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Abstract

In 1982, Berge defined the class of α-diperfect digraphs. A digraph D is α-
diperfect if every induced subdigraph of H of D satisfies the following property:
for every maximum stable set S of H there is a path partition P of H in which
every P ∈ P contains exactly one vertex of S. Berge conjectured a characterization
of α-diperfect digraphs by forbidding induced orientations of odd cycles. In 2018,
Sambinelli, Nunes da Silva and Lee proposed a similar class of digraphs. A digraph
D is BE-diperfect if every induced subdigraph H of D satisfies the following prop-
erty: for every maximum stable set S of H there is a path partition P of H in
which (i) every P ∈ P contains exactly one vertex of S and (ii) P either begins
or ends at a vertex of S. They also conjectured that the BE-diperfect digraphs
can be characterized by forbidding induced orientations of odd cycles; we refer to
this as the Begin-End Conjecture. In 2023, de Paula Silva, Nunes da Silva and
Lee presented an infinite family of counterexamples with stability number two to
Berge’s Conjecture. On the other hand, these digraphs are not counterexamples to
the Begin-End Conjecture. In this paper, we prove that the latter conjecture holds
for digraphs with stability number two.

Mathematics Subject Classifications: 05C20, 05C75

1 Introduction

We assume that the reader is familiar with common terminology in Graph Theory [1, 7]. In
what follows we specify some notation. Let D = (V,A) denote a digraph. The underlying
graph of D, denoted by U(D), is the simple graph with vertex set V (D) such that u and
v are adjacent in U(D) if and only if (u, v) ∈ A(D) or (v, u) ∈ A(D).

The converse of a digraph D is a digraph D′ obtained from D by reversing each arc
of D, i.e., V (D′) = V (D) and (u, v) ∈ A(D′) if and only if (v, u) ∈ A(D). Note that
every statement that holds for a digraph D has an analogue that holds for its converse
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digraph. This property is called Principle of Directional Duality and we use it in several
places throughout this text.

Henceforth, when we say a path of a digraph, we mean a directed path. A path P
of a digraph D is hamiltonian if V (P ) = V (D). By a cycle in a digraph D we mean a
digon (a directed cycle of length two) or a subdigraph C of D such that U(C) is a cycle.
A path partition of D is a collection of pairwise disjoint paths of D that cover V (D). Let
π(D) denote the smallest size of path partition of D. A stable set of a digraph D is a
stable set of its underlying graph U(D). The stability number of a digraph is the size of
its maximum stable set, denoted by α(D). In 1960, Gallai and Milgram [15] showed that,
for every digraph, the size of a minimum path partition π(D) is less than or equal to its
stability number.

Theorem 1 (Gallai-Milgram [15]). For every digraph D, α(D) > π(D).

Actually, it is possible to prove a stronger statement using the concept of orthogonality,
defined next. Let P be a path partition and let S be a stable set of D. We say that P
and S are orthogonal if |S∩P | = 1 for every P ∈ P ; we also say that S is orthogonal to P
or vice versa. Theorem 2 implies that there is a stable set orthogonal to every minimum
path partition of D and so, inequality π(D) 6 α(D) immediately holds. The first proof
of this theorem is due to Linial [17]. Other proofs of this result can be found in [7, 11].

Theorem 2. Let D be a digraph and let P be a path partition of D. Then,

(i) there exists a path partition Q of D such that ini(Q) ⊂ ini(P), ter(Q) ⊂ ter(P) and
|Q| = |P| − 1, or

(ii) there exists a stable set S which is orthogonal to P.

An arborescence is a connected digraph in which every vertex has in-degree one except
for the root, which has in-degree zero. The leaves of an arborescence are the vertices with
out-degree zero. An arborescence forest F is a disjoint union of arborescences of a digraph
D. LetR(F ) and L(F ) denote the set of roots and leaves, respectively, of the arborescences
of F . Let H be an arborescence. Let y be a leaf of H; a maximal path of H which ends
at y and does not contain any vertex with out-degree at least two, is called a terminal
branch. A strong component of a digraph D is a maximal strongly connected subdigraph
of D. A strong component C of D is a source-component (respectively, sink-component)
if no vertex of C has an in-neighbour (respectively, out-neighbour) in D − V (C).

Let D be a digraph. We say that B ⊆ V (D) is a basis if every vertex of D can be
reached by a vertex of B and no two distinct vertices in B are connected by a path in D.
Berge showed [4] that any basis of D is the root set of a spanning arborescence forest of D
with at most α(D) leaves. Note that Berge’s result implies α(D) > π(D) (Gallai-Milgram
Theorem).

Theorem 3 (Berge [4]). Let D be a digraph and let B be a basis of D. Then, there are
a spanning arborescence forest F in D with R(F ) = B and a stable set meeting every
terminal branch of F . In particular, F has at most α(D) leaves.
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In 1982, Berge [3] introduced a new class of digraphs which he called α-diperfect
digraphs. A digraph D is α-diperfect if every induced subdigraph H of D has the following
property: for every maximum stable set S of H, there exists a path partition P orthogonal
to S. Berge was interested in obtaining a characterization of α-diperfect in terms of
forbidden induced subdigraphs, similar to his conjecture on perfect graphs [2]. This
conjecture was proved in 2006 by Chudnovsky, Robertson, Seymour and Thomas and it
is known as the Strong Perfect Graph Theorem (Theorem 4).

Theorem 4 (Chudnovsky et al [9]). A graph G is perfect if and only if G does not contain
an odd cycle with five or more vertices or its complement as an induced subgraph.

Berge [3] proved that symmetric digraphs (defined next) and digraphs whose under-
lying graph is perfect are α-diperfect. A super-orientation of a graph G is a digraph D
obtained from G by replacing each edge uv of G by an arc (u, v), or an arc (v, u), or both.
A digraph D is symmetric if D is a super-orientation of a graph G in which every edge uv
of G is replaced by both arcs (u, v) and (v, u). On the other hand, Berge also showed that
there are super-orientations of odd cycles that are not α-diperfect. We say that a super-
orientation D of an odd cycle is an anti-directed odd cycle if U(D) = (y0, . . . , y2k, y0) with
k > 2 and each of y0, y1, y2, y3, y5, y7, . . . , y2k−1 is either a source or a sink in D. Berge [3]
proved that a super-orientation D of an odd cycle with at least five vertices is α-diperfect
if and only if D is not an anti-directed odd cycle. Based on that, he proposed the following
conjecture that aims to characterize α-diperfect digraphs.

Conjecture 5 (Berge [3]). A digraph D is α-diperfect if and only if D does not contain
an anti-directed odd cycle as an induced subdigraph.

Motivated by Berge’s Conjecture, Sambinelli, Nunes da Silva and Lee [19] proposed
in 2018 a similar conjecture. Before we state it, we need some definitions.

A digraph D is BE-diperfect if every induced subdigraph H of D satisfies the following
property: for every maximum stable set S of H there is a path partition P of H in which
(i) P is orthogonal to S and (ii) P either begins or ends at a vertex of S. We also say
that P is an SBE-path partition of D. A super-orientation D of an odd cycle is a blocking
odd cycle if U(D) = (y0, . . . , y2k, y0) with k > 1 and each of y0 and y1 is either a source
or a sink in D. We also say that y0, y1 forms a blocking pair of D.

Blocking odd cycles are not BE-diperfect. Figure 1 shows examples of blocking odd
cycles and maximum stable sets that do not admit an SBE-path partition. Let D be the
family of digraphs such that D ∈ D if and only if D does not contain an induced blocking
odd cycle.

Conjecture 6 (Sambinelli, Nunes da Silva and Lee [20]). A digraph D is BE-diperfect if
and only if D ∈ D.

In 2023, de Paula Silva, Nunes da Silva and Lee [10] showed that Berge’s Conjecture is
false by presenting an infinite family of non-α-diperfect super-orientations of complements
of odd cycles with at least seven vertices. On the other hand, these digraphs are not
counterexamples to Conjecture 6. In fact, it can be shown that a super-orientation D of
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y2

y0 y1

(a) The set {y2} is a
maximum stable set, but
there is no hamiltonian
path which begins or
ends at y2.

y4

y0

y1

y2y3

(b) The set S = {y2, y4} is
a maximum stable set, but
there is no path partition P
orthogonal to S in which ev-
ery path P ∈ P begins or ends
at a vertex of S.

Figure 1: Examples of blocking odd cycles.

the complement of an odd cycle with at least seven vertices is BE-diperfect if and only if
D does not contain a blocking odd cycle with three vertices as an induced subdigraph [12].

Sambinelli, Nunes da Silva and Lee [20] and Freitas and Lee [13], [14] proved that
Conjectures 5 and 6 are true for some generalizations of tournaments. In his PhD thesis,
Sambinelli [19] proved that Conjecture 6 holds for every digraph with stability number
two and at least four strong components. Also, Freitas [12] in his PhD thesis proved that
Conjecture 6 holds for every digraph with stability number two that does not contain
digons. In this paper, we prove that Conjecture 6 holds for digraphs with stability number
two. In other words,

Theorem 7. Let D ∈ D. If D has stability number two, then D is BE-diperfect.

Corollary 8. Let D be a digraph with stability number two. Then, D is BE-diperfect
if and only if D does not contain a blocking odd cycle with three or five vertices as an
induced subdigraph.

We also note that there are many other results closely related to this topic. In 2001,
Thomassé [21] proved that every strong digraph D with α(D) > 1 has a spanning ar-
borescence with at most α(D)−1 leaves (Las Vergnas Conjecture [16]), i.e., D has a path
partition with at most α(D) − 1 paths. Such a result extends Chen-Manalastas’s Theo-
rem [8] that states that every strong digraph with stability number two has a hamiltonian
path. In 2007, Bessy and Thomassé [6] proved that every strong digraph D has α(D)
directed cycles that cover V (D). A digraph is D k-strong if D has at least k + 1 vertices
and for every set S ⊂ V (D) such that |S| = k, it follows that D − S is strong. The
maximum k for which D is k-strong is denoted by κ(D). In 2008, Bessy [5] conjectured
that for every digraph D with κ(D) > α(D) and for every S ⊂ V (D) with α(D) vertices,
there is a path partition P in which every path begins at a vertex of S. He also proved
this conjecture when α(D) = 2.
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2 Arborescences in digraphs

We start this section by relaxing the concept of a basis of a digraph. We say that X ⊆
V (D) is a quasi-basis if every vertex of D can be reached by a vertex of X. Thus, every
subset X ⊆ V (D) that contains at least one vertex of each source-component of D is a
quasi-basis of D. We denote by ter(P ) (respectively, ini(P )) the terminal (respectively,
initial) vertex of a path P . Similarly, if P is a collection of paths, we denote by ter(P)
(ini(P)) the set of terminal (respectively, initial) vertices of the paths in P . In the following
lemmas, we present properties about paths, arborescences and quasi-basis of a digraph.

Lemma 9. If S ⊂ V (D) is a quasi-basis of a digraph D such that |S| > α(D), then

(i) there is a path partition P of D such that ini(P) = S; or

(ii) there is a non-empty X ⊂ S such that X is a quasi-basis of D − (S −X).

Proof. Let D′ be the digraph obtained from D by identifying the vertices of S into a
vertex u. So, {u} is a basis in D′. By Theorem 3, there is a spanning arborescence H
of D′ with R(H) = {u} and a stable set Y meeting every terminal branch of H. Since u
is the root of H and D′ − u = D − S is a subdigraph of D, we may deduce that H has
at most |Y | 6 α(D) leaves. Thus, the out-degree of u is at most α(D). It is easy to see
that H corresponds to a spanning arborescence forest F of D such that R(F ) = S and
A(F ) = A(H). Let X ⊆ S be the set of roots of non-trivial arborescences of F . Since
|S| > α(D), if X = S, then every arborescence of F is a path and assertion (i) holds.
Otherwise, X is a quasi-basis of D − (S −X) and assertion (ii) holds.

If w is a vertex of an arborescence F with out-degree at least two and w is not the
root of F , then we say that w is a branch vertex of F .

Lemma 10. Let D be a digraph with stability number two. If S = {u, v} is a quasi-basis
of D, then D has a path partition P such that every P ∈ P has exactly one vertex of S.

Proof. By Lemma 9, we may assume that (ii) holds, i.e., there is a non-empty X ⊂ S such
that X is quasi-basis of D − (S − X). Without loss of generality, we may assume that
X = {u} is quasi-basis of D − v. By Theorem 3, there is a spanning arborescence H in
D− v such that R(H) = {u} and |L(H)| 6 2. If |L(H)| = 1, then H is a path beginning
at u. Hence, {H, v} is the desired path partition of D. So, assume that |L(H)| = 2. Let
Q1 and Q2 be the terminal branches of H. Note that Q = H − V (Q1)− V (Q2) is a path.
Let Q = {Q1, Q2, (v)} be a path partition of D − V (Q). By Theorem 2, there is a path
partition P = {P1, P2} of D − V (Q) such that ini(P) ⊆ ini(Q) and ter(P) ⊆ ter(Q).
Assume without loss of generality that v ∈ V (P1). Note that ini(P2) ∈ {ini(Q1), ini(Q2)}.
Then, {P1, QP2} is a path partition of D satisfying the required properties.

Lemma 10 implies the following.

Corollary 11. Let D be a digraph with stability number two. Suppose that D has a
maximum stable set S that does not admit an S-path partition, i.e., D is a counterexample
to Conjecture 5. Then, S is not a quasi-basis of D.
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All the counterexamples of Conjecture 5 given by de Paula Silva, Nunes da Silva and
Lee [10] have stability number two and are important examples that illustrate Corol-
lary 11. So far, there is no characterization of α-diperfect digraphs with stability number
two. On the other hand, the situation is different when we deal with BE-diperfect digraphs
with stability number two, as we discuss next.

Let D be a digraph with stability number two and let S be a maximum stable set that
is a quasi-basis of D. Although Lemma 10 ensures the existence of an S-path partition
of D, its proof guarantees that only that one of such paths begins at a vertex of S. To be
able to prove that both paths begin or end at a vertex of S, that is, to be able to obtain
an SBE-path partition of D, we have to assume that D does not contain blocking odd
cycles as induced subdigraphs. Observe that, since α(D) = 2, the only possible blocking
odd cycles that D may contain as induced subdigraphs are blocking odd cycles with three
or five vertices. Henceforth, we will refer to a blocking odd cycle with three vertices as a
transitive triangle.

Let D2 be the family of digraphs such that α(D) = 2 and D ∈ D. The following
lemmas are technical results that will help us to find an SBE-path partition when S is a
quasi-basis of D and D ∈ D2. We use the notation X 7→ Y to denote that every vertex
of X dominates every vertex of Y in D and no vertex of Y dominates a vertex of X in D.
If X = {u} (respectively, Y = {v}), we may write directly u 7→ Y (respectively, X 7→ v).

Lemma 12. Let D ∈ D2 and let P = {P1, P2, (v)} be a path partition of D. Then,

(i) there is a path partition R = {R1, R2} of D such that v ∈ ini(R)∪ ter(R), ter(R) ⊂
ter(P) and ini(Ri) ∈ {ini(P1), ini(P2)} when v /∈ V (Ri), or

(ii) there is a spanning arborescence H of D − v with at most two leaves such that
R(H) ⊂ {ini(P1), ini(P2)} and L(H) ∩ {ter(P1) ∪ ter(P2)} is not empty.

Proof. Let P1 = (x1, . . . , xk) and let P2 = (y1, . . . , y`). The following assertions are
straightforward.

(1) If v dominates x1 or y1, then (i) holds. Similarly, if xk or y` dominates v, then (i)
holds. See Figure 2a.

(2) If x1 dominates v and xk dominates x1, then (i) holds. Similarly, If y1 dominates v
and y` dominates y1, then (i) holds. See Figure 2b.

(3) If x1 and y1 are adjacent, then (ii) holds. See Figure 2c.

(4) If xk dominates y1, then both (i) and (ii) hold. Similarly, if y` dominates x1, then
both (i) and (ii) holds. See Figure 2d.

(5) If x1 dominates y` and y` dominates y1, then (ii) holds. Similarly, if y1 dominates xk
and xk dominates x1, then (ii) holds. See Figure 2e.
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x1

x2

...

xk

P1 P2

y1

...

y`

v

(a) Extending P1 when v
dominates x1.

x1

...

xk

P1 P2

y1

...

y`

v

(b) Extending P1 when x1
dominates v and xk dominates
x1.

x1

...

xk

y1

...

y`

P1 P2

(c) Building an
arborescence rooted
at x1 when x1
dominates y1.

x1

...

xk

P1 P2

y1

...

y`

(d) Building an
arborescence rooted
at x1 when xk
dominates y1.

x1

...

xk

P1 P2

y1

...

y`

(e) Building an
arborescence rooted
at x1 when x1
dominates y` and
y` dominates y1.

Figure 2: Auxiliary illustration for the proof of Lemma 12.

The proof follows by induction on the number of vertices. Suppose first that xk and y`
are adjacent. Without loss of generality, we may assume that xk dominates y`. If ` = 1,
then the result follows by (4). Otherwise, let D′ = D − y`, let P ′2 = P2 − y` and let
P ′ = {P1, P

′
2, (v)}. By induction hypothesis applied to D′ and P ′, it follows that

(a) there is a path partitionR′ = {R′1, R′2} of D′ such that v ∈ ini(R′)∪ter(R′), ter(R′) ⊂
ter(P) and ini(R′i) ∈ {ini(P1), ini(P ′2)} when v /∈ V (R′i), or

(b) there is a spanning arborescence H ′ of D[V (P1)∪V (P ′2)] with at most two leaves such
that R(H) ⊂ {x1, y1} and L(H) ∩ {xk, y`−1} is not empty.

Suppose first that (a) holds. Then, at least one of xk or y`−1 must belong to ter(R′).
Without loss of generality, we may assume that ter(R′1) ∈ {xk, y`−1}. If ter(R′1) = y`−1,
then R = {R′1y`, R′2} is a path partition for which (i) holds (see Figure 3a). The argument
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is analogous when ter(R′1) = xk. Now suppose that (b) holds. Then, xk or y`−1 is
a leaf of H ′. If y`−1 ∈ L(H ′), then H = H ′ + (y`−1, y`) is a spanning arborescence
of D[V (P1) ∪ V (P2)] for which (ii) holds (see Figure 3b). Otherwise, xk ∈ L(H ′) and
H = H ′ + (xk, y`) is a spanning arborescence of D[V (P1) ∪ V (P2)] for which (ii) holds.

...

y`−1

...

y`

R′1 R′2

(a) Extending R′
1 with y`.

...

xk

...

y`

H ′

(b) Extending H ′ by adding
y` as a leaf.

Figure 3: Auxiliary illustration for the proof of Lemma 12.

Thus, we may assume that xk and y` are non-adjacent. By (3), we may assume that
{x1, y1} is a maximum stable set of D. Thus, v must be adjacent to x1 or y1. In particular,
if k = ` = 1, then the result follows by (1). Assume then that k > 1 or ` > 1. Suppose
first that ` = 1 (so k > 1). Towards a contradiction, assume that neither (i) nor (ii) holds.
By (1) and (3), we may assume that both v and x1 are non-neighbors of y`. Since xk and
y` are also non-adjacent, and α(D) = 2, it follows that U(D[{v, x1, xk}]) must induce a
triangle C. By (1), we may assume that x1 7→ v and v 7→ xk. By (2), x1 7→ xk. Thus, C
is a transitive triangle, a contradiction. Hence, we may assume that ` > 1. By a similar
argument, we may assume that k > 1.

Let S1 = {x1, y1}, S2 = {xk, y`} and S3 = {v}. Since α(D) = 2, D[S1∪S2∪S3] cannot
be bipartite. Hence, there is an induced odd cycle C in U(D[S1∪S2∪S3]) which contains
v. Without loss of generality, we may assume that the neighbor of v in C that belongs to
S1 is x1. By (1), x1 7→ v. We consider the following cases.

Case 1. The neighbors of x1 in C are v and xk.

By (2), x1 7→ xk. Note that the other neighbor of xk in C is either v or y1. If v and
xk are adjacent, then by (1), v 7→ xk. Similarly, if y1 and xk are adjacent, then by (4),
y1 7→ xk. In either case, x1 and xk are respectively, a source and a sink in C; hence, x1, xk
is a blocking pair of C, a contradiction (see Figure 4a).

Case 2. The neighbors of x1 in C are v and y`.

By (4), x1 7→ y`. Note that the other neighbor of y` in C is either v or y1. If y` and
v are adjacent, then by (1), v 7→ y`. Similarly, if y` and y1 are adjacent, then by (5),
y1 7→ y`. In either case, x1 and y` are respectively, a source and a sink in C; hence, x1, y`
is a blocking pair of C, a contradiction (see Figure 4b).
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xk

x1
v

...

C

(a) x1, xk is a
blocking pair of
C.

y`

x1
u

...

C

(b) x1, y` is a
blocking pair of
C.

Figure 4: Auxiliary illustration for the proof of Lemma 12.

This completes the proof of the lemma.

Lemma 13. Let D ∈ D2. If S = {u, v} is a quasi-basis of D, then D has a path partition
P with |P| = 2 in which every P ∈ P begins or ends at a vertex of S.

Proof. We may assume that Lemma 9 (ii) holds, otherwise the result follows. So, there
is a non-empty X ⊂ S such that X is a quasi-basis of D − (S − X). Without loss of
generality, we may assume that X = {u} is a (quasi-)basis of D−v. By Theorem 3, there is
a spanning arborescence F in D−v such that R(F ) = {u} and |L(F )| 6 2. Choose F that
minimizes |L(F )| and, subject to that, F maximizes the distance between the root u and
its branch vertex w∗, if |L(F )| = 2. If |L(F )| = 1, then F is a path beginning at u. Hence,
R = {F, (v)} is a path partition of D with the required properties. Otherwise, |L(F )| = 2.
Let P1 and P2 be the terminal branches of F . Note that Q = F − V (P1) − V (P2) is a
path. Let P = {P1, P2, (v)}. Note that P is a path partition of D−V (Q). By Lemma 12,
it follows that

(i) there is a path partition R = {R1, R2} of D − V (Q) such that v ∈ ini(R) ∪ ter(R),
ter(R) ⊂ ter(P) and ini(Ri) ∈ {ini(P1), ini(P2)} when v /∈ V (Ri), or

(ii) there is a spanning arborescence H of D[V (P1) ∪ V (P2)] with at most two leaves
such that R(H) ⊂ {ini(P1), ini(P2)} and L(H) ∩ {ter(P1) ∪ ter(P2)} is not empty.

Suppose that (i) holds. Without loss of generality, we may assume that v ∈ V (R1).
Hence, ini(R2) ∈ {ini(P1), ini(P2)}. Thus, {R1, QR2} is a path partition of D with the
required properties. Suppose then that (ii) holds. Since R(H) = {r} ⊂ {ini(P1), ini(P2)},
then F ′ = (Q∪H) + (w∗, r) is a spanning arborescence of D− v with at most two leaves
and R(F ′) = {u}. However, either |L(F ′)| < |L(F )| or the distance between u and the
branch vertex of F ′ is greater than the distance between u and the branch vertex of F , a
contradiction to the choice of F .

Lemma 13 and the Principle of Directional Duality immediately imply the following.
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Corollary 14. Let D ∈ D2 be a digraph and let S be a maximum stable set of D. If
S ∩ V (H) is not empty for every source-component H of D, then D has an SBE-path
partition. Similarly, if S ∩ V (H) is not empty for every sink-component H of D, then D
has an SBE-path partition.

In particular, since every non-empty subset of vertices of a strong digraph D is a
quasi-basis of D, the following holds.

Corollary 15. Let D ∈ D2 be a digraph and let S be a maximum stable set of D. If D
is strong, then D has an SBE-path partition.

3 Main Result

In this section, we prove that Conjecture 6 holds for every digraph with stability number
two.

Lemma 16. Let D be a digraph and let S1, S2 and S3 be disjoint stable sets of D such
that there is no arc from Sj to Si for 1 6 i < j 6 3. Then, D[S1 ∪ S2 ∪ S3] is either
bipartite or contains a blocking odd cycle as an induced subdigraph. Moreover, if D ∈ D,
then |S1|+ |S2|+ |S3| 6 2α(D).

Proof. Let D′ = D[S1 ∪ S2 ∪ S3]. Suppose that D′ is not bipartite. Then, there is an
induced odd cycle C in D′. Clearly, C must contain vertices of all the three sets S1, S2

and S3. Note that all the vertices of S1 are sources in D′. Similarly, all the vertices of S3

are sinks in D′. Moreover, there is at least one pair of adjacent vertices in C such that
u ∈ S1 and v ∈ S3. Thus, u, v is a blocking pair of C and C is a blocking odd cycle of
D′. If D ∈ D, then D′ must be bipartite with each part having at most α(D) vertices.
Therefore, |S1|+ |S2|+ |S3| 6 2α(D).

We say that a digraph D is semicomplete if D is a super-orientation of a complete
graph and it is complete if D is a symmetric super-orientation of a complete graph. In
1934, Rédei proved that every semicomplete digraph has a hamiltonian path.

Theorem 17 (Rédei [18]). Every semicomplete digraph has a hamiltonian path.

Sambinelli, Nunes da Silva and Lee [20] proved that a semicomplete digraph D ∈ D has
a hamiltonian path P beginning or ending at any v ∈ V (D), that is, D is BE-diperfect.

Theorem 18 (Sambinelli, Nunes da Silva and Lee [20]). If D ∈ D is a semicomplete
digraph, then D is BE-diperfect.

The same authors showed that any minimum counterexample for Conjecture 6 cannot
be partitioned into certain subdigraphs, as we state in the following lemma.

Lemma 19 (Sambinelli, Nunes da Silva and Lee [20]). If a digraph D can be partitioned
into k vertex-disjoint induced subdigraphs, say H1, H2, . . . , Hk, such that every Hi is BE-
diperfect and α(D) =

∑k
i=1 α(Hi), then D is BE-diperfect.
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For digraphs with stability number two, the previous lemma and Theorem 18, imme-
diately imply the following.

Corollary 20. Let D ∈ D2 and let S be a maximum stable set of D. If D can be
partitioned into two vertex-disjoint semicomplete digraphs, then D admits an SBE-path
partition.

We say that a path P = (w1, . . . , w`) of D is symmetric if P−1 = (w`, w`−1, . . . , w1) is
also a path of D, i.e., each pair wi, wi+1 is joined by a digon.

Lemma 21. Let D ∈ D2 such that every proper induced subdigraph of D is BE-diperfect.
Let S be a maximum stable set of D such that there is a pair of vertex-disjoint symmetric
paths P1 and P2 satisfying the following properties:

• at least one of P1 and P2 is non-trivial,

• S = {ini(P1), ini(P2)} and

• {ter(P1), ter(P2)} is a stable set.

Then, D admits an SBE-path partition.

Proof. Let P ′1 be the path obtained from P1 by deleting its terminal vertex t1. Similarly,
let P ′2 be the path obtained from P2 by deleting its terminal vertex t2. Let D′ = D −
(V (P ′1)∪V (P ′2)). By hypothesis S ′ = {t1, t2} is a maximum stable set of D′ and D′ admits
an S ′BE-path partition {R1, R2}. We may assume without loss of generality and by the
Principle of Directional Duality that ini(R1) = t1. If ini(R2) = t2, then {P ′1R1, P

′
2R2} is an

SBE-path partition of D. Otherwise, ter(R2) = t2 and {P ′1R1, R2(P
′
2)
−1} is an SBE-path

partition of D.

The following two lemmas ensure the existence of an SBE-path partition when D− S
has a source and a sink of D.

Lemma 22. Let D ∈ D2 and let S = {u, v} be a maximum stable set of D. If there is a
pair of adjacent vertices x, y ∈ V (D) \ S that are, respectively, a source and a sink of D,
then D admits an SBE-path partition.

Proof. We claim that each vertex of D − {x, y} is adjacent to precisely one of x or y.
Towards a contradiction, suppose first that there is w ∈ V (D) \ {x, y} that is adjacent
to both x and y. Then, D[{w, x, y}] induces a transitive triangle, a contradiction. Thus,
since α(D) = 2, we may assume without loss of generality that (a) x 7→ u and x is
non-adjacent to v, and (b) v 7→ y and y is non-adjacent to u. Suppose now that there
is w ∈ V (D) \ {x, y} that is non-adjacent to x and neither to y. Note that w /∈ {u, v}.
Hence, by (a) and (b), U(D[{x, y, u, v, w}]) must be an induced odd cycle C; however,
x, y is a blocking pair of C, a contradiction. Thus, each vertex of D − {x, y} is adjacent
to precisely one of x or y. This implies that we may partition V (D) \ {x, y} into two sets
X and Y such that every vertex of X is adjacent to x and non-adjacent to y, and every
vertex of Y is adjacent to y and non-adjacent to x. Note that, since α(D) = 2, both
X ∪ {x} and Y ∪ {y} are semicomplete digraphs. So V (D) can be partitioned into two
semicomplete digraphs. By Corollary 20, D admits an SBE-path partition.
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x y

A B C

Figure 5: Auxiliary illustration for the proof of Lemma 23. Both A and C induce complete
digraphs. Moreover, for every pair of adjacent vertices w ∈ B and z ∈ V (D) \ {x, y},
there is a digon joining w and z.

Lemma 23. Let D ∈ D2 and let S = {u, v} be a maximum stable set of D. If there is
a pair of non-adjacent vertices x, y ∈ V (D) \ S that are, respectively, a source and a sink
of D, then D admits an SBE-path partition.

Proof. Towards a contradiction, suppose that the result does not hold and let D be a
counterexample with a minimum number of vertices. Since α(D) = 2, every vertex of
D − {x, y} is adjacent to x or y. Let A be the set of vertices that are adjacent to x
and non-adjacent to y, let B be the set of vertices that are adjacent to both x and y
and let C be the set of vertices that are adjacent to y and non-adjacent to x. Note
that V (D) = A ∪ B ∪ C ∪ {x, y} and both A ∪ {x} and C ∪ {y} induce semicomplete
digraphs. Moreover, since D does not contain transitive triangles as induced subdigraphs,
x 7→ A ∪B and B ∪ C 7→ y, it follows that

(i) D[A] and D[C] are complete digraphs,

(ii) any pair of adjacent vertices in A ∪B must be joined by a digon, and

(iii) any pair of adjacent vertices in B ∪ C must be joined by a digon.

Note that (ii) and (iii) implies that there is a digon joining any pair of adjacent vertices
w ∈ B and z ∈ V (D) \ {x, y}. See Figure 5.

Claim 24. Every vertex of B \ {u, v} is adjacent to both u and v.

Proof. Let w ∈ B \ {u, v}. Since α(D) = 2, w must be adjacent to u or v. Towards a
contradiction, suppose that w is adjacent to u and non-adjacent to v. Then, by (ii) and
(iii), there is a digon joining u and w, a contradiction to Lemma 21 with P1 = (u,w)
and P2 = (v) (see Figure 6a). The argument is analogous when w is adjacent to v and
non-adjacent to u.

Claim 25. Set B \ {u, v} induces a complete digraph.

Proof. Towards a contradiction, suppose that there is a stable set {w1, w2} ⊆ B \ {u, v}.
By Claim 24, (ii) and (iii), there is a digon joining u and w1 and a digon joining v and
w2, a contradiction to Lemma 21 with P1 = (u,w1) and P2 = (v, w2) (see Figure 6b).
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u v

w

B \ {u, v}
(a)

u v

w1 w2

B \ {u, v}
(b)

Figure 6: Auxiliary illustration for the proof of Claims 24 and 25
.

Claim 26. If w ∈ B \ {u, v}, then w is adjacent to every vertex of A or w is adjacent to
every vertex of C.

Proof. Towards a contradiction, suppose that w is non-adjacent to a vertex z1 ∈ A and
to a vertex z2 ∈ C. By Claim 24, {z1, z2} ∩ {u, v} = ∅. Moreover, by (ii) and (iii), there
is a digon joining w and u and a digon joining w and v. Since α(D) = 2, we may assume
without loss of generality that u is adjacent to z1. If u ∈ A ∪ B, then by (ii), there is a
digon joining u and z1, a contradiction to Lemma 21 with P1 = (u, z1) and P2 = (v, w)
(see Figure 7a). Then, u ∈ C. By (i), it follows that there is a digon joining u and z2, a
contradiction to Lemma 21 with P1 = (u, z2) and P2 = (v, w) (see Figure 7b).

u

v

z1 z2w

A \ {u, v} B \ {u, v} C \ {v}

A ∪B \ {v}

(a)

v

z1 z2

u

w

A \ {v} B \ {v} C \ {v}
(b)

Figure 7: Auxiliary illustration for the proof of Claim 26.

Claim 27. If u ∈ B, then v is adjacent to every vertex of (A∪B∪C)\{u, v}. Similarly,
if v ∈ B, then u is adjacent to every vertex of (A ∪B ∪ C) \ {u, v}.

Proof. Suppose that u ∈ B. By Claim 24, every vertex of B \ {u, v} is adjacent to both u
and v. So, towards a contradiction, suppose that there is a vertex w ∈ (A∪C) \ {v} that
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is non-adjacent to v. Since α(D) = 2, it follows that w is adjacent to u. By (ii) and (iii),
there must be a digon joining u and w. Hence, there is a contradiction to Lemma 21 with
P1 = (u,w) and P2 = (v) (see Figure 6a exchanging the roles of u and w). The argument
is analogous when v ∈ B.

Let BA ⊆ B\{u, v} be the set of vertices that are adjacent to every vertex of A and let
BC = B \ ({u, v} ∪BA). Note that, B \ {u, v} = BA ∪BC and, by Claim 26, every vertex
of BC is adjacent to every vertex of C. By Claim 25, (i), (ii) and (iii), both D[A∪BA] and
D[C∪BC ] are complete digraphs (see Figure 8a). Suppose that B∩{u, v} is empty. Then
D can be partitioned into two semicomplete digraphs, D[A∪BA∪{x}] and D[C∪BC∪{y}]
a contradiction to Lemma 20. Thus, we may assume that u ∈ B or v ∈ B. Consider first
the case in which {u, v} ⊆ B. By Claim 27, both u and v are adjacent to every vertex of
(A ∪ B ∪ C) \ {u, v}. Then, D[A ∪ BA ∪ {u, x}] and D[C ∪ BC ∪ {v, y}] is a partition of
D into two semicomplete digraphs, a contradiction to Lemma 20. Then, we may assume
without loss of generality that u ∈ A and v ∈ B.

If C ∪ BC is empty, then D[A ∪ BA ∪ {x}] and D[{v, y}] is a partition of D into two
semicomplete digraphs, a contradiction to Lemma 20. Thus, we may assume that C ∪BC

is non-empty. Suppose that v is adjacent to some vertex w of C ∪BC . Recall that v ∈ B
and, by (iii), v and w are joined by a digon. Since D[A ∪ BA] is a complete digraph,
there is a hamiltonian path P1 of D[A ∪ BA] ending at u. Similarly, since D[C ∪ BC ] is
a complete digraph, there is a hamiltonian path P2 of D[C ∪ BC ] beginning at w. Then,
{xP1, vP2y} is an SBE-path partition of D, a contradiction. Thus, we may assume that
there is no vertex of C ∪ BC that is adjacent to v. Note that, by Claim 24, this implies
that BC = ∅ (so C 6= ∅). Let A′ be the subset of vertices of A that are non-adjacent to v.
Note that u ∈ A′ and, since α(D) = 2, every vertex of A′ is adjacent to every vertex of C.
We claim that every vertex of A′ dominates every vertex of C. Towards a contradiction,
suppose that there is w ∈ A′ and z ∈ C such that (z, w) ∈ A(D) and (w, z) /∈ A(D).
Then, D[{w, x, v, y, z}] is a blocking odd cycle, a contradiction (see Figure 8b). So every
vertex of A′ dominates every vertex of C.

Since u ∈ A′, D[A′] and D[C] are complete digraphs and every vertex of A′ dominates
every vertex of C, there is a hamiltonian path P1 of D[A′ ∪C] beginning at u and ending
at a vertex of C. Similarly, since D[(A \A′)∪BA ∪ {v}] is a complete digraph, there is a
hamiltonian path P2 of D[A\A′∪BA∪{v}] ending at v. Then, {P1y, xP2} is an SBE-path
partition of D, a contradiction.

Corollary 28. Let D ∈ D2 and let S be a maximum stable set of D. If D − S has a
source and a sink of D, then D admits an SBE-path partition.

We are finally ready to prove that every digraph D ∈ D2 is BE-diperfect.

Proof of Theorem 7. Towards a contradiction, suppose that the result does not hold and
let D be a counterexample with a minimum number of vertices. Let S be a maximum
stable set of D such that D does not admit an SBE-path partition. By Corollary 14, we
may assume that there is a source-component D1 of D for which S ∩ V (D1) = ∅ and a
sink-component D2 of D for which S ∩ V (D2) = ∅.
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x y

u

v

A BA \ {v} BC \ {v} C

(a) Both A∪BA and C ∪BC induce com-
plete digraphs.

x y

w z

v

A′ C

(b) The set pf ver-
tices {w, x, v, y, z}
induce a blocking
odd cycle, with
blocking pairs
x,w, z, w and z, y.

Figure 8: Auxiliary illustration for the proof of Lemma 23.

Claim 29. Digraphs D1 and D2 are semicomplete.

Proof. Towards a contradiction, let S1 be a stable set of size two of D1, let S2 = S and let
S3 = {y} where y is any vertex of D2. Since |S1|+ |S2|+ |S3| = 5, there is a contradiction
to Lemma 16.

Claim 30. Digraphs D1 and D2 are trivial.

Proof. Towards a contradiction, suppose that D1 is not trivial. By Claim 29, D1 is
semicomplete. By Redéi’s Theorem, D1 has a hamiltonian path P1. Let P ′1 be the path
obtained from P1 by deleting its terminal vertex t. Let D′ = D−V (P ′1). Clearly, D′ ∈ D2

and S is also a maximum stable set of D′. Since D is a minimum counterexample to
the statement, D′ admits an SBE-path partition {R1, R2}. Since t is a source of D′,
we may assume without loss of generality that t = ini(R1). Note that this implies that
ter(R1) ∈ S. Thus, {P ′1R1, R2} is an SBE-path partition of D, a contradiction. Thus, D1

must be a trivial component of D. By the Principle of Directional Duality, D2 must also
be a trivial component of D.

Let V (D1) = {x} and let V (D2) = {y}. Note that x and y are, respectively, a
source and a sink of D in D − S. By Corollary 28, D admits an SBE-path partition, a
contradiction.

4 Final remarks

In this paper, we proved that a digraph D with stability number two is BE-diperfect
if and only if D does not contain a blocking odd cycle with three or five vertices as
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an induced subdigraph. This provides support for Conjecture 6. In contrast, Berge’s
original conjecture regarding α-diperfect digraphs (Conjecture 5) is false for digraphs
with stability number two. As we mentioned in the introduction, de Paula Silva et al [10]
exhibited orientations of complements of odd cycles with at least seven vertices which are
not α-diperfect. So anti-directed odd cycles and those orientations of complement of odd
cycles are all minimal non-α-diperfect digraphs. It is natural to ask whether a digraph
which does not contain any of those digraphs as an induced subdigraph is α-diperfect.
This seems to be a very hard question. On the other hand, the only known minimal non-
BE-diperfect digraphs are blocking odd cycles which have a somewhat simpler structure.
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