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Abstract

A word w has a border u if u is a non-empty proper prefix and suffix of u. A
word w is said to be closed if w is of length at most 1 or if w has a border that occurs
exactly twice in w. A word w is said to be privileged if w is of length at most 1 or if
w has a privileged border that occurs exactly twice in w. Let Ck(n) (resp. Pk(n))
be the number of length-n closed (resp. privileged) words over a k-letter alphabet.
In this paper, we improve existing upper and lower bounds on Ck(n) and Pk(n). We
completely resolve the asymptotic behaviour of Ck(n). We also nearly completely
resolve the asymptotic behaviour of Pk(n) by giving a family of upper and lower
bounds that are separated by a factor that grows arbitrarily slowly.

Mathematics Subject Classifications: 68R15, 05A05, 05A16, 94A45, 68R05

1 Introduction

Let Σk denote the k-letter alphabet {0, 1, . . . , k − 1}. Throughout this paper, we denote
the length of a word w as |w|. A word u is said to be a factor of a word w if w = xuy for
some words x, y. A word w has a border u if u is a non-empty proper prefix and suffix of
w. A word that has a border is said to be bordered ; otherwise, it is said to be unbordered.
A word w is said to be closed if |w| 6 1 or if w has a border that occurs exactly twice in
w. If u is a border w and u occurs in w exactly twice, then we say w is closed by u. It is
easy to see that if a word w is closed by a word u, then u must be the largest border in
w; otherwise u would occur more than two times in w. A word w is said to be privileged
if |w| 6 1 or if w is closed by a privileged word.

Example 1. The English word entanglement has the border ent and only contains two
occurrences of ent. Thus, entanglement is a closed word, closed by ent. Since |ent| > 1
and ent is unbordered and therefore not privileged, we have that entanglement is not
privileged.

The English word alfalfa is closed by alfa. Furthermore, alfa is closed by a. But
|a| 6 1, so alfa is privileged and therefore so is alfalfa.

The only border of the English word eerie is e and e appears 3 times in the word.
Thus, eerie is neither closed nor privileged.
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Closed words were introduced relatively recently by Fici [5] as a way to classify Trape-
zoidal and Sturmian words. However, there are multiple equivalent formulations of closed
words that have been defined at different times. Closed words are equivalent to code-
words in prefix-synchronized codes [8, 9]. Closed words are also equivalent to periodic-like
words [3]. A period of a word w = w1w2 · · ·wn is an integer p 6 n such that wi = wi+p for
all 1 6 i 6 n−p. A length-n word is said to be periodic if it has a period of length 6 n/2.
In applications that require the analysis of long words, like DNA sequence analysis, the
smallest period is typically much larger than half the length of the word. Periodic-like
words were introduced as a generalization of periodic words that preserve some desirable
properties of periodic words.

Privileged words [13] were introduced as a technical tool related to a problem in
dynamical systems and discrete geometry. They were originally defined as a generalization
of rich words by tweaking the definition of a complete first return. A complete first return
to a word u is a word that starts and ends with u, and contains only two occurrences of
u. A palindrome is a word that reads the same forwards and backwards. A word w is
said to be rich if and only if every palindromic factor of w is a complete first return to
a shorter palindrome. Interestingly, rich words contain the maximum possible number of
distinct palindromic factors. Privileged words were then defined as an iterated complete
first return. A word is privileged if and only if it is a complete first return to a shorter
privileged word. Single letters and the empty word are defined to be privileged in order
to make this definition meaningful.

Since their introduction, there has been much research into the properties of closed
and privileged words [1, 2, 4, 6, 12, 16, 17, 20]. One problem that has received some
interest lately [7, 14, 18, 19] is to find good upper and lower bounds for the number of
closed and privileged words.

Let Ck(n) denote the number of length-n closed words over Σk. Let Ck(n, t) denote
the number of length-n closed words over Σk that are closed by a length-t word. Let
Pk(n) denote the number of length-n privileged words over Σk. Let Pk(n, t) denote the
number of length-n privileged words over Σk that are closed by a length-t privileged word.
See Tables 1 and 2 for sample values of C2(n, t) and P2(n, t) for small n, t. See sequences
A226452 and A231208 in the On-Line Encyclopedia of Integer Sequences [15] for sample
values of C2(n) and P2(n).

Every privileged word is a closed word, so any upper bound on Ck(n) is also an upper
bound on Pk(n). Furthermore, any lower bound on Pk(n) is also a lower bound on Ck(n).

• Forsyth et al. [7] showed that P2(n) > 2n−5/n2 for all n > n0 for some n0 > 0.

• Nicholson and Rampersad [14] improved and generalized this bound by showing
that there are constants c and n0 such that Pk(n) > c kn

n(logk(n))
2 for all n > n0.

• Rukavicka [18] showed that there is a constant c such that Ck(n) 6 c lnn kn√
n

for all
n > 1.

• Rukavicka [19] also showed that for every j > 3, there exist constants αj and nj

such that Pk(n) 6 αj
kn
√
lnn√
n

ln◦j(n)
j−1∏
i=2

√
ln◦i(n) length-n privileged words for all

n > nj where ln◦0(n) = n and ln◦j(n) = ln(ln◦j−1(n)).
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The best upper and lower bounds for both Ck(n) and Pk(n) are widely separated, and
can be much improved. In this paper, we improve the existing upper and lower bounds
on Ck(n) and Pk(n). Let log◦0k (n) = n and log◦jk (n) = logk(log◦j−1k (n)) for j > 1. We
prove the following two theorems.

Theorem 2. Let k > 2 be an integer.

(a) There exist constants N and c such that Ck(n) > ck
n

n
for all n > N .

(b) There exist constants N ′ and c′ such that Ck(n) 6 c′ k
n

n
for all n > N ′.

Theorem 3. Let k > 2 be an integer.

(a) For all j > 0 there exist constants Nj and cj such that

Pk(n) > cj
kn

n log◦jk (n)
∏j

i=1 log◦ik (n)

for all n > Nj.

(b) For all j > 0 there exist constants N ′j and c′j such that

Pk(n) 6 c′j
kn

n
∏j

i=1 log◦ik (n)

for all n > N ′j.

Before we proceed, we give a heuristic argument as to why Ck(n) is in Θ(k
n

n
). Consider

a “random” length-n word w. Let ` = logk(n) + c where c is a constant such that ` is
a positive integer. There is a 1

k`
= 1

kcn
chance that w has a length-` border. Suppose

w has a length-` border. Now suppose we drop the first and last character of w to get
w′. If w′ were randomly chosen (which it is not), then we could use the linearity of
expectation to get that the expected number of occurrences of u in w′ is approximately
(n − 1 − `)k−` ≈ k−c. Thus, for c large enough we have that u does not occur in w′

with high probability, and so w is closed, there are approximately kn−` ∈ Θ(k
n

n
) length-n

closed words.

n
t

1 2 3 4 5 6 7 8 9 10

10 2 30 70 50 30 12 6 2 2 0
11 2 42 118 96 54 30 13 6 2 2
12 2 60 200 182 114 54 30 12 6 2
13 2 88 338 346 214 126 54 30 12 6
14 2 132 570 640 432 232 126 54 30 12
15 2 202 962 1192 828 474 240 126 54 30
16 2 314 1626 2220 1612 908 492 240 126 54
17 2 494 2754 4128 3112 1822 956 504 240 126
18 2 784 4676 7670 6024 3596 1934 982 504 240
19 2 1252 7960 14264 11636 7084 3828 1992 990 504
20 2 2008 13588 26524 22512 13928 7632 3946 2026 990

Table 1: Some values of C2(n, t) for n, t where 10 6 n 6 20 and 1 6 t 6 10.
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n
t

1 2 3 4 5 6 7 8 9 10

10 2 16 22 8 6 2 2 0 2 0
11 2 26 38 16 10 6 4 2 2 2
12 2 42 68 30 18 4 6 2 2 0
13 2 68 122 58 38 14 10 6 4 2
14 2 110 218 108 76 20 14 8 6 2
15 2 178 390 204 148 46 24 18 14 6
16 2 288 698 384 288 86 48 16 18 8
17 2 466 1250 724 556 178 92 36 32 26
18 2 754 2240 1364 1076 344 190 64 36 28
19 2 1220 4016 2572 2092 688 388 136 70 56
20 2 1974 7204 4850 4068 1342 772 268 138 52

Table 2: Some values of P2(n, t) for n, t where 10 6 n 6 20 and 1 6 t 6 10.

2 Preliminary results

In this section we give some necessary results and definitions in order to prove our main
results. Also throughout this paper, we use c’s, d’s, and N ’s to denote positive real
constants (dependent on k).

Let w be a length-n word. Suppose w is closed by a length-t word u. Since u is also
the largest border of w, it follows that w cannot be closed by another word. This implies
that

Ck(n) =
n−1∑
i=1

Ck(n, t) and Pk(n) =
n−1∑
i=1

Pk(n, t)

for n > 1.
Let Bk(n, u) denote the number of length-n words over Σk that are closed by the

word u. Let Ak(n, u) denote the number of length-n words over Σk that do not contain
the word u as a factor.

The auto-correlation [9, 10, 11] of a length-t word u is a length-t binary word a(u) =
a1a2 · · · at where ai = 1 if and only if u has a border of length t−i+1. The auto-correlation
polynomial fa(u)(z) of a(u) is defined as

fa(u)(z) =
t−1∑
i=0

at−iz
i.

For example, the word u = entente has auto-correlation a(u) = 1001001 and auto-
correlation polynomial fa(u)(z) = z6 + z3 + 1.

We now prove two technical lemmas that will be used in the proofs of Theorem 2 (b)
and Theorem 3 (b).

Lemma 4. Let k, t > 2 be integers, and let γ be a real number such that 0 < γ 6 6
t
.

Then

kt − γtkt−1 6 (k − γ)t 6 kt − γtkt−1 +
1

2
γ2t(t− 1)kt−2.
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Proof. The case when k = 2 was proved in a paper by Forsyth et al. [7, Lemma 9]. We
generalize their proof to k > 3.

When t = 2, we have k2− 2kγ 6 (k− γ)2 6 k2− 2kγ + γ2. So suppose t > 3. By the
binomial theorem, we have

(k − γ)t =
t∑
i=0

kt−i(−γ)i
(
t

i

)
= kt − γtkt−1 +

t∑
i=2

kt−i(−γ)i
(
t

i

)

> kt − γtkt−1 +

b(t−1)/2c∑
j=1

(
kt−2jγ2j

(
t

2j

)
− kt−2j−1γ2j+1

(
t

2j + 1

))
.

So to show that kt − γtkt−1 6 (k − γ)t, it is sufficient to show that

kt−2jγ2j
(
t

2j

)
> kt−2j−1γ2j+1

(
t

2j + 1

)
(1)

for 1 6 j 6 b(t− 1)/2c 6 (t− 1)/2.
By assumption we have that γ 6 6

t
, so γ 6 6

t−2 and thus γt−2γ 6 6. Adding 2γ−2 to

both sides we get γt−2 6 4+2γ, and so γt−2
γ+2

6 2. If i > 2 > γt−2
γ+2

, then (γ+2)i > γt−2.

This implies that 2(i+ 1) > γ(t− i), and

k

γ
>

2

γ
>
t− i
i+ 1

=

(
t
i+1

)(
t
i

) .

Therefore letting i = 2j, we have that k
(
t
2j

)
> γ

(
t

2j+1

)
. Multiplying both sides by

kt−2j−1γ2j we get kt−2jγ2j
(
t
2j

)
> kt−2j−1γ2j+1

(
t

2j+1

)
, which proves (1).

Now we prove that (k−γ)t 6 kt−γtkt−1+ 1
2
γ2t(t−1)kt−2. Going back to the binomial

expansion of (k − γ)t, we have

(k − γ)t = kt − γtkt−1 +
1

2
γ2t(t− 1)kt−2 +

t∑
i=3

kt−i(−γ)i
(
t

i

)
6 kt − γtkt−1 +

1

2
γ2t(t− 1)kt−2

−
b(t−2)/2c∑
j=1

(
kt−2j−1γ2j+1

(
t

2j + 1

)
− kt−2j−2γ2j+2

(
t

2j + 2

))
.

So to show that (k − γ)t 6 kt − γtkt−1 + 1
2
γ2t(t− 1)kt−2, it is sufficient to show that

kt−2j−1γ2j+1

(
t

2j + 1

)
> kt−2j−2γ2j+2

(
t

2j + 1

)
for 1 6 j 6 b(t − 2)/2c. But we have already proved that k

(
t
i

)
> γ

(
t
i+1

)
. Letting

i = 2j, we have that k
(

t
2j+1

)
> γ

(
t

2j+2

)
. Multiplying both sides by kt−2j−2γ2j+1 we get

kt−2j−1γ2j+1
(

t
2j+1

)
> kt−2j−2γ2j+2

(
t

2j+2

)
.
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Lemma 5. Let i > 1 and k > 2 be integers. Then for any constant γ > 0, we have

lim
n→∞

log◦ik (nγ)

log◦ik (n)
=

{
γ, if i = 1;

1, if i > 1.

Proof. When i = 1 we have lim
n→∞

logk(n
γ)

logk(n)
= γ lim

n→∞
logk(n)

logk(n)
= γ.

The proof is by induction on i. Since we will use L’Hôpital’s rule to evaluate the limit,
we first compute the derivative of log◦ik (nλ) with respect to n for any constant λ > 0. We
have

d

dn
log◦ik (nλ) =

λ

n
i−1∏
j=1

log◦jk (nλ)

.

In the base case, when i = 2, we have

lim
n→∞

log◦2k (nγ)

log◦2k (n)
= lim

n→∞

γ
n logk(n

γ)

1
n logk(n)

= 1.

Suppose i > 2. Then we have

lim
n→∞

log◦ik (nγ)

log◦ik (n)
= lim

n→∞

γ

n
i−1∏
j=1

log◦jk (nγ)

1

n
i−1∏
j=1

log◦jk (n)

= lim
n→∞

i−1∏
j=2

log◦jk (n)

i−1∏
j=2

log◦jk (nγ)

= 1.

3 Closed words

3.1 Lower bound

We first state a useful lemma from a paper of Nicholson and Rampersad [14].

Lemma 6 (Nicholson and Rampersad [14]). Let k > 2 be an integer. For every n, there
is a unique integer t such that

ln k

k − 1
kt 6 n− t < ln k

k − 1
kt+1.

Let u be a length-t word. There exist constants N0 and d such that for n − t > N0 we
have

Bk(n, u) > d
kn

n2
.

We now use the previous lemma to prove Theorem 2 (a).

Proof of Theorem 2 (a). The number Ck(n, t) of length-n words closed by a length-t word
is clearly equal to the sum, over all length-t words u, of the number Bk(n, u) of length-n
words closed by u. Thus we have that

Ck(n, t) =
∑
|u|=t

Bk(n, u).

the electronic journal of combinatorics 31(2) (2024), #P2.45 6



Let t be such that t = blogk(n − t) + logk(k − 1) − logk(ln k)c. By Lemma 6 there
exist constants N0 and d such that for n − t > N0 we have Bk(n, u) > dkn/n2. Clearly
t 6 logk(n) + 1 for all n > 1. Since t is asymptotically much smaller than n, there exists
a constant N > N0 such that n− t > N0 for all n > N . Thus for n > N we have

Ck(n) > Ck(n, t) =
∑
|u|=t

Bk(n, u) >
∑
|u|=t

d
kn

n2
= kt

(
d
kn

n2

)
= dkblogk(n−t)+logk(k−1)−logk(ln k)ck

n

n2
> d0k

logk(n−t)+logk(k−1)−logk(ln k)k
n

n2

> d1(n− t)
kn

n2
> d1(n− logk(n)− 1)

kn

n2
> c

kn

n

for some constant c > 0.

3.2 Upper bound

Before we proceed with upper bounding Ck(n), we briefly outline the direction of the
proof. First, we begin by bounding Ck(n, t) for t < n/2 and t > n/2. We show that for
t < n/2, the number of length-n words closed by a particular length-t word u is bounded
by the number of words of length n− 2t that do not have 0t as a factor. For t > n/2 we
prove that Ck(n, t) is negligibly small. Next, we prove upper bounds on the number of
words that do not have 0t as a factor, allowing us to finally bound Ck(n).

Lemma 7. Let n, t, and k be integers such that n > 2t > 2 and k > 2. Let u be a
length-t word. Then

Bk(n, u) 6 Ak(n− 2t, 0t).

Proof. Recall that Bk(n, u) is the number of length-n words that are closed by the word u.
Also recall that Ak(n, u) is the number of length-n words that do not contain the word u
as a factor.

Let w be a length-n word closed by u where |w| = n > 2t = 2|u|. Then we can
write w = uvu where v does not contain u as a factor. This immediately implies that
Bk(n, u) 6 Ak(n − 2t, u). But from a result of Guibas and Odlyzko [11, Section 7], we
have that if fa(u)(2) > fa(v)(2) for words u, v, then Ak(m,u) > Ak(m, v) for all m > 1.
The auto-correlation polynomial only has 0 or 1 as coefficients, depending on the 1’s and
0’s in the auto-correlation. Thus, the auto-correlation p that maximizes fp(2) is clearly
p = 1t. The words that achieve this auto-correlation are words of the form at where
a ∈ Σk. Therefore we have

Bk(n, u) 6 Ak(n− 2t, u) 6 Ak(n− 2t, 0t).

Lemma 8. Let n, t, and k be integers such that n > 2t > 2 and k > 2. Then

Ck(n, t) 6 ktAk(n− 2t, 0t).

Proof. The number Ck(n, t) of length-n words closed by a length-t word is equal to the
sum, over all length-t words u, of the number Bk(n, u) of length-n words closed by u.
Thus we have that

Ck(n, t) =
∑
|u|=t

Bk(n, u).
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By Lemma 7 we have that Bk(n, v) 6 Ak(n− 2t, 0t) for all length-t words v. Therefore

Ck(n, t) =
∑
|u|=t

Bk(n, u) 6
∑
|u|=t

Ak(n− 2t, 0t) 6 ktAk(n− 2t, 0t).

Corollary 9. Let n > 1 and k > 2 integers. Then

Ck(n) 6
bn/2c∑
t=1

ktAk(n− 2t, 0t) + nkdn/2e.

Proof. It follows from Lemma 8 that

Ck(n) =
n−1∑
t=1

Ck(n, t) 6
bn/2c∑
t=1

ktAk(n− 2t, 0t) +
n−1∑

t=bn/2c+1

Ck(n, t).

Now we show that
n−1∑

t=bn/2c+1

Ck(n, t) 6 nkdn/2e.

Let w = w0w1 · · ·wn−1 be a word of length n that is closed by a word u of length t > bn/2c.
Then w = ux = yu for some words x, y. So wi = wi+(n−t) for all i, 0 6 i < t. This
implies that w = viv′ where v is the length-(n− t) prefix of w, i = bn/|v|c, and v′ is the
length-(n− i|v|) prefix of v. Since t > bn/2c, we have that n− t < dn/2e. We see that w
is fully determined by the word v. So since |v| < dn/2e, we have Ck(n, t) 6 kdn/2e. Thus

n−1∑
t=bn/2c+1

Ck(n, t) 6
n−1∑

t=bn/2c+1

kdn/2e 6 nkdn/2e.

Lemma 10. Let n > 0, t > 1, and k > 2 be integers. Then

Ak(n, 0
t) =

k
n, if n < t;

(k − 1)
t∑
i=1

Ak(n− i, 0t), if n > t.

Proof. If n < t, then any length-n word is shorter than 0t, and thus cannot contain 0t as
a factor. So Ak(n, 0

t) = kn.
Suppose n > t. Let w be a length-n word that does not contain 0t as a factor. Let us

look at the symbols that w ends in. Since w does not contain 0t, we have that w ends in
anywhere from 0 to t− 1 zeroes. So w is of the form w = w′b0i where i is an integer with
0 6 i 6 t− 1, b ∈ Σk − {0}, and w′ is a length-(n− i− 1) word that does not contain 0t

as a factor. There are k − 1 choices for b, and Ak(n − i − 1, 0t) choices for w′. So there
are (k − 1)Ak(n− i− 1, 0t) words of the form w′b0i. Summing over all possible i gives

Ak(n, 0
t) = (k − 1)

t∑
i=1

Ak(n− i, 0t).
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Corollary 11. Let n > 0, t > 1, and k > 2 be integers. Then

Ak(n, 0
t) =


kn, if n < t;

kn − 1, if n = t;

kAk(n− 1, 0t)− (k − 1)Ak(n− t− 1, 0t), if n > t.

Proof. Compute Ak(n, 0
t) − Ak(n − 1, 0t) with the recurrence from Lemma 10 and the

result follows.

Corollary 12. Let n > 0, t > 1, and k > 2 be integers. Then

Ak(n, 0
t) =


kn, if n < t;

kn−t(kt − 1)− (n− t)kn−t−1(k − 1), if t 6 n 6 2t;

kAk(n− 1, 0t)− (k − 1)Ak(n− t− 1, 0t), if n > 2t.

Proof. We prove t 6 n 6 2t by induction on n. In the base case, when n = t, we have
kt − 1 = Ak(t, 0

t) = kt−t(kt − 1)− (t− t)kt−t−1(k − 1) = kt − 1.
Suppose t < n 6 2t. Then

Ak(n, 0
t) = kAk(n− 1, 0t)− (k − 1)Ak(n− t− 1, 0t)

= k(kn−1−t(kt − 1)− (n− 1− t)kn−t−2(k − 1))− (k − 1)kn−t−1

= kn−t(kt − 1)− (n− t)kn−t−1(k − 1).

Since (Ak(n, 0
t))n satisfies a linear recurrence, we know that the asymptotic behaviour

of Ak(n, 0
t) is determined by the root of maximum modulus of the polynomial xt+1 −

kxt + k − 1 = 0. We use this fact to find an upper bound for Ak(n, 0
t).

Lemma 13. Let t > 1 and k > 2 be integers. Let

βk(t) = k − (k − 1)k−t−1.

Then βk(t) > k − (k − 1)βk(t)
−t.

Proof. Since βk(t) 6 k, we have that βk(t)
−t > k−t > k−t−1. This implies that

βk(t) = k − (k − 1)k−t−1 > k − (k − 1)βk(t)
−t.

Lemma 14. Let k, t > 2 be integers. Let n be an integer such that 2t 6 n 6 3t. Then
Ak(n, 0

t) 6 βk(t)
n.

Proof. The proof is by induction on n. By Corollary 12 we have that

Ak(n, 0
t) = kn−t(kt − 1)− (n− t)kn−t−1(k − 1)

for t 6 n 6 2t.
Suppose, for the base case, that n = 2t. Let γ(t) = (k − 1)k−t−1. Then

Ak(2t, 0
t) = kt(kt − 1)− tkt−1(k − 1) = k2t − kt−2(k2 + tk(k − 1))

= k2t − γ(t)k2t−1
(k2 + tk(k − 1))

k − 1

6 k2t − γ(t)tk2t−1.
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Clearly γ(t) 6 6/t for all t > 2, so Ak(2t) 6 k2t − γ(t)tk2t−1 6 (k − γ(t))2t = βk(t)
2t.

Suppose that 2t < n 6 3t. Furthermore let n = 2t + i + 1 where i is an integer such
that 0 6 i < t. Notice that Ak(n − t − 1, 0t) = Ak(t + i, 0t) = ki(kt − 1) − iki−1(k − 1).
Then

Ak(2t+ i+ 1, 0t) = kAk(2t+ i, 0t)− (k − 1)Ak(t+ i, 0t)

6 k(k − γ(t))2t+i − (k − 1)(ki(kt − 1)− iki−1(k − 1))

= (k − γ(t))2t+i+1 + γ(t)(k − γ(t))2t+i − (k − 1)(ki(kt − 1)− iki−1(k − 1))

= βk(t)
2t+i+1 + γ(t)βk(t)

2t+i − (k − 1)(ki(kt − 1)− iki−1(k − 1)).

To prove the desired bound, namely that Ak(2t + i + 1, 0t) 6 βk(t)
2t+i+1, it is sufficient

to show that βk(t)
2t+i 6 γ(t)−1(k − 1)(ki(kt − 1) − iki−1(k − 1)). We begin by upper

bounding βk(t)
2t+i with Lemma 4. We have

βk(t)
2t+i 6 k2t+i − γ(t)(2t+ i)k2t+i−1 +

1

2
γ(t)2(2t+ i)(2t+ i− 1)k2t+i−2

6 k2t+i − 2(k − 1)tkt+i−2 +
9

2
(k − 1)2t2ki−4

6 k2t+i+1 − (k − 1)k2t+i − 2(k − 1)tkt+i−2 +
9

2
(k − 1)2t2ki−4

= k2t+i+1 − kt+i
(

(k − 1)kt + 2(k − 1)tk−2 − 9

2
(k − 1)2t2k−t−4

)
. (2)

It is easy to verify that (k − 1)kt > k + t(k − 1) and
2(k − 1)tk−2 − 9

2
(k − 1)2t2k−t−4 > 0 for all t > 2. Thus, continuing from (2), we have

βk(t)
2t+i 6 k2t+i+1 − kt+i(k + t(k − 1)) 6 k2t+i+1 − kt+i(k + i(k − 1))

=
kt+1

k − 1
(k − 1)(kt+i − ki − iki−1(k − 1))

= γ(t)−1(k − 1)(ki(kt − 1)− iki−1(k − 1)).

Lemma 15. Let n, t, and k be integers such that n > 2t > 4 and k > 2. Then
Ak(n, 0

t) 6 βk(t)
n.

Proof. The proof is by induction on n. The base case, when 2t 6 n 6 3t, is taken care of
in Lemma 14.

Suppose n > 3t. Then

Ak(n, 0
t) = (k − 1)

t∑
i=1

Ak(n− i, 0t) 6 (k − 1)
t∑
i=1

βk(t)
n−i = (k − 1)

βk(t)
n − βk(t)n−t

βk(t)− 1
.

By Theorem 13, we have that βk(t)− 1 > (k − 1)− (k − 1)βk(t)
−t. Therefore

Ak(n, 0
t) 6 (k − 1)

βk(t)
n − βk(t)n−t

βk(t)− 1
= βk(t)

n (k − 1)− (k − 1)βk(t)
−t

βk(t)− 1
6 βk(t)

n.

Proof of Theorem 2 (b). First notice that Ak(n, 0) = (k − 1)n, since Ak(n, 0) is just the
number of length-n words that do not contain 0.

Let N ′ be a positive integer such that the following inequalities hold for all n > N ′.
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Ck(n) 6
bn/2c∑
t=2

ktAk(n− 2t, 0t) + kAk(n− 2, 0) + nkdn/2e

6
bn/2c∑
t=2

ktβk(t)
n−2t + k(k − 1)n−2 + nkdn/2e

6
bn/2c∑
t=2

kt
(
k − k − 1

kt+1

)n−2t
+ d2

kn

n
= kn

bn/2c∑
t=2

1

kt

(
1− k − 1

kt+2

)n−2t
+ d2

kn

n

6 kn

( blogk nc∑
t=2

1

kt

(
1− k − 1

kt+2

)n−2t
+

bn/2c∑
t=blogk nc+1

1

kt

)
+ d2

kn

n

6 kn

( blogk nc∑
t=2

1

kt

(
1− k − 1

kt+2

)n−2blogk nc
+
d3
n

)
+ d2

kn

n

6 kn
blogk nc∑
t=2

1

kt

(
1− k − 1

kt+2

)n/2
+ d4

kn

n
. (3)

Now we bound the sum in (3). Let h(x) = (1 − (k − 1)k−2x)n/2. Notice that h(x) is
monotonically decreasing on the interval x ∈ (0, 1). So for k−t−1 6 x 6 k−t we have that
h(x) > h(k−t). Thus

1

kt

(
1− k − 1

kt+2

)n/2
6
k − 1

kt

(
1− k − 1

kt+2

)n/2
6 k

((
1

kt
− 1

kt+1

)
h(k−t)

)
6 k

∫ k−t

k−t−1

h(x) dx.

Going back to (3) we have

Ck(n) 6 kn
blogk nc∑
t=2

k

∫ k−t

k−t−1

h(x) dx+ d4
kn

n
6 kn+1

∫ 1

0

h(x) dx+ d4
kn

n
.

Evaluating and bounding the definite integral, we have∫ 1

0

h(x) dx = − k2

k − 1

[
(1− (k − 1)k−2x)n/2+1

n/2 + 1

]x=1

x=0

= − k2

k − 1

(
(1− (k − 1)k−2)n/2+1 − 1

n/2 + 1

)
6 d5

(
1− (1− (k − 1)k−2)n/2+1

n/2 + 1

)
6 d5

1

n/2 + 1
6
d6
n
.

Putting everything together, we have that

Ck(n) 6 kn+1

∫ 1

0

h(x) dx+ d4
kn

n
6 d6

kn+1

n
+ d4

kn

n
6 c′

kn

n

for some constant c′ > 0.
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4 Privileged words

4.1 Lower bound

In this section we provide a family of lower bounds for the number of length-n privileged
words. We use induction to prove these bounds. The basic idea is that we start with
the lower bound by Nicholson and Rampersad, and then use it to bootstrap ourselves to
better and better lower bounds.

Proof of Theorem 3 (a). The proof is by induction on j. Let t be such that t = blogk(n−
t) + logk(k − 1) − logk(ln k)c. We clearly have 0 6 t 6 logk(n) + 1 for all n > 1. Let u
be a length-t privileged word. By Lemma 6 we have that there exist constants N0 and c0
such that Pk(n) > Bk(n, u) > c0

kn

n2 for all n > N0. So the base case, when j = 0, is taken
care of.

Suppose j > 0. By induction we have that there exist constants Nj−1 and cj−1 such
that

Pk(n) > cj−1
kn

n log◦j−1k (n)
∏j−1

i=1 log◦ik (n)

for all n > Nj−1. By Lemma 6 we have

Pk(n) > Pk(n, t) >
∑
|u|=t

u privileged

Bk(n, u) >
∑
|u|=t

u privileged

d
kn

n2
= dPk(t)

kn

n2
.

for n > N0. Since t 6 logk(n) + 1, we have that 1
log◦ik (t)

> 1
log◦ik (logk(n)+1)

for all i > 0. Thus

continuing from above we have

Pk(n) > dcj−1
kt

t log◦j−1k (t)
∏j−1

i=1 log◦ik (t)

kn

n2
> d7

klogk(n−t)+logk(k−1)−logk(ln k)

t log◦j−1k (t)
∏j−1

i=1 log◦ik (t)

kn

n2

> d8
1

t log◦j−1k (t)
∏j−1

i=1 log◦ik (t)

kn

n

> d9
1

(logk(n) + 1) log◦j−1k (logk(n) + 1)
∏j−1

i=1 log◦ik (logk(n) + 1)

kn

n

> cj
kn

n log◦jk (n)
∏j

i=1 log◦ik (n)

for all n > Nj where Nj > max(N0, Nj−1).

4.2 Upper bound

In Theorem 2 (b) we proved that Ck(n) ∈ O(k
n

n
). Since every privileged word is also

a closed word, this is also shows that Pk(n) ∈ O(k
n

n
). This bound improves on the

existing bound on privileged words but it does not show that Pk(n) and Ck(n) behave
differently asymptotically. We show that Pk(n) is much smaller than Ck(n) asymptotically
by proving upper bounds on Pk(n) that show Pk(n) ∈ o(kn

n
).

Lemma 16. Let n, t, and k be integers such that n > 2t > 2 and k > 2. Then

Pk(n, t) 6 Pk(t)Ak(n− 2t, 0t).
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Proof. The number of length-n privileged words closed by a length-t privileged word is
equal to the sum, over all length-t privileged words u, of the number Bk(n, u) of length-n
words closed by u. Thus we have that

Pk(n, t) =
∑
|u|=t

u privileged

Bk(n, u).

By Lemma 7 we have that Bk(n, v) 6 Ak(n− 2t, 0t) for all length-t words v. Therefore

Pk(n, t) =
∑
|u|=t

u privileged

Bk(n, u) 6
∑
|u|=t

u privileged

Ak(n− 2t, 0t) 6 Pk(t)Ak(n− 2t, 0t).

Proof of Theorem 3 (b). For n > 2t we can use Lemma 16 to bound Pk(n, t). But for
n < 2t, we can use Corollary 9 and the fact that Pk(n, t) 6 Ck(n, t). We get

Pk(n) =
n−1∑
t=1

Pk(n, t) 6
bn/2c∑
t=1

Pk(t)Ak(n− 2t, 0t) + nkdn/2e.

The proof is by induction on j. The base case, when j = 0, is taken care of by Theo-
rem 2 (b).

Suppose j > 0. Then there exist constants N ′j−1 and c′j−1 such that

Pk(n) 6 c′j−1
kn

n
∏j−1

i=1 log◦ik (n)

for all n > N ′j−1. We now bound Pk(n). First, we let N ′j > N ′j−1 be a constant such that
the following inequalities hold for all n > N ′j. We have

Pk(n) 6
bn/2c∑
t=1

Pk(t)Ak(n− 2t, 0t) + nkdn/2e

6
bn/2c∑
t=N ′j+1

c′j−1
kt

t
∏j−1
i=1 log◦ik (t)

βk(t)
n−2t +

N ′j∑
t=1

Pk(t)Ak(n− 2t, 0t) + nkdn/2e

6
bn/2c∑
t=N ′j+1

c′j−1
kt

t
∏j−1
i=1 log◦ik (t)

(
k − k − 1

kt+1

)n−2t
+ d10

N ′j∑
t=2

(
k − k − 1

kt+1

)n−2t
+ d11

kn

n2

6 c′j−1k
n

bn/2c∑
t=N ′j+1

1

ktt
∏j−1
i=1 log◦ik (t)

(
1− k − 1

kt+2

)n−2t
+ d12

kn

n2

6 c′j−1k
n

(
d13

blogk(n)c∑
t=N ′j+1

1

ktt
∏j−1
i=1 log◦ik (t)

(
1− k − 1

kt+2

)n/2

+

bn/2c∑
t=blogk(n)c+1

1

ktt
∏j−1
i=1 log◦ik (t)

)
+ d12

kn

n2
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6 c′j−1k
n

(
d13

blogk(n)c∑
t=N ′j+1

1

ktt
∏j−1
i=1 log◦ik (t)

exp

(
n

2
ln

(
1− k − 1

kt+2

))

+

∞∑
t=blogk(n)c+1

1

ktt
∏j−1
i=1 log◦ik (t)

)
+ d12

kn

n2
. (4)

The sum on line (4) is clearly convergent. We have

∞∑
t=blogk(n)c+1

1

ktt
∏j−1

i=1 log◦ik (t)
6

1

(blogk(n)c+ 1)
∏j−1

i=1 log◦ik (blogk(n)c+ 1)

∞∑
t=blogk(n)c+1

1

kt

6 d14
1

logk(n)
∏j−1

i=1 log◦ik (logk(n))

1

n
6 d14

1

n
∏j

i=1 log◦ik (n)
.

Now we upper bound the sum

Dn =

blogk(n)c∑
t=N ′j+1

1

ktt
∏j−1

i=1 log◦ik (t)
exp

(
n

2
ln

(
1− k − 1

kt+2

))
.

It is well-known that ln(1− x) 6 −x for |x| < 1. Thus, letting α = k−1
2k2

, we have

exp

(
n

2
ln

(
1− k − 1

kt+2

))
6 exp

(
− α n

kt

)
.

We reverse the order of the series, by letting t be such that t = blogk(n)c − t + N ′j + 1.
We also shift the index of the series down by N ′j + 1. We have

Dn =

blogk(n)c−N
′
j−1∑

t=0

1

kblogk(n)c−t(blogk(n)c − t)
∏j−1
i=1 log◦ik (blogk(n)c − t)

exp
(
− α n

kblogk(n)c−t

)

6 d15

blogk(n)c−N
′
j−1∑

t=0

kt

n(logk(n)− t)
∏j−1
i=1 log◦ik (logk(n)− t)

exp (−αkt)

6 d15
1

n
∏j
i=1 log◦ik (n)

blogk(n)c−N
′
j−1∑

t=0

kt

j−1∏
i=0

log◦ik (logk(n)−t)
log◦i+1

k (n)

exp (−αkt). (5)

Suppose β is a positive constant strictly between 0 and 1 such that β logk(n) is an integer

and β logk(n) < blogk(n)c−N ′j−1. If t 6 β logk(n), then
log◦ik (logk(n)−t)

log◦i+1
k (n)

> log◦i+1
k (n1−β)

log◦i+1
k (n)

> d′i

for some d′i > 0 by Lemma 5. If t > β logk(n), then
log◦ik (logk(n)−t)

log◦i+1
k (n)

>
log◦ik (N ′j+1)

log◦i+1
k (n)

. We split

up the sum in Dn in two parts. One sum with t 6 β logk(n) and one with t > β logk(n).
Continuing from (5) we get

6 d15
1

n
j∏
i=1

log◦ik (n)

( β logk(n)∑
t=1

kt

j−1∏
i=0

d′i

exp (−αkt) +

j−1∏
i=0

(
log◦i+1

k (n)

log◦ik (N ′j + 1)

) blogk(n)c−N ′j−1∑
t=β logk(n)+1

kt exp (−αkt)
)

6 d15
1

n
j∏
i=1

log◦ik (n)

(
d16

∞∑
t=1

t exp (−αt) + d17

j∏
i=1

log◦ik (n)

∞∑
t=knβ

t exp (−αt)
)
.
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The first and second sum are both clearly convergent. It is also easy to show that both
of them can be bounded by a constant multiplied by the first term. Thus, we have that

Dn 6 d15
1

n
∏j

i=1 log◦ik (n)

(
d18 + d19

j∏
i=1

log◦ik (n)
knβ

exp (αknβ)

)
6 d20

1

n
∏j

i=1 log◦ik (n)
.

Putting everything together and continuing from line (4), we get

Pk(n) 6 c′kn
(
d13Dn + d14

1

n
∏j

i=1 log◦ik (n)

)
+ d12

kn

n2
6 c′j

kn

n
∏j

i=1 log◦ik (n)

for some constant c′j > 0.

5 Open problems

We conclude by posing some open problems.
In this paper we showed that Ck(n) ∈ Θ(k

n

n
). In other words, we showed that Ck(n)

can be bounded above and below by a constant times kn/n for n sufficiently large. Can
we do better than this?

Open Problem 17. Does the limit

lim
n→∞

Ck(n)n

kn

exist? If it does exist, what does the limit evaluate to? If it does not exist, evaluate

lim inf
n→∞

Ck(n)n

kn
and lim sup

n→∞

Ck(n)n

kn
.

In this paper, we also gave a family of upper and lower bounds for Pk(n). But for
every j > 0, the upper and lower bounds on Pk(n) are asymptotically separated by a
factor of 1/ log◦jk (n). Let `n denote the smallest positive integer such that log◦`+1

k (n) 6 1.
Let log∗k(n) denote the product

`n∏
j=1

log◦jk (n).

Open Problem 18. Is Pk(n) ∈ Θ( kn

n log∗k(n)
)?

This problem can probably be solved by a careful analysis of the constants introduced
on every step in Section 4.

Open Problem 19. Does the limit

lim
n→∞

Pk(n)n log∗k(n)

kn

exist? If it does, what does the limit evaluate to? If it does not exist, evaluate

lim inf
n→∞

Pk(n)n log∗k(n)

kn
and lim sup

n→∞

Pk(n)n log∗k(n)

kn
.
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I suspect that the first limit in problem 17 and the first limit in problem 19 do not exist
due to a result of Guibas and Odlyzko [9] on prefix-synchronized codes. Every codeword
in a prefix-synchronized code of length n begins with the same prefix u of length p < n.
Each codeword is a prefix of a closed word of length n + p that is closed by u. They
proved that, for 2 6 k 6 4, the size Mn of a maximal prefix-synchronized code of length
n oscillates such that the limit limn→∞Mnn/k

n does not exist. They mention that their
approach can be generalized for k > 5, but that the proof is much more complicated.
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