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Abstract

A nut graph is a simple graph for which the adjacency matrix has a single
zero eigenvalue such that all nonzero kernel eigenvectors have no zero entry. If the
isolated vertex is excluded as trivial, nut graphs have seven or more vertices; they are
connected, non-bipartite, and have no leaves. It is shown that a nut graph G always
has at least one more edge orbit than it has vertex orbits: oe(G) 󰃍 ov(G) + 1, with
the obvious corollary that edge-transitive nut graphs do not exist. We give infinite
families of vertex-transitive nut graphs with two orbits of edges, and infinite families
of nut graphs with two orbits of vertices and three of edges. Several constructions
for nut graphs from smaller starting graphs are known: double subdivision of a
bridge, four-fold subdivision of an edge, a construction for extrusion of a vertex
with preservation of the degree sequence. To these we add multiplier constructions
that yield nut graphs from regular (not necessarily nut graph) parents. In general,
constructions can have different effects on the automorphism group and counts of
vertex and edge orbits, but in the case where the automorphism group is ‘preserved’,
they can be used in a predictable way to control vertex and edge orbit numbers.

Mathematics Subject Classifications: 05C50, 05C25, 05C75, 05C92

1 Introduction

The main goal of the present paper is to find limitations on the numbers of orbits of vertices
and edges of nut graphs under the action of the full automorphism group, and in particular
to show that every nut graph has more than one orbit of edges. To substantiate this claim,
we require some standard definitions. All graphs considered in this paper are simple and
connected. By δ(G), d(G) and ∆(G) we denote the minimum, average and maximum
degrees of a vertex in graph G (see [20, Section 1.2]). The adjacency matrix of graph G
is A(G) and the dimension of the nullspace of A(G) is the nullity, η(G). Let Φ(M ;λ)
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denote the characteristic polynomial of square matrix M . The characteristic polynomial
of graph G, denoted Φ(G;λ), is the characteristic polynomial of its adjacency matrix, i.e.,
Φ(G;λ) = Φ(A(G);λ) = det(A(G)−λI). The spectrum of graph G will be denoted σ(G).
For a graph G of order n, we take V (G) = {1, 2, . . . , n}. The neighbourhood of a vertex
v in graph G is denoted NG(v); where the graph G is clear from the context then we can
simply write N(v). For other standard definitions we refer the reader to one of the many
comprehensive treatments of graph spectra and related concepts (e.g., [5, 8, 13, 14, 15]).

Nut graphs [44] are graphs that have a one-dimensional nullspace (i.e., η(G) = 1),
where the nontrivial kernel eigenvector x = [x1 . . . xn]

⊺ ∈ kerA(G) is full (i.e., |xi| > 0
for all i = 1, . . . , n). Nut graphs are connected, non-bipartite and have no leaves (i.e.,
δ(G) 󰃍 2 for every nut graph G) [44]. As the defining paper considered the isolated
vertex to be a trivial case [44], the nontrivial nut graphs have seven or more vertices.
Nut graphs of small order have been enumerated (see, e.g., [4, 11] and [12]). If G is a
regular nut graph, then δ(G) = d(G) = ∆(G) 󰃍 3. Note that there are no nut graphs
with ∆(G) = 2, as it is known that cycles are not nut graphs. The case of ∆(G) = 3 is of
interest in chemical applications of graph theory, as a chemical graph is a connected graph
with maximum degree at most three. (This definition is motivated by applications of the
Hückel model to carbon π-systems and is widely used in mathematical chemistry [23]. A
maximum degree of four is useful in considering saturated systems such as alkanes, but
a carbon atom without a spare fourth valence cannot participate directly in a π-system.)
Chemical aspects of nut graphs are treated in [42]. The nut graph is a special case of the
core graph: a core graph is a graph with η(G) 󰃍 1 for which it is possible to construct a
kernel eigenvector in which all vertices of G carry a nonzero entry. Hence, a nut graph is
a core graph of nullity one. Again, K1 is presumably a trival core graph in the standard
definition. Notice that a core graph may be bipartite or not, whereas a nut graph is not
bipartite.

Let G and H be simple graphs. The Cartesian product of G and H, denoted G□H,
is the graph with the vertex set {(u, v) | u ∈ V (G) and v ∈ V (H)} and the edge set
{(u, v)(u′, v′) | (uu′ ∈ E(G) and v = v′) or (u = u′ and vv′ ∈ E(H))}. For further details
on graph products see [26].

An automorphism α of a graph G is a permutation α : V (G) → V (G) of the vertices of
G that maps edges to edges and non-edges to non-edges. The set of all automorphisms of
a graph G forms a group, the (full) automorphism group of G, denoted by Aut(G). The
image of a vertex v ∈ V (G) under automorphism α will be denoted vα. Let u, v ∈ V (G).
If there is an automorphism α ∈ Aut(G), such that uα = v, vertices u and v belong to
the same vertex orbit. This relation partitions the vertex set V (G) into ov(G) vertex
orbits. Let {u1, u2}, {v1, v2} ∈ E(G). If there is an automorphism α ∈ Aut(G), such
that {uα

1 , u
α
2} = {v1, v2}, then edges u1u2 and v1v2 belong to the same edge orbit. This

relation partitions the edge set E(G) into oe(G) edge orbits. See Figure 1 for examples.
If ov(G) = 1 (i.e., all vertices belong to the same vertex orbit) then the graph G is said to
be vertex-transitive. Likewise, if oe(G) = 1, then the graph G is said to be edge-transitive.
A well-known class of vertex-transitive graphs is the circulant graphs [25, Section 1.5].
By Circ(Zn, S), where S ⊆ Zn, we denote the graph on the vertex set V (G) = Zn, where
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vertices u, v ∈ V (G) are adjacent if and only if |u − v| ∈ S. Let G be a subgroup of
Aut(G). The stabiliser of a vertex v in G, denoted Gv, is the subgroup of G that contains
all elements α such that vα = v. For other standard definitions from algebraic graph
theory, we refer the reader to textbooks, e.g., [3, 21, 25].

Example 1. There are three non-isomorphic nut graphs on 7 vertices. We denote them
S1, S2 and S3 and call them the Sciriha graphs. For each Sciriha graph the numbers of
vertex and edge orbits and the order of the (full) automorphism group are given; see
Figure 1. ♦

(a) Ω(S1) = (4, 5, 4) (b) Ω(S2) = (4, 6, 4) (c) Ω(S3) = (3, 4, 6)

Figure 1: Vertex and edge orbits in the Sciriha graphs (i.e., the three nut graphs on 7
vertices). For brevity, we denote the triple (ov(G), oe(G), |Aut(G)|) by Ω(G). Vertices are
coloured white or black to indicate equal and opposite entries in the kernel eigenvector.
Note that for the Sciriha graphs, the kernel eigenvector is totally symmetric in each case
(i.e., its trace is 1 for every automorphism).

1.1 Natural questions about nut graphs

Nut graphs are found within several well-known graph classes, such as fullerenes, cubic
polyhedra [43] and more general regular graphs [2, 22]. Nut graphs within these classes
tend to have low symmetry, but attention has also been paid to finding nut graphs with
high symmetry (in the sense of having a small number of vertex orbits). Recently, those
pairs (n, d) for which a d-regular nut circulant of order n exists have been characterised
in a series of papers [2, 16, 17, 18, 19]. It is known that there are infinitely many vertex-
transitive nut graphs [22]. It seems natural, therefore, to consider the possibility of
edge-transitive nut graphs. (Recall that if G is edge-transitive, this does not imply that
G is vertex-transitive, nor does it imply that G is regular. However, an edge-transitive
connected graph has at most two vertex orbits.)

To give some background for our question, a preliminary computer search based on
the census of connected edge-transitive graphs on orders n 󰃑 47 [9, 10] was conducted. It
found no examples of nut graphs. The census contains 1894 graphs in total. Of these, 335
graphs are non-singular and 2 graphs have nullity 1 (these graphs are K1 and P3). In the
census, there is at least one graph for every admissible nullity (i.e., for each 0 󰃑 k 󰃑 45,
there exists a graph G with η(G) = k). There are 1312 core graphs in the census (not
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countingK1). Amongst these, there are 1098 bipartite graphs (945 non-regular, 25 regular
non-vertex-transitive, and 128 vertex-transitive graphs). The remaining 214 non-bipartite
edge-transitive core graphs are necessarily vertex-transitive, but none of these are nut
graphs. On this basis, it seems plausible to question whether edge-transitive nut graphs
exist. This prompted us to look for the general relationship between the numbers of vertex
and edge orbits in nut graphs that is proved in the next section. In later sections, special
attention is paid to nut graphs with one and two vertex orbits and the minimum number
of edge orbits (respectively, two and three). Finally, the implications of constructions for
the symmetry properties of nut graphs are investigated; a useful byproduct is a simple
proof that there exist infinitely many nut graphs for each even number of vertex orbits
and any number of edge orbits allowed by the main theorem.

2 A relation between numbers of vertex and edge orbits

The main result is embodied in the following theorem.

Theorem 2. Let G be a nut graph. Then oe(G) 󰃍 ov(G) + 1.

This theorem immediately implies the following corollary.

Corollary 3. Let G be a nut graph. Then G is not edge-transitive.

It is, however, relatively easy to find infinite families of vertex-transitive nut graphs with
few edge orbits. For example, in Sections 3.1 and 4.1, we provide infinite families of nut
graphs for (ov, oe) = (1, 2) and (ov, oe) = (2, 3). Moreover, as we saw from our examination
of the census, many core graphs are edge-transitive.

To prepare for the proof of Theorem 3, we recall some established results.

Lemma 4 ([25, Lemma 3.2.1]). Let G be an edge-transitive graph with no isolated vertices.
If G is not vertex-transitive, then Aut(G) has exactly two orbits, and these two orbits are
a bipartition of G.

A similar statement appears in [3] as Proposition 15.1. A theorem from a previous inves-
tigation specifies necessary conditions relating order and degree of a vertex-transitive nut
graph:

Theorem 5 ([22, Theorem 10]). Let G be a vertex-transitive nut graph on n vertices, of
degree d. Then n and d satisfy the following conditions. Either d ≡ 0 (mod 4), and n ≡ 0
(mod 2) and n 󰃍 d+ 4; or d ≡ 2 (mod 4), and n ≡ 0 (mod 4) and n 󰃍 d+ 6.

Lemma 6. Let G be a vertex-transitive nut graph and let x = [x1 . . . xn]
⊺ ∈ kerA(G).

Then the following statements hold:

(a) x = ±xα for every α ∈ Aut(G);

(b) |xi| = |xj| for all i and j;
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(c) we can take the entries to be xi ∈ {+1,−1};

(d) d(G) and n are both even.

Proof. As G is vertex-transitive and n 󰃍 7, G has a nontrivial automorphism group
Aut(G), i.e., |Aut(G)| > 1. As G is a nut graph, the kernel eigenvector x belongs to a
one-dimensional eigenspace, and hence spans a one-dimensional irreducible representation
of Aut(G). As the graph is vertex-transitive, each element α ∈ Aut(G) sends vertex v to
an image vertex vα (vα may be v). The action of α on the vertices of G can be extended
to x by defining xα = [x1α . . . xnα ]. As a one-dimensional irreducible representation has
trace either +1 or −1 under any particular automorphism α ∈ Aut(G), it follows that
x = ±xα. This proves claim (a). In particular, |x1| = |x1α |. Since for every vertex v there
exists an α ∈ Aut(G) such that v = 1α, the claim (b) follows. To show that the entries in
the kernel eigenvector can be drawn from the set {+1,−1}, it is enough to normalise the
vector to x1 = 1, verifying claim (c). To establish claim (d), note that the local condition
for entries of the vector x ∈ kerA(H) is

󰁛

u∈N(v)

xu = 0 for v = 1, . . . , n. (1)

As all entries of x are in {+1,−1}, every vertex v must be of even degree. Since G
is a regular graph, the entries of the Perron vector y of G (i.e., the eigenvector that
corresponds to the largest eigenvalue λ1) are all equal to +1. As x is orthogonal to y,
i.e.,

󰁓n
i=1 xi = 0, there are equal numbers of +1 and −1 entries in x, and G must have

even order n, completing claim (d).

We note that the arguments used in claims (a) to (c) in the proof of Lemma 6 can be
applied orbit-wise for graphs that are not vertex-transitive. Lemma 6 thus generalises
naturally to the following:

Lemma 7. Let G be a nut graph and let x = [x1 . . . xn]
⊺ ∈ kerA(G). Then the following

statements hold:

(a) x = ±xα for every α ∈ Aut(G);

(b) |xi| = |xj| if i and j belong to the same vertex orbit;

(c) we can take the entries to be xi ∈ {+aj,−aj} if i ∈ Vj, where aj is a nonzero
constant for orbit Vj.

By Lemma 7(a), α acts on x in one of two ways: xα = x or xα = −x. In that first case,
the automorphism α is called sign-preserving, and in the second sign-reversing. This
lemma will be used in the proof of Theorem 2. Before the proof, we introduce some
definitions. The first of these deal with edges. Let G be a nut graph with k vertex orbits
V (G) = V1 ⊔ V2 ⊔ · · · ⊔ Vk. There are several types of edge (as indicated schematically in
Figure 2 for the case k = 3):
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(a) intra-orbit edge types, where both endvertices of an edge are in the same orbit Vi,
denoted ei;

(b) inter-orbit edge types, where endvertices of an edge are in two different orbits Vi

and Vj, i ∕= j, denoted eij = eji.

V1

V2

V3

e12

e13
e23

e3

e2e1

Figure 2: Schematic representation of a graph with three vertex orbits (represented by the
three bags of vertices). There are six edge types, denoted e1, e2, e3 (intra-orbit), e12, e13
and e23 (inter-orbit).

It is clear that edges of different types cannot belong to the same edge orbit. Moreover,
a single edge type may comprise several edge orbits.

An additional definition will also be useful for the proof. Let the vertex-orbit graph of
G, denoted G(G), be the graph whose vertices are vertex orbits of G and vertices Vi and
Vj are adjacent in G(G) if there exists at least one edge of type eij in G. Note that in
our case G(G) contains k vertices. Moreover, the graph G(G) is a simple graph, not to
be confused with the orbit graph as defined in [32], which is typically a pregraph.

Lemma 8. Let G be a nut graph with k vertex orbits V (G) = V1 ⊔ V2 ⊔ · · · ⊔ Vk and let
x = [x1 . . . xn]

⊺ ∈ kerA(G). Suppose there exists a vertex orbit Vℓ in G, such that

(i) Vℓ is a leaf in G(G), and

(ii) vertices Vℓ form an independent set in G.

Then for every orbit Vi of G it holds that

󰁛

j∈Vi

xj = 0. (2)

Moreover, for each orbit Vi it holds that |{j ∈ Vi : xj > 0}| = |{j ∈ Vi : xj < 0}| and the
size of the orbit Vi is even.
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Proof. Let Vℓ′ be the neighbour of Vℓ in G(G). Let dij be the number of neighbours of a
vertex v ∈ Vi that reside in Vj. The local condition says that

󰁛

u∈N(v)

xu = 0 for v ∈ Vℓ. (3)

Therefore, 󰁛

v∈Vℓ

󰁛

u∈N(v)

xu =
󰁛

u∈Vℓ′

dℓ′ℓxu = 0. (4)

This implies that 󰁛

u∈Vℓ′

xu = 0.

Hence, the orbit V ′
ℓ must contain at least one vertex v with xv > 0 and at least one vertex

w with xw < 0. This implies that there exists a sign-reversing α ∈ Aut(G). Within
each orbit, α maps vertices with positive entries in the kernel eigenvector to vertices
with negative entries, and vice-versa. Therefore, the cardinalities of these two sets of
vertices are equal. Equation (2) follows by Lemma 7(b), and the claim about the parity
is evident.

We can now proceed to the proof of the theorem.

Proof of Theorem 2. Let G be a nut graph with k vertex orbits V (G) = V1⊔V2⊔ · · ·⊔Vk.
If the graph G is connected then G(G) is also connected. The connectedness of G(G)

implies that oe(G) 󰃍 ov(G)−1 [6], since a connected graph on k vertices has at least k−1
edges and each edge of G(G) gives rise to at least one edge orbit of G. Suppose there are
no intra-orbit edges in G. In this case G is bipartite if and only if G(G) is bipartite. But a
bipartite graph is not a nut graph. Hence we have oe(G) 󰃍 ov(G). To avoid bipartiteness
we can do one of two things:

(I) We may add intra-orbit edges to one or more vertex orbits. We need only consider
addition of one such edge type, as addition of two or more would already imply
oe(G) 󰃍 ov(G) + 1.

(II) We may add another type of inter-orbit edge to make an odd cycle in G(G). Note
that G(G) becomes a unicyclic graph. Again, we do not need to consider addition
of more than one edge type.

First, we deal with the case k = 1, i.e., G is a vertex-transitive graph. By Lemma 6(c),
the entries of x are from the set {+1,−1}. This justifies the following classification of
edges of a vertex-transitive nut graph: An edge uv ∈ E(G) is a like edge if xuxv > 0. An
edge uv ∈ E(G) is an unlike edge if xuxv < 0. Notice that every vertex of G is incident
with d/2 like and d/2 unlike edges, where d is the vertex degree in G. Consider the action
of Aut(G) on the edges of G. If {u, v} is a like edge, then {uα, vα} is a like edge for any
choice of α ∈ Aut(G). Similarly, an automorphism maps an unlike edge to an unlike edge.
Therefore, G has at least two distinct edge orbits, thus oe(G) 󰃍 ov(G) + 1 holds.
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Now, we deal with the case k 󰃍 2. Suppose that G(G) contains a leaf Vℓ that is an
independent set in G (in other words, there are no intra-orbit edges in Vℓ). Let V ′

ℓ be the
neighbour of Vℓ in G(G). By Lemma 8, the numbers of positive and negative entries in the
kernel eigenvector are equal within any given orbit. This implies the existence of a sign-
reversing automorphism α ∈ Aut(G). Each edge of type eℓℓ′ can be assigned one of four

Vℓ
V ′
ℓ

+a2

+a2

−a2

−a2

...

...

+a1

+a1

−a1

−a1

...

...

(+,+)

(−,+)

(+,−)

(−,−)

Figure 3: Vertex orbits Vℓ and V ′
ℓ as defined in the proof of Theorem 2, showing the four

possible signatures for edges of type eℓℓ′ .

signatures according to signs of the kernel eigenvector entries for its endvertices (shown
schematically in Figure 3). We now consider the action of the automorphism α on edges of
each signature. Since α is sign-reversing, edge signatures are swapped: (+,+) ↔ (−,−)
and (+,−) ↔ (−,+). Hence, edges of type eℓℓ′ fall into at least two orbits, determined by
relative sign of endvertex entries. Note that a like edge is of signature (+,+) or (−,−),
while an unlike edge is of signature (+,−) or (−,+). By the local condition at a vertex
of Vℓ, the presence of a (+,+) edge implies the presence of a (+,−) edge and vice-versa,
hence the two corresponding edge orbits are both nonempty. As there is at least one edge
orbit included within eℓℓ′ , the number of edge orbits in G is greater than the number of
its edge types.

This proves case (I) and also case (II) where G(G) is a unicyclic graph but not a
cycle. If G(G) is a cycle (necessarily odd) and there are no inter-orbit edges, a different
argument is needed. Recall that no automorphism maps a like to an unlike edge (or vice
versa), so they cannot be in the same edge orbit. If ei,i+1 contains both like and unlike
edges, this immediately implies oe(G) 󰃍 ov(G) + 1. So, for every i, we can assume that
ei,i+1 contains only like or only unlike edges. Take any vertex u ∈ Vi. Since there are no
intra-edges it has to be connected to neighbours in Vi−1 via like and neighbours in Vi+1

via unlike edges or vice versa. Therefore, the edges of G(G) can be properly coloured with
colours ‘like’ and ‘unlike’. But G(G) is an odd cycle, so no such edge colouring exists.
Hence, at least one type ei,i+1 contains edges of both kinds.

Lemma 8 implies that a sign-reversing automorphism exists in a nut graph if at least one
vertex orbit Vℓ is a leaf in G(G) and Vℓ has no intra-orbit edges. A similar structural
result can also be obtained if G(G) is an odd cycle and G has no intra-orbit edges.
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Proposition 9. Let G be a nut graph with k vertex orbits V (G) = V1 ⊔ V2 ⊔ · · ·⊔ Vk and
let x = [x1 . . . xn]

⊺ ∈ kerA(G). Suppose that every Vℓ forms an independent set in G
and G(G) is an odd cycle. Then for every orbit Vi of G it holds that

󰁛

j∈Vi

xj = 0. (5)

Moreover, for each orbit Vi it holds that |{j ∈ Vi : xj > 0}| = |{j ∈ Vi : xj < 0}| and the
size of the orbit Vi is even.

Lemma 10. Let n be an odd integer and let A = [ai,j]1󰃑i,j󰃑n be a n× n matrix such that
ai,j = 0 unless (i, j) ∈ {(1, n), (n, 1)} or |i− j| = 1. Then detA = a2,1a3,2 · · · an,n−1a1,n +
a1,2a2,3 · · · an−1,nan,1.

Proof. Recall that by definition

detA =
󰁛

σ∈Sn

󰀣
sgn(σ)

n󰁜

i=1

ai,σ(i)

󰀤
, (6)

where Sn is the set of all permutations of length n. Note that the product
󰁔n

i=1 ai,σ(i)
necessarily contains a zero factor, unless σ ∈ {(1 2 3 . . . n), (1 n n− 1 . . . 2)}.

Proof of Proposition 9. If necessary, relabel the orbits V1,V2, . . . ,Vk, so that Vi and Vi+1

are neighbours in the cycle G(G). Let dij be the number of neighbours of a vertex v ∈ Vi

that reside in Vj. The local condition gives us one equation for each orbit, namely

󰁛

v∈Vi

󰁛

u∈N(v)

xu =
󰁛

u∈Vi−1

di−1,ixu +
󰁛

u∈Vi+1

di+1,ixu = 0 (1 󰃑 i 󰃑 k), (7)

where we consider indices modulo k. Let us define si =
󰁓

u∈Vi
xu for i = 1, . . . , k. We

have the matrix equation
󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

0 d2,1 0 . . . 0 dk,1

d1,2 0 d3,2
. . .

... 0

0 d2,3 0 d4,3 0
...

... 0 d3,4 0
. . . 0

0
...

. . . . . . . . . dk,k−1

d1,k 0 . . . 0 dk−1,k 0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀹󰀷

s1
s2
...
...
...
sk

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀺󰀸

= 0k×1. (8)

By Lemma 10, the determinant of the square matrix in Equation (8) is

d2,1d3,2 · · · dk,k−1d1,k + d1,2d2,3 · · · dk−1,kdk,1 > 0,

since d2,1, d3,2, . . . are all positive. Hence, s1 = s2 = · · · = sk = 0. This already implies
the existence of a sign-reversing automorphism and the fact that |{j ∈ Vi : xj > 0}| =
|{j ∈ Vi : xj < 0}|.
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3 Vertex-transitive nut graphs

We have seen that oe(G) = ov(G) = 1 is not possible for a nut graph G. However,
many other possibilities for oe(G) may exist. First, we filtered out all nut graphs from
databases of small vertex-transitive graphs on up to n 󰃑 46 vertices [27, 39]. The counts
are shown in Table 1. Recall that a vertex-transitive graph G is a nut graph if and only
if η(G) = 1, so this search requires only computation of the nullity and moreover, by
Theorem 5, can be limited to graphs of even order and degree. As the table shows, most
of these vertex-transitive graphs are connected and a significant proportion of vertex-
transitive graphs of even order are nut graphs. As a preliminary survey of symmetry
aspects, we calculated the number of edge orbits for all vertex-transitive nut graphs; see
Table 2, which has a number of interesting features. It has only zero entries for oe(G) = 1,
as demanded by Theorem 3, but there is no apparent restriction on the values of oe(G)
that can occur for a large enough order of G. Note that a vertex-transitive nut graph G
with a large oe(G) must have a large degree. To place these results in context, we also
calculated the number of edge orbits of connected vertex-transitive graphs of even order.
See Table 3. We see some intriguing gaps in Table 1 for particular pairs (n, oe), e.g.,
(n, oe) ∈ {(22, 3), (22, 5), (22, 7), (22, 10), (22, 11)}, even though the numbers of vertex-
transitive graphs for these pairs of parameters are 37, 115, 138, 50 and 23, respectively.

3.1 Families with (ov, oe) = (1, 2)

From the line for oe = 2 in Table 2 it appears likely that vertex-transitive nut graphs with
two edge orbits exist for all feasible orders. This is confirmed by the next theorem.

Theorem 11. For every even n 󰃍 8, there exists a nut graph G with ov(G) = 1 and
oe(G) = 2.

To prove this, we provide three families of quartic vertex-transitive graphs, which together
cover all feasible orders and are described in Propositions 12 to 14. For the first family,
let Aℓ, where ℓ 󰃍 3, be the antiprism on 2ℓ vertices. Gauci et al. [24] proved the following
proposition.

Proposition 12 ([24]). The antiprism graph Aℓ of order 2ℓ is a nut graph if and only if
2ℓ ∕≡ 0 (mod 6).

The next family is composed of Cartesian products.

Proposition 13. The graph C3 □Cℓ of order 3ℓ is a nut graph for even ℓ 󰃍 4 such that
ℓ ∕≡ 0 (mod 6).

Proof. It is known that σ(G□H) = {λ + µ | λ ∈ σ(G) and µ ∈ σ(H)} (see [5, Sec-
tion 1.4.6]). Moreover, let xG be an eigenvector for an eigenvalue λ ∈ σ(G) and let xH

be an eigenvector for an eigenvalue µ ∈ σ(H). Then xG□H , defined as xG□H((u, v)) =
xG(u)xH(v), is an eigenvector for the eigenvalue λ+µ. It is also well known that σ(Cℓ) =
{2 cos(2πj/ℓ) | 0 󰃑 j < ℓ} (see [5, Section 1.4.3]). In particular, σ(C3) = {2,−1,−1} and
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n All VT Connected VT VT nut graphs Proportion

8 14 10 1 10.00%
10 22 18 1 5.56%
12 74 64 4 6.25%
14 56 51 5 9.80%
16 286 272 20 7.35%
18 380 365 23 6.30%
20 1214 1190 150 12.61%
22 816 807 101 12.52%
24 15506 15422 1121 7.27%
26 4236 4221 508 12.04%
28 25850 25792 4793 18.58%
30 46308 46236 3146 6.80%
32 677402 677116 47770 7.05%
34 132580 132543 14565 10.99%
36 1963202 1962756 214391 10.92%
38 814216 814155 85234 10.47%
40 13104170 13102946 1815064 13.85%
42 9462226 9461929 693416 7.33%
44 39134640 39133822 7376081 18.85%
46 34333800 34333611 3281206 9.56%

Table 1: The number of nut graphs among vertex-transitive (VT) graphs on even orders
8 󰃑 n 󰃑 46. The final column is the ratio between the number of VT nut graphs and the
number of connected VT graphs on a given order, expressed as a percentage.

when ℓ is even and ℓ ∕≡ 0 (mod 6), it is clear that σ(Cℓ) contains −2 with multiplicity 1,
but not 1. Therefore, C3 □Cℓ contains a 0 eigenvalue with multiplicity 1. As the eigen-
vector of Cℓ for the eigenvalue −2 is full and so is the eigenvector of C3 for the eigenvalue
2, it immediately follows that C3 □Cℓ is a nut graph.

For the third family, a variation on the Cartesian product is used. Suppose that vertices of
Cℓ are labeled 0, 1, . . . ℓ−1 such that i and i+1 are adjacent (indices modulo ℓ). Then the
twisted product of Ck and Cℓ, denoted Ck τ Cℓ, has the vertex set V (Ck τ Cℓ) = V (Ck □Cℓ)
and the edge set

E(Ck τ Cℓ) = E(Ck □Cℓ) \ {(i, 0)(i, 1) | 0 󰃑 i < k}∪ {(i, 0)((i+1) mod k, 1) | 0 󰃑 i < k}.

In other words, the construction Ck τ Cℓ is similar to the Cartesian product of Ck and Cℓ,
but with a twist introduced between the first two Ck layers.

Proposition 14. The graph C3 τ Cℓ of order 3ℓ is a nut graph for even ℓ 󰃍 6 such that
ℓ ≡ 0 (mod 6).
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Proof. The twisted product C3 τ Cℓ is an example of a graph bundle [33, 34]. Kwak et
al. [7, 28] studied characteristic polynomials of some specific graph bundles [7, 28]. Here,
we apply their Theorem 8 from [28]; in the language of [28, Theorem 8], our C3 τ Cℓ is in
fact Cℓ ×φ Cn, where φ is an Aut(Cn)-voltage assignment and n = 3. Aut(C3) contains

Z3 as a subgroup. In our case, φ maps every directed edge of 󰂓Cℓ to 0 of Z3, except for the
directed edges (0, 1) and (1, 0) which are mapped to 1 and its inverse 2, respectively.

Define an ℓ× ℓ matrix Mz, where z ∈ C, as follows

(Mz)i,j =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

z, i = 0 and j = 1;

z̄, i = 1 and j = 0;

1, (i, j) /∈ {(1, 0), (0, 1)} and i− j ≡ ±1 (mod ℓ);

0, otherwise.

Note that M1 is the adjacency matrix of Cℓ. Let ω = (−1+
√
3i)/2. Theorem 8 from [28]

gives

Φ(C3 τ Cℓ;λ) = Φ(M1;λ− 2) ·Φ(Mω;λ+1) ·Φ(Mω̄;λ+1) = Φ(M1;λ− 2) ·Φ(Mω;λ+1)2.

We show that the nullity of C3 τ Cℓ is 1 for ℓ ≡ 0 (mod 6). First, Φ(M1;λ−2) contributes
one factor λ, as 2 is an eigenvalue of Cℓ with multiplicity 1. To show that Φ(Mω;λ + 1)
does not contribute additional factors λ, we show that Mω + Iℓ×ℓ is of full rank.

Let B = Mω + Iℓ×ℓ. Let Bi denote the i-th column of B. From B we can obtain
an equivalent matrix C by defining Ci = Bi − Bi+1 for i 󰃍 1 (indices modulo ℓ) and
C0 = B0 − ω2B1. Note that

Cij =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰀽

ω, i = 0 and j = 1;

1, (i, j) ∕= (0, 1) and i+ 1 ≡ j (mod ℓ);

−ω2, (i, j) ∈ {(2, 0), (1, ℓ− 1)};
−1, (i, j) /∈ {(2, 0), (1, ℓ− 1)} and i− 2 ≡ j (mod ℓ);

0, otherwise.

From matrix C we can obtain an equivalent matrix D by permuting columns, namely

D = [C1 C4 C7 . . . Cℓ−2 | C2 C5 C8 . . . Cℓ−1 | C0 C3 C6 . . . Cℓ−3].

Note that matrix D is composed of three blocks of size ℓ × (ℓ/3). Block i, 0 󰃑 i 󰃑 2,
contains nonzero entries only in rows j, 0 󰃑 j < ℓ, such that j ≡ i (mod 3). Now, we can
define a matrix E that is equivalent to matrix D by defining, for 0 󰃑 i < ℓ/3,

Ei =

ℓ/3−i−1󰁛

j=0

Dj +

ℓ/3−1󰁛

j=ℓ/3−i

ωDj;

Ei+ℓ/3 =
i−1󰁛

j=0

ω2Dj+ℓ/3 +

ℓ/3−1󰁛

j=i

Dj+ℓ/3;
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Ei+2ℓ/3 =

ℓ/3−i−1󰁛

j=0

D(j+1) mod (ℓ/3)+2ℓ/3 +

ℓ/3−1󰁛

j=ℓ/3−i

ωD(j+1) mod (ℓ/3)+2ℓ/3.

Matrix E has a single nonzero entry in each row and each column; 2ℓ/3−1 of these entries
are ω − 1 and ℓ/3 + 1 of these entries are ω + 2, and the determinant is

(−1)ℓ/6(ω − 1)2ℓ/3−1(ω + 2)ℓ/3+1 = 3ℓ/2ωℓ/6+2 ∕= 0.

But matrix E is equivalent to B which is therefore of full rank. Hence the nullity of B is
1 and therefore C3 τ Cℓ is a nut graph.

As a referee has observed, there is an alternative shorter proof of Proposition 14, that ex-
ploits the observation Ck τ Cℓ

∼= Circ(kℓ, {1, ℓ}). Armed with this observation, Corollary 7
from [16] can be applied to prove the proposition. Similarly, C3 □Cℓ

∼= Circ(3ℓ, {3, ℓ})
under the requirements of Proposition 13.

Note that our proof does not require explicit construction of the kernel eigenvector.
However, it is easily obtained. Define x : V (C3 τ Cℓ) → R by x((i, j)) = (−1)j. Observe
that x ∈ kerA(C3 τ Cℓ) and is a full vector.

(a) A4

(b) C3□C4

(c) C3 τ C6

Figure 4: The smallest examples of each of the families described in Propositions 12 to 14.
They are shown embedded on a circular strip; the end blue curves are to be identified.
Entries in the kernel eigenvector in each graph are all of equal magnitude and represented
by circles colour-coded for sign.

Proof of Theorem 11. By Theorem 5, orders and degrees of vertex-transitive nut graphs
are even. In fact, our families are all quartic. The family Aℓ, where ℓ 󰃍 4 even, described
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in Proposition 12, covers orders {n 󰃍 8 | n even and n ∕≡ 0 (mod 6)}. The family
C3 □Cℓ, where ℓ 󰃍 4 even, described in Proposition 13, covers orders {n 󰃍 12 | n ≡ 0
(mod 6) and n ∕≡ 0 (mod 18)}. Finally, the family C3 τ Cℓ, where ℓ 󰃍 6 even, described
in Proposition 14, covers orders {n 󰃍 18 | n ≡ 0 (mod 18)}.

There exist vertex-transitive nut graphs that are not Cayley graphs. The three minimal
examples of non-Cayley nut graphs have order 16, with invariants (d(G), oe(G), |Aut(G)|)
of (4, 3, 32), (6, 4, 32) and (10, 5, 32), respectively. The quartic example is shown in
Figure 5(a); it is a tetracirculant with vertex set {ui, vi, wi, zi | i ∈ Z4} and edge set
{uivi, viwi, uizi, uiui+1, vivi+1, ziwi+1, ziwi+2, ziwi+3 | i ∈ Z4}. The second smallest quar-
tic example is shown in Figure 5(b) and is one of 14 non-Cayley nut graphs of order
30; it has 2 edge orbits and its automorphism group is of order 120. This is a gener-
alisation of Rose Window graphs; its vertex set is {ui, vi | i ∈ Z15} and its edge set is
{uivi, uivi+5, vivi+3, uiui+6 | i ∈ Z15}.

(a) (b)

Figure 5: The two smallest 4-valent non-Cayley vertex-transitive nut graphs. Entries in
the kernel eigenvector in each graph are all of equal magnitude and represented by circles
colour-coded for sign.

4 Nut graph with two vertex orbits

Data are available for graphs with two vertex orbits [40] and Table 4 shows our analysis for
small graphs of this class. We observe that (ov(G), oe(G)) = (2, 1) and (ov(G), oe(G)) =
(2, 2) do not occur in the table. This observation is, of course, consistent with Theorem 2
from Section 2. We also observe that the number of edge orbits can be large. Here, we
provide infinite families of nut graphs with two vertex orbits and three edge orbits.
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❍❍❍❍❍❍oe

n
9 10 12 14 15 16 18 20 21 22 24 25 26 27

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 1 4 7 6 7 10 20 10 19 33 13 26 19
4 0 3 6 2 16 12 16 72 62 6 169 46 19 124
5 0 0 12 1 5 24 78 133 40 20 665 66 44 90
6 − 0 6 3 6 31 99 134 48 122 1460 160 327 227
7 − − 5 1 3 31 133 171 77 94 3418 191 348 445
8 − − 4 1 0 78 102 310 77 110 7031 234 552 671
9 − − 1 0 0 53 136 264 40 184 12081 429 1118 777
10 − − 0 − 1 80 71 381 88 45 19694 599 283 1984
11 − − − − 0 73 82 392 193 14 28013 156 340 5192
12 − − − − − 49 18 366 4 154 36902 574 2258 797
13 − − − − − 17 20 165 49 0 41123 267 77 3996
14 − − − − − 13 2 147 0 0 44395 8 4 292
15 − − − − − 3 0 238 0 0 39101 1 15 261
16 − − − − − 0 − 52 0 10 36325 0 735 420
17 − − − − − − − 9 0 0 24477 0 0 1239
18 − − − − − − − 18 − − 19068 2 0 136
19 − − − − − − − 1 − − 8568 2 0 171
20 − − − − − − − 0 − − 5638 − 20 0
21 − − − − − − − − − − 2173 − 0 0
22 − − − − − − − − − − 838 − − 0
23 − − − − − − − − − − 140 − − 0
24 − − − − − − − − − − 63 − − −
25 − − − − − − − − − − 7 − − −
26 − − − − − − − − − − 0 − − −
Σ 1 4 38 15 37 471 767 2873 688 778 331382 2748 6166 16841

Table 4: The number of nut graphs with precisely two vertex orbits of the given order n
and number of edge orbits oe.

4.1 Families with (ov, oe) = (2, 3)

From the line for oe = 3 in Table 4 it appears that nut graphs with two vertex orbits and
three edge orbits exist for all orders n 󰃍 9 such that n is not a prime; see Conjecture 24.
Here, we provide two families of such nut graphs; one that covers orders that are multiples
of three, and one that covers orders that are multiples of two but not multiples of three.

Proposition 15. Let Tn be an n-cycle with a triangle fused to every vertex (see Figure 6(a)
for an example). The graph Tn is a nut graph for every n 󰃍 3.

Proof. Let the vertices of the n-cycle be labeled 0, 1, . . . , n−1. Let a0, a1, . . . , an−1 denote
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the entries on the vertices of the n-cycle in a kernel eigenvector of Tn. It is easy to see
that both vertices of the triangle fused to vertex i of the cycle must then carry entry −ai.
The local condition at vertices of the cycle is

ai−1 − 2ai + ai+1 = 0 for i = 0, . . . , n− 1, (9)

where indices are modulo n. Equation (9) in matrix form is

A(Cn)x = 2x, (10)

where A(Cn) is the adjacency matrix of the n-cycle and x =
󰀅
a0 a1 a2 . . . an−1

󰀆
.

The cycle Cn is a 2-regular connected graph, and thus has a unique eigenvalue 2 in its
spectrum, with x =

󰀅
1 1 1 . . . 1

󰀆
and the solution to Equation (9) is a0 = a1 = · · · =

an−1 = 1.

(a) T5 (b) R5(1, 2) (c) R8(1, 2)

Figure 6: Small examples of each of the families described in Propositions 15 and 16.
Entries in the kernel eigenvector in each graph are all of equal magnitude and represented
by circles colour-coded for sign.

In 2008, the family of Rose Window graphs was introduced [45]. A Rose Window graph,
denoted Rn(a, r), is defined by

V (Rn(a, r)) = {v0, v1, . . . , vn−1} ∪ {u0, u1, . . . , un−1} and

E(Rn(a, r)) = {vivi+1, uiui+r | i = 0, . . . , n− 1} ∪ {uivi, uivi+a | i = 0, . . . , n− 1},

where all indices are modulo n. We will consider the subset with a = 1 and r = 2 (see
Figures 6(b) and 6(c) for examples).

Proposition 16. Let n 󰃍 5. The graph Rn(1, 2) is a core graph for all n 󰃍 5. The graph
Rn(1, 2) is a nut graph if and only if n ∕≡ 0 (mod 3).

Proof. Let x ∈ kerA(Rn(1, 2)) and let a0 = x(v0), a1 = x(v1), b−2 = x(un−2), b−1 =
x(un−1), b0 = x(u0) and b1 = x(u1). See Figure 7 for an illustration. Using the local con-
dition (1) at vertices v1, . . . , vn−2 and u0, . . . , un−3 the entries in x of vertices v2, . . . , vn−1
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a0

a1

a2

a3

an−1

an−2

b0

b
−1

b
−2

b1

b2

b3

Figure 7: Labelling scheme for the Rose Window graph Rn(1, 2). Entries in the candidate
kernel eigenvector are ai on vertices vi and bi on vertices ui, all indices taken modulo n.

and u2, . . . , un−1 can be expressed as linear combinations of a0, a1, b−2, b−1, b0 and b1.
Namely,

ai = −ai−2 − bi−2 − bi−1 (2 󰃑 i < n),

bi = −ai−2 − ai−1 − bi−4 (2 󰃑 i < n),
(11)

where ai = x(vi) and bi = x(ui). Every entry x(v), v ∈ V (Rn(1, 2))), can be assigned a
row vector ξ(v) ∈ R6, acting as proxy for x(v) = ξ(v) · [a0 a1 b−2 b−1 b0 b1]. Solving the
linear recurrence relations (11) we obtain

ak =

󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

󰁫
1 0 k

3
0 0 −k

3

󰁬
, k ≡ 0 (mod 3);

󰁫
k−1
3

k+2
3

k−1
3

k−1
3

0 0
󰁬
, k ≡ 1 (mod 3);

󰁫
−k+1

3
k−2
3

0 k−2
3

−1 −k+1
3

󰁬
, k ≡ 2 (mod 3);

(12)

and

bk =

󰀻
󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰀽

󰁫
k
3

−k
3

0 −k
3

1 k
3

󰁬
, k ≡ 0 (mod 3);

󰁫
0 0 −k−1

3
0 0 k+2

3

󰁬
, k ≡ 1 (mod 3);

󰁫
−k+1

3
−k+1

3
−k+1

3
−k−2

3
0 0

󰁬
, k ≡ 2 (mod 3).

(13)

By using the local condition (1) at vertices v0, vn−1, un−2, un−1 we obtain the four linear
equations

an−1 + b−1 + b0 + a1 = 0,

an−2 + b−2 + b−1 + a0 = 0,

an−1 + a0 + bn−3 + b1 = 0,

an−2 + an−1 + bn−4 + b0 = 0,

(14)

relating a0, a1, b−2, b−1, b0 and b1 to each other. Two more equations can be obtained from
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the fact that bn−2 = ξ(un−2) = b−2 and bn−1 = ξ(un−1) = b−1:

bn−2 − b−2 = 0,

bn−1 − b−1 = 0,
(15)

There are three cases to consider.
Case n ≡ 0 (mod 3): The equations (14) and (15) can be written in matrix form

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀷

−µ µ 0 µ 0 −µ
µ µ µ µ 0 0
0 0 0 0 0 0

−µ µ 0 µ 0 −µ
0 0 −µ 0 0 µ

−µ −µ −µ −µ 0 0

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀸

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀷

a0
a1
b−2

b−1

b0
b1

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀸
= 06×1, (16)

where µ = n
3
. It is easy to see that the matrix in (16) is of rank 3. This implies that

Rn(1, 2) has nullity 3.
Case n ≡ 1 (mod 3): The equations (14) and (15) can be written in matrix form

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀷

1 1 µ 1 1 −µ
1− µ µ− 1 1 µ −1 −µ
2 0 1 0 0 1
0 0 µ 0 1 −µ− 1
−µ −µ −µ− 1 1− µ 0 0
µ −µ 0 −µ− 1 1 µ

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀸

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀷

a0
a1
b−2

b−1

b0
b1

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀸
= 06×1, (17)

where µ = n−1
3
. Note that µ 󰃍 2 as n 󰃍 5. Using elementary linear algebra, the matrix

in (17) can be reduced to its echelon form, from which it can be seen that it is of rank 5.
This implies that Rn(1, 2) has nullity 1.

Case n ≡ 2 (mod 3): The equations (14) and (15) can be written in matrix form
󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀷

µ µ+ 2 µ µ+ 1 1 0
2 0 µ+ 1 1 0 −µ
1 1 0 1 0 1

µ+ 1 µ+ 1 µ+ 1 µ 1 0
µ −µ −1 −µ 1 µ
0 0 −µ −1 0 µ+ 1

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀸

󰀵

󰀹󰀹󰀹󰀹󰀹󰀹󰀷

a0
a1
b−2

b−1

b0
b1

󰀶

󰀺󰀺󰀺󰀺󰀺󰀺󰀸
= 06×1, (18)

where µ = n−2
3
. Note that µ 󰃍 1 as n 󰃍 5. As before, the matrix in (18) can be reduced

to its echelon form, from which it can be seen that it is of rank 5. This implies that
Rn(1, 2) has nullity 1 also in the present case.

It is easily seen that there exists a full vector in kerA(Rn(1, 2)) in all three cases.
Simply take ai = 1 and bi = −1 for all i, hence Rn(1, 2) is a nut graph if n ∕≡ 0 (mod 3)
and merely a core graph if n ≡ 0 (mod 3).

The graph Rn(1, 2), for n ≡ 0 (mod 3), has nullity 3. Possible choices of basis for the
nullspace are depicted in Figure 8.
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(a) (b) (c) (d)

Figure 8: Kernel eigenvectors for the graph R6(1, 2). Vectors (a) to (c) form an orthogonal
basis that includes the rotationally symmetric vector that is present in the nullspace of
Rn(1, 2) for every n 󰃍 5. An alternative basis consists of vector (d) and its rotations by
±60◦. Signs of eigenvector entries are indicated by colour and relative magnitudes by area
of the circles, where the possible magnitudes are 0, 1 and 2.

4.2 Multiplier constructions

The family Tn can in fact be substantially generalised by defining the triangle-multiplier
construction. Unlike some constructions in the literature [24], the triangle-multiplier
applies to parent graphs that are not necessarily nut graphs.

Proposition 17. Let G be a connected (2t)-regular graph, where t 󰃍 1. Let M3(G) be
the graph obtained from G by fusing a bouquet of t triangles to every vertex of G. Then
M3(G) is a nut graph.

Proof. We follow the pattern of the proof of Proposition 15, where Equation (9) is replaced
by 󰁛

u∈N(v)

x(u)− 2tx(v) = 0 for v ∈ V (G), (19)

which in matrix form is A(G)x = 2tx. So, kernel eigenvectors of M3(G) are precisely
eigenvectors of G for the eigenvalue 2t. But the graph G is 2t-regular, so the solution of
Equation (19) is unique and x, i.e., the Perron eigenvector, is full.

The choice of name for the construction is justified by the fact that |V (M3(G))| =
(2t + 1)|V (G)|. As Proposition 31 in Section 5 will show, the triangle-multiplier con-
struction adds one vertex orbit and two edge orbits to the graph G, irrespective of the
value t. We can define a pentagon-multiplier construction as follows. As in the case of
the triangle-multiplier, this construction applies to graphs that are not necessarily nut
graphs.

Proposition 18. Let G be a bipartite connected (2p)-regular graph, where p 󰃍 1. Let
M5(G) be the graph obtained from G by fusing a bouquet of p pentagons (i.e., 5-cycles)
to every vertex of G. Then M5(G) is a nut graph.

Proof. We follow the pattern of the proof of Proposition 17. Consider a pentagon fused
at a vertex v ∈ V (G). The vertices of the pentagon that are adjacent to v both carry
entry +x(v), while the remaining two vertices carry entry −x(v).
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Equation (19) is replaced by

󰁛

u∈N(v)

x(u) + 2px(v) = 0 for v ∈ V (G), (20)

which in matrix form is A(G)x = −2px. Since G is connected, bipartite and (2p)-regular,
it has a unique eigenvalue −2p in its spectrum, and the corresponding eigenvector is
full.

We note that in Proposition 17, any fused triangle could be replaced by a (4q + 3)-cycle
for any q 󰃍 0. Likewise, in Proposition 18, any fused pentagon may be replaced by a
(4q + 5)-cycle for any q 󰃍 0. In fact, these changes are just repeated applications of the
subdivision construction on the triangles (resp. pentagons) of the graph M3(G) (resp.
M5(G)).

It seems natural to ask, what would happen if we fuse a mixture of triangles and
pentagons to some vertices of a graph? Consider the case where we fuse a triangle and a
pentagon to a vertex in a graph.

Proposition 19. Let G be a nut graph and let v ∈ V (G) be a vertex. Let P(G, v) be the
graph obtained from G by fusing a triangle and a pentagon to vertex v. Then P(G, v) is
a nut graph.

Proof. Let x be a kernel eigenvector of P(G, v). Consider the two vertices on the fused
triangle that are adjacent to v. Their entries in x are −x(v). Now consider the two
vertices of the fused pentagon that are adjacent to v. Their entries in x are x(v); the
entries of the remaining two vertices are −x(v). The local condition at vertex v is simply󰁓

u∈N(v) x(u) = 0. This means that η(P(G, v)) = η(G). Thus, P(G, v) is a nut graph if
and only if G is a nut graph.

This is a special case of the coalescence construction devised by Sciriha [41]. Corollary 21
in [41] is equivalent to the statement that coalescence of any two nut graphs G1 and G2

at any pair of vertices v1 ∈ V (G1) and v2 ∈ V (G2) produces a nut graph. The fusion
of a triangle and a pentagon is one of the three Sciriha graphs; see Figure 1(a). Note
that the above construction is used on a single vertex of a nut graph G. Had we used
it iteratively on all vertices of G, that would give us yet another multiplier construction.
In fact, various sorts of mixed objects can be envisaged. After the initial application of
M3 or M5 on an appropriate parent graph, which gives rise to a nut graph, the way lies
open to application of the coalescence construction, locally or globally. See Figure 9 for
examples.

The triangle-multiplier and pentagon-multiplier constructions may be generalised to
a k-multiplier construction: Let G be a (2r)-regular graph and let k 󰃍 3. Let Mk(G)
be the graph obtained from G by fusing a bouquet of r k-cycles to every vertex of G.
In fact, Propositions 17 and 18 have natural generalisations to every Mk, where {k 󰃍 3
and k ≡ 3 (mod 4)} and {k 󰃍 5 and k ≡ 1 (mod 4)}, respectively. These generalisations
follow immediately by the subdivision construction (see Section 5).
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(a)

(b)

Figure 9: These two nut graphs were obtained from (a) C3 and (b) C4 by an application
of the M3 resp. M5, followed by repeated application of Proposition 19. Entries in the
kernel eigenvector in each graph are all of equal magnitude and represented by circles
colour-coded for sign.

4.3 Characterisation of orders for nut graphs with 2 vertex orbits

Observe that columns for prime values of n are absent from Table 4. This is because the
search did not reveal any examples in the range. As the next theorem shows, this is no
coincidence.

Theorem 20. Let G be a nut graph of order n with precisely two vertex orbits. Then n
is not a prime number.

The next proposition will be useful in the proof of the above theorem.

Proposition 21. Let G be a nut graph and let x = [x1 . . . xn]
⊺ ∈ kerA(G). If there exists

a sign-reversing automorphism α ∈ Aut(G) then all orbits are of even size. Moreover, for
every j, half of the entries {xi | i ∈ Vj} are positive, and the other half are negative.

Proof. Think of the automorphism α as a product of disjoint cycles. Note that elements
of any given cycle of α are contained in the same vertex orbit. Since α is a sign-reversing
automorphism, every vertex i is mapped to a vertex iα carrying the opposite sign (i.e.,
xi ·xiα < 0). Therefore, every cycle of α is of even length and contains a perfect matching
whose edges join vertices with entries of opposite sign. Hence, {xi | i ∈ Vj} contains the
same number of positive and negative elements.

Corollary 22. Let G be a nut graph of order n. If n is odd then Aut(G) does not con-
tain any sign-reversing automorphism. Moreover, kernel eigenvector entries are constant
within a given orbit.
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Proof of Theorem 20. Let n1 = |V1| and n2 = |V2| with n = n1 + n2 and n1, n2 󰃍 1. Let
dij be the number of neighbours of a vertex v ∈ Vi that reside in Vj, where 1 󰃑 i, j 󰃑 2.
Since G is simple and connected, 0 󰃑 dii < ni and 1 󰃑 dji 󰃑 ni. The number of inter-orbit
edges is

d12n1 = d21n2. (21)

The proof proceeds by contradiction. Suppose that n is a prime. The case n = 2 is trivial,
since there are no nut graphs on 2 vertices. As n is odd, kernel eigenvector entries within
each orbit are constant by Corollary 22. Let ai be the entry in Vi. The local conditions
are

d11a1 + d12a2 = 0,

d21a1 + d22a2 = 0.
(22)

First, we note that Equation (21) has a unique solution and implies

d12(n1 + n2) = (d21 + d12)n2.

Since n1+n2 is a prime factor, it divides either d21+d12 or n2. As it clearly cannot divide
n2, it divides d21 + d12. But d21 + d12 󰃑 n1 + n2. Divisibility is possible only in the case
where d21 = n1 and d12 = n2. For this case, Equation (22) can be expressed in matrix
form as 󰀗

n1 d22
d11 n2

󰀘 󰀗
a1
a2

󰀘
=

󰀗
0
0

󰀘
. (23)

The determinant of the matrix is n1n2 − d11d22 > 0 and therefore a1 = a2 = 0. This
contradicts the fact that G is a nut graph. Therefore, n cannot be prime.

We have justified the claim that nut graphs with two vertex orbits cannot be of prime
order n. We add to the picture by showing that a nut graph with two vertex orbits exists
for all composite orders n 󰃍 9.

Theorem 23. Let n 󰃍 9 such that n is not a prime. Then there exists a nut graph G of
order n with ov(G) = 2.

Proof. Let n = p1p2 · · · pk be the decomposition of n into prime factors. Without loss of
generality, we may assume that p1 󰃑 p2 󰃑 · · · 󰃑 pk.

Case 1: Suppose that p1 = 2. If n ∕≡ 0 (mod 3) then Proposition 16 guarantees a
solution. If n ≡ 0 (mod 3) then Proposition 15 guarantees a solution.

Case 2: Now suppose that p1 > 2. Clearly, p1 is an odd integer. The strategy is to find a
vertex-transitive graph H of order 󰁨n = n/p1 and degree 󰁨d = p1−1. Then use the triangle-

multiplier construction to obtain M3(H). Since n is not a prime n/p1 󰃍 p1 and so 󰁨n > 󰁨d.
Note that 󰁨d is an even number. The circulant graph H = Circ(󰁨n, {1, 2, . . . , 󰁨d/2}) has the
prescribed order and degree and it is of course vertex-transitive as required. The graph
M3(H) is of order n. By Proposition 31, this graph has two vertex orbits.

Theorem 23 shows that there is at least one nonzero entry in every column of Table 4.
However, we believe that row oe = 3 by itself consists of nonzero entries.
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Conjecture 24. Let n 󰃍 9 such that n is not a prime. Then there exists a nut graph G
of order n with ov(G) = 2 and oe(G) = 3.

Conjecture 24 holds for all even numbers (covered by Case 1 of the proof), all multiples of
3 (covered by Proposition 15) and all perfect squares (in that case graph H in the proof is
a complete graph). The conjecture can also be validated for those values of n, such that

there exists an edge-transitive graphH of order 󰁨n and degree 󰁨d in the proof of Theorem 23.
Table 6 shows the orders up to 300 that are not resolved by anything mentioned thus far.
For some of these orders we were able to provide graph H (see proof of Theorem 23).
N/A in the table indicates that no such graph H exists (based on the census by Conder
and Verret [9, 10]). Order 35, for example, cannot be resolved in this way, because there
is only one vertex-transitive graph of order 7 and degree 4, namely Circ(7, {1, 2}), but
it is not edge-transitive, and so a completely different approach is required. For order
295, H would have to be a 4-regular edge-transitive graph of order 59, but no such graph
is known (see [35, 36, 37, 38]). The classes of edge-transitive circulants provided in [31]
could be used to resolve some orders beyond Table 6. All graphs H provided in Table 6
are circulants. However, for some orders there are non-circulant alternative possibilities,
e.g., the graph C5 □C5 could be used for n = 125 and Cay(Z5 × Z5, {(0, 1), (1, 0), (1, 1)})
for order n = 175.

Order Graph H

35 = 5 · 7 N/A
55 = 5 · 11 N/A
65 = 5 · 13 Circ(13, {1, 5})
77 = 7 · 11 N/A
85 = 5 · 17 Circ(17, {1, 4})
91 = 7 · 13 Circ(13, {1, 3, 4})
95 = 5 · 19 N/A
115 = 5 · 23 N/A
119 = 7 · 17 N/A
125 = 53 Circ(25, {1, 7]}
133 = 7 · 19 Circ(19, {1, 7, 8})
143 = 11 · 13 N/A
145 = 5 · 29 Circ(29, {1, 12})
155 = 5 · 31 N/A
161 = 7 · 23 N/A
175 = 52 · 7 Circ(35, {1, 6})
185 = 5 · 37 Circ(37, {1, 6})

Order Graph H

187 = 11 · 17 N/A
203 = 7 · 29 N/A
205 = 5 · 41 Circ((41, {1, 9})
209 = 11 · 19 N/A
215 = 5 · 43 N/A
217 = 7 · 31 Circ(31, {1, 5, 6})
221 = 13 · 17 N/A
235 = 5 · 47 N/A
245 = 5 · 72 Circ(35, {1, 11, 16})
247 = 13 · 19 N/A
253 = 11 · 23 N/A
259 = 7 · 37 Circ(37, {1, 10, 11})
265 = 5 · 53 Circ(53, {1, 23})
275 = 52 · 11 Circ(25, {1, 4, 6, 9, 11})
287 = 7 · 41 N/A
295 = 5 · 59 Unknown
299 = 13 · 23 N/A

Table 6: List of all integers 9 󰃑 n 󰃑 300 that are not prime, not even, not multiples of
three and not perfect squares. Where a graph H is listed, it proves Conjecture 24 for the
particular order. N/A indicates that no graph H with the desired properties exists. For
order 295 it is not known whether such a graph exists.
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Question 25. Find a nut graph G with 2 vertex orbits and 3 edge orbits for orders
n = 35, 55, 77, 95, . . . and other non-resolved orders.

5 How constructions influence symmetry

Several constructions have been described for producing a larger nut graph when applied
to a smaller nut graph G; literature examples include the bridge construction (insertion
of two vertices on a bridge) [44], the subdivision construction (insertion of four vertices
on an edge) [44] and the so-called Fowler construction [24], which has the net result of
introducing 2d new vertices in the proximity of a vertex v of degree d. In Section 4.2 we
have given examples of constructions that do not require the parent G to be a nut graph.
Here, we are interested in the implications of the various constructions for numbers of
vertex and edge orbits of the constructed nut graph.

Proposition 26. Let G be a nut graph and let e = uv ∈ E(G) be a bridge in G. Let E
be the orbit of the bridge e under Aut(G). The graph obtained from G by applying the
bridge construction on every edge from E , denoted B(G, E), is a nut graph and Aut(G) 󰃑
Aut(B(G, E)).

If, in addition, Aut(G) ∼= Aut(B(G, E)), then the following statements hold.

(i) If there exists an element ϕ ∈ Aut(G) such that uϕ = v and vϕ = u, then
ov(B(G, E)) = ov(G) + 1 and oe(B(G, E)) = oe(G) + 1.

(ii) If there is no element ϕ ∈ Aut(G) such that uϕ = v and vϕ = u, then ov(B(G, E)) =
ov(G) + 2 and oe(B(G, E)) = oe(G) + 2.

Proof. It is clear that B(G, E) is a nut graph [44]. Every element α ∈ Aut(G) can be
extended in a natural way to an element 󰁥α ∈ Aut(B(G, E)). More precisely, since the arc
(u, v) was subdivided, so was its image (uα, vα). Let the new vertices on (u, v) be labeled
w1 and w2, where w1 is adjacent to u. And let the new vertices on (uα, vα) be labeled
w′

1 and w′
2 where w′

1 is adjacent to uα. Then w󰁥α
1 = w′

1 and w󰁥α
2 = w′

2. This immediately
implies that Aut(G) 󰃑 Aut(B(G, E)).

Note that Aut(B(G, E)) may include additional automorphisms that were not induced
by Aut(G). These may cause merging of vertex orbits and merging of edge orbits. If
Aut(G) ∼= Aut(B(G, E)), then we know that there are no such additional automorphisms.
Note that graph B(G, E) has at most two new vertex orbits, namely, the orbit of w1 and
the orbit of w2. The edge uv was substituted by the three edges uw1, w1w2 and w2v. If
there exists an element ϕ ∈ Aut(G) such that uϕ = v and vϕ = u, then using its extension
󰁨ϕ we get w 󰁥ϕ

1 = w2. This means that vertices w1 and w2 are in the same vertex orbit.
Similarly, edges uw1 and w2v are in the same edge orbit. The claim follows.

Note that since Aut(G) 󰃑 Aut(B(G, E)), the condition |Aut(G)| = |Aut(B(G, E))|
automatically implies Aut(G) ∼= Aut(B(G, E)).

The proof of the following proposition is analogous to that of Proposition 26 and is
skipped here.
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Proposition 27. Let G be a nut graph and let e = uv ∈ E(G) be an edge in G. Let
E be the orbit of the edge e under Aut(G). The graph obtained from G by applying
the subdivision construction on every edge from E , denoted S(G, E), is a nut graph and
Aut(G) 󰃑 Aut(S(G, E)).

If, in addition, Aut(G) ∼= Aut(S(G, E)), then the following statements hold.

(i) If there exists an element ϕ ∈ Aut(G) such that uϕ = v and vϕ = u, then
ov(S(G, E)) = ov(G) + 2 and oe(S(G, E)) = oe(G) + 2.

(ii) If there is no element ϕ ∈ Aut(G) such that uϕ = v and vϕ = u, then ov(S(G, E)) =
ov(G) + 4 and oe(S(G, E)) = oe(G) + 4.

Definition 28. Let G be a nut graph and let v ∈ V (G) be a vertex of degree d in G.
Let N(v) = {u1, . . . , ud}. The graph F (G, v) is obtained from G in the following way: (a)
edges incident to v are deleted; (b) let w1, . . . , wd and x1, . . . , xd denote 2d newly added
vertices; (c) new edges are added such that xi ∼ ui for i = 1, . . . , d; and xi ∼ wj for i ∕= j,
1 󰃑 i, j 󰃑 d; and wi ∼ v for all i = 1, . . . , d. The construction F (G, v) has been called
‘the Fowler construction’ in the nut-graph literature [24].

Figure 10 illustrates the definition. Note that u1, . . . , ud are at distance 3 from v in
F (G, v). Moreover, the degrees of all the newly added vertices are d.

v

u1 u2 ud. . .

(a) G

v

w1 w2 wd. . .

x1 x2 xd
. . .

u1 u2 ud. . .

(b) F (G, v)

Figure 10: A construction for expansion of a nut graph G about vertex v of degree d,
to give F (G, v). Panel (a) shows the neighbourhood of vertex v in G. Panel (b) shows
additional vertices and edges in F (G, v).

Proposition 29. Let G be a nut graph and let v ∈ V (G) be a vertex in G. Let V be the
orbit of the vertex v under Aut(G). The graph obtained from G by applying the Fowler
construction on every vertex from V, denoted F (G,V), is a nut graph and Aut(G) 󰃑
Aut(F (G,V)).
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Suppose that, in addition, Aut(G) ∼= Aut(F (G,V)). Let the vertices in the neighbour-
hood of v in G and in the first, second and third neighbourhood of v in F (G,V) be labeled
as in Definition 28. The stabiliser Aut(G)v fixes N(v) set-wise in the graph G and parti-
tions N(v) into t orbits. Let S = {(wi, xj) | i ∕= j; 1 󰃑 i, j 󰃑 d}. Aut(F (G,V))v partitions
S into τ orbits. Then ov(F (G,V)) = ov(G) + 2t and oe(F (G,V)) = oe(G) + t+ τ .

Note that we define the action of Aut(F (G,V))v on pairs (wi, xj) by taking (wi, xj)
α =

(wα
i , x

α
j ), where α ∈ Aut(F (G,V))v. The proof of the above proposition uses the same

approach as that of Proposition 26 and is skipped here.
We are interested in the growth of the number of edge orbits under the construc-

tion. Let us define Φ(G, v) = oe(F (G,V)) − oe(G), where V is the orbit of the vertex v.
Proposition 29 has the following corollary.

Corollary 30. Let G be a nut graph and let v ∈ V (G) be a vertex in G. Let V be the
orbit of the vertex v under Aut(G). Let F (G,V) be as in Proposition 29 and also let
Aut(G) ∼= Aut(F (G,V)). Then

4 󰃑 Φ(G, v) 󰃑 d2. (24)

If deg(v) 󰃍 3, then Φ(G, v) 󰃍 5.

Proof. To get the upper bound, assume that each vertex of N(v) is in its own orbit and
therefore t = d. Similarly, each element of S is in its own orbit and therefore τ = d2 − d.

For parameters t and τ from Proposition 29, it holds that t 󰃍 1 and τ 󰃍 1. Therefore,
2 󰃑 oe(F (G,V)) − oe(G). By Lemma 7, α ∈ Aut(G)v cannot be sign-reversing. There
must be at least one vertex in N(v) with a positive entry in the kernel eigenvector and at
least one with a negative entry. Therefore, the group Aut(G)v partitions N(v) in at least
2 orbits, say U and U ′. Vertices x1, . . . , xd cannot be in the same orbit under Aut(G)v
as any other vertex of F (G, v); see Figure 10. The same is true for w1, . . . , wd. Since
Aut(G) ∼= Aut(F (G,V)), {x1, . . . , xd} and {w1, . . . , wd} are partitioned into orbits under
Aut(G)v in the same way as {u1, . . . , ud} (i.e., xi and xj belong to the same orbit if and
only if ui and uj belong to the same orbit). Orbits U and U ′ induce orbits X and X ′

on {x1, . . . , xd} and orbits W and W ′ on {w1, . . . , wd}. There exists at least one edge
connecting U to X , at least one edge connecting U ′ to X ′, at least one edge connecting X
to W ′ and at least one edge connecting X ′ to W . Each of these four edges must be in a
distinct new edge orbit, hence 4 󰃑 oe(F (G,V))− oe(G).

If deg(v) 󰃍 3 then either U or U ′ contains at least 2 vertices. Without loss of generality
assume that |U| 󰃍 2. Then there exists at least one edge connecting X to W . This edge
cannot share the orbit with any of the above four edges, hence 5 󰃑 oe(F (G,V))−oe(G).

The upper bound is best possible, because the equality in (24) can be attained if we
take G to be any asymmetric nut graph (i.e., |Aut(G)| = 1). This bound is attained even
within the class of vertex-transitive graphs, when we take G to be a GRR [29, 30] nut
graph, such as the one in Figure 11.

The lower bound is more interesting. The restriction of G to nut graphs in Corollary 30
is significant since, for example, if we take a complete graph on n 󰃍 4 vertices then
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Figure 11: The smallest GRR nut graph has order 12 and degree 6. The graph contains
three cliques represented by shaded regions; edges within cliques are not drawn. Entries in
the kernel eigenvector are all of equal magnitude and represented by circles colour-coded
for sign.

oe(F (Kn,V))− oe(Kn) = 2. For vertices of degree 2, Corollary 30 implies oe(F (Kn,V))−
oe(Kn) = 4. Small graphs with vertices of degree d ∈ {3, 4} furnish examples where
oe(F (Kn,V)) − oe(Kn) = 5; see Figure 12. The search on nut graphs of orders n 󰃑 12

(a) (b)

Figure 12: The smallest graphs where Φ(G, v) = 5. (a) For d = 3 the smallest example
is unique and of order 8. (b) For d = 4 one of the two smallest examples of order 9 is
shown. Vertices for which the bound is met are coloured magenta.

yields examples for d ∈ {5, 6, 7} for which Φ(G, v) = 6; see [1]. Examples of graphs with
small Φ(G, v) can also be found in the class of regular graphs; see [1]. Moreover, examples
with small Φ(G, v) can be found in the class of vertex-transitive graphs. For example,
K3,3 □K4 is a sextic vertex-transitive nut graph with Φ(K3,3 □K4, v) = 6.

It is important to note that in Propositions 26, 27 and 29 the respective construction
was applied to all edges/vertices within a given edge/vertex orbit. This ensures that the
graph obtained by the construction inherits all the symmetries of the original graph G.
The requirement that the order of the automorphism group of the graph does not increase
upon applying the given construction, i.e., Aut(G) ∼= Aut(F (G,V)), is also crucial to the
propositions. Figure 13 illustrates some of the complications that can arise.

Proposition 31. Let G be a connected (2t)-regular graph, where t 󰃍 1. Then ov(M3(G)) =
2ov(G) and oe(M3(G)) = oe(G)+2ov(G). Moreover, |Aut(M3(G))| = (2tt!)|V (G)||Aut(G)|.
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(a) Ω = (12, 13, 8) (b) Ω = (16, 17, 8)

(c) Ω = (7, 8, 16) (d) Ω = (18, 20, 4)

(e) Ω = (3, 4, 6) (f) Ω = (7, 10, 2) (g) Ω = (9, 12, 2) (h) Ω = (5, 6, 6)

(i) Ω = (2, 4, 288) (j) Ω = (12, 17, 16)

(k) Ω = (7, 10, 32)

Figure 13: Interplay of constructions, orbits and automorphism groups. Parts (a) to (d):
in the starting graph (a) two orbits are marked in red and blue; in (b) subdivision on
an entire orbit preserves the automorphism group; in (c) the bridge construction on an
entire orbit leads to doubling in order of the automorphism group; in (d) subdivision
in a part orbit leads to halving. Parts (e) to (h): the Sciriha graph S3 shown in (e) is
progressively subdivided; in (f) subdivision in a part orbit gives broken symmetry; in
(g) subdivision in a part orbit of (f) preserves the order of the automorphism group; in
(h) subdivision of the final edge causes merging of orbits and restoration of the original
symmetry. Parts (i) to (k): the highly symmetric graph (i) has four edge orbits; in (j) the
symmetry is considerably reduced by applying subdivision in a part of the green orbit of
(i); the graph in (k) is obtained from (j) by applying subdivision on one of two equivalent
edges but the symmetry increases; subdivision of the two remaining green edges would
restore the full symmetry of (i). The signature Ω given for each graph G denotes the
triple (ov(G), oe(G), |Aut(G)|) as in Figure 1.
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Proof. Every element α ∈ Aut(G) can be extended in a natural way to an element 󰁥α ∈
M3(G); the element 󰁥α moves the vertices of the original graph in the same way as α, and
also moves the corresponding attached triangles. Therefore, |Aut(M3(G))| 󰃍 |Aut(G)|.
Now, let us consider action of the stabiliser within Aut(M3(G)) that fixes the subgraph
G. Consider the triangles attached to an arbitrary vertex v ∈ V (G). Clearly, the sta-
biliser permutes the t triangles; this contributes t! to the order of the stabiliser. In
addition, there exist involutions that swap two degree-2 endvertices in any attached tri-
angle; this contributes 2t to the order of the stabiliser. Finally, all these operations
can be done independently at every vertex v ∈ V (G). Therefore, the order of the sta-
biliser is (2tt!)|V (G)|. Using the Orbit-Stabiliser Lemma [25, Lemma 2.2.2], we obtain
|Aut(M3(G))| = (2tt!)|V (G)||Aut(G)|. Now that the full automorphism group of M3(G))
is known, counting the vertex- and edge-orbits is straightforward.

Example 32. Consider graphs K7, Circ(12, {1, 5}) and the hypercube Q6. All these
graphs are vertex and edge-transitive. Let us determine the order of the automorphism
group of M3(G) for G from the above list. It is easy to see that |Aut(Circ(12, {1, 5}))| =
28 · 3, |Aut(K7)| = 7! and |Aut(Q6)| = 26 · 6!. Graphs K7 and Q6 are 6-regular, while
Circ(12, {1, 5}) is 4-regular. By Proposition 31,

|Aut(M3(Circ(12, {1, 5}))| = (22 · 2!)12 · (28 · 3) = 52776558133248,

|Aut(M3(K7))| = (23 · 3!)7 · 7! = 2958824445050880,

|Aut(M3(Q6))| = (23 · 3!)64 · (26 · 6!) ≈ 1.832 · 10112.

Note that even though the automorphism group of M3(G) might be absurdly large, the
numbers of vertex and edge orbits remain small, and in determining them we can ignore
the extra symmetries. ♦

Proposition 31 has a natural generalisation.

Proposition 33. Let k 󰃍 3 be an odd integer and let G be a connected (2t)-regular graph,
where t 󰃍 1. If k ≡ 1 (mod 4) then the graph G is further required to be bipartite. Then
ov(Mk(G)) = k+1

2
ov(G) and oe(Mk(G)) = oe(G)+ k+1

2
ov(G). Moreover, |Aut(Mk(G))| =

(2tt!)|V (G)||Aut(G)|.

Proof of Proposition 33 follows the same pattern as the proof of Proposition 31 and is left
as an exercise to the reader.

Finally, Proposition 33 implies some further results on the existence of infinite sets of
graphs for given pairs (ov, oe). In Subsections 3.1 and 4.1 we provided infinite families of
graphs for which (ov, oe) = (1, 2) and (ov, oe) = (2, 3), respectively. Using the machinery
of multiplier constructions and their effects on symmetry, we obtain the next theorem.

Theorem 34. Let r 󰃍 2 be even. For every k 󰃍 r + 1 there exist infinitely many nut
graphs G with ov(G) = r and oe(G) = k.

Lemma 35. For every k 󰃍 1 it holds that Aut(Circ(n, {1, 2, . . . , k})) ∼= Dih(n) for all
n 󰃍 2k + 3.

the electronic journal of combinatorics 31(2) (2024), #P2.38 32



Proof. Let G = Circ(n, {1, 2, . . . , k}). Recall that V (G) = Zn = {0, 1, 2, . . . , n− 1}. It is
clear that Dih(n) 󰃑 Aut(G). If k = 1, the graph G is isomorphic to the cycle graph Cn.
In this case it is clear that Aut(G) ∼= Dih(n). Hence, we can assume that k 󰃍 2.

Let G 󰃑 Aut(G). The Orbit-Stabiliser Lemma [25, Lemma 2.2.2] says |G| = |Gv| · |vG|
for any v ∈ V (G). Since G is vertex-transitive it follows that |Aut(G)| = n · |Aut(G)0|.
What is the orbit of vertex 1 inside Aut(G)0? Note that dG(0, i) = 1 for i ∈ {1, 2, . . . , k}∪
{−1,−2, . . . ,−k} and dG(0, i) = 2 for i ∈ {k + 1, k + 2,−k − 1,−k − 2}, where dG(u, v)
is the distance between vertices u and v in graph G. Let us define f0(i) = |{j ∈ NG(i) |
d(0, j) = 2}| for v ∈ {1, . . . , k} ∪ {−1, . . . ,−k}. Note that f0(1) = f0(−1) = 1 and
f0(i) 󰃍 2 if i /∈ {−1, 1}. Since graph automorphisms preserve distances, it follows that
1Aut(G)0 = {−1, 1}, as these are the only two vertices at distance 1 from 0 that have a
single neighbour at distance 2. Therefore, |Aut(G)0| = 2 · |Aut(G)0,1|, where Aut(G)0,1
is the stabiliser that fixes both 0 and 1. It only remains to show that Aut(G)0,1 is trivial.
Vertices {2, 3, . . . , k + 1} ∪ {0,−1,−k + 1} are at distance 1 from vertex 1. For these
vertices we define f1(i) = |{j ∈ NG(i) | d(1, j) = 2}|. The only vertex ℓ for which
dG(ℓ, 1) = 1 and f1(ℓ) = 1 and dG(ℓ, 0) = 1 is the vertex ℓ = 2. Therefore, Aut(G)0,1 fixes
vertex 2. By iteration of the argument, all vertices are fixed, so |Aut(G)0,1| = 1.

We remark in passing that Circ(2k + 1, {1, 2, . . . , k}) ∼= K2k+1 and its automorphism
group has order (2k + 1)!; and that Circ(2k + 2, {1, 2, . . . , k}) ∼= K2k+2 − (k + 1)K2 and
its automorphism group has order 2k+1(k + 1)!.

Proof of Theorem 34. For every k 󰃍 1 there exist infinitely many vertex-transitive graphs
with precisely k edge orbits; they include the circulants Circ(n, {1, 2, . . . , k}) for n 󰃍
2k + 3, provided by Lemma 35. By Proposition 33,

ov(M4q−1(Circ(n, {1, 2, . . . , k}))) = 2q,

oe(M4q−1(Circ(n, {1, 2, . . . , k}))) = k + 2q.

6 Future work

The present paper gives a theorem for the relationship between vertex-orbit and edge-
orbit counts for nut graphs. The result (Theorem 2) that oe 󰃍 ov+1, compares to Buset’s
result oe 󰃍 ov − 1 for all connected graphs [6, Theorem 2]. Edge-transitive nut graphs are
therefore impossible objects.

We also provided a complete characterisation of the orders for which nut graphs with
(ov, oe) = (1, 2) exist. A partial answer was also found for the pair (ov, oe) = (2, 3) (see
Conjecture 24 and Question 25). It was possible to provide infinite families of nut graphs
for the pairs (ov, oe), where ov is an even number and oe > ev. The case where ov is
an odd number remains to be completed. The ultimate goal is, of course, the complete
characterisation of orders for all (ov, oe) pairs.

During this work we encountered smallest examples of several interesting classes, in-
cluding the non-Cayley nut graphs (see Figure 5), and GRR nut graphs (see Figure 11),
which suggest directions for future explorations. The three infinite families used to prove
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Theorem 11, and the Rose Window family (see Proposition 16) are all quartic, but the
problem of characterising orders for (ov, oe) pairs is also a natural one for regular graphs,
or graphs of prescribed degree. It is planned to investigate the cubic case first, because
of its significance for chemical graph theory.

A substantial part of the paper was devoted to constructions of nut graphs and their
effects on symmetry, which can be complicated. In some cases, the automorphism group
of a constructed nut graph can be impressively large (see Example 32). The multiplier
constructions (Subsection 4.2) give access to highly symmetric graphs with controlled
number of vertex orbits. This prompts the question: For a given n, what is the most
symmetric nut graph on that order, where by ‘most symmetric’ we mean in the sense
of order of the automorphism group? From this perspective it is interesting that the
graph with 288 automorphisms shown in Figure 13(i) is the nut graph with the largest
full automorphism group amongst all nut graphs on 10 vertices and yet it is not vertex-
transitive.
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