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Abstract

A Berge cycle of length k in a hypergraph H is a sequence of distinct vertices and
hyperedges v1, h1, v2, h2, . . . , vk, hk such that vi, vi+1 ∈ hi for all i ∈ [k], indices taken
modulo k. Füredi, Kostochka, and Luo recently gave sharp Dirac-type minimum
degree conditions that force non-uniform hypergraphs to have Hamiltonian Berge
cycles. We give a sharp Pósa-type lower bound for r-uniform and non-uniform
hypergraphs that force Hamiltonian Berge cycles.

Mathematics Subject Classifications: 05C45, 05C35

1 Introduction

The study of Hamiltonian cycles is one of the essential topics of Graph Theory. In the
present paper, we study sufficient degree conditions for a hypergraph to be Hamiltonian,
in both uniform and non-uniform cases. We call a hypergraph Hamiltonian if there is
a Berge cycle containing all of the vertices of the hypergraph as defining vertices. Note
that it is natural to follow the definition of Berge for cycles in hypergraphs since there
is a one-to-one correspondence between Berge cycles of the hypergraph and cycles in the
incidence bipartite graph of the hypergraph. For a hypergraph H consider the incidence
bipartite graph G(A,B), where the vertices in A represent vertices of H and the vertices
in B represent hyperedges of H. A vertex a ∈ A is adjacent with a vertex b ∈ B in G if
and only if the vertex inH corresponding to a is contained in the hyperedge corresponding
to b in H. There is a one-to-one correspondence between cycles in G and Berge cycles of
H. The corresponding cycle in G of a Hamiltonian Berge cycle in H is a cycle containing
all vertices of the set A. In [17, 18, 25, 21, 22] is related work on cycles covering color
classes in bipartite graphs. In the coming subsections, we present the motivation for this
work and introduce some necessary definitions and notions.
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1.1 Hamiltonian cycles in graphs

The Hamiltonicity of graphs is a well-studied problem. In this subsection, we only state
those results which are the direct motivation of this work. For the recent developments
in this topic, we refer the reader to the following survey papers [12, 13].

For a graph G, a cycle containing every vertex of G is called a Hamiltonian cycle.
Graphs containing at least one Hamiltonian cycle are called Hamiltonian. We also call a
path Hamiltonian path if it contains every vertex of the graph. Dirac [7] in 1952 proved
an important sufficient condition for a graph to be Hamiltonian. They showed that every
graph G on n vertices with n 󰃍 3 and minimum degree δ(G) at least n

2
is Hamiltonian.

This theorem is sharp in the sense that one can not replace n
2
with anything less, for

example with
󰀇
n
2

󰀈
. In 1962 Pósa proved a strengthening of this theorem.

Theorem 1 (Pósa [26]). Let G be an n vertex graph. Let n 󰃍 3 and the degree sequence
of G be d1 󰃑 d2 󰃑 . . . 󰃑 dn. If for all k < n

2
the inequality k < dk holds then G is

Hamiltonian.

Several theorems give sufficient conditions for some classes of graphs to be Hamiltonian
for a reference see [3, 29]. In 1972, Chvátal found the necessary and sufficient condition
for an integer sequence to be Hamiltonian. We say an integer sequence d1 󰃑 d2 󰃑 . . . 󰃑 dn
is Hamiltonian if every graph with n vertices and the degree sequence pointwise greater
than the integer sequence is Hamiltonian.

Theorem 2 (Chvátal [5]). An integer sequence d1 󰃑 d2 󰃑 . . . 󰃑 dn, such that n 󰃍 3 is
Hamiltonian if and only if the following holds for every k < n

2

dk 󰃑 k ⇒ dn−k 󰃍 n− k.

In the following subsection, we introduce some notions and results for Hamiltonian
Berge hypergraphs.

1.2 Hamiltonicity for hypergraphs and main results

To describe the problem and existing results, we need to introduce some standard notions.
A hypergraphH is defined by a pair (V (H), E(H)), where V (H) denotes the set of vertices
and E(H) denotes the set of hyperedges. Furthermore, E(H) ⊆ P(V (H)), with P(V (H))
representing the power set of V (H). We say H is r-uniform if every hyperedge has size r.
For a vertex v ∈ V (H), the degree of a vertex is the number of hyperedges incident with
it and is denoted by dH(v). If the host hypergraph is clear from the context we will use
d(v) instead of dH(v). We define the neighbourhood of a vertex v as NH(v) = {u ∈
V (H) \ {v} : {u, v} ⊆ h, h ∈ H}. The closed neighborhood of v is defined as NH[v],
where NH[v] = NH(v) ∪ {v}. For a vertex set S, we denote NH(S) := ∪v∈SN(v) and
NH[S] := ∪v∈SN [v] . For a hypergraph H and sub-hypergraph H′ the hypergraph on the
same vertex set as H and with hyperedges E(H) \ E(H′) is denoted by H \ H′. For a
set S and an integer r let us denote the set of all subsets of S of size r by

󰀃
S
r

󰀄
. Let us

introduce the notions of Berge paths and Berge cycles [1].
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Definition 3. A Berge path of length t is an alternating sequence of t + 1 (t) distinct
vertices (hyperedges) of the hypergraph, v1, e1, v2, e2, v3, . . . , et, vt+1 such that vi, vi+1 ∈ ei,
for i ∈ [t]. The vertices v1, v2, . . . , vt+1 are called defining vertices and the hyperedges
e1, e2, . . . , et are called defining hyperedges of the Berge path.

Similarly, a Berge cycle of length t is an alternating sequence of t distinct vertices and
hyperedges of the hypergraph, v1, e1, v2, e2, v3, . . . , vt, et, such that vi, vi+1 ∈ ei, for i ∈ [t],
where indices are taken modulo t. The vertices v1, v2, . . . , vt are called defining vertices
and the hyperedges e1, e2, . . . , et are called defining hyperedges of the Berge cycle.

Long Berge cycles are well-studied for hypergraphs. Turán-type questions for uniform
hypergraphs without long Berge cycles are settled in [8, 9, 14, 23]. Bermond, Germa,
Heydemann, and Sotteau [2] found a Dirac-type condition forcing long Berge cycles for
uniform hypergraphs. Recently Coulson and Perarnau [6] found Dirac-type condition
forcing Berge Hamiltonicity in hypergraphs. Füredi, Kostochka, and Luo [10] generalized
Dirac’s theorem for non-uniform hypergraphs. For uniform linear hypergraphs, Jiang and
Ma [19] settled a conjecture of Verstraëte, by finding asymptotic minimum degree condi-
tion necessary for the existence of Berge cycles of k consecutive lengths. For the study of
asymptotic minimum degree thresholds that force matching see the following work [4, 16].
Katona and Kierstead [20] introduced an alternative definition of Hamiltonian cycles in
hypergraphs, a notion that has garnered considerable attention over recent decades. A
seminal contribution to this area was made by Rödl, Ruciński, and Szemerédi [27], who
established a Dirac-type condition for Hamiltonian cycles under this definition see also
work by Schülke [28], which presents a Pósa-type condition for Hamiltonicity. In the
subsequent part of this work, we adopt the term ”Hamiltonian“ to specifically refer to
the concept of Berge Hamiltonian cycles in hypergraphs. Here we state the theorem of
Füredi, Kostochka, and Luo.

Theorem 4 (Füredi, Kostochka, Luo [10]). Let n 󰃍 15 and let H be an n-vertex hyper-

graph such that δ(H) 󰃍 2
n−1
2 + 1 if n is odd and δ(H) 󰃍2

n−2
2 + 2 if n is even. Then H

contains a Berge Hamiltonian cycle.

For r-uniform hypergraphs Kostochka, Luo, and McCourt [24] proved exact Dirac-type
bounds for Hamiltonian Berge cycles in r-uniform n-vertex hypergraphs for all 3 󰃑 r < n,
their bounds are different for r < n/2 and r 󰃍 n/2. Let us note that, the proof techniques
used in works [11, 15] also provide the same result for r < n/2.

We say an integer sequence (d1, d2, . . . , dn) is r-Hamiltonian if every r-uniform hyper-
graph with the degree sequence pointwise greater than the integer sequence is Hamilto-
nian. We say an integer sequence (d1, d2, . . . , dn) is N-Hamiltonian if every non-uniform
hypergraph with the degree sequence pointwise greater than the integer sequence is Hamil-
tonian.

Theorem 5. An integer sequence (d1, d2, . . . , dn) such that d1 󰃑 d2 󰃑 . . . 󰃑 dn, n > 2r
and r 󰃍 3 is r-Hamiltonian if the following conditions hold

di > i for 1 󰃑 i < r, (1)
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di >

󰀕
i

r − 1

󰀖
for r 󰃑 i 󰃑

󰀙
n− 1

2

󰀚
, (2)

dn−2
2

>

󰀕
n−2
2

r − 1

󰀖
+ 1 if n is even. (3)

One may interpret Theorem 5 as an analog of Theorem 1 for r-uniform hypergraphs.
Besides we would like to prove the analog of Theorem 1 for non-uniform hypergraphs as
a strengthening of Theorem 4.

Theorem 6. An integer sequence (d1, d2, . . . , dn) such that d1 󰃑 d2 󰃑 . . . 󰃑 dn and n > 40
is N-Hamiltonian if the following conditions hold

di > 2i for 1 󰃑 i 󰃑
󰀙
n− 1

2

󰀚
, (4)

dn−2
2

> 2
n−2
2 + 1 if n is even. (5)

In the following subsection, we show that the conditions of Theorem 5 and Theorem 6
are sharp.

1.3 Examples showing the sharpness of conditions

In this subsection, we show that it is impossible to strengthen Theorem 5 or Theorem 6
by changing a condition for a given i. We start with Theorem 5 and demonstrate that
it is impossible to strengthen it by modifying a condition for some fixed i = k, where
1 󰃑 k 󰃑

󰀇
n−1
2

󰀈
.

Example 7 shows the sharpness of Condition 1 for all k, where 1 󰃑 k < r. The idea of
this construction is to construct a hypergraph with a special vertex set of size k incident
with k hyperedges only, therefore no Hamiltonian cycle.

Example 7. For integers n, r, and k, with the conditions n > 2r > 2k > 0, we define
H1

k as an n-vertex, r-uniform hypergraph as follows. The vertex set of H1
k is partitioned

into two disjoint sets, V1 and V2, where |V1| = k and |V2| = n− k. The hyperedge set of
H1

k comprises all hyperedges from
󰀃
V2

r

󰀄
and includes k distinct hyperedges, each of which

contains V1 as a proper subset.

Let d1 󰃑 d2 󰃑 . . . 󰃑 dn be the degree sequence of H1
k. We have d1 = d2 = · · · = dk = k

and
󰀃
n−k−1
r−1

󰀄
󰃑 dk+1 󰃑 dk+2 󰃑 . . . 󰃑 dn. Observe that, for the degree sequence of

hypergraph H1
k all conditions of Theorem 5 hold except one, Condition 1 for i = k. In

particular dk = k instead of dk > k. Clearly, H1
k is non-Hamiltonian since the vertices

in V1 are incident with only k hyperedges, therefore, there is no Berge cycle in H1
k that

contains all vertices of V1 and is longer than |V1| = k.
Example 8 shows the sharpness of Condition 2 for all k, r 󰃑 k 󰃑

󰀇
n−1
2

󰀈
. The idea

behind this construction is to construct a hypergraph with a special vertex set of size k,
each adjacent to only k vertices.
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Example 8. For integers n, r and k, such that 3 󰃑 r 󰃑 k < n
2
, let H2

k be an n-vertex,
r-uniform hypergraph. Let us partition the vertex set of H2

k, into three disjoint sets V1, V2

and V3 of sizes |V1| = k, |V2| = k and |V3| = n− 2k. The hyperedges of H2
k are

E(H2
k) =

󰀝
h ∈

󰀕
V (H2

k)

r

󰀖
: (h ⊂ V1 ∪ V2 and |h ∩ V1| = 1) or h ∈ V2 ∪ V3

󰀞
.

The degree sequence of H2
k is d1 = d2 = · · · = dk =

󰀃
k

r−1

󰀄
, dk+1 = · · · = dn−k =

󰀃
n−k−1
r−1

󰀄

and dn−k+1 = · · · = dn =
󰀃
n−k−1
r−1

󰀄
+ k

󰀃
k−1
r−2

󰀄
. Observe that, for the degree sequence of

hypergraph H2
k all conditions of Theorem 5 hold except one, Condition 2 for i = k. In

particular dk =
󰀃

k
r−1

󰀄
instead of dk >

󰀃
k

r−1

󰀄
. Note that vertices of V1 are pairwise non-

adjacent, and the number of vertices adjacent to V1 is k = |V1|. Therefore, there is no
Berge cycle in H2

k containing all vertices of V1 longer than 2 |V1| = 2k, hence H2
k is not

Hamiltonian since n > 2k.
The next example shows the sharpness of Condition 3. The idea is very similar to the

previous example.

Example 9. For integers n and r, such that 2|n, 3 󰃑 r < n
2
, let H3 be an n vertex,

r-uniform hypergraph. Let us partition the vertex set of H3, into two disjoint sets V1 and
V2 of sizes |V1| = n

2
+ 1 and |V2| = n

2
− 1. Let us fix a subset of V1 of size r and denote it

by h′. The hyperedge set of H3 is

E(H3) =

󰀝
h ∈

󰀕
V (H3)

r

󰀖
: (h ⊂ V1 ∪ V2 and |h ∩ V1| 󰃑 1) or h = h′

󰀞
.

The degree sequence of H3 is d1 = d2 = · · · = dn
2
+1−r =

󰀃n
2
−1

r−1

󰀄
, dn

2
+2−r = · · · = dn

2
+1 =󰀃n

2
−1

r−1

󰀄
+1 and dn

2
+2 = · · · = dn =

󰀃n
2
−2

r−1

󰀄
+(n

2
+1)

󰀃n
2
−2

r−2

󰀄
. As one can observe all conditions

of Theorem 5 hold but Condition 3. The number of vertices in V1 is n
2
+ 1, therefore, if

there is a Hamiltonian Berge cycle then there should be at least two pairs of consecutive
vertices of V1 on the cycle. This is not possible since the number of hyperedges incident
with at least two vertices of V1 is just one.

These three examples show the sharpness of each condition of Theorem 5, since ex-
amples showing the sharpness of conditions of Theorem 6 are very similar we will omit
them in this manuscript.

2 Proofs

In this section, we prove Theorem 5 and Theorem 6, since the methods used to prove
the theorems are similar, we start the proof of both theorems together, describe common
tools, and in the end, we split the proof into two subsections.

Let F be a hypergraph with V (F) := {u1, u2, u3, . . . , un}, and with a Hamiltonian
Berge path

P := u1, f1, u2, f2, u3, . . . , fn−1, un.

Where f1, f2, . . . , fn−1 are distinct hyperedges of F . We use the following three ways to
permute the vertices and produce alternative Hamiltonian Berge paths from P .
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• Permutation 1- with a defining hyperedge fi.
If u1 ∈ fi then P ′ is a Hamiltonian Berge path where

P ′ := ui, fi−1, ui−1, . . . , u1, fi, ui+1, fi+1, . . . , fn−1, un.

• Permutation 2- with a non-defining hyperedge f .
If {u1, ui+1} ⊂ f , f /∈ {f1, f2, . . . , fn−1} then P ′ is a Hamiltonian Berge path where

P ′ := ui, fi−1, ui−1, . . . , u1, f, ui+1, fi+1, . . . , fn−1, un.

• Permutation 3- with a defining hyperedge fi and a non-defining hyper-
edge f .
If for some integers i and j, with i > j, if we have u1 ∈ fi and for some hyperedge
f , f /∈ {f1, f2, . . . , fn−1}, we have uj, ui+1 ∈ f then P ′ is a Hamiltonian Berge path
where

P ′ := uj+1, fj+1, . . . , ui, fi, u1, f1, u2 . . . uj, f, ui+1, fi+1 . . . , fn−1, un.

We prove Theorem 5 and Theorem 6 by assuming a contradiction, let H be an r-
uniform / N-uniform hypergraph satisfying conditions of the corresponding theorem but
containing no Hamiltonian Berge cycle. Without loss of generality, we may assume that
H is maximal, without containing a Hamiltonian cycle, in the sense that adding any
hyperedge to H creates a Hamiltonian hypergraph. Therefore, the longest Berge path in
H is Hamiltonian. Let P be a longest Berge path

P := v1, h1, v2, h2 . . . , hn−1, vn.

Without loss of generality, we assume d(v1) 󰃑 d(vn) and that d(v1) + d(vn) is maximal
among all Hamiltonian Berge paths contained in H. Subject to this, let us assume among
all such paths P maximizes

󰀏󰀏NH\P (v1)
󰀏󰀏+

󰀏󰀏NH\P (vn)
󰀏󰀏.

Let x be the largest integer for which {v1, v2, v3, . . . , vx} ⊆ NH\P [v1]. We denote
S1 := {v1}∪{v2, v3, . . . , vx−1}. For each vertex vi ∈ {v2, v3, . . . , vx}, let Pvi be a Berge path
obtained by altering P with Permutation 2 using some non-defining hyperedge incident
with vi and v1. Let us denote the family of these Hamiltonian Berge paths including P
with ¶. There are x Hamiltonian Berge paths in ¶, in particular for each vertex vj of S1

there is a Hamiltonian Berge path Pvj in ¶, starting at vj and finishing at vn. Note that
for each hi, 1 󰃑 i 󰃑 x − 1, there is a Hamiltonian Berge path Pvi in ¶ not using hi as a
defining hyperedge and the terminal vertex vi is incident to hi. We denote

H1 := (H \ P ) ∪ {h1, . . . , hx−1}.

Let T1 be the set of terminal vertices of Hamiltonian paths whose other terminal vertex
is vn. Note that v1 ∈ T1 and v1 has the maximum degree among all the vertices of
T1, therefore, we have d(v1) > min

󰀋
|T1| ,

󰀇
n−1
2

󰀈󰀌
from the conditions of Theorem 5 and

the electronic journal of combinatorics 31(2) (2024), #P2.42 6



Theorem 6. Let us denote the number of defining hyperedges hi incident with v1 with k.
For a set A, A ⊆ {v1, v2, . . . , vn}, we define the left shift of A as

A− := {vi : vi+1 ∈ A, i 󰃍 1}.

Note that if v1 ∈ A then A− contains one less vertex than A. The right shift of set A is
defined analogously and it is denoted by A+.

Claim 10. We have NH1 [S1]
− ∪ {vy|vi ∈ hy, i < x 󰃑 y} ⊆ T1.

Proof. For each vertex vi ∈ S1 there is a path Pvi ∈ ¶ such that vi is a terminal vertex of
Pvi , where Pvi is a Hamiltonian path obtained from P after altering it with Permutation 2.
Now consider a Hamiltonian Berge path obtained from ¶vi for vi ∈ S1 and alter it with
Permutation 2 for each non-defining hyperedge incident with vi thus we get NH\{hi}[vi]

− ⊆
T1. By altering ¶vi with Permutation 1 for each defining hyperedge incident with vi, we
get {vy|vi ∈ hy, y 󰃍 x} ⊆ T1. Thus we have

NH1 [S1]
− ∪ {vy|vi ∈ hy, i < x 󰃑 y} =

󰁞

vi∈S1

NH\Pvi
[vi]

− ∪ {vy|vi ∈ hy, x 󰃑 y}.

From here we break the proofs of Theorem 5 and Theorem 6. In the following sub-
section, we prove Theorem 5 and then we prove Theorem 6.

2.1 Proof of the theorem for uniform hypergraphs

Proof of Theorem 5. With the sequence of the following claims we are going to prove

d(vn) 󰃍 d(v1) >
󰀃⌊n−1

2 ⌋
r−1

󰀄
+ 2|n. At first we show that d(v1) >

󰀃
r+1
r−1

󰀄
with the following

claim.

Claim 11. The size of T1 is at least r + 1.

Proof. We prove the claim in three cases depending on how many non-defining hyperedges
are incident with v1.

Case 1. The vertex v1 is incident with at least two non-defining hyperedges e1 and
e2, none of which is incident with v2 then we have {v1} ∪ (e1 ∪ e2)

− ⊆ T1, by Claim 10.
We have |e1 ∪ e2| 󰃍 r + 1 and v2 /∈ e1 ∪ e2. Hence we have |T1| 󰃍 r + 1.

Case 2. The vertex v1 is incident with at least two non-defining hyperedges e1 and
e2, but at least one of them is incident with v2. Without loss of generality, we may
assume e1 is incident with v2. Then we may replace h1 with e1 in P , without changing
defining vertices of P . Hence we have (e1 ∪ e2 ∪ h1)

− ⊆ T1 by Claim 10. We have
|(e1 ∪ e2 ∪ h1)

−| 󰃍 r hence either we are done or we may suppose to the contrary that
|T1| = |(e1 ∪ e2 ∪ h1)

−| = r. Note that in this case e1, e2 and h1 are distinct hyperedges
which are incident with v1 and all but one vertex from (e1 ∪ e2 ∪ h1). In particular, for
any two distinct vertices from e1 ∪ e2 ∪ h1 there exists a hyperedge e1, e2 or h1 incident
with both of the vertices.
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We have d(v1) > |T1| = r therefore, there exists a hyperedge h′ incident with v1 which
is not a subset of e1 ∪ e2 ∪ h1. If h′ is not a defining hyperedge, then (h′)− ⊂ T1 by
Claim 10, which is a contradiction since (e1 ∪ e2 ∪ h1)

− = T1 and (h′)− ∕⊆ (e1 ∪ e2 ∪ h1)
−.

Hence h′ is a defining hyperedge hi for some fixed i. We have vi ∈ T1 by Claim 10. Since
T1 = (e1 ∪ e2 ∪ h1)

− we have vi+1 ∈ e1 ∪ e2 ∪ h1. In the following part of the proof we
show that {v1, v2, . . . , vi+1} ⊆ e1 ∪ e2 ∪ h1.

We have {v1, v2, vi+1} ⊆ e1 ∪ e2 ∪ h1. Let γ with i + 1 > γ 󰃍 2, be the minimum
integer such that vγ /∈ T1 if it exists. We have vγ−1 ∈ e1 ∪ e2 ∪ h1. We have shown that
one of the hyperedges e1, e2 or h1 is incident with vγ−1 and vi+1. If such hyperedge is h1,
we may exchange h1 with e1, in P , and the hyperedge incident with vγ−1 and vi+1 will
be non-defining. Thus, we may assume without loss of generality that it is ej for some
j ∈ [2]. After altering P with Permutation 3 for defining hyperedge hi and non-defining
hyperedge ej, we get vγ ∈ T1. A contradiction to vγ /∈ T1.

Finally we have {vi, vi+1} ⊆ e1 ∪ e2 ∪ h1, we have shown that one of the hyperedges
e1, e2 or h1 is incident with vi and vi+1. We may assume without loss of generality that it is
e2. Hence we may replace hi with e2. By Claim 10 we have h−

i ⊂ T1. Since hi ∕⊂ e1∪e2∪h1

we have |T1| > r, a contradiction.
Case 3. The vertex v1 is not incident with at least two non-defining hyperedges. If

vertex v1 is not incident with any non-defining hyperedge then, for each defining hyperedge
hi incident with v1, vi ∈ T1 by Claim 10 and we are done. Thus we may assume the vertex
v1 is incident with exactly one non-defining hyperedge.

Let h be a P non-defining hyperedge incident with v1. Then we have h− ⊂ T1. If
v2 ∈ h, we may replace h1 with h and apply the same for the replaced path and h1. Hence
we have (h1 ∪ h)− ∈ T1. If v2 /∈ h, then ({v2}∪ h)− ∈ T1. We have |T1| 󰃍 r in both cases.
Either we are done or we have |T1| = r and d(v1) 󰃍 r + 1.

Let hx1 , hx2 , . . . , hxr be P defining hyperedges incident with v1, for some 1 = x1 <
x2 < . . . < xr 󰃑 n. Since |T1| = r, we have T1 = {vx1 , vx2 , . . . , vxr} and h ⊆
{v1, vx1+1, vx2+1, . . . , vxr+1}. We have v2 ∈ T1, since we can remove v1, h1 from P and re-
place vxi

, hxi
, vxi+1 by vxi

, hxi
, v1, h, vxi+1 for some i, vxi+1 ∈ h, i.e. altering P with Permu-

tation 3. Hence we have x2 = 2. We have h ⊆ {v1, v2, v3, vx3+1, . . . , vxr+1}, in particular,
h is a hyperedge incident with all but one vertex from the set {v1, v2, v3, vx3+1, . . . , vxr+1}.
We may assume v3 ∈ h, otherwise v2 ∈ h and we may replace h1 with h. Similarly as
for h we have h1 ⊆ {v1, v2, v3, vx3+1, . . . , vxr+1} and h1 is different from h. Hence we have
v3 ∈ h1. If we replace the beginning of the path P , v1, h1, v2, h2, v3 with v2, h1, v1, h, v3,
we deduce h2 ⊆ {v1, v2, v3, vx3+1, . . . , vxr+1}. Either h or h2 is incident with vxr+1, let h

′

be the one, then the following is a Hamiltonian Berge path

v3, h3, . . . , vxr , hxr , v1, h1, v2, h
′, vxr+1, . . . , vn.

Thus we have v3 ∈ T1. Similarly as for h2 we have h3 ⊆ {v1, v2, v3, v4, vx5+1 . . . , vxr+1}.
If v2 ∈ h, we may replace h1 with h in P . Either h1 or h contains v3, so we may replace

h2 with that hyperedge in P . Otherwise if v2 /∈ h then {v3, v4} ∈ h and we may replace h3

with h in P . The hyperedge h3 contains v2 hence we may replace h1 with it. Therefore,
we have three different candidates h, h1, h2 for a non-defining hyperedge. Hence given
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any two distinct vertices v′, v′′ ∈ {v2, v3, v4, vx4+1 . . . , vxr+1}, we may assume v′, v′′ ∈ h,
without loss of generality. Hence, altering the path P with Permutation 3 implies that
xi = i for all possible i. We have a contradiction, since every hyperedge h, h1, h2, . . . , hr

is a distinct subset of v1, v2, . . . , vr+1 and is incident to v1. Hence we have |T1| 󰃍 r + 1
and we are done.

By Claim 11 we have d(v1) >
󰀃
r+1
r−1

󰀄
. Therefore, there exists an integer t 󰃍 r + 1, for

which 󰀕
t

r − 1

󰀖
< d(v1) 󰃑

󰀕
t+ 1

r − 1

󰀖
.

Recall the number of defining hyperedges incident with v1 is denoted by k. Let r󰃍4 be a
function which equals to one for all r 󰃍 4 and zero if r = 3.

Claim 12. Let k 󰃑
󰀇
n−1
2

󰀈
+ r󰃍4, then we have

󰀏󰀏NH\P (v1)
󰀏󰀏 󰃍 t or

󰀏󰀏NH\P (v1)
󰀏󰀏 = t − 1,

k = t and r = 3.

Proof. By altering P with Permutation 1 for each defining hyperedge incident with v1,
we get distinct terminal vertices for each hyperedge. Thus we have |T1| 󰃍 k. From the
conditions of Theorem 5, since v1 has maximum degree among all vertices of T1, we have
k 󰃑 t+ r󰃍4.

The vertex v1 is incident with k defining hyperedges, and the rest of the hyperedges
which are incident with v1 are incident to r − 1 other vertices in NH\P (v1), by Claim 10.
Thus, we may upper bound the number of P non-defining hyperedges incident with the

vertex v1 with
󰀃|NH\P (v1)|

r−1

󰀄
. Hence we have

󰀕󰀏󰀏NH\P (v1)
󰀏󰀏

r − 1

󰀖
+ k 󰃍 d(v1) >

󰀕
t

r − 1

󰀖
=

󰀕
t− 1

r − 1

󰀖
+

󰀕
t− 1

r − 2

󰀖
. (6)

If r 󰃍 4, then k 󰃑 t + 1 󰃑
󰀃
t−1
2

󰀄
󰃑

󰀃
t−1
r−2

󰀄
since t 󰃍 r + 1 󰃍 5 which implies together with

Equation 6 that
󰀏󰀏NH\P (v1)

󰀏󰀏 󰃍 t. If r = 3 and k 󰃑 t − 1, then from Equation 6 we have󰀏󰀏NH\P (v1)
󰀏󰀏 󰃍 t. Otherwise we have

󰀏󰀏NH\P (v1)
󰀏󰀏 = t− 1, k = t and r = 3.

Recall that x denotes the largest integer for which {v1, v2, . . . , vx} ⊆ NH\P [v1].

Claim 13. Let |NH1 [S1]| =
󰀏󰀏NH\P [v1]

󰀏󰀏 = t+1. Then vx ∈ T1 or vy ∈ T1, for some y with
vy+1 /∈ NH1 [S1] and v1 ∈ hy.

Proof. There is a defining hyperedge hy incident with v1, y 󰃍 x since d(v1) >
󰀃

t
r−1

󰀄
and

|NH1(v1)| = t. Note that if t 󰃍
󰀇
n−1
2

󰀈
and n are even then there are at least two such

hyperedges and we may choose one with the minimum index. Hence either vy+1 /∈ NH1 [S1]
and we are done or vy+1 ∈ NH1 [S1] and we need to show that vx ∈ T1.

If x = 1, then there is nothing to prove. If x = 2, then alter the path P with
Permutation 3, for defining hyperedge hy and non-defining hyperedge h incident with v1
and vy+1. In particular it removes v1, h1 from P and replaces hy with hy, v1, h. Hence
v2 ∈ T1 and x = 2 case is also settled.
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From here we settle the final case when x 󰃍 3. If there is a P non-defining hyperedge
f incident with vx−1 and vy+1, then altering P with Permutation 3 for defining hyperedge
hy and non-defining hyperedge f , we get vx ∈ T1, and we are done. Even more if hx−1 is
incident with vx−1 and vy+1 with the same way we get vx ∈ T1 and we are done. Thus
we may assume that none of the P non-defining hyperedges (and hx−1) are incident with
vx−1 and vy+1. Note that, since v2 is incident with v1 with a non-defining hyperedge,
hyperedge h1 can also be treated as a non-defining hyperedge. Thus either we are done
h1 is not incident with both vx−1 and vy+1. Recall NH\P (v1) = NH1 [S1] \ {v1} = t, thus
each of h1, h2 . . . , hx−1 is a subset of NH\P [v1]. Hence all non-defining hyperedges incident
with v1, and the hyperedges h1 and hx−1 are subsets of NH\P [v1]. Even more, none of
them is incident with both vx−1 and vy+1. Hence the number of them is upper bounded

by
󰀃|T1|
r−1

󰀄
−
󰀃|T1|−2

r−3

󰀄
. The number of defining hyperedges incident with v1 is upper bounded

by t. Note that h1 and hx−1 are double counted. Finally if r 󰃍 4 we have a contradiction

d(v1) 󰃑 t+

󰀕
t

r − 1

󰀖
−

󰀕
t− 2

r − 3

󰀖
− 2 󰃑

󰀕
t

r − 1

󰀖
.

In case r = 3 the maximum number of hyperedges incident with v1 is
󰀃|NH\P (v1)|

r−1

󰀄
. We

have already seen that all the non-defining hyperedges and all hj, j < x are subsets of
NH\P [v1]. For each defining hyperedge hj, j 󰃍 x, if there is a hyperedge {v1, vx−1, vj−1}
then with Permutation 3, vx is a terminal vertex. Otherwise if there is no such hyperedge,

{v1, vx−1, vj−1} for each j then we have d(v1) 󰃑
󰀃|NH\P (v1)|

r−1

󰀄
=

󰀃
t

r−1

󰀄
, a contradiction.

By Claim 12 and Claim 13 it is straightforward to deduce the following corollary.

Corollary 14. If k 󰃑
󰀇
n−1
2

󰀈
+ 1 and r > 3, then |T1| > t.

Claim 15. Let r = 3, k = t 󰃑 n−1
2

and |NH1 [S1]| = t. Then vγ ∈ T1, v1 /∈ hγ and
vγ+1 /∈ NH\P (v1) for some γ ∈ {4, 5}.

Proof. Recall the degree condition of v1, d(v1) 󰃍
󰀃
t
2

󰀄
+ 1 =

󰀃
t−1
2

󰀄
+ t. On the other hand

d(v1) 󰃑
󰀃
t−1
2

󰀄
+ t, where

󰀃
t−1
2

󰀄
bounds the non-defining hyperedges incident with v1 and t

bounds defining hyperedges incident with v1. Therefore, d(v1) =
󰀃
t−1
2

󰀄
+ t and all defining

hyperedges incident with v1 are not subsets of NH\P [v1] and for each pair of vertices in
NH\P (v1) there is a non-defining hyperedge with v1. By Claim 10 and the statement
of Theorem 5 we have T1 = {vi : v1 ∈ hi} thus NH\P [v1] = {vi+1 : v1 ∈ hi} \ u, for
some vertex u. Note that v2 /∈ NH\P (v1), otherwise by replacing h1 with a non-defining
hyperedge incident with v1 and v2, resulting in another Hamiltonian Berge path P ′ with
the same terminal vertices. Since h1 is not subset of NH\P [v1] we have

󰀏󰀏NH\P ′(v1)
󰀏󰀏 = t,

a contradiction to the assumption that P maximizes
󰀏󰀏NH\P (v1)

󰀏󰀏+
󰀏󰀏NH\P (vn)

󰀏󰀏. Hence we
have NH\P [v1] = {vi : v1 ∈ hi} \ v2. By altering P with Permutation 3 for vertex v1 and
any defining hyperedge incident with v1 distinct from h1 we get v2 ∈ T1 thus v1 ∈ h2 and
v3 ∈ NH\P [v1].

Let j be the minimal integer such that j > 3 and v1 ∈ hj. Thus v3, vj+1 ∈ NH\P [v1] and
there is a non-defining hyperedge {v1, v3, vj+1}. Then by altering P with Permutation 3
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for the hyperedge hj and {v1, v3, vj+1} the vertex v4 ∈ T1. If j ∕= 4, then we are done. If
j = 4, then h5 is not incident with the vertex v1 and similarly as for v4, the vertex v5 is
in T1 thus we are done.

It is straightforward to conclude the following corollary.

Corollary 16. Let r = 3, k = t 󰃑 n−1
2

and |NH1 [S1]| = t then |T1| > t.

We will show that t 󰃍
󰀇
n−1
2

󰀈
. First, suppose that k 󰃍

󰀇
n−1
2

󰀈
. For each defining

hyperedge incident to v1 there is a distinct vertex in T1 by Claim 10. We have |T1| 󰃍 k 󰃍󰀇
n−1
2

󰀈
by Condition 2 of Theorem 5 and the assumption that v1 has the maximum degree

among the vertices in T1 we have t 󰃍
󰀇
n−1
2

󰀈
.

If k <
󰀇
n−1
2

󰀈
, by Corollary 14 and Corollary 16 we have T1 󰃍 t + 1. Since v1 has the

maximum degree in T1 we get t 󰃍
󰀇
n−1
2

󰀈
by Condition 2 of Theorem 5. Hence we have

d(vn) 󰃍 d(v1) >

󰀕󰀇
n−1
2

󰀈

r − 1

󰀖
+ 2|n.

Let us assume r 󰃍 4. For vertex vn we define Sn := {vn} ∪ {vn, vn−1, vn−2, . . . , vx′+1}.
Where x′ is the smallest integer such that {vn, vn−1, vn−2, . . . , vx′} ⊆ NH\P [vn]. It is simple
to observe that NH\P (v1)

− ∩ NH\P (vn) is empty otherwise, if we have vi ∈ NH\P (v1)
− ∩

NH\P (vn) then we have a Hamiltonian Berge cycle. Indeed, if vi is in NH\P (vn) it means
there is a P non-defining hyperedge fn incident with vi and vn. Similarly, there is a
non-defining hyperedge f1 incident with vi+1 and v1. Note that vn is not incident with v1
with a P non-defining hyperedge, otherwise, we would have a Hamiltonian Berge cycle
therefore, f1 and fn are distinct non-defining hyperedges. The following is a Hamiltonian
Berge cycle

v1, h1, v2, h2, . . . , vi, fn, vn, hn−1, vv−1, hn−2, . . . , vi+1, f1, v1

a contradiction. Similarly, we have

NH1 [S1]
− ∩NHn [Sn] = ∅

where Hn := H \ P ∪ {hn−1, hn−2 . . . , hx′}. Indeed if vi ∈ NH1 [S1]
− ∩ NHn [Sn] then

x 󰃑 i 󰃑 x′, since H is not Hamiltonian. Thus if the corresponding incidences with vi or
vi+1 come from a defining hyperedge hj of P , then either j < x or j 󰃍 x′. Without loss of
generality let us assume j < x, then vj, hj−1, vj−1, . . . v1, f, vj+1, . . . , vn is a Hamiltonian
Berge path such that hj is not a defining hyperedge and vertices vx, vx+1 . . . , vx′ have
the same position as they had in P . Thus we may assume both incidences are from
non-defining hyperedges and we have a Hamiltonian Berge cycle in H, a contradiction.

Let us denote the number of defining hyperedges incidents with vn by kn. We assume
k, kn 󰃑

󰀇
n+1
2

󰀈
+ r󰃍4. By Claim 13 either |NH1(v1)| >

󰀇
n+1
2

󰀈
or we have a vertex u,

such that u ∈ T1 and u /∈ NH1 [S1]
− and |NH1(v1)| =

󰀇
n−1
2

󰀈
. Even more, u is a terminal

vertex of a Hamiltonian Berge path, after altering P with a non-defining hyperedge not
incident with a vertex in Sn. Therefore, vertex u is not in NH1 [S1]

− ∪ NHn [Sn]. Due to
the symmetry of a Berge path, we may apply Claim 13 for vertex vn. Therefore, either
|NHn [Sn]| >

󰀇
n+1
2

󰀈
or we have a vertex u′ such that u′ /∈ NH1 [S1] ∪NHn [Sn]

+.
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Note that if n is even we may assume that vertices u and u′ are not consecutive in P in
this given order. Since while applying Claim 13 we may choose a different defining hyper-
edge hy for the vertex v1 and vn. Finally we have NH1 [S1]

− ∪NHn [Sn] ⊆ {v1, v2, . . . , vn},
NH1 [S1]

− ∩ NHn [Sn] = ∅ and if there are {u}, {u′}− then they are not contained in
NH1 [S1]

−∪NHn [Sn]. Recall |NH1 [S1]
−| and |NHn [Sn]| are both at least

󰀇
n+1
2

󰀈
by Claim 12.

We have

n+ 1 = 1 + 2|n +

󰀕󰀙
n+ 1

2

󰀚
− 1

󰀖
+

󰀙
n+ 1

2

󰀚
󰃑

󰀏󰀏{u, u′} ∪NH1 [S1]
− ∪NHn [Sn]

󰀏󰀏

󰃑 |{vi : i ∈ [n]}| = n,

a contradiction. Note that calculations are the same if u or u′ does not exist. We have
analogous contradictions if |NH1 [S1]| or |NHn [Sn]| is greater than

󰀇
n−1
2

󰀈
.

Let r > 3 and either k or kn is larger than
󰀇
n−1
2

󰀈
+ 1. Note that

{vi : vn ∈ hi} ∩NH\P (v1)
− = ∅ (7)

since otherwise we have a Hamiltonian Berge cycle. If exactly one is larger than
󰀇
n−1
2

󰀈
+1,

say k 󰃑
󰀇
n−1
2

󰀈
+ 1 < kn then we have NH\P (v1) 󰃍

󰀇
n−1
2

󰀈
and {vi : vn ∈ hi} 󰃍

󰀇
n−1
2

󰀈
+ 2.

We have a similar contradiction since {vi : vn ∈ hi} ∪NH\P (v1)
− ⊆ {1, 2, . . . , n− 1} and

because of Equation 7. Finally if
󰀇
n−1
2

󰀈
+ 1 < k 󰃑 kn, then

󰀕󰀇
n−1
2

󰀈

r − 1

󰀖
< d(v1) 󰃑

󰀕󰀏󰀏NH\P (v1)
󰀏󰀏

r − 1

󰀖
+ k 󰃑

󰀕
n− kn
r − 1

󰀖
+ k 󰃑

󰀕
n− k

r − 1

󰀖
+ k.

We have a contradiction similarly as before since {vi : vn ∈ hi} ∩NH\P (v1)
− ∕= ∅. There-

fore, if r 󰃍 4, we are done. From here we assume r = 3.

Claim 17. Let r = 3 then each defining hyperedge is incident with at most one terminal
vertex of P .

Proof. Every defining hyperedge hi, 1 < i < n− 1, is incident with at most one terminal
vertex of P , since r = 3. If vn ∈ h1 or v1 ∈ hn−1, then there is a Berge cycle containing
all vertices but v1 or vn. Let us assume vn ∈ h1 thus we have a Berge cycle containing all
vertices but v1, namely

vn, h1, v2, h2, . . . , hn−1, vn

If there are consecutive vertices vi, vi+1 incident with v1 and there is a hyperedge {vi, vi+1,
v1} in H we may assume hi = {vi, vi+1, v1}, hence it is a defining hyperedge. Therefore,
the vertices incident with v1 with a non-defining hyperedge are not consecutive on the
cycle otherwise we have a Hamiltonian Berge cycle. Even more, if a defining hyperedge
hi is incident with v1 then vi, vi+1 are not incident with v1 with a non-defining hyperedge.

Therefore, the maximum degree of v1 is at most
󰀃n−1

2
2

󰀄
+ 2|n a contradiction. Therefore,

we have all hyperedge of H incident with at most one terminal vertex of P .
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From the last claim we have (NH1 [S1] ∪ {vi|v1 ∈ hi})− ∩ (NHn [Sn] ∪ {vi|vn ∈ hi}) = ∅
since there is no Hamiltonian Berge cycle. Also by the same claim we have k or kn is
less than

󰀇
n−1
2

󰀈
. If we consider the set NH1 [S1] ∪ {vi|v1 ∈ hi} instead of NH1 [S1] and the

set NHn [Sn] ∪ {vi|vn ∈ hi} instead of NHn [Sn] we get a contradiction in with the same
argument as for r 󰃍 4.

2.2 Proof of the theorem for non-uniform hypergraphs

Proof of Theorem 5. Here we re-start proof for non-uniform hypergraphs. For some inte-
ger t, such that t > 1, we have

2t < d(v1) 󰃑 2t+1.

Claim 18. We have
󰀏󰀏NH\P (v1)

󰀏󰀏 󰃍 t.

Proof. We may upper bound the number of P non-defining hyperedges incident with v1
with 2|NH\P (v1)|. Thus we have

2|NH\P (v1)| + k 󰃍 d(v1) > 2t = 2t−1 + 2t−1. (8)

For each defining hyperedge incident with v1 there are distinct terminal vertices in T1

hence either k 󰃑 t or t 󰃍
󰀇
n−1
2

󰀈
by Condition 4. If k 󰃑 t then because of Equation 8 we

have 2|NH\P (v1)| > 2t−1, since t > 1 and we are done.

Note that we have k 󰃑 n − 1 󰃑 2⌊
n−1
2 ⌋−1 for all n > 8. Hence if t 󰃍

󰀇
n−1
2

󰀈
then we

are done because of Equation 8.

Recall that x denotes the largest integer for which {v1, v2, . . . , vx} ⊆ NH\P [v1].

Claim 19. If |NH1 [S1]| = t+1 then vx ∈ T1 or vy ∈ T1 for some y, where vy+1 /∈ NH1 [S1]
and v1 ∈ hy.

Proof. By Claim 18, we get
󰀏󰀏NH\P (v1)

󰀏󰀏 󰃍 t, hence we have
󰀏󰀏NH\P (v1)

󰀏󰀏 = t andNH\P (v1) =
NH1 [S1] \ {v1}, since NH\P (v1) ⊆ NH1 [S1]. There is a defining hyperedge hy incident with
v1, y 󰃍 x, since d(v1) > 2t and |NH1(v1)| = t. Note that if t 󰃍

󰀇
n−1
2

󰀈
and n is even

then there are two such hyperedges. Since we will use this Claim for v1 and vn also we
will choose different hyperedges for them. Either vy+1 /∈ NH1 [S1] and we are done by
Claim 10, or vy+1 ∈ NH1 [S1], in this case we will show that vx ∈ T1.

If x = 1, then there is nothing to prove. If x = 2, then after altering the path P with
Permutation 3, for a defining hyperedge hy and non-defining hyperedge h incident with
v1 and vy+1, v2 will be a terminal vertex of the longest path. Hence we have vx ∈ T1 if x
is two.

If x 󰃍 3, then we have t 󰃍 x 󰃍 3 and we distinguish two cases. At first, we consider
t > 3 and then t = x = 3.

If x 󰃍 3 and t > 3, we consider two cases. Note that vx−1 and vy+1 are elements of
NH\P (v1). If there is a non-defining hyperedge incident with vertices vx−1 and vy+1 then
vx is a terminal vertex after altering P with Permutation 3 and we are done. Otherwise
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the number of non-defining hyperedges incident with v1 is at most 2t − 2t−2. Note that

either k 󰃑 t or k > t. If k > t then t 󰃍
󰀇
n−1
2

󰀈
and k 󰃑 n − 1 󰃑 2⌊

n−1
2 ⌋−2 󰃑 2t−2 since

n 󰃍 13. If k 󰃑 t, then k 󰃑 t 󰃑 2t−2 since t > 3. Finally we can upper bound the degree
of v1, 2

t < d(v1) 󰃑 k + 2t − 2t−2 󰃑 2t, a contradiction.
Here we consider the final case when x = t = 3. If there is a non-defining hyperedge

h incident with v2 and vy+1, then v3 is a terminal vertex after altering the path P with
Permutation 3, for a defining hyperedge hy and non-defining hyperedge h. Note that,
if v2, vy+1 ∈ h1 we can replace h1 with some a non-defining hyperedge incident with v1
and v2 since v2 ∈ NH\P (v1) and alter the new path with Permutation 3, for defining
hyperedge hy and non-defining hyperedge h1 then v3 is a terminal vertex and we are
done. Hence we may assume all P non-defining hyperedges and h1 are not incident with
both v2 and vy+1 vertices. Recall that since NH\P (v1) = NH1 [S1] we have hyperedges
h1, h2, . . . , hx ⊆ NH1 [v1]. The degree of v1 can be upper bounded by the number of non-
defining hyperedges which is at most 2t − 2t−2, even more, the bound includes hyperedge
h1. Since t = 3, the defining hyperedges incident with v1 is at most three including h1.
Hence we have a contradiction 23 < d(v1) 󰃑 (3− 1) + (23 − 23−2) = 23.

From the last claim we have T1 󰃍 t+1, hence since v1 has the maximum degree in T1,

we have t 󰃍
󰀇
n−1
2

󰀈
and d(v1) > 2⌊

n−1
2 ⌋+ 2|n by Condition 4 and 5 of Theorem 6. Note that

we can define the set NHn [Sn] for the vertex vn as for v1. We have NH1 [S1]
−∩NHn [Sn] = ∅

otherwise we have a Hamiltonian cycle. Recall that we have |NH1 [S1]
−| 󰃍

󰀇
n+1
2

󰀈
, and we

have the same inequality for Sn, namely |NHn [Sn]| 󰃍
󰀇
n+1
2

󰀈
by symmetry of a Berge path.

Let T ′
1 be NH1 [S1] if |NH1 [S1]| >

󰀇
n+1
2

󰀈
. If |NH1 [S1]| =

󰀇
n+1
2

󰀈
, then there is a vertex u,

such that u ∈ T1 and u /∈ NH1(v1)
− by Claim 19. We denote the set NH1 [S1]∪{u} by T ′

1 .
Note that u cannot be a terminal vertex after altering P using hyperedges which are not
incident with a vertex in Sn, otherwise, there is a Hamiltonian Berge cycle. Hence we have
u /∈ NH1 [S1]

− ∪NHn [Sn]. Let T
′
n be NHn [Sn] if |NHn [Sn]| >

󰀇
n+1
2

󰀈
. If |NHn [Sn]| =

󰀇
n+1
2

󰀈
,

then there is a vertex u′, such that u′ ∈ Tn and u′ /∈ NHn(vn)
+ by Claim 19. We

denote the set NHn [Sn] ∪ {u′} by T ′
n. Note that u′ cannot be a terminal vertex after

altering P using hyperedges that are not incident with a vertex in S1, otherwise, there is
a Hamiltonian Berge cycle. Hence we have {u′}− ⊈ NH1 [S1]

− ∪NHn [Sn]. Even more, if n
is even and both of the vertices u and u′ exist then we have {u} ∕= {u′}−. Since we have
NH1 [S1]

− ∪NHn [Sn] ⊆ {v1, v2, . . . , vn}, NH1 [S1]
− ∩NHn [Sn] = ∅. We have a contradiction

n+ 1 = 2

󰀙
n+ 1

2

󰀚
− 1 + 1 + 2|n 󰃑

󰀏󰀏(T ′
1)

− ∪ T ′
n)
󰀏󰀏 󰃑 |{v1, v2, . . . , vn}| = n.

3 Concluding remarks

The next natural step in this direction would be finding the necessary and sufficient
conditions for a degree sequence to be r-Hamiltonian. In particular, generalization of
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Chvátal’s Theorem 2. We believe that Chvátal’s condition would be only sufficient but
not necessary for hypergraphs. We pose the following Conjecture.

Conjecture 20. An integer sequence (d1, d2, . . . , dn) such that d1 󰃑 d2 󰃑 . . . 󰃑 dn,
n > 2r and r 󰃍 3 is r-Hamiltonian if the following conditions hold

di > i for 1 󰃑 i < r, (9)

and

If di 󰃑
󰀕

i

r − 1

󰀖
then dn−i >

󰀕
n− i− 1

r − 1

󰀖
for r 󰃑 i 󰃑

󰀙
n− 1

2

󰀚
, (10)

If dn−2
2

󰃑
󰀕

n−2
2

r − 1

󰀖
+ 1 then dn+2

2
>

󰀕
n
2
− 2

r − 1

󰀖
+ (

n

2
+ 1)

󰀕
n
2
− 2

r − 2

󰀖
if n is even. (11)

At the same time, we find it challenging to pose any conjecture with the necessary
and sufficient conditions.
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