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Abstract

Targets are matroids that arise from a nested sequence of flats in a projective
geometry. This class of matroids was introduced by Nelson and Nomoto, who found
the forbidden induced restrictions for binary targets. This paper generalizes their
result to targets arising from projective geometries over GF (q). We also consider
targets arising from nested sequences of affine flats and determine the forbidden
induced restrictions for affine targets.

Mathematics Subject Classifications: 05B35

1 Introduction

Throughout this paper, we follow the notation and terminology of [3]. All matroids
considered here are simple. This means, for example, that when we contract an element,
we always simplify the result. An induced restriction of a matroid M is a restriction of
M to one of its flats.

Let M be a rank-r projective or affine geometry represented over GF (q). We call
(F0, F1, . . . , Fk) a nested sequence of projective flats or a nested sequence of affine flats if
∅ = F0 ⊆ F1 ⊆ · · · ⊆ Fk−1 ⊆ Fk = E(M) and each Fi is a, possibly empty, flat of M .
Let (G,R) be a partition of E(M) into, possibly empty, subsets G and R. We call the
elements in G green; those in R are red. A subset X of E(M) is monochromatic if X ⊆ G
or X ⊆ R. For a subset X of E(PG(r− 1, q)), we call PG(r− 1, q)|X a projective target,
or a target, if there is a nested sequence (F0, F1, . . . , Fk) of projective flats such that X is
the union of all sets Fi+1−Fi for i even. It is straightforward to check that PG(r−1, q)|G
is a target if and only if PG(r−1, q)|R is a target. Because GF (q)-representable matroids
are not necessarily uniquely GF (q)-representable, we have defined targets in terms of 2-
colorings of PG(r − 1, q). When X ⊆ E(AG(r − 1, q)), we call AG(r − 1, q)|X an affine
target if there is a nested sequence (F0, F1, . . . , Fk) of affine flats such that X is the union
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of all sets Fi+1 − Fi for i even. For affine targets in AG(r − 1, q), we follow the same
convention of defining targets in terms of 2-colorings.

Consider an analogous construction for graphs, that is, take a sequence (K0,
K1, . . . , Kn) of complete graphs whereKi+1 hasKi as a subgraph for each i in {1, 2, . . . , n−
1}. Moreover, for each such i, color the vertex v of V (Ki+1)− V (Ki) either green or red
and color all the edges of E(Ki+1) − E(Ki) the same color as v. This process is equiv-
alent to repeatedly adding green or red dominating vertices, that is, adding a green or
red vertex v to a graph G that is adjacent to every vertex u in V (G − v). Consider the
subgraph H of Kn whose vertex set is V (Kn) and whose edge set is the set of green edges.
Observe that, in the construction of H, when a red dominating vertex is added, it is an
isolated vertex of the graph that has been constructed so far. Therefore, to construct H,
at each step, we are adding a green dominating vertex or a red isolated vertex. Chvátal
and Hammer [1] showed that the class of graphs that arises from repeatedly adding dom-
inating vertices and isolated vertices coincides with the class of threshold graphs. This
is the class of graphs that has no induced subgraph that is isomorphic to C4, 2K2, or P4,
that is a 4-cycle, two non-adjacent edges, or a 4-vertex path.

Nelson and Nomoto [2] introduced binary targets and characterized them as follows.

Theorem 1. Let (G,R) be a 2-coloring of PG(r− 1, 2). Then PG(r− 1, 2)|G is a target
if and only if it does not contain U3,3 or U2,3 ⊕ U1,1 as an induced restriction.

Nelson and Nomoto [2] call U3,3 the claw, while they call U2,3 ⊕ U1,1, the complement
of U3,3 in F7, the anti-claw. They derive Theorem 1 as a consequence of a structural
description of claw-free binary matroids. In Section 3, we give a proof of that theorem
that does not rely on this structural description. Then, for all q > 3, we characterize
targets represented over GF (q) in terms of forbidden induced restrictions by proving the
next result.

Theorem 2. For a prime power q exceeding two, let (G,R) be a 2-coloring of PG(r −
1, q). Then PG(r − 1, q)|G is a target if and only if it does not contain any of U2,2,
U2,3, . . . , U2,q−2, or U2,q−1 as an induced restriction.

In Section 2, we prove some useful properties of targets. In particular, we show
that targets are closed under contractions. A simple matroid N is an induced minor of
a simple matroid M if N can be obtained from M by a sequence of contractions and
induced restrictions. We observe that Theorem 2 can also be viewed as characterizing
targets in terms of forbidden induced minors. Our other main theorems, which are proved
in Section 4, characterize affine targets in terms of forbidden induced restrictions. There
are three cases, depending on the value of q.

Theorem 3. Let (G,R) be a 2-coloring of AG(r−1, 2). Then AG(r−1, 2)|G is an affine
target if and only if it does not contain U4,4 as an induced restriction.

The matroids W3 and P (U2,3, U2,3) that appear in the next theorem are the rank-3
whirl and the parallel connection of two copies of U2,3.
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Theorem 4. Let (G,R) be a 2-coloring of AG(r−1, 3). Then AG(r−1, 3)|G is an affine
target if and only if it does not contain any of U3,3, U3,4, U2,3⊕U1,1, U2,3⊕2U2,4, P (U2,3, U2,3),
or W3 as an induced restriction.

Theorem 5. Let (G,R) be a 2-coloring of AG(r− 1, q), for q > 4. Then AG(r− 1, q)|G
is an affine target if and only if it does not contain any of U2,2, U2,3, . . . , U2,q−3, or U2,q−2
as an induced restriction.

2 Preliminary Results

Throughout the paper, we will refer to flats and hyperplanes of PG(r− 1, q) as projective
flats and projective hyperplanes, respectively. Let M be a restriction of PG(r−1, q). For a
subset X of E(M), its projective closure, clP (X), is the closure of X in the matroid PG(r−
1, q). We first show that if PG(r − 1, q)|G is a target, then the matroid PG(r − 1, q)|G
is uniquely determined by the sequence (r0, r1, . . . , rk) of ranks of the nested sequence
(F0, F1, . . . , Fk) of projective flats. Note that we shall often write G and R for the matroids
PG(r− 1, q)|G and PG(r− 1, q)|R, respectively. This means that we will be using G and
R to denote both matroids and the ground sets of those matroids.

Proposition 6. Let (E0, E1, . . . , Ek) and (F0, F1, . . . , Fk) be nested sequences of flats in
PG(r − 1, q) such that r(Ei) = r(Fi) for all i in {0, 1, . . . , k − 1}. Let GE and GF be
the union, respectively, of all Ei+1 − Ei and of all Fi+1 − Fi for the even numbers i in
{0, 1, . . . , k − 1}. Then PG(r − 1, q)|GE

∼= PG(r − 1, q)|GF .

Proof. Let h be the smallest i such that r(Ei) > 0. Let {bh,1, bh,2, . . . , bh,mh
} and {dh,1, dh,2,

. . . , dh,mh
} be bases Bh and Dh of PG(r − 1, q)|Eh and PG(r − 1, q)|Fh, respectively.

Let B0 = B1 = · · · = Bh−1 = ∅ and D0 = D1 = · · · = Dh−1 = ∅. For j > h,
assume that B0, B1, . . . , Bj and D0, D1, . . . , Dj have been defined. Let Bj+1 and Dj+1

be bases of Ej+1 and Fj+1, respectively, such that Bj ⊆ Bj+1 and Dj ⊆ Dj+1. Let
Bj+1 − Bj = {bj+1,1, bj+1,2, . . . , bj+1,mj+1

} and Dj+1 −Dj = {dj+1,1, dj+1,2, . . . , dj+1,mj+1
}.

Define the automorphism φ on PG(r − 1, q) by φ(bs,t) = ds,t for all s and t such that
s > h. Then φ(Ei) = Fi for all i, so φ(Ei+1 − Ei) = φ(Ei+1)− φ(Ei) = Fi+1 − Fi, for all
i. Therefore, PG(r − 1, q)|GE

∼= PG(r − 1, q)|GF .

The last result means that we can refer to a simple GF (q)-representable matroid M
as being a target exactly when some, and hence all, of the GF (q)-representations of M
are targets. Note that in a nested sequence (F0, F1, . . . , Fk) of flats defining a target, it
is convenient to allow equality of the flats. A nested sequence (F0, F1, . . . , Fk) of flats
is the canonical nested sequence defining a projective or affine target if F0 = ∅, and
F1, F2, . . . , Fk−1, and Fk are distinct. Observe that allowing F1 to be empty accommodates
the requirement that the target is the union of all sets Fi+1 − Fi for i even.

Lemma 2.15 of Nelson and Nomoto [2] proved that binary targets are closed under
induced restriction. Using the same proof, their result can be extended to targets repre-
sented over GF (q).
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Lemma 7. The class of targets over GF (q) is closed under induced restrictions.

Lemma 8. Let (G,R) be a 2-coloring of PG(r − 1, q). Assume that G is a target and F
is a projective flat of PG(r− 1, q). Then exactly one of G∩ F and R ∩ F has rank r(F ).

Proof. By Lemma 7, PG(r− 1, q)|(G∩F ) is a target corresponding to a nested sequence
(F ′0, F

′
1, . . . , F

′
k−1, F ) of projective flats. By, for example, [4, Lemma 2.1], r(G ∩ F ) or

r(R∩F ) is r(F ). Either G∩F or R∩F is contained in some proper projective flat of F .
Therefore, either r(G ∩ F ) < r(F ) or r(R ∩ F ) < r(F ).

We refer to the rank of the set of green elements in a projective flat F as the green
rank of F . If F has green rank r(F ), we say that F is a green flat. Furthermore, if a
projective hyperplane has green rank r − 1, then it is a green hyperplane. Red rank, red
flats, and red hyperplanes are defined analogously. From the last lemma, it follows that
a projective flat can either be a green flat or a red flat, but not both.

We now show that every contraction of a target is a target. Consider contracting a
green element e in M . If a parallel class in the contraction contains at least one green
point, then, after the simplification, the resulting point will be green. If there are only
red points in the parallel class, then, after the simplification, the resulting point is red.

Proposition 9. The class of targets over GF (q) is closed under contractions.

Proof. Let (G,R) be a 2-coloring of PG(r− 1, q). Assume that G is a target. Then there
is a canonical nested sequence (F0, F1, . . . , Fk) of projective flats such that G is the union
of all sets Fi+1 − Fi for i even. Let e be an element of Fm − Fm−1 where Fm is a green
flat. Then the elements of Fm − Fm−1 are green. Suppose x is a red point in Fm. Then
x ∈ Fm−1. If y ∈ clP ({e, x}), then y 6∈ Fm−1, otherwise the circuit {e, x, y} gives the
contradiction that e is an element of Fm−1. Since {e, x} ⊆ Fm, we must have that y is
in Fm, so y is in Fm − Fm−1. Hence y is green. We deduce that, in the contraction of e,
every element of Fm − e is green.

Now assume Fj is a red flat containing Fm. Then Fj − Fj−1 ⊆ R. Consider a point
z in Fj −Fj−1. Using a symmetric argument to that given above, we deduce that e is the
only point of clP ({e, z}) not in Fj − Fj−1. Therefore, the points in (Fj − Fj−1) − e are
red. Clearly, if Fk is a green flat containing Fm, then the points in (Fk − Fk−1) − e are
green. Thus, in si(PG(r− 1, q)/e), we have (si(Fm − e), si(Fm+1 − e), . . . , si(Fk − e)) as a
nested sequence of projective flats. Writing this new nested sequence of projective flats in
PG(r − 2, q) as (F ′m, F

′
m+1, . . . , F

′
k), we see that F ′m is entirely green and, for each i > 1,

the set F ′m+i − F ′m+i−1 is entirely red if i is odd and is entirely green if i is even. Hence
si(G/e) is a target.

Combining Lemma 7 and Proposition 9, we get the following.

Corollary 10. The class of targets over GF (q) is closed under induced minors.

Lemma 11. Let (G,R) be a 2-coloring of PG(r − 1, q). If G is a target, then G and R
are connected unless q = 2 and G or R is U2,2.
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Proof. Assume that the exceptional case does not arise and that r(G) > r(R). If G =
PG(r−1, q), then the result holds. Assume G is not the whole projective geometry. Then
G contains AG(r− 1, q), so G is connected. Similarly, R will also have an affine geometry
as a restriction. Thus R is certainly connected when r(R) = r(G). Assume r(R) < r(G).
Take a projective flat F that has R as a spanning restriction. Then r(R) > r(G ∩ F ) so,
as above, we deduce that R is connected.

If (G,R) is a 2-coloring of PG(r − 1, q), then G is a minimal non-target if G is not
a target but every proper induced restriction of G is a target. Clearly, if G is a minimal
non-target, then R is not a target. But if r(R) > r(G), then R is not a minimal non-target.

Lemma 12. Let (G,R) be a 2-coloring of PG(r − 1, q). Suppose PG(r − 1, q)|G is a
minimal non-target of rank r. Then r(R) = r.

Proof. Assume r(R) < r. Then there is a hyperplane H containing R. Since PG(r −
1, q)|(G ∩ H) is a target, R is a target. However, this implies that G is a target, a
contradiction. Therefore r(R) = r.

3 Forbidden Induced Restrictions of Target Matroids

This section contains the proofs of Theorem 1 and Theorem 2.

Proof of Theorem 1. Assume that G is a target. If there is a projective flat F such
that PG(r − 1, 2)|(G ∩ F ) ∼= U3,3, then PG(r − 1, 2)|(R ∩ F ) ∼= U2,3 ⊕ U1,1. Since
PG(r − 1, 2)|(G ∩ F ) is a target, this contradicts Lemma 8, as r(G ∩ F ) = r(R ∩ F ).

Let (G,R) be a 2-coloring of PG(r − 1, 2). Suppose that G is a rank-r minimal non-
target. Assume that G does not have U3,3 or U2,3 ⊕ U1,1 as an induced restriction. Thus
r > 4. By Lemma 12, r(G) = r(R) = r. Then there are a red hyperplane H0 and a green
hyperplane H1. Let F = H0 ∩H1. Then r(F ) = r − 2. We may assume that F is green.
Thus all of the points in H0 − F are red. Let H2 be the other hyperplane containing F .
As r(G) = r, each of H1 − F and H2 − F contain a green point. Since r(R) = r, there
is a red point z in H1 − F or H2 − F . We may assume that z ∈ H1 − F . Consider the
set W of points w in H1 − F such that the line clP ({z, w}) contains a green point in F .
As H1 is green, there is a green element w1 in W . Let g be a green element in H2 − F .
Now consider the plane P = clP ({g, w1, z}). As w1 ∈ W , the third point x on the line
clP ({w1, z}) is a green point in F . Now consider the line clP ({g, z}). The third point y0
on this line is in H0 − F , so y0 is red. Finally, the third point y1 on the line clP ({x, y0})
is also in H0 − F , so y1 is red. Clearly, the points x, y0, and y1 are elements of P and
r(R ∩ {y0, y1, z}) = 3 and r(G ∩ {g, w1, x}) = 3. Therefore, r(G ∩ P ) = r(R ∩ P ) = 3, a
contradiction to Lemma 8.

Proof of Theorem 2. Assume that G is a target. If there is a projective flat F such that
PG(r−1, q)|(G∩F ) is any of U2,2, U2,3, . . . , U2,q−2, or U2,q−1, then, letting F ′ = clP (G∩F ),
we have r(G ∩ F ′) = r(R ∩ F ′), a contradiction to Lemma 8.

the electronic journal of combinatorics 31(2) (2024), #P2.48 5



Let (G,R) be a 2-coloring of PG(r − 1, q). Suppose that G is a rank-r minimal
non-target. Assume that G does not have U2,2, U2,3, . . . , U2,q−2, or U2,q−1 as an induced
restriction. Thus r > 3. As in the last proof, r(G) = r(R) = r and there are a red
hyperplane H0 and a green hyperplane H1. Moreover, we may assume that their inter-
section F is green, so H0 − F is monochromatic red. Let H2, H3, . . . , Hq−1, and Hq be
the other hyperplanes containing F . As r(G) = r, there are green points x and y such
that r(G ∩ (F ∪ {x, y})) = r. Consider the projective line L that is spanned by x and
y. Then L intersects each of H0 − F,H1 − F, . . . , Hq−1 − F, and Hq − F at a point.
Since H0 − F is monochromatic red, L has a single red point in H0 − F . Then there is
a green point in each of H1 − F,H2 − F, . . . , Hq−1 − F, and Hq − F . Therefore, as F is
green, each of H1, H2, . . . , Hq−1, and Hq are also green. Since r(R) = r, there is a red
point z outside H0. We may assume that z ∈ H1. For each point e in H0 − F , the line
clP ({e, z}) is red, and therefore has at most one green point. Moreover, this line meets
each of H3 − F and H4 − F . Considering all choices of e, we see that at least half of the
points in (H3∪H4)−F are red. We may assume that at least half of the points in H3−F
are red. Observe that PG(r − 1, q)|(H3 − F ) ∼= AG(r − 2, q), so |H3 − F | = qr−2. Then
|R ∩ (H3 − F )| > 1

2
qr−2 > qr−3. Therefore, no hyperplane of PG(r − 1, q)|H3 contains

R ∩ (H3 − F ). Hence r(R ∩H3) = r − 1. This contradicts the fact that H3 is green.

4 Affine Target Matroids

In this section, we look at targets arising from affine geometries. This section begins with
preliminary results about affine targets and minimal affine-non-targets. It concludes with
the forbidden induced restrictions for affine targets over GF (q). One fact that we use
repeatedly is that if (G,R) is a 2-coloring of AG(r − 1, q), then G is an affine target if
and only if R is an affine target. Viewing AG(r− 1, q) as a restriction, PG(r− 1, q)|X, of
PG(r − 1, q) obtained by deleting a projective hyperplane H from PG(r − 1, q), we call
H the complementary hyperplane of X. We shall also refer to H as the complementary
hyperplane of AG(r − 1, q).

Proposition 13. Let (E0, E1, . . . , Ek) and (F0, F1, . . . , Fk) be nested sequences of flats
in AG(r − 1, q) such that r(Ei) = r(Fi) for all i in {0, 1, . . . , k − 1}. Let H and H ′ be
the complementary hyperplanes of Ek and Fk, respectively. Let GE and GF be the union,
respectively, of all Ei+1−Ei and of all Fi+1−Fi for the even numbers i in {0, 1, . . . , k−1}.
Then AG(r − 1, q)|GE

∼= AG(r − 1, q)|GF .

Proof. Observe that Ek = E(PG(r−1, q))−H and Fk = E(PG(r−1, q))−H ′. Let h be the
smallest i such that r(Ei) > 0. Let {bh,1, bh,2, . . . , bh,mh

} and {dh,1, dh,2, . . . , dh,mh
} be bases

Bh and Dh of PG(r − 1, q)|(clP (Eh)−Eh) and PG(r − 1, q)|(clP (Fh)− Fh), respectively.
Let v and v′ be elements in Eh and Fh, respectively. Then {v, bh,1, bh,2, . . . , bh,mh

} is a basis
for PG(r− 1, q)| clP (Eh) and {v′, dh,1, dh,2, . . . , dh,mh

} is a basis for PG(r− 1, q)| clP (Fh).
Let B0 = B1 = · · · = Bh−1 = ∅ and D0 = D1 = · · · = Dh−1 = ∅. For j > h,
assume that B0, B1, . . . , Bj and D0, D1, . . . , Dj have been defined. Let Bj+1 and Dj+1 be
bases of PG(r−1, q)|(clP (Ej+1)−Ej+1) and PG(r−1, q)|(clP (Fj+1)−Fj+1), respectively,
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such that Bj ⊆ Bj+1 and Dj ⊆ Dj+1. Observe that adding v and v′ to Bj+1 and Dj+1,
respectively, gives bases for PG(r−1, q)| clP (Ej+1) and PG(r−1, q)| clP (Fj+1) for all j. Let
Bj+1 − Bj = {bj+1,1, bj+1,2, . . . , bj+1,mj+1

} and Dj+1 −Dj = {dj+1,1, dj+1,2, . . . , dj+1,mj+1
}.

Observe that Bk and Dk are bases for H and H ′, respectively. Now, GE = clP (GE)−H
and GF = clP (GF ) −H ′. Define the automorphism φ on PG(r − 1, q) by φ(v) = v′ and
φ(bs,t) = ds,t, for all s and t such that s > h. Then φ(H) = H ′ and, for all i, we have
φ(clP (Bi)) = clP (Di), so φ(clP (Bi+1)−clP (Bi)−H) = φ(clP (Bi+1))−φ(clP (Bi))−φ(H) =
clP (Di+1)−clP (Di)−H ′. Thus, PG(r−1, q)|(clP (GE)−H) ∼= PG(r−1, q)|(clP (GF )−H ′).
Therefore, AG(r − 1, q)|GE

∼= AG(r − 1, q)|GF .

Similar to projective targets, the previous result means that we can refer to a simple
GF (q)-representable affine matroid M as being an affine target when all the GF (q)-
representations of M are affine targets.

Proposition 14. The class of affine targets is closed under induced restrictions.

Proof. Let (G,R) be a 2-coloring of AG(r − 1, q). Assume that G is an affine target.
Then G corresponds to a nested sequence (F0, F1, . . . , Fk) of affine flats with G being the
union of the sets Fi+1 − Fi for all even i. Take a proper flat X of AG(r − 1, q). As the
intersection of two affine flats is an affine flat, the sequence (X∩F0, X∩F1, . . . , X∩Fk) is
a nested sequence of affine flats. Assume that n is odd. As Fn−Fn−1 ⊆ G, it follows that
(X∩Fn)−(X∩Fn−1) ⊆ G∩F . Hence, G∩F is the union of the sets (X∩Fi+1)−(X∩Fi)
for all even i. Therefore, AG(r − 1, q)|(G ∩X) is an affine target.

We will use the following well-known lemmas about affine geometries quite often in
this section (see, for example [3, Exercise 6.2.2]).

Lemma 15. AG(r − 1, q) can be partitioned into q hyperplanes.

Lemma 16. Let X and Y be distinct hyperplanes of AG(r−1, q). Then either r(X∩Y ) =
0, or r(X ∩ Y ) = r − 2.

The techniques used for handling affine targets are similar to those that we used for
projective targets. The binary case will be treated separately.

Lemma 17. Let (G,R) be a 2-coloring of AG(r−1, 2) with |G| = |R|. Then r(G) = r(R).

Proof. Since |G| = |R|, we have that |G| = 2r−2. Because the hyperplanes of AG(r −
1, 2) have exactly 2r−2 elements, either AG(r − 1, 2)|G is a hyperplane, or r(G) = r.
Since AG(r − 1, 2)|G is a hyperplane if and only if AG(r − 1, 2)|R is a hyperplane, the
lemma follows.

Lemma 18. Let (G,R) be a 2-coloring of AG(r − 1, 2). Assume G is an affine target
and F is a flat of AG(r − 1, 2). Then either exactly one of G ∩ F and R ∩ F is of rank
r(F ); or r(G∩F ) = r(R∩F ) = r(F )− 1, and each of G∩F and R∩F is an affine flat.
Moreover, if r(G∩F ) = r(F ) and H1 and H2 are disjoint hyperplanes of AG(r− 1, 2)|F ,
then r(G ∩H1) = r(F )− 1 or r(G ∩H2) = r(F )− 1.
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Proof. Assume r(G ∩ F ) < r(F ). Then there is a rank-(r(F ) − 1) affine flat HG that
is contained in F and contains G. As HG is a hyperplane of AG(r − 1, 2)|F , there is
another hyperplane HR of AG(r − 1, 2)|F that is complementary to HG in F . Moreover,
HR ⊆ R∩F , so r(R∩F ) > r(F )−1. If there is a red point z in HG, then r(R∩F ) = r(F ).
Otherwise, r(R ∩ F ) = r(G ∩ F ) = r(F ) − 1, and each of R ∩ F and G ∩ F is an affine
flat.

Now suppose that r(G ∩ F ) = r(F ) and that H1 and H2 are disjoint hyperplanes of
AG(r−1, 2)|F with r(G∩H1) < r(F )−1 and r(G∩H2) < r(F )−1. As AG(r−1, 2)|(G∩F )
is an affine target of rank r(F ), there is a hyperplane H ′ of AG(r − 1, 2)|F that is
monochromatic green. Thus r(R ∩ F ) < r(F ). Since H ′ must meet both of H1 and H2,
its intersection with each such set has rank r(F )− 3. Since F is green, it follows that H1

or H2 is green.

Lemma 19. Let (G,R) be a 2-coloring of AG(r − 1, q), where q > 3. Assume that G is
an affine target and F is a flat of AG(r − 1, q). Then exactly one of G ∩ F and R ∩ F
has rank r(F ).

Proof. Assume r(G∩F ) < r(F ). Then there is a rank-(r(F )−1) affine flat HG containing
G ∩ F . Thus F −HG does not contain any green points, so r(R ∩ F ) = r(F ).

As with 2-colorings of E(PG(r − 1, q)), for a 2-coloring (G,R) of E(AG(r − 1, q)), a
flat F is green if r(G∩F ) = r(F ). We call F red if r(R∩F ) = r(F ). Furthermore, a flat
F of AG(r − 1, 2) is half-green and half-red if r(G ∩ F ) = r(R ∩ F ) = r(F ) − 1. In this
case, G ∩ F and R ∩ F are complementary hyperplanes of AG(r − 1, 2)|F .

The following results show how one can get an affine target from a projective target
and how to construct projective targets from affine targets.

Proposition 20. Let (G,R) be a 2-coloring of PG(r − 1, q). Let H be a hyperplane of
PG(r − 1, q). Assume that G is a projective target. Then PG(r − 1, q)|(G − H) is an
affine target.

Proof. As G is a projective target, G corresponds to a nested sequence (F0, F1, . . . , Fk) of
projective flats, where G is equal to the union of Fi+1 − Fi for all even i. Then Fj − H
is an affine flat for all j. Therefore, (F0 − H,F1 − H, . . . , Fk − H) is a nested sequence
of affine flats. Let F ′j = Fj −H for all j. Then PG(r − 1, q)|(G−H) corresponds to the
nested sequence (F ′0, F

′
1, . . . , F

′
k) of affine flats and G−H is equal to the union of F ′i+1−F ′i

for all even i.

The following result is immediate.

Proposition 21. Let (G,R) be a 2-coloring of AG(r− 1, q). Assume that G is an affine
target corresponding to a nested sequence (F0, F1, . . . , Fk) of affine flats where G is equal to
the union of Fi+1−Fi for all even i. Viewing AG(r−1, q) as a restriction of PG(r−1, q),
the sequence (clP (F0), clP (F1), . . . , clP (Fk)) is a nested sequence of projective flats and, if
GP is the projective target that is the union of clP (Fi+1) − clP (Fi) for all even i, and
H = E(PG(r − 1, q))−E(AG(r − 1, q)), then PG(r − 1, q)|(GP −H) ∼= AG(r − 1, q)|G.
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We call the projective target GP that arises from the affine target G in Proposition
21 the standard projective target arising from G. Now consider an affine target M1 that
arises from a green-red coloring of PG(r − 1, q)\H where H is a projective hyperplane.
Let M2 be a projective target that arises as a green-red coloring of H. We say that M1

and M2 are compatible if the green-red coloring of PG(r−1, q) induced by the colorings of
M1 and M2 is a projective target, that is, if PG(r− 1, q)|(E(M1)∪E(M2)) is a projective
target. In the previous proposition, the affine target G and the projective target GP ∩H
are compatible as PG(r − 1, q)|(G ∪ (GP ∩ H)) is the projective target GP . We now
consider when PG(r − 1, q)|(E(M1) ∪ E(M2)) is not a standard projective target. As
M1 is an affine target, it corresponds to a canonical nested sequence (F0, F1, . . . , Fk) of
affine flats. Let Fh be the first non-empty flat in this sequence. Then clP (Fh) meets the
projective hyperplane H in a rank-(r(Fh) − 1) projective flat T . In the construction of
a standard projective target, T is monochromatic. The next result shows that, apart
from the standard projective target, the only way for M1 and M2 to be compatible is if
we modify the standard projective target by replacing T with a 2-coloring of it that is a
projective target.

Proposition 22. Let (G,R) be a 2-coloring of PG(r − 1, q). Let H be a projective
hyperplane. Assume that PG(r − 1, q)|(G − H) is an affine target corresponding to a
canonical nested sequence (F0, F1, . . . , Fk) of affine flats. Assume that PG(r − 1, q)|(G ∩
H) is a projective target corresponding to a canonical nested sequence (S0, S1, . . . , St) of
projective flats. Then PG(r − 1, q)|(G −H) and PG(r − 1, q)|(G ∩H) are compatible if
and only if, when β is the smallest h such that r(Fh) > 0,

(i) there is an m in {0, 1, . . . , t} such that Fβ∪Sm is a projective flat, r(Sm) = r(Fβ)−1,
and PG(r − 1, q)|(G ∩ (Fβ ∪ Sm)) is a projective target; and

(ii) for all α in {1, 2, . . . , k−β}, the set Fβ+α∪Sm+α is a projective flat, (Fβ+α∪Sm+α)−
(Fβ+α−1 ∪ Sβ+α−1) is monochromatic, and t = m+ k − β.

Proof. Assume that PG(r − 1, q)|(G − H) and PG(r − 1, q)|(G ∩ H) are compatible.
Then PG(r − 1, q)|G is a projective target corresponding to a canonical nested sequence
(X0, X1, . . . , Xs) of projective flats. Thus (X0∩H,X1∩H, . . . , Xs∩H) is a nested sequence
of projective flats for PG(r−1, q)|H, and (X0−H,X1−H, . . . , Xs−H) is a nested sequence
of affine flats for PG(r − 1, q)\H. Now,

(a) X1 = ∅ and X2 ∩H = ∅ but X3 ∩H 6= ∅; or

(b) X1 = ∅ and X2 ∩H 6= ∅; or

(c) X1 6= ∅ but X1 ∩H = ∅ and X2 ∩H 6= ∅; or

(d) X1 6= ∅ and X1 ∩H 6= ∅.

For the projective target PG(r− 1, q)|H, the canonical nested sequence is (X2 ∩H,X3 ∩
H, . . . , Xs ∩H) in case (a) and is (X0 ∩H,X1 ∩H, . . . , Xs ∩H) in the other three cases.
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Let γ be the smallest h such that Xh−H is non-empty. Then clP (Xγ−H) meets H in
a projective flat of rank r(Xγ)− 1. Thus PG(r− 1, q)|(G∩Xγ ∩H) is a projective target
in Xγ∩H that corresponds to the canonical nested sequence (X2∩H,X3∩H, . . . , Xγ∩H)
in case (a) and to the canonical nested sequence (X0 ∩ H,X1 ∩ H, . . . , Xγ ∩ H) in the
other three cases.

Now (Xγ − Xγ−1) − H = (Xγ − H) − (Xγ−1 − H) = (Xγ − H) − ∅. Thus Xγ − H
is monochromatic. Therefore, the canonical nested sequence corresponding to PG(r −
1, q)|(G−H) is (Xγ−1−H,Xγ −H, . . . , Xs−H) when Xγ −H is green and is (∅, Xγ−1−
H,Xγ −H, . . . , Xs −H) when Xγ −H is red. Thus (F0, F1, . . . , Fk) is (Xγ−1 −H,Xγ −
H, . . . , Xs −H) when Xγ −H is green and is (∅, Xγ−1 −H,Xγ −H, . . . , Xs −H) when
Xγ −H is red. We see that Fβ = Xγ −H, that Fβ ∪ (Xγ ∩H) is a projective flat, that
r(Xγ∩H) = r(Fβ)−1, and that PG(r−1, q)|(G∩(Fβ∪(Xγ∩H))) = PG(r−1, q)|(G∩Xγ).
Therefore, PG(r − 1, q)|(G ∩ (Fβ ∪ (Xγ ∩ H))) is a projective target. Thus (i) holds.
Evidently Fβ+α ∪ (Xγ+α ∩H) = Xγ+α, so Fβ+α ∪ (Xγ+α ∩H) is a projective flat for all α
in {1, 2, . . . , k − β}. Moreover, γ + k − β = s and (ii) holds.

Now suppose that (i) and (ii) hold. We know that Sm − Sm−1 and Fβ are monochro-
matic. Then PG(r− 1, q)|G is a projective target for which the corresponding nested se-
quence is (S0, S1, . . . , Sm−1, Fβ∪Sm, Fβ+1∪Sm+1, . . . , Fk∪St) when the colors of Sm−Sm−1
and Fβ match and is (S0, S1, . . . , Sm, Fβ ∪Sm, Fβ+1∪Sm+1, . . . , Fk∪St) when the colors of
Sm−Sm−1 and Fβ differ. We conclude that PG(r−1, q)|(G∩H) and PG(r−1, q)|(G−H)
are compatible.

A minimal affine-non-target is an affine matroid that is not an affine target such that
every proper induced restriction of it is an affine target. The next result is an analog of
Lemma 12.

Lemma 23. Let (G,R) be a 2-coloring of AG(r − 1, q). Assume G is a rank-r minimal
affine-non-target. Then r(R) = r.

Proof. Assume r(R) < r. Then R is contained in an affine hyperplane H. As G is a
minimal affine-non-target, AG(r − 1, q)|(G ∩ H) is an affine target corresponding to a
nested sequence (F0, F1, . . . , Fn−1, H) of affine flats. As R ⊆ H, there are no red points in
E(AG(r−1, q))−H. Then we obtain the contradiction that G is an affine target for which
a corresponding sequence of nested affine flats is (F0, F1, . . . , Fn−1, H,E(AG(r − 1, q))) if
H − Fn−1 ⊆ R and (F0, F1, . . . , Fn−1, E(AG(r − 1, q))) if H − Fn−1 ⊆ G.

Lemma 24. Let (G,R) be a 2-coloring of AG(r − 1, 2). Assume G is a minimal affine-
non-target of rank r. Then AG(r− 1, 2) has a red hyperplane and a green hyperplane that
are disjoint.

Proof. Assume the lemma fails. By Lemma 23, r(R) = r, so we have a red hyperplane
X1 and a green hyperplane Y1. There are affine hyperplanes X2 and Y2 that are comple-
mentary to X1 and Y1, respectively. As the lemma fails, X2 is not green and Y2 is not
red. By assumption, X1 and Y1 meet in a rank-(r − 2) flat F1,1. For (i, j) 6= (1, 1), let
Fi,j = Xi ∩ Yj. As r(F1,1) = r − 2, it follows that r(Fi,j) = r − 2 for each i and j. Then
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{F1,1, F1,2, F2,1, F2,2} is a partition of AG(r− 1, 2) and there are red points in each of F1,2

and F1,1, and there are green points in each of F1,1 and F2,1. Next we show the following.

24.1. There is a red point in F2,1.

As AG(r− 1, 2)|(R ∩X2) is a target and r(G∩X2) < r− 1, it follows, by Lemma 18,
that either r(R ∩X2) = r− 1, or R ∩X2 and G∩X2 are affine flats of rank r− 2. In the
first case, there is certainly a red point in F2,1. Consider the second case. Assume that
F2,1 is monochromatic green. Then F2,2 is monochromatic red. As r(R∩F1,2) > 0, we see
that r(R ∩ Y2) = r − 1, so Y2 is red, a contradiction. Thus 24.1 holds.

24.2. F1,2 is red.

Assume that F1,2 is not red. Then r(R∩F1,2) < r−2. As X1 is red and r(G∩F1,1) > 0,
it follows that r(G∩F1,2) < r−2. Thus, by Lemma 18, R∩F1,2 and G∩F1,2 are affine flats
of rank r − 3. Observe that F1,1 is not red, otherwise r(R ∩ Y1) = r − 1, a contradiction.
Moreover, F1,1 is not a green flat, otherwise X1 is a green hyperplane. Thus R ∩ F1,1 and
G∩F1,1 are affine flats of rank r− 3. Now, as r(R∩X1) = r− 1 and |R∩X1| = |G∩X1|,
it follows by Lemma 17 that r(G∩X1) = r− 1, a contradiction to Lemma 18. Therefore,
24.2 holds.

As Y2 is not red but F1,2 is red, F2,2 is monochromatic green. Since r(G ∩ F2,1) > 0,
we obtain the contradiction that X2 is green.

In each of the remaining results in this section, we shall consider disjoint sets X and Y
of hyperplanes of AG(r− 1, q) where the members of X and Y partition E(AG(r− 1, q)).
With X = {X1, X2, . . . , Xq} and Y = {Y1, Y2, . . . , Yq}, let Fi,j = Xi ∩ Yj for all i and j.

Lemma 25. Let (G,R) be a 2-coloring of AG(r− 1, q), where q > 3. Assume that G is a
minimal affine-non-target of rank r. Then AG(r− 1, q) has a red hyperplane and a green
hyperplane that are disjoint.

Proof. Assume the lemma fails. By Lemma 19, each proper flat of AG(r − 1, q) is either
red or green but not both. By Lemma 23, r(G) = r(R) = r, so AG(r − 1, q) has a red
hyperplane X1 and a green hyperplane Y1. Then there are partitions {X1, X2, . . . , Xq}
and {Y1, Y2, . . . , Yq} of E(AG(r−1, q)) into sets X and Y of hyperplanes. By assumption,
all the hyperplanes in X are red and all the hyperplanes in Y are green. As X1 ∩ Y1 6= ∅,
it follows, by Lemma 16, that r(Fi,j) = r − 2 for all i and j.

As X1 is red, at most one of F1,1, F1,2, . . . , F1,q−1, and F1,q is green. Thus, we may
assume that F1,1, F1,2, . . . , F1,q−2, and F1,q−1 are red. As F1,1 is red and Y1 is green,
Y1−F1,1 will be monochromatic green. Similarly, Y2−F1,2 will be monochromatic green.
This implies that r(G ∩X2) = r(R ∩X2) = r − 1, a contradiction.

The following technical lemmas show a relationship between the lines and planes of
AG(r − 1, q) and the hyperplanes in X and Y. In these lemmas, when we take closures,
we are doing so in the underlying affine geometry AG(r − 1, q).

Lemma 26. Let X and Y be two disjoint sets each consisting of a set of hyperplanes
that partition AG(r − 1, q). Let x and y be distinct elements of E(AG(r − 1, q)) such
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that |{x, y} ∩ Fi,j| 6 1 for all i, j and no member of X or Y contains {x, y}. Then
| cl({x, y}) ∩Xi| = 1 and | cl({x, y} ∩ Yj| = 1 for all i and j.

Proof. Clearly | cl({x, y})∩Xi| 6 1 for all i, otherwiseXi contains {x, y}. As | cl({x, y})| =
q, we deduce that | cl({x, y}) ∩Xi| = 1 for all i. The lemma follows by symmetry.

Lemma 27. For q in {2, 3}, let X and Y be two disjoint sets each consisting of a set
of hyperplanes that partition AG(r − 1, q). Let {x, y, z} be a rank-3 subset of E(AG(r −
1, q)) such that |{x, y, z} ∩ Fi,j| 6 1 for all i and j, and there is an Xk in X such that
|Xk ∩ {x, y, z}| = 2. Then | cl({x, y, z}) ∩ Fi,j| = 1 for all i and j.

Proof. Note that, by Lemma 15, each Fi,j has rank r − 2. Let q = 2. We may assume
that x ∈ F1,1, that y ∈ F1,2, and that z ∈ F2,1. As r({x, y, z}) = 3, there is exactly one
point, say e, in cl({x, y, z}) − {x, y, z}. Assume e 6∈ F2,2. Then, by symmetry, we may
assume that e ∈ X1. As {e, x, y, z} is a circuit, we deduce that z ∈ X1, a contradiction.

Now assume that q = 3. We may assume that x ∈ F1,1 and y ∈ F1,2. Suppose
z ∈ F2,3. Consider cl({x, z}). The third point e on this line cannot be in X1, otherwise
the circuit {e, x, z} gives the contradiction that z is in X1. Similarly, e cannot be in
X2, Y1, or Y3. Therefore, e ∈ F3,2. By a similar argument, the third point on cl({y, z})
is in F3,1. Continuing in this manner, we deduce that | cl({x, y, z}) ∩ X3| = 3. Since
| cl({x, y, z})| = 9, using the same technique, we deduce that | cl({x, y, z}) ∩ Fi,j| = 1 for
all i and j. By symmetry, we may now assume that z ∈ F2,1. Then the third elements
on the lines cl({x, z}), cl({x, y}), and cl({y, z}) are in F3,1, F1,3, and F3,3, respectively.
Arguing as before, we again deduce that | cl({x, y, z}) ∩ Fi,j| = 1 for all i and j.

Lemma 28. Let X and Y be two disjoint sets each consisting of hyperplanes that partition
AG(r − 1, 2). Let P1 = {w, x, y, z} be a rank-3 flat of AG(r − 1, 2) such that w, x ∈ F1,2

and y, z ∈ F2,1. Let P2 = {e, f, y, z} be a rank-3 flat of AG(r− 1, 2) such that e, f ∈ F2,2.
Then cl(P1 ∪ P2) is a rank-4 affine flat such that | cl(P1 ∪ P2) ∩ Fi,j| = 2 for all i and j.

Proof. As |P1 ∩P2| = 2, it follows that r(P1 ∪P2) = 4. Thus cl(P1 ∪P2) is a rank-4 affine
flat. Now consider cl({e, w, z}). By Lemma 27, cl({e, w, z}) intersects F1,1 in an affine
flat. Therefore, as cl(P1 ∪ P2) meets each of X1, X2, Y1, Y2, F1,1, F1,2, F2,1, and F2,2 in an
affine flat, each such intersection has 1, 2, or 4 elements. Thus the lemma follows.

We now prove the main results of this section.

Proof of Theorem 3. Assume G is an affine target and there is a rank-4 affine flat F such
that AG(r − 1, 2)|(G ∩ F ) ∼= U4,4. Then AG(r − 1, 2)|(R ∩ F ) ∼= U4,4. This contradicts
Lemma 18 as r(G ∩ F ) = r(R ∩ F ) = 4. Hence a binary affine target does not have U4,4

as an induced restriction.
Let (G,R) be a 2-coloring of AG(r− 1, 2). Suppose that G is a rank-r minimal affine-

non-target and that G does not contain U4,4 as an induced restriction. By Lemma 24,
AG(r− 1, 2) has a red hyperplane X1 and a green hyperplane X2 such that X1 ∩X2 = ∅.
By Lemma 23, r(R) = r, so there is a red point z in X2. As AG(r − 1, 2)|(R ∩X1) is an
affine target, in X1, there is a monochromatic red rank-(r−2) flat F1,1 ⊆ X1. Observe that
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cl(F1,1 ∪ z) is a red hyperplane Y1 that intersects X1 and X2. Then there is a hyperplane
Y2 that is complementary to Y1. By Lemma 16, r(Fi,j) = r − 2 for all i and j. Observe
that z is in F2,1. Furthermore, there is a red point e in F1,2 and there are green points
f and g in F2,1 and F2,2, respectively. As r(G) = r, there is a green point h in F1,2. We
make the following observations.

3.1. F1,2 ∪ F2,1 is an affine hyperplane.

Observe that F2,1 is contained in three affine hyperplanes, two of which are F1,1 ∪F2,1

and F2,1 ∪ F2,2. Therefore, F1,2 ∪ F2,1 is the third such hyperplane. Thus 3.1 holds.

3.2. F2,2 is not monochromatic green.

Assume that F2,2 is monochromatic green. Then Y2 is green. By 3.1, F1,2 ∪ F2,1 is an
affine hyperplane, so both AG(r−1, 2)|(G∩(F1,2∪F2,1)) and AG(r−1, 2)|(R∩(F1,2∪F2,1))
are affine targets. Then there is a rank-(r − 2) affine flat F such that either G ∩ (F1,2 ∪
F2,1) ⊆ F or R∩ (F1,2 ∪F2,1) ⊆ F . Because we currently have symmetry between the red
and green subsets of AG(r−1, 2), we may assume the former. Then f and h are in F . Let
x be a red point in F1,2−F . Let P1 = cl({f, h, x}). The fourth point y on this plane is in
Y1, otherwise the circuit {f, h, x, y} gives the contradiction that f ∈ Y2. Moreover, y 6∈ F ,
otherwise the circuit {f, h, x, y} gives the contradiction that x ∈ F . Thus y ∈ F2,1−F , so
y is red. Let P2 = cl({f, g, y}). Then the fourth point g′ on this plane is in F2,2, so g′ is
green. By Lemma 28, r(cl(P1∪P2)) = 4. Let {s, t} = cl(P1∪P2)−{f, g, g′, h, x, y}. Then,
by Lemma 28, s and t in F1,1, so both points are red. Therefore, r(G ∩ cl(P1 ∪ P2)) =
r(R∩cl(P1∪P2)) = 4, so AG(r−1, 2)|{f, g, g′, h} ∼= U4,4. We conclude that AG(r−1, 2)|G
has U4,4 as an induced restriction, a contradiction. Thus 3.2 holds.

The affine hyperplane F1,2 ∪ F2,1 is either green, red, or half-green and half-red.

3.3. F1,2 ∪ F2,1 is not red

Assume that F1,2 ∪ F2,1 is red. Then, by the last part of Lemma 18, at least one of
F1,2 and F2,1 will be red. Assume that F2,1 is red. As X2 is green, F2,2 is monochromatic
green, otherwise r(R ∩X2) = r − 1. By 3.2, we deduce that F2,1 is not red. Thus F1,2 is
red. Observe that if F2,1 is green, then r(G ∩ (F1,2 ∪ F2,1)) = r(R ∩ (F1,2 ∪ F2,1)) = r− 1,
a contradiction. Thus, F2,1 is half-green and half-red. As X2 is green, the last part of
Lemma 18 gives that F2,2 is green. Therefore r(G∩ (F2,2 ∪ h)) = r− 1, so Y2 is green. As
F1,2 is red, F2,2 is monochromatic green, a contradiction to 3.2. Therefore, 3.3 holds.

Since G∩ (F1,2∪F2,1) is an affine target and F1,2∪F2,1 is not red, there is a monochro-
matic green flat Z of rank r − 2 that is contained in F1,2 ∪ F2,1. Because neither F1,2 nor
F2,1 is monochromatic green, Z meets F1,2 and F2,1 in monochromatic green flats, Z1,2

and Z2,1, of rank r− 3. Similarly, as G∩X2 is an affine target and X2 is green, there is a
monochromatic green flat V of rank r − 2 that is contained in X2. Because neither F2,1

nor F2,2 is monochromatic green, V meets F2,1 and F2,2 in monochromatic green flats, V2,1
and V2,2, of rank r − 3.

In the next part of the argument, we shall use the observation that if Y2 is green, then
we have symmetry between (X1, X2) and (Y1, Y2).

3.4. F1,2 ∪ F2,1 is not green.
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Assume that F1,2 ∪ F2,1 is green. Then, by Lemma 18, F2,1 or F1,2 is green. But the
latter case implies that Y2 is green, so this case can be reduced to the former by the
symmetry between (X1, X2) and (Y1, Y2) noted above. Thus we may assume that F2,1 is
green.

Now Z2,1 and V2,1 are rank-(r− 3) monochromatic green flats that are both contained
in F2,1. Suppose Z2,1 = V2,1. As F2,1 is green, there is a green element g1 in F2,1 − Z2,1.
Since F2,2 is not monochromatic green, there is a red point u1 in F2,2 − V2,2. Take a
green point g2 in V2,2 and let P1 = cl({g1, g2, u1}). Let the fourth point on this plane
be g3. Then g3 ∈ F2,1, otherwise the circuit {g1, g2, g3, u1} implies that g1 ∈ F2,2, a
contradiction. Likewise, g3 ∈ V2,1, otherwise g2 6∈ V , a contradiction. Because X1 is red,
there is a red point u2 in F1,2 − Z1,2. Let P2 = cl({g1, g3, u2}). Let g4 be the fourth point
on this plane. Then the circuit {g1, g3, g3, u2} implies that g4 ∈ Z1,2, so g4 is green.
By Lemma 28, cl(P1 ∪ P2) is a rank-4 affine flat having two points, s and t, in F1,1. We
see that AG(r − 1, 2)|{g1, g2, g3, g4} ∼= U4,4. Thus G has U4,4 as an induced restriction, a
contradiction. Thus Z2,1 6= V2,1.

Now Y2 contains the monochromatic green flats Z1,2 and V2,2, each of which has rank
r−3. Thus Y2 is green, or Y2 is half-green and half-red. Assume the latter. Then Z1,2∪V2,2
is a monochromatic green flat of rank r − 2 and Y2 − (Z1,2 ∪ V2,2) is a monochromatic
red flat of rank r − 2. As before, we take u1 to be a red point in F2,2. Choose g1 to be
a point in V2,2. Then g1 is green. Let g2 be a point in Z2,1 − V2,1, so g2 is green. Let
P1 = cl({g1, g2, u1}) and let g3 be the fourth point in P1. Then g3 ∈ F2,1 and g3 ∈ V . Thus
g3 ∈ V2,1, so g3 is green. Choose u2 in F1,2−Z1,2. Then u2 is red. Let P2 = cl({g1, u1, u2})
and let g4 be the fourth point in P2. Then g4 ∈ F1,2 and g4 ∈ Z1,2 ∪ V2,2, so g4 ∈ Z1,2.
Thus g4 is green. By Lemma 28, cl(P1 ∪ P2) is a rank-4 affine flat that meets F1,1 in
two elements, both of which are red. Moreover, AG(r − 1, 2)|{g1, g2, g3, g4} ∼= U4,4, a
contradiction.

We now know that Y2 is green. Then there is a monochromatic green flat W of rank
r − 2 such that W ⊆ Y2. As neither F1,2 nor F2,2 is monochromatic green, W ∩ F1,2

and W ∩ F2,2 are monochromatic green flats, W1,2 and W2,2, of rank r − 3. We choose
u1 to be a red point in F2,2 − (V2,2 ∪W2,2). Choose g1 in V2,2 ∩W2,2. Then g1 is green.
Choose g2 in Z2,1−V2,1. Then g2 is green. The fourth point g3 of the plane P1 that equals
cl({g1, g2, u1}) is in F2,1 ∩ V ; that is, g3 ∈ V2,1, so g3 is green. Now let u2 be a red point
in F1,2 − (Z1,2 ∪W1,2). The fourth point g4 on the plane P2 that equals cl({g1, u1, u2})
is in F1,2 ∩ W , so it is in W1,2 and hence is green. Then, by Lemma 28, cl(P1 ∪ P2)
is a rank-4 affine flat that contains exactly four green points g1, g2, g3, and g4. Since
AG(r − 1, 2)|{g1, g2, g3, g4} ∼= U4,4, we have a contradiction. We conclude that 3.4 holds.

By 3.3 and 3.4, we must have that F1,2 ∪ F2,1 is half-green and half-red. As Z is a
monochromatic green flat of rank r − 2 that is contained in F1,2 ∪ F2,1, we deduce that
(F1,2 ∪ F2,1) − Z is a monochromatic red flat of rank r − 2. Moreover, F1,2 − Z and
F2,1 − Z are monochromatic red flats of rank r − 3. Thus V2,1 = Z2,1. As X2 is green,
there is a green point g1 in F2,2 − V . Take g2 to be a point in V2,2 and let u1 be a point
in F2,1 − V2,1. Let P1 = cl({g1, g2, u1}). The fourth point g3 on this plane is in F2,2 and
in V so it is in V2,2 and hence it is green. Let u2 be a point in F1,2 − Z1,2. Then u2 is
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red. Let P2 = cl({g3, u1, u2}). The fourth point g4 on this plane is in F1,2 ∩ Z, so it is
green. By Lemma 28, cl(P1 ∪ P2) is a rank-4 affine flat that contains exactly four green
points, g1, g2, g3, and g4. Moreover, AG(r − 1, 2)|{g1, g2, g3, g4} ∼= U4,4, a contradiction.
We conclude that the theorem holds.

Proof of Theorem 4. Assume that G is an affine target over GF (3) such that there is a
rank-3 affine flat F for which AG(r − 1, 3)|(G ∩ F ) is one of U3,3, U3,4, U2,3 ⊕ U1,1, U2,3 ⊕2

U2,4, P (U2,3, U2,3), or W3. Then r(G ∩ F ) = r(R ∩ F ) = 3, contradicting Lemma 19.
Let (G,R) be a 2-coloring of AG(r− 1, 3). Suppose that G is a rank-r minimal affine-

non-target. Then r(G) > 3. If r(G) = 3, then, by Lemma 23, r(R) = 3. One can now
check that AG(r− 1, 3)|G is one of U3,3, U3,4, U2,3⊕U1,1, U2,3⊕2 U2,4, P (U2,3, U2,3), or W3.
Thus we may assume r(G) > 4 and that G does not contain a rank-3 flat F such that
r(G ∩ F ) = r(R ∩ F ) = 3. By Lemma 23, r(R) = r. Now, by Lemma 25, there is a
green hyperplane X1 and a red hyperplane X2 that are disjoint. Let {X1, X2, X3} and
{Y1, Y2, Y3} be distinct sets, X and Y, each consisting of three disjoint hyperplanes in
AG(r− 1, 3). Then, by Lemma 16, r(Fi,j) = r− 2 for all i and j. We proceed by showing
there are no possible colorings of the hyperplanes in Y.

4.1. If F1,1 and F1,2 are green, then Y1 or Y2 is green.

Assume that Y1 and Y2 are both red. Then Y1−F1,1 and Y2−F1,2 are monochromatic
red. As r(G) = r, there is a green element e in Y3 − F1,3. Let f and g be green elements
in F1,1 and F1,2, respectively. Consider cl({e, f, g}). By Lemma 27 this plane will contain
red points in F2,1, F2,2, and F3,2. Therefore r(G ∩ cl({e, f, g})) = r(R ∩ cl({e, f, g})) = 3,
a contradiction. Thus 4.1 holds.

4.2. There cannot be at least two red hyperplanes or at least two green hyperplanes in
Y.

Assume that Y1 and Y2 are red. As X1 is green, at most one of F1,1, F1,2, and F1,3 is
red. By 4.1, we may assume that F1,2 is red. Then X1 − F1,2 is monochromatic green, so
Y1 − F1,1 is monochromatic red. As r(G) = r, there is a green point g that is not in X1.
Then g ∈ F2,2 ∪ F2,3 ∪ F3,2 ∪ F3,3. Let e be a green point in F1,1, and f be a red point in
F1,2. Consider cl({e, f, g}). By Lemma 27, this plane will contain red points in F2,1 and
F3,1, and a green point in F1,3. Therefore, r(G ∩ cl({e, f, g})) = r(R ∩ cl({e, f, g})) = 3,
a contradiction. By symmetry, there cannot be two green hyperplanes in Y. Thus 4.2
holds.

We conclude that there are no possible colorings of the hyperplanes in Y, a contra-
diction.

Proof of Theorem 5. Assume that G is an affine target over GF (q) for q > 4. If there
is a rank-2 affine flat F such that AG(r − 1, q)|(G ∩ F ) is any of U2,2, U2,3, . . . , U2,q−3, or
U2,q−2, then r(G ∩ F ) = r(R ∩ F ), contradicting Lemma 19.

Let (G,R) be a 2-coloring of AG(r− 1, q). Suppose that G is a rank-r minimal affine-
non-target that does not contain U2,2, U2,3, . . . , U2,q−3, or U2,q−2 as an induced restriction.
Then r(G) > 3. By Lemma 19, r(R) = r. Now, by Lemma 25, there is a red hyperplane
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X1 that is disjoint from a green hyperplane X2. Let {X1, X2, . . . , Xq} and {Y1, Y2, . . . , Yq}
be disjoint sets, X and Y, each consisting of q disjoint hyperplanes in AG(r − 1, q). By
Lemma 16, r(Fi,j) = r − 2 for all i and j. We show there are no possible colorings of the
hyperplanes in Y.

5.1. There is at least one green hyperplane and at least one red hyperplane in Y.

Assume that all members of Y are red. As X2 is green, we may assume that
F2,1, F2,2, . . . , F2,q−2, and F2,q−1 are green. Then Yk − F2,k is monochromatic red for all k
in {1, 2, . . . , q− 1}. As r(G) = r, there is a green element e in Yq − F2,q. We may assume
that e ∈ F3,q. Let f be a green element in F2,1. Consider cl({e, f}). By Lemma 26, this
line will contain red points in Y2− (F2,2 ∪F3,2) and Y3− (F2,3 ∪F3,3). However, this gives
the contradiction that r(G ∩ cl({e, f})) = r(R ∩ cl({e, f})) = 2. By symmetry, not all
members of Y are green. Thus 5.1 holds.

5.2. There cannot be at least two green hyperplanes and at least two red hyperplanes in
Y.

Let Y1 and Y2 be green and let Y3 and Y4 be red. As X1 is red, at most one of
F1,1, F1,2, . . . , F1,q−1, and F1,q is green. This implies that F1,1 or F1,2 is red, so we may
assume the latter. Then Y2 − F1,2 is monochromatic green. Similarly, as X2 is green,
F2,3 or F2,4, say F2,3, is green. Then Y3 − F2,3 is monochromatic red. Assume F1,1 and
F2,1 are green. Then X1 − F1,1 is monochromatic red. Let e be a red point in F1,4 and
let f be a green point in F2,1. Consider cl({e, f}). Then, by Lemma 26, this line will
have a green point in Y2 − (F1,2 ∪ F2,2) and a red point in Y3 − (F1,3 ∪ F2,3). Hence
r(G∩ cl({e, f})) = r(R∩ cl({e, f})), a contradiction. A symmetric argument holds when
F1,4 and F2,4 are both red. Therefore, F1,1 or F2,1 is red, and F1,4 or F2,4 is green. This
implies that Y1−(F1,1∪F2,1) is monochromatic green and Y4−(F1,4∪F2,4) is monochromatic
red. Hence r(G ∩X3) = r(R ∩X3) = r − 1, a contradiction. Thus 5.2 holds.

5.3. There cannot be exactly one red hyperplane or exactly one green hyperplane in Y.

Assume that Y1 is red and Y2, Y3, . . . , Yq−1, and Yq are green. As X1 is red, at most one
of F1,1, F1,2, . . . , F1,q−1, and F1,q is green. First assume that F1,2, F1,3, . . . , F1,q−1 and F1,q

are red. Then Yk − F1,k is monochromatic green for all k in {2, 3, . . . , q}. By Lemma 19,
r(R) = r, so there is a red point e in Y1 − F1,1. We may assume e is in F2,1. Let f be a
red point in F1,2 and consider cl({e, f}). By Lemma 26, this line will have green points in
X3−(F3,1∪F3,2) and X4−(F4,1∪F4,2). Therefore, r(G∩cl({e, f})) = r(R∩cl({e, f})) = 2,
a contradiction.

Now assume that F1,2 is green. Then X1−F1,2 is monochromatic red. Hence Yk−F1,k

is monochromatic green for all k in {3, 4, . . . , q}. Let e be a red element in Y1 − F1,1 and
f be a green element in Y2 − F1,2 such that |Xi ∩ {e, f}| 6 1 for all i in {2, 3, . . . , q}. As
Y1 is red and Y2 is green, such a pair of points exists. We may assume that e ∈ F2,1 and
f ∈ F3,2. Then, by Lemma 26, cl({e, f}) will contain a red element in X1 − (F1,1 ∪ F1,2)
and a green element in X4− (F4,1 ∪F4,2), a contradiction. By symmetry, there cannot be
exactly one green hyperplane in Y. Thus 5.3 holds.

We conclude that there are no possible colorings of the hyperplanes in Y, a contra-
diction.
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