+1 are defined and the distance from v to vj is j. By the definition of F2(·),
when u ∈ V (T ) is a leaf, we have F2(u) = ∅ and |F2(u)| = 0 < 1

9
n. Therefore, the process

terminates at some vm with |F2(vm)| < 1
9
n 󰃑 |F2(vm−1)| and wi = vm−1 is the desired

vertex. 󰃈

For each i = 1, 2, 3, let Gi ⊂ Fi(v) be the collection of subtrees that intersect the path
PT (v, wi). Let Hi ⊂ Fi(v) be the collection of subtrees that are disjoint from the subgraph
C23(wi) and from the path PT (v, wi). Equivalently, Hi = (Fi(v) − Gi) − Γ+(wi). Note
that |Hi| 󰃑 1

9
n since Hi and Γ+(wi) are disjoint subfamilies of Fi(v) and

1
9
n 󰃑 |Γ+(wi)| 󰃑

|Fi(v)| 󰃑 2
9
n.

Finally, we define some additional subfamilies of Fv. Let X∅ ⊂ Fv be the collection of
subtrees that contains none of w1, w2, and w3. Let Xi ⊂ Fv be the collection of subtrees
containing only wi but not the other wj’s. For every 1 󰃑 i < j 󰃑 3, let Yij ⊂ Fv be the
collection of subtrees containing both wi and wj. Note that a member of F that contains
w1, w2, and w3, belongs to Y12, Y13, and Y23.

The following observations identify certain bi-cliques in G or G which allow us to
bound the sizes of the various subfamilies we have defined. This will eventually lead us
to the existence of a bi-clique of size 2

󰀇
2
9
n
󰀈
in G or G.

Observation 1. Every member ofX∅∪X1∪F1(v) is disjoint from every member of Γ+(w2)∪
Γ+(w3), and so the two subfamilies correspond to a bi-clique in G.

the electronic journal of combinatorics 31(2) (2024), #P2.37 10



The same obviously holds for the symmetric cases as well. So by the assumption that G
or G contains no bi-clique of size 2

󰀇
2
9
n
󰀈
, and since Γ+(wi) 󰃍 1

9
n, we must have

|X∅|+ |Xi|+ |Fi(v)| < 2
9
n,

for every i = 1, 2, 3. We now have the following inequality.

|X∅|+ |X1|+ |X2|+ |X3| 󰃑 3 |X∅|+ |X1|+ |X2|+ |X3|
<

󰀃
2
9
n− |F1(v)|

󰀄
+
󰀃
2
9
n− |F2(v)|

󰀄
+
󰀃
2
9
n− |F3(v)|

󰀄

= 2
3
n− (|F1(v)|+ |F2(v)|+ |F3(v)|).

Note that Fv = X∅ ∪· X1 ∪· X2 ∪· X3 ∪· (Y12 ∪ Y13 ∪ Y23), and so we have

|Y12 ∪ Y13 ∪ Y23| = |Fv|− (|X∅|+ |X1|+ |X2|+ |X3|)
= n− (|F1(v)|+ |F2(v)|+ |F3(v)|)− (|X∅|+ |X1|+ |X2|+ |X3|)
> 1

3
n.

By double-counting, one of |Y12 ∪ Y13|, |Y12 ∪ Y23|, or |Y13 ∪ Y23| is strictly greater than
2
9
n, and without loss generality we may assume that |Y12 ∪ Y13| > 2

9
n. Choose a subset

Y ⊆ Y12 ∪ Y13 of size ⌊2
9
n⌋.

Observation 2. Every member of Y intersects every member of (Fv − Y )∪G1, and so the
two subfamilies correspond to a bi-clique in G.

We may therefore assume that |Fv − Y |+ |G1| < 2
9
n, which gives us

2
9
n > |Fv − Y |+ |G1| = |Fv|− ⌊2

9
n⌋+ |G1|

󰃍 n− (|F1(v)|+ |F2(v)|+ |F3(v)|)− 2
9
n+ |G1|

= 7
9
n− (|F2(v)|+ |F3(v)|)− |F1(v)|+ |G1| .

From this we can conclude that

|H1|+ |F2(w1)|+ |F3(w1)| = |F1(v)|− |G1|
> 5

9
n− (|F2(v)|+ |F3(v)|),

and therefore
|H1|+ |F2(w1)|+ |F3(w1)|+ |F2(v)|+ |F3(v)| > 5

9
n.

Observation 3. Any two members taken from distinct families among H1, F2(w1), F3(w1),
F2(v), F3(v) are pairwise disjoint.

In particular, if we partition S = {H1, F2(w1), F3(w1), F2(v), F3(v)} into two parts S =
S1 ∪· S2, then this corresponds to a bi-clique in G. Our final goal is to divide S evenly so
that

󰁖
S1 :=

󰁖
G∈S1

G and
󰁖

S2 :=
󰁖

G∈S2
G each contain at least 2

9
n subtrees.

Recall 1
9
n 󰃑 |F2(v)| , |F3(v)| 󰃑 2

9
n and the three subfamilies H1, F2(w1), and F3(w1)

each have size at most 1
9
n. Now we describe how to split S evenly. Start with S1 = {F2(v)}

and S2 = {F3(v)}. Next, take one of the remaining subfamilies in S − (S1 ∪ S2) and
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add it to the part Si which contains the fewest subtrees. Repeat this until the three
subfamilies H1, F2(w1), F3(w1) have been distributed. Then the resulting S1 and S2

satisfy ||
󰁖

S1|− |
󰁖

S2|| 󰃑 1
9
n, since ||F2(v)|− |F3(v)|| 󰃑 1

9
n and as we distribute the

remaining subfamilies, the difference |
󰁖

S1|− |
󰁖

S2| changes by at most 1
9
n in each step.

Because |
󰁖

S1| + |
󰁖

S2| > 5
9
n, we have that

󰁖
S1 and

󰁖
S2 each contain at least 2

9
n

subtrees, which completes the proof.

5 The colorful Erdős–Hajnal property

In this section we prove Theorem 2. As in the previous section, the cases of interval
graphs and cographs are simple and will be treated first. Finally we deal with the case of
the graph class Tk, where we give asymptotically matching upper and lower bounds.

Proof of Theorem 2 for interval graphs. Let G be an interval graph on n vertices. As in
the proof of Theorem 1 for interval graphs, we assume that G has a representation as the
intersection graph of a family F of n compact intervals on the real line such that no two
intervals share a common endpoint.

Our goal is to show that for any partition F = F1 ∪ F2 such that |F1| =
󰀉
n
2

󰀊
and

|F2| =
󰀇
n
2

󰀈
there are subfamilies of H1 ⊂ F1 and H2 ⊂ F2, each of size at least

󰀇
n
6

󰀈
, such

that either every member of H1 intersects every member of H2, or every member of H1 is
disjoint from every member of H2.

For each i = 1, 2, let ai be the smallest real number such that at least one third of the
members of Fi are contained in the half-line (−∞, ai]:

ai := min
󰀋
a ∈ R : |{I ∈ Fi : I ⊆ (−∞, a]}| 󰃍 1

3
|Fi|

󰀌
.

Similarly, define bi as the largest real number such that at least one third of elements of
Fi are contained in the half-line [bi,∞):

bi := max
󰀋
b ∈ R : |{I ∈ Fi : I ⊆ [b,∞)}| 󰃍 1

3
|Fi|

󰀌
.

For an interval J ⊂ R, let Fi|J ⊂ Fi denote the collection of intervals of Fi that are
contained in J . Note that both Fi|(−∞,ai]

and Fi|[bi,∞) have size exactly
󰀉
1
3
|Fi|

󰀊
, and both

Fi|(−∞,ai)
and Fi|(bi,∞) have size exactly

󰀉
1
3
|Fi|

󰀊
− 1.

We divide cases according to the relative order between a1, a2, b1 and b2.

Case 1. a1 < b2 or a2 < b1 : If a1 < b2, then we set H1 = F1|(−∞,a1]
and H2 = F2|[b2,∞)

to obtain the desired subfamilies corresponding to a bi-clique in G. The case a2 < b1 is
symmetric handled in the same way.

For the rest of proof, assume b1 󰃑 a2 and b2 󰃑 a1. Note that these conditions imply
that we must have b1 󰃑 a1 or b2 󰃑 a2; if a1 < b1, then we have b2 󰃑 a1 < b1 󰃑 a2. By
symmetry we may assume that b2 󰃑 a2 holds.

Case 2. a1 < b1 and b2 󰃑 a2 : We have b2 󰃑 a1 < b1 󰃑 a2. In this case we

set H1 = F1 −
󰀓
F1|(−∞,a1)

∪ F1|(b1,∞)

󰀔
and H2 = F2 −

󰀓
F2|(−∞,a2)

∪ F2|(b2,∞)

󰀔
. Then
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|Hi| 󰃍 |Fi|− 2
󰀉
1
3
|Fi|

󰀊
+ 2 󰃍

󰀉
1
3
|Fi|

󰀊
󰃍

󰀇
n
6

󰀈
. Observe that every interval I ∈ H1 must in-

tersect the interval [a1, b1], and that every interval in H2 must contain the interval [b2, a2].
Since [a1, b1] ⊂ [b2, a2] it follows that the families H1 and H2 are the desired subfamilies
corresponding to a bi-clique in G.

Case 3. b1 󰃑 a1 and b2 󰃑 a2 : We may assume the intervals [b1, a1] and [b2, a2] intersect,
otherwise it is either a1 < b2 or a2 < b1 which is covered by Case 1. Here we set Hi =

Fi −
󰀓
Fi|(−∞,ai)

∪ Fi|(bi,∞)

󰀔
for both i = 1, 2. As in Case 2, we have |Hi| 󰃍

󰀉
1
3
|Fi|

󰀊
󰃍

󰀇
n
6

󰀈

and every member in Hi must contain the interval [bi, ai], and consequently the families
H1 and H2 correspond to a bi-clique in G.

Proof of Theorem 2 for cographs. Let G be a cograph on the vertex set V with a partition
V = V1 ∪ V2 where |V1| = ⌈|V |/2⌉ and |V2| = ⌊|V |/2⌋. Our goal is to find subsets Ui ⊂ Vi

of size at least |Vi|/4 for each i = 1, 2 such that either every vertex in U1 is adjacent to all
vertices of U2 or there is no adjacent pair of u1 ∈ U1, u2 ∈ U2. This implies the existence
of a bi-clique of desired size in G or G.

Applying Lemma 4 with U = V1, we get a subsetW ⊆ V such that 1
4
|V1| 󰃑 |V1 ∩W | 󰃑

1
2
|V1| and W conforms to every v ∈ V −W . Now define subsets X(W ), Y (W ) ⊆ V −W

by setting

X(W ) := {v ∈ V −W : W ⊂ N(v)},
Y (W ) := {v ∈ V −W : W ∩N(v) = ∅}.

By the choice of W using Lemma 4, we have X(W )∪· Y (W ) = V −W . We now distinguish
two cases.

Case 1. |V2 ∩W | < 1
2
|V2|: Note that |V2 ∩ (V −W )| 󰃍 1

2
|V2|. Then one of the sets

V2 ∩ X(W ) or V2 ∩ Y (W ) has cardinality at least 1
4
|V2|. We define U2 to be the set of

larger cardinality, and define U1 = V1 ∩W .

Case 2. |V2 ∩W | 󰃍 1
2
|V2|: Note that |V1 ∩ (V −W )| 󰃍 1

2
|V1|. Then one of the sets

V1 ∩ X(W ) or V1 ∩ Y (W ) has cardinality at least 1
4
|V1|. We define U1 to be the set of

larger cardinality, and defined by U2 = V2 ∩W .

In both cases, we have |Ui| 󰃍 |Vi| /4 for i = 1, 2, and this completes the proof.

Proof of Theorem 2 for chordal graphs. The case k = 2 is covered by results on intervals.
We therefore assume that G is a chordal graph on n vertices, with leafage ℓ(G) = k 󰃍 3
and we are given a partition of the vertices into subsets V1 and V2 whose sizes differ by
at most one.

By Lemma 3 we may fix a subtree representation of G as an intersection graph of a
family F of n subtrees of an ambient tree T where T has k leaves, ∆(T ) = 3, and where no
two subtrees share a common leaf. The vertex partition V1∪V2 corresponds to a partition
F = F1 ∪ F2.

Let L(T ) = {v1, v2, . . . , vk} be the set of k leaves of T . For each i ∈ [k], define
Li = L(T )− {vi} and let Ti = TreeT (Li) which is T with one leaf removed. Let ri be the
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closest degree 3 vertex to vi so that E(T ) − E(Ti) = E(PT (vi, ri)). Let si be the unique
neighbor of ri in PT (vi, ri). Note that si = vi is possible when vi is adjacent to ri.

First we show the CEH-property of Tk with a smaller constant including the case
k = 2:

Claim 7. For every k 󰃍 2, Tk satisfies the CEH-property with constant εc =
1

3(k−1)
.

Proof of Claim 7. We proceed to induction on k. The base case k = 2 is covered by
results on intervals. Assume that k 󰃍 3 and let T, F1, F2 and Ti’s be as above.

If there is some i such that Ti intersects both at least
󰀉
k−2
k−1

|F1|
󰀊
members of F1 and󰀉

k−2
k−1

|F2|
󰀊
members of F2, then the result follows by applying the inductive assumption

on families
Fj(Ti) := {X ∩ Ti : X ∈ Fj}

with j = 1, 2.

Therefore, for each i ∈ [k] the path PT (vi, si) contains at least
󰀉

1
k−1

|F1|
󰀊
members

of F1 or
󰀉

1
k−1

|F2|
󰀊
members of F2. Assume that PT (v1, s1) contains at least

󰀉
1

k−1
|F1|

󰀊

members of F1. If T1 contains at least
󰀉

1
k−1

|F2|
󰀊
members of F2, then the two subfamilies

correspond a bi-clique of desired size in G.
Otherwise, at least

󰀉
k−2
k−1

|F2|
󰀊
members of F2 make nonempty intersections with PT (v1,

s1). Consider the intersections as subpaths of PT (v1, s1). Together with
󰀉

1
k−1

|F1|
󰀊
mem-

bers of F1 contained in the same path, by Theorem 2 (1), there exists a bi-clique of desired
size in G or G. 󰃈

Now we prove the CEH-property for Tk with the promised constant εc =
ln k
20k

. Let T
and r1, r2, . . . , rk be as above. We define TreeT (r1, r2, . . . , rk) as the trunk of T , denoted
by Trunk(T ).

A key observation is that the trunk of a tree is again a tree with fewer leaves:

Observation 4. Trunk(T ) is a tree with at most
󰀇
k
2

󰀈
leaves.

Proof of Observation 4. Let ℓ be a leaf of Trunk(T ). We claim that ℓ = ri for at least
two indices i ∈ [k] which is sufficient to prove the observation.

First we show that ℓ = ri for some i. Note that Trunk(T ) = TreeT (r1, r2, . . . , rk) =󰁖
i,j∈[k] PT (ri, rj). Hence ℓ ∈ PT (ri, rj) for some i, j ∈ [k]. However the degree of deg(ℓ) =

1 so it cannot be an interior vertex of the path. Thus ℓ is either ri or rj.
Next, we show that ℓ = ri for at least two values of i. If Trunk(T ) has no edge then T is

a subdivision of star K1,k and we are done. Now consider the case where Trunk(T ) has an
edge. Let w be the unique neighbor of ℓ in Trunk(T ). Since ℓ = ri, it has another neighbor
si in T , which is the unique neighbor of ℓ in PT (vi, ℓ) = PT (vi, ri). Since deg(ri) = 3 in
T , ℓ = ri has the third neighbor u in T other than w and si.

Consider a leaf vj of T such that PT (vj, ℓ) contains u. Note that it must be j ∕= i, and
we finish the proof by showing ℓ = rj. Assume not. Then the path PTrunk(T )(ℓ, rj) contains
w since w is a unique neighbor of ℓ in Trunk(T ). However it implies w ∈ PT (ℓ, rj). On
the other hand, PT (vj, ℓ) and PT (ℓ, rj) are edge disjoint hence PT (vj, ℓ) ∪ PT (ℓ, rj) is a
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path from vj to rj in T . Since T is tree, it is also the unique path between vj and rj. But
this contradicts to that rj is the closest vertex of degree 3 to vj. 󰃈

Let R = Trunk(T ) ⊂ T . For each i = 1, 2, define (Fi)R to be the collection of subtrees
in Fi that intersect R:

(Fi)R := {X ∈ Fi : X ∩R ∕= ∅}.

The complement of (Fi)R, which is the collection of subtrees in Fi that are disjoint

from R is denoted by (Fi)R:

(Fi)R := {X ∈ Fi : X ∩R = ∅}.

Thus, each member of (Fi)R can be viewed as a subpath of PT (vj, sj) for some j ∈ [k],
where sj is the unique neighbor of rj in PT (vj, rj).

We will prove the theorem using induction on k 󰃍 2. First, note that the constant
1

3(k−1)
from Claim 7 is greater than εc =

ln k
20k

for small k, say when 2 󰃑 k 󰃑 e20/3. Therefore

it is sufficient to prove the theorem when k is large enough, say k > e20/3.
We divide into cases according to the size of (F1)R and (F2)R.
First, assume that both (F1)R and (F2)R are big, say |(Fi)R| 󰃍 2

3
|Fi| for each i = 1, 2.

Define subtree families Fi(R) := {X∩R : X ∈ (Fi)R} of R as a multiset. By the induction
hypothesis there exists subfamilies (F1)

′
R ⊆ F1(R) and (F2)

′
R ⊆ F2(R) corresponding to a

bi-clique in G or G, with size:

󰀏󰀏(Fi)
′
R

󰀏󰀏 󰃍 1
20

ln⌊k/2⌋
⌊k/2⌋ |Fi(R)| 󰃍 1

20
ln⌊k/2⌋
⌊k/2⌋

2
3
|Fi| 󰃍 1

20
ln k
k
|Fi|,

where the first inequality comes once we think of R as a tree of at most ⌊k/2⌋ leaves.

Next, consider the case where both (F1)R and (F2)R are small, meaning |(Fi)R| < 2
3
|Fi|

for each i. Then we have |(Fi)R| 󰃍 1
3
|Fi|. Recall that each element of (Fi)R is a subpath

of some path PT (vj, sj). Therefore we may view each family (Fi)R as a family of intervals
contained in the open interval (i−1, i) ⊆ R, and Theorem 2 for interval graphs guarantees
the existence of subfamilies F ′

i ⊆ (Fi)R of size |F ′
i | 󰃍 1

3
|(Fi)R| 󰃍 1

9
|Fi|.

Finally, consider the last case where only one of (F1)R or (F2)R is big. Without loss

of generality assume (F1)R is big so that |(F1)R| 󰃍 2
3
|F1| and |(F2)R| 󰃍 1

3
|F2|. For each

j ∈ [k], define the family Hj ⊂ (F2)R of subtrees contained in PT (vj, sj). Note that

{H1, H2, . . . , Hk} form a partition of (F2)R. Assume the size of parts are in decreasing

order so that
󰁓

i󰃑m |Hi| 󰃍 m
k
|(F2)R|.

We will choose two sequences of subfamilies (F1)R = F (0) ⊇ F (1) ⊇ . . . ⊇ F (k) and
H ′

1 ⊆ H1, H
′
2 ⊆ H2, . . . , H

′
k ⊆ Hk satisfying the following three conditions for every

j ∈ [k]:

(i)
󰀏󰀏F (j)

󰀏󰀏 󰃍 1
2

󰀏󰀏F (j−1)
󰀏󰀏 󰃍 1

2j
|(F1)R|.

(ii)
󰀏󰀏H ′

j

󰀏󰀏 󰃍 1
2
|Hj|.
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(iii) F (j) and H ′
j correspond to a bi-clique in G or G.

Let us first show how the existence of such subfamilies yields the conclusion of theorem.
Note that for every j 󰃑 m 󰃑 k, F (m) ⊆ F (j) and H ′

j also correspond to bi-cliques. For
a fixed m ∈ [k] we produce a partition of [m] as follows: Let I ⊂ [m] denote the set of
indices i ∈ [m] such that every member of F (m) intersects every member of H ′

i. Similarly,
let J ⊂ [m] denote the set of indices j ∈ [m] such that every member of F (m) is disjoint
from every member of H ′

j. Note that H
′
I =

󰁖
i∈I H

′
i and H ′

J =
󰁖

j∈J H
′
j are disjoint, hence

one of them has size at least one half of |
󰁖

i∈[m] H
′
i|. Assume that |H ′

I | 󰃍 1
2
|
󰁖

i∈[m] H
′
i|,

where the opposite case |H ′
J | 󰃍 1

2

󰀏󰀏󰀏
󰁖

i∈[m] H
′
i

󰀏󰀏󰀏 is handled in the same way.

Now F (m) and H ′
I correspond to a bi-clique in G, and their sizes are bounded below

by
|F (m)| 󰃍 1

2m
|(F1)R| 󰃍 1

3·2m−1 |F1|
and

|H ′
I | 󰃍 1

2

󰀏󰀏󰀏
󰁖

i∈[m] H
′
i

󰀏󰀏󰀏 󰃍 1
4

󰀏󰀏󰀏
󰁖

i∈[m] Hi

󰀏󰀏󰀏 󰃍 m
4k
|(F2)R| 󰃍 m

12k
|F2|.

We now take m = ⌊log2 k − log2 ln k⌋ 󰃍 1
2
log2 k, which yields |F (m)| 󰃍 2

3
ln k
k
|F1| and

|H ′
I | 󰃍 1

20
ln k
k
|F2|, which produces the desired bi-clique in G.

We now show how to construct the promised subfamilies {F (j)}j∈[k] and {H ′
j}j∈[k]. As

stated above, let F (0) = (F1)R. Fix j ∈ [k], and assume that F (i) and H ′
i’s are recursively

constructed for every i < j. Consider the path PT (vj, sj), and take the vertex aj on it
which is closest to vj and satisfies that the subpath PT (vj, aj) contains at least half of
the members of Fj. Note that there is a unique member Xj ∈ Fj which is contained in
PT (vj, aj) and has aj as an endpoint.

We distinguish two cases: either at least half of members of F (j−1) contain aj, or less
than half of them contain aj.

In the former case, let F (j) be those members of F (j−1) containing aj and let H ′
j consist

of Xj and the collection of members of Hj which are not fully contained in PT (vj, aj).
Note that the two new subfamilies F (j) and H ′

j satisfy conditions (i)-(iii) above, and that

F (j) and H ′
j correspond to a bi-clique in G.

In the latter case, let F (j) be those members of F (j−1) that do not contain aj and let H ′
j

be the collection of members of Hj which are fully contained in PT (vj, aj). Again we note
that these new subfamilies satisfy all three conditions, and that F (j) and H ′

j correspond

to a bi-clique in G. This finishes the inductive step of construction and concludes the
proof.

The asymptotically matching lower bound for the case of chordal graphs in Theorem
2 is a consequence of the following.

Theorem 8. Let k 󰃍 17 be an integer and let T be a tree with k leaves. There exist two
subtree families F1, F2 of T with the following property: If H1 ⊂ F1 and H2 ⊂ F2 are
such that either every member of H1 intersects every member of H2, or every member of
H1 is disjoint from every member of H2, then |Hi| 󰃑 2 ln k

k ln 2
|Fi| for some i = 1, 2.
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Remark. To prove Theorem 8, we give a construction, where F1 and F2 have different
sizes. By duplicating vertices, we can construct F ′

1 and F ′
2 with equal size so that they

satisfy the statement of Theorem 8. Let F1 and F2 be any families that satisfy Theorem 8,
say |F1| = n and |F2| = m for some positive integers n and m. For any integer t 󰃍 1,
we can take F ′

1 as the multiset having mt copies of each element of F1 and F ′
2 as be the

multiset having nt copies of each element of F2. Then |F ′
1| = |F ′

2| and definitely F ′
1 and

F ′
2 also satisfy Theorem 8.

We split the proof of Theorem 8 into two steps. First, we show that every bipartite
graph can be “realized” as an intersection graph between two subtree families of some
tree. Then we complete the proof by showing the existence of a bipartite graph G without
a large bi-clique in G or in G, which is realized as subtree families of a tree with at most
k leaves.

Lemma 9. Let G ⊆ Kk,n be a bipartite graph with 3 󰃑 k 󰃑 n. For every tree T with
k leaves, there exist two subtree families F1 and F2 of T such that the intersection graph
between F1 and F2 is isomorphic to G.

Proof. Let V = V1∪· V2 be the vertex partition of Kk,n and say V1 = {w1, w2, . . . , wk}. Let
v1, v2, . . . , vk be the leaves of T and fix a vertex u ∈ Trunk(T ). Note that u is distinct from
all vi’s since Trunk(T ) =

󰁖
i,j∈[k] PT (ri, rj) and no leaf of T lies on any PT (ri, rj). For each

vertex x ∈ V2, let Gx be the subtree of T defined by Gx := TreeT ({u} ∪ {vi : wix ∈ G}).
Define the first subtree family F1 as

F1 = {Gx : x ∈ V2} .

For each i ∈ [m], let Hi be the tree on {vi} with no edges. The second family consists of
all such “singletons” Hi:

F2 = {Hi : i ∈ [m]} .
Two trees Gx and Hi intersect if and only if wix ∈ G, showing that the intersection graph
between F1 and F2 is isomorphic to G.

From now on, let k 󰃍 17 be a fixed integer. For simplicity let c = c(k) = 2
ln 2

ln k
k
. Note

that c(k) < 1
2
for every k 󰃍 17.

Let n 󰃍 k be an integer and consider a random graph G ⊆ Kk,n formed by indepen-
dently choosing each edge of Kk,n with probability 1

2
. Let a = ⌈ck⌉ and b = ⌈cn⌉ be

integers. Let X be the total number of copies of Ka,b in G. We show 2E[X] < 1 for
sufficiently large n so that there is some G that Ka,b is contained in neither of G nor G
as a subgraph. Then the subtree representation of G by the subtree families F1 and F2

of T = K1,k provided by Lemma 9 satisfies Theorem 8.
By linearity of expectation, we have

E[X] =

󰀕
k

a

󰀖 󰀕
n

b

󰀖
21−ab.

In order to estimate E[X], we need the following lemma for binomial coefficients.
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Lemma 10. Let r ∈ (0, 1) be a rational number. Let d be a real number such that
1

rr(1−r)1−r < d. For every sufficiently large n such that rn is an integer, it holds that󰀃
n
rn

󰀄
< dn.

Proof. By Stirling’s approximation, we have lim
n→∞

n
√
n! =

n

e
. Using this formula one can

easily show that lim
n→∞

󰀕
n

rn

󰀖1/n

=
1

rr(1− r)1−r
.

Let r ∈ (c, 1
2
) be a rational number slightly larger than c(k). For sufficiently large n

such that rn is an integer and rn 󰃍 b, we bound E[X] from above as:

E[X] =

󰀕
k

a

󰀖󰀕
n

b

󰀖
21−ab 󰃑 2k

󰀕
1

rr(1− r)1−r

󰀖n

21−c2nk = 2k+1

󰀕
1

2c2krr(1− r)1−r

󰀖n

Now our goal is to show 2c
2krr(1 − r)1−r > 1 so that E[X] < 1 for sufficiently large n.

Taking logarithm, the inequality is equivalent with:

0 < c2k ln 2 + r ln r + (1− r) ln(1− r).

Putting ck = 2 ln k
ln 2

yields

0 < 2c ln k + r ln r + (1− r) ln(1− r) = r

󰀕
2c

r
ln k + ln r

󰀖
+ (1− r) ln(1− r)

= r ln k2c/rr + (1− r) ln(1− r).

One can easily check that r ln 1
r
+ (1 − r) ln(1 − r) > 0 for every r ∈ (0, 1

2
). Thus it is

enough to show that k2c/rr 󰃍 1
r
or equivalently k2c/rr2 󰃍 1 for our choices of k, c and r.

However, this easily follows from the continuity of an auxiliary function f(x) = k2c/xx2

at x = c and the fact that f(c) = k2c2 =
󰀃
2 ln k
ln 2

󰀄2
> 1.

6 Concluding remarks

Recall that intersection graphs of planar convex sets have the SEH-property. On the other
hand, they do not enjoy the CEH-property. This can be easily seen by Theorem 8 and
the following Lemma [17].

Lemma 11. Let T be a tree and F be a family of subtrees of T . There is a family C of
convex sets in R2 such that C and F have isomorphic nerve complexes.

It is natural to ask whether intersection graphs of convex sets in higher dimensions
satisfy SEH- or CEH-properties. However, it is already pointless to consider those prop-
erties in dimension three since every graph can be realized as the intersection graph of
some convex sets in R3 [23]. Another direction is to consider Erdős-Hajnal type proper-
ties in the class of intersection hypergraphs. We conjecture that intersection 3-uniform
hypergraphs of planar convex sets satisfy the following generalization of SEH-property.
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Conjecture 12. There exists a constant c > 0 for which the following holds. For every
finite family F of convex sets in R2 (or in R3), we can find pairwise disjoint subfamilies
F1, F2, F3 ⊆ F of size |Fi| 󰃍 c |F | for every i = 1, 2, 3 such that either every rainbow
triple of F1, F2, F3 intersect or every such rainbow triple do not intersect.
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[10] P. Erdős and A. Hajnal. Ramsey-type theorems. Discrete Appl. Math. 25:37–52, 1989.
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