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Abstract

Let Cn,g be the number of rooted cubic maps with 2n vertices on the orientable
surface of genus g. We show that the sequence (Cn,g : g > 0) is asymptotically
normal with mean and variance asymptotic to (1/2)(n − ln n) and (1/4) ln n, re-
spectively. We derive an asymptotic expression for Cn,g when (n − 2g)/ ln n lies
in any closed subinterval of (0, 1). Using rotation systems and Bender’s theorem
about generating functions with fast-growing coefficients, we derive simple asymp-
totic expressions for the numbers of rooted regular maps, disregarding the genus.
In particular, we show that the number of rooted cubic maps with 2n vertices,
disregarding the genus, is asymptotic to 3

π n!6n.
Mathematics Subject Classifications: 05C88, 05C89

1 Introduction

This paper is motivated by two lines of research. The first is about genus distributions of
graphs, which is an active research area in topological graph theory [14, 15, 17, 16, 27, 29].
The second is about asymptotic properties of rooted maps of high genus, which has
attracted much attention recently [1, 6, 11, 24, 25]. There is a close connection between
genus distribution of graphs and enumeration of rooted maps, which we shall briefly
describe below. Let Σg denote the orientable surface of genus g. A map on Σg is a
connected graph G that is embedded on Σg in such a way that each component of Σg−G,
called a face, is a simply connected region (i.e., a topological disk). Such an embedding
is known as 2-cell (or cellular) embedding. Throughout the paper, all maps and graph
embeddings are cellular embeddings on orientable surfaces. A map on Σg will be called
a map with genus g. A map is called cubic if all its vertices have degree 3. The dual
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of a cubic map is known as a triangular map (or triangulation), whose faces all have
degree 3. Throughout the paper, a map is always rooted, meaning that a vertex and an
edge incident to it are distinguished. The notion of rooted map was first introduced by
Tutte in his seminal paper [28] on enumeration of planar maps. We emphasize that there
is no labeling (neither vertex nor edge) in rooted maps. Rooting a map trivializes the
automorphism group which makes enumeration easier.

On the other hand, in topological graph theory [7, 8], one trivializes the automorphism
group of an embedded graph by labeling and orienting the edges. A 2-cell embedding can
be described combinatorially in terms of a permutation φ of the ends of the edges, known
as rotation system. The cycles of φ describe the cyclic ordering (say, clockwise) of the
(ends of) edges at each vertex. For each rooted map with n edges, there are (n− 1)!2n−1

ways to label and to orient the n− 1 non-root edges of the underlying graph. This gives
the following connection between rooted maps and rotation systems [20, Lemma 2.3].
Proposition 1. Each rooted map with n edges corresponds to exactly 2n−1(n−1)! rotation
systems.

For a given family F of edge-labeled directed graphs, let Fn,g denote the number of
embeddings of the graphs in F of n edges and genus g. The sequence (Fn,g, g > 0) is
called the genus distribution of F . By Proposition 1, Fn,g21−n/(n − 1)! is the number of
rooted maps whose underlying graphs are in F . Genus distributions of graphs were first
introduced by Gross and Furst [7]. Jackson [20] derived a simple recursion for the number
of rooted bouquets (maps with only one vertex, whose duals are known as unicellular maps)
using rotation system and group characters. Using Jackson’s result (also known as Harer-
Zagier’s formula [18]), Gross et al. [16] showed that the genus distribution of bouquets is
strongly unimodal, and Stahl [27] derived an asymptotic relation between the number of
rooted bouquets and the Stirling cycle numbers. It follows from Stahl’s result (and the
well-known fact that the distribution of Stirling cycle numbers is asymptotically normal)
that the genus distribution of bouquets is asymptotically normal. An exact expression
for the genus distribution of bouquets was given in [21].

Algorithms for computing the genus distributions of some families of cubic graphs
were studied in [14, 15, 17]. It was shown in [29] that the genus distribution of a general
graph can be computed using the genus distributions of some cubic graphs.

Much work has been done on the enumeration of rooted maps of constant genus since
Tutte’s pioneering work on planar maps [28]. Many families of non-planar maps have also
been enumerated; see, e.g., [3, 4, 10]. In contrast, enumerative results on maps with high
genus (both the genus and the number of edges go to infinity) are rare. It is clear that
studying the genus distribution involves enumerating maps of high genus. Properties of
large unicellular maps of high genus were studied in [1, 24, 25].

Let Cn,g be the number of rooted cubic maps with 2n vertices and genus g, and Jn,f
be the number of rooted cubic maps with 2n vertices and f faces. It follows from Euler’s
formula that

f = n+ 2− 2g, (1)
Cn,g = Jn,n+2−2g. (2)

the electronic journal of combinatorics 31(2) (2024), #P2.49 2



By Proposition 1, (Cn,g23n−1(3n−1)! : g > 0) is the the genus distribution of cubic graphs.
The sequence (Jn,f23n−1(3n − 1)! : f > 1) is known as the region distribution of cubic
graphs.

More recently properties of large triangulations (duals of cubic maps) of high genus
were studied in [6], where an asymptotic formula, which is accurate up to a sub-exponential
factor, was obtained. An asymptotic formula for such triangulations was reported in [11];
however, there is a gap in the proof. In this paper we will derive an asymptotic formula
for the number of rooted cubic maps with high genus, which is accurate up to a constant
factor. As in [11], we use the Goulden-Jackson recursion for the number of rooted cubic
maps; however, we shall focus on the genus polynomial ∑g Cn,gx

g in the current paper
instead of the generating function ∑nCn,gx

n in [11].
The rest of the paper is organized as follows. In Section 2, we use rotation systems

and Bender’s theorem about generating functions with fast growing coefficients to derive
asymptotic expressions for the numbers of all maps and regular maps, disregarding the
genus. In particular, a simple asymptotic formula is obtained for the number of rooted
cubic maps, disregarding the genus. Our main results about the genus distribution of cubic
graphs and asymptotic number of rooted cubic maps of high genus are stated at the end
of this section. In section 3, we analyze the asymptotic behavior of the genus polynomials
of cubic graphs using the Goulden-Jackson recursion. This is the most technical part of
the paper due to the complexity of the nonlinear recursion. The proofs of our main results
are then completed by using the limit theorems from [12]. Section 4 concludes our paper.

2 The results

Since there are (2n − 1)! permutations of 2n elements which have exactly one cycle, by
Proposition 1 the total number of rooted bouquets with n edges is equal to

(2n− 1)!
(n− 1)!2n−1 .

Proposition 1 can also be used to find the asymptotic number of rooted maps, disregard-
ing the genus, in some other families. To the best of our knowledge, such asymptotic
results have not appeared in the literature. We will use the following result about the
generating functions with fast growing coefficients, which is an immediate consequence
of [2, Corollary 4] (See also [30, Theorem 2]). We say that a sequence (an) of positive
numbers grows super-exponentially if an/an−1 →∞ as n→∞.

Proposition 2. Suppose (an) grows super-exponentially, a0 = 1 and
n−1∑
k=1

akan−k = O(an−1). (3)

Then

[zn] ln
∑
n>0

anz
n

 ∼ an.
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Proposition 3. (a) The total number of rooted maps with n edges is asymptotic to

(2n)!
(n− 1)!2

1−n.

(b) For each fixed integer d > 2 and as m→∞, the number of rooted 2d-regular maps
with m vertices is asymptotic to

(2md)!
m!(md− 1)!(2d)−m 21−md. (4)

(c) For each fixed odd integer r > 3 and as k →∞, the number of rooted r-regular maps
with 2k vertices is asymptotic to

(2kr)!
(2k)!(kr − 1)!r

−2k21−kr. (5)

Proof. For part (a), we note [22] that the exponential generating function of (transitive)
rotation systems is given by

ln
∑
k>0

(2k)!
k! zk

 .
It follows from Proposition 1 that the total number of rooted n-edged maps is equal to

1
(n− 1)!2

1−nn! [zn] ln
∑
k>0

(2k)!
k! zk

 .
We now verify that ak := (2k)!

k! grows super-exponentially and satisfies (3). We have

an
an−1

= 2(2n− 1)→∞.

For 1 6 k 6 n/2, we have

akan−k
ak−1an−k+1

= (2k − 1)
(2n+ 1− 2k) 6 1.

Consequently,

n−1∑
k=1

akan−k 6 2a1an−1 + 2
∑

26k6n/2
akan−k

6 2an−1 + na2an−2

= O(an−1).
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By Proposition 2, we have

[zn] ln
∑
k>0

(2k)!
k! zk

 ∼ (2n)!
n! .

Hence the total number of rooted n-edged maps is asymptotic to

1
(n− 1)!2

1−nn! (2n)!
n! ,

which completes the proof of part (a).
For part (b), we first note that each 2d-regular graph with m vertices has md edges,

and there are
(2md)!

(2d)mm!
permutations of 2md elements with exactlym cycles of length 2d. Hence the corresponding
exponential generating function of (transitive) rotation systems is given by

ln
∑
m>0

(2md)!
(2d)mm!

1
(md)!z

md

 .
It follows from Proposition 1 (use the substitution w := zd) that the number of rooted
2d-regular maps with m vertices is equal to

1
(md− 1)! 21−md(md)! [wm] ln

∑
m>0

(2md)!
(2d)mm!

1
(md)!w

m

 .
We now verify that am := (2md)!

(2d)mm!
1

(md)! grows super-exponentially and satisfies (3). For
each fixed d > 2 and as m→∞, we have

am
am−1

= (2md)(2md− 1) · · · (2md− 2d+ 1)
(2d)(m)(md)(md− 1) · · · (md− d+ 1)

= 1
md

2d−1 ∏
16j62d−1,2-j

(2md− j)

∼ 22d−1(md)d−1,

which shows that am grows super-exponentially. For 1 6 k 6 m/2, we have

k 6 m− k + 1, 2kd− j
2(m− k + 1)d− j 6 1,

and hence
akam−k

ak−1am−k+1
= m− k + 1

k

∏
16j62d−1,2-j

2kd− j
2(m− k + 1)d− j
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6
m− k + 1

k

2kd− 1
2(m− k + 1)d− 1

= 2k(m− k + 1)d− (m− k + 1)
2k(m− k + 1)d− k

6 1.

Now the asymptotic expression (4) follows from the same argument as that for part (a).
For part (c), since r > 3 is odd, each r-regular graph must have an even number of

vertices, and each r-regular graph with 2k vertices has exactly kr edges. Since there are

(kr)!
r2k (2k)!

permutations of 2kr elements with exactly 2k cycles of length r, the corresponding expo-
nential generating function of (transitive) rotation systems is given by

ln
∑
k>0

(2kr)!
r2k (2k)!

1
(kr)!z

kr

 .
It follows from Proposition 1 (use the substitution w := zr) that the number of rooted
r-regular maps with 2n vertices is equal to

1
(nr − 1)! 21−nr(nr)! [wn] ln

∑
n>0

(2nr)!
r2n (2n)!

1
(nr)!w

n

 .
We now verify that ak := (2kr)!

r2k (2k)!
1

(kr)! grows super-exponentially and satisfies (3). For
each fixed r > 3 and as n→∞, we have

an
an−1

= 1
r2n(2n− 1)2r−1 ∏

16j62r−1,2-j
(2nr − j)

∼ 22r−2(nr)r−2.

For 1 6 k 6 n/2, we have
2kr − j

2(n− k + 1)r − j 6 1,

and hence (taking the terms corresponding to j = 1 and j = 2r − 1 from the product)

akan−k
ak−1an−k+1

= (n− k + 1)(2n− 2k + 1)
k(2k − 1)

∏
16j62r−1,2-j

2kr − j
2(n− k + 1)r − j

6
(n− k + 1)(2n− 2k + 1)

k(2k − 1)
2kr − 1

2(n− k + 1)r − 1
2(k − 1)r + 1
2(n− k)r + 1

= (2kr − 1)(n− k + 1)
k(2(n− k + 1)r − 1)

(2(k − 1)r + 1)(2n− 2k + 1)
(2k − 1)(2(n− k)r + 1)
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= 2kr(n− k + 1)− (n− k + 1)
2k(n− k + 1)r − k

(2(k − 1)r + 1)(2n− 2k + 1)
(2k − 1)(2(n− k)r + 1)

6
2(2k − 1)(n− k)r + (2k − 1)− 2(n+ 1− 2k)(r − 1)

2(2k − 1)(n− k)r + (2k − 1)
6 1.

Now the asymptotic expression (5) follows from the same argument as that for
part (a).

Let Cn = ∑
g>0 Cn,g be the total number of rooted cubic maps with 2n vertices. The

next result follows immediately from Proposition 3(c) and Stirling’s formula.

Corollary 4. The total number of rooted cubic maps with 2n vertices is

Cn ∼
3
π
n! 6n ∼ 6√

2π

(6
e

)n
nn+ 1

2 .

We would like to point out that the above asymptotic expression can also be obtained
using a bijection between cubic maps and certain family of λ-terms [5, Theorems 3.3 and
3.4].

Our main results are summarized in the following two theorems.

Theorem 5. (a) The genus distribution of cubic graphs is asymptotically normal with
mean and variance, respectively, asymptotic to n−lnn

2 and lnn
4 . That is,

∑
g6n−ln n

2 + t
√

ln n
2

Cn,g
Cn
∼ 1√

2π

∫ t

−∞
exp

(
−x

2

2

)
dx.

(b) The region distribution of cubic graphs is asymptotically normal with mean and
variance both asymptotic to lnn.

Theorem 6. Let ε be any small positive constant. There is a function K(y) which is
analytic in [ε, 1− ε] such that

Cn,g ∼
√

2
3 K

(
n− 2g

lnn

)( lnn
n− 2g

)2

6n (n− 1)!
(n− 2g)!(lnn)n−2g, (6)

uniformly for all g, n→∞ satisfying

n− 2g
lnn ∈ [ε, 1− ε].
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3 Proofs of Theorems 1 and 2

We shall use the Iverson bracket JP K, which is equal to 1 if the predicate P is true and 0
otherwise. Define

Hn,g = (3n+ 2)Cn,g for n > 1, (7)

H−1,g = Jg = 0K/2, H0,g = 2Jg = 0K, Hn,−1 = 0. (8)

Goulden and Jackson [13] derived the following recursion for (n, g) 6= (−1, 0):

Hn,g = 4n(3n+ 2)(3n− 2)
n+ 1 Hn−2,g−1

+ 4(3n+ 2)
n+ 1

n−1∑
k=−1

g∑
h=0

Hk,hHn−2−k,g−h. (9)

Define

Hn(x) = 3n+ 2
n! 6−n

∑
g>0

Cn,gx
g = 1

n!6
−n∑

g>0
Hn,gx

g,

Jn(y) = 3n+ 2
n! 6−n

∑
f>1

Jn,fy
f .

Using (2), we obtain

Jn(y) = 3n+ 2
n! 6−n

∑
g>0

Cn,gy
n+2−2g

= Hn(1/y2)yn+2. (10)

It follows from (8) and (9) that

H0(x) = 2, (11)

H1(x) = 20 + 5x
6 , (12)

H2(x) = 32 + 28x
9 , (13)

Hn(x) = 2(3n+ 2)
3n(n+ 1)Hn−1(x) + 9n2 − 4

9(n2 − 1)xHn−2(x)

+ 3n+ 2
9n(n2 − 1)

n−2∑
k=0

1(
n−2
k

)Hk(x)Hn−2−k(x). (n > 2) (14)

Setting x = 1/y2 and using (10)–(14), we obtain

J1(y) = y(20y2 + 5)
6 , (15)

the electronic journal of combinatorics 31(2) (2024), #P2.49 8



J2(y) = 4y2(8y2 + 7)
9 , (16)

J3(y) = 11y(336y4 + 664y2 + 105)
1296 , (17)

J4(y) = y2
(448

243y
4 + 1631

243 y
2 + 1183

324

)
, (18)

J5(y) = 17y(27456y6 + 163248y4 + 198396y2 + 25025)
466560 , (19)

J6(y) = y2 (3072y6 + 27532y4 + 61185y2 + 26261)
6561 , (20)

and for n > 7 (separating the six terms corresponding to k ∈ {0, 1, 2, n− 2, n− 3, n− 4}
in the last summation of (14) )

Jn(y) = 2(3n+ 2)y
3n(n+ 1) Jn−1(y)

+
(

9n2 − 4
9(n2 − 1) + 4(3n+ 2)y2

9n(n2 − 1)

)
Jn−2(y)

+ 2(3n+ 2)
9n(n2 − 1)(n− 2)J1(y)Jn−3(y) (21)

+ 4(3n+ 2)
9n(n2 − 1)(n− 2)(n− 3)J2(y)Jn−4(y)

+ 3n+ 2
9n(n2 − 1)

n−5∑
k=3

1(
n−2
k

)Jk(y)Jn−2−k(y).

To derive asymptotics of Jn(y), we first show that n−yJn(y) = O(1) when 0 6 y 6 1.

Lemma 7. Let

hn(y) := n−yJn(y). (22)

For n > 2, we have

hn(1) 6 10
3 , (23)

hn(y) 6 exp (5− 5/n) . (0 6 y < 1) (24)

Proof. The recursion (21) can be rewritten as

hn(y) = 2(3n+ 2)y
3n(n+ 1)

(
n− 1
n

)y
hn−1(y)

+
(

9n2 − 4
9(n2 − 1) + 4(3n+ 2)y2

9n(n2 − 1)

)(
n− 2
n

)y
hn−2(y)

+ 2(3n+ 2)
9n(n2 − 1)(n− 2)

(
n− 3
n

)y
J1(y)hn−3(y) (25)
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+ 4(3n+ 2)
9n(n2 − 1)(n− 2)(n− 3)

(
n− 4
n

)y
J2(y)hn−4(y)

+ 3n+ 2
9n(n2 − 1)

n−5∑
k=3

1(
n−2
k

) (k(n− 2− k)
n

)y
hk(y)hn−2−k(y).

Using (15)–(20) and (22), we obtain

h1(1) = 25
6 , h2(1) = 10

3 > h3(1) > h4(1) > h5(1) > h6(1) < 3, (26)

which establishes (23) for 1 6 n 6 6.
Setting y = 1 in (25) and using (26) and

3n+ 2
3(n+ 1) < 1,

n− 4
(n− 3)(n− 2) <

1
n− 1 ,

9n2 − 4
9(n2 − 1) + 4(3n+ 2)

9n(n2 − 1) = (3n+ 2)(3n2 − 2n+ 4)
9n(n2 − 1) ,

we obtain

hn(1) 6 2(3n+ 2)(n− 1)
3n2(n+ 1) hn−1(1) + (n− 2)(3n+ 2)(3n2 − 2n+ 4)

9n2(n2 − 1) hn−2(1)

+ 25
9n2(n− 1)hn−3(1) + 80

9n2(n− 1)2hn−4(1)

+ 1
3n2(n− 1)

n−5∑
k=3

k(n− 2− k)(
n−2
k

) hk(1)hn−2−k(1). (27)

We now assume n > 7 and move on to the inductive step. Dividing both sides of (27) by
10/3 and using the induction hypothesis, we obtain

hn(1)
10/3 6

2(3n+ 2)(n− 1)
3n2(n+ 1) + (n− 2)(3n+ 2)(3n2 − 2n+ 4)

9n2(n2 − 1)

+ 25
9n2(n− 1) + 80

9n2(n− 1)2

+ 10
9n2(n− 1)

n−5∑
k=3

k(n− 2− k)(
n−2
k

)
= 1− 7n3 − 18n2 − 90n− 59

9n2(n2 − 1)(n− 1) + 10
9n2(n− 1)

n−5∑
k=3

k(n− 2− k)(
n−2
k

) . (28)

Using Maple, it is easy to verify that
n−5∑
k=3

k(n− 2− k)(
n−2
k

) achieves maximum at n = 10 and

10−5∑
k=3

k(10− 2− k)(
10−2
k

) = 107
140 <

9
10 .
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It follows from (28) that, for n > 7,

hn(1)
10/3 6 1− 7n3 − 18n2 − 90n− 59

9n2(n2 − 1)(n− 1) + 1
n2(n− 1)

= 1− 7n3 − 27n2 − 90n− 50
9n2(n2 − 1)(n− 1)

< 1.

This completes the proof of (23).
Next we consider the case 0 6 y < 1. Noting that Jn(y) is a polynomial of y with

non-negative coefficients, we obtain from (22) and (23) that

hn(y) 6 Jn(1)n−y = hn(1)n1−y 6
10
3 n

1−y. (n > 1, 0 6 y 6 1) (29)

It is easy to check 10n/3 < exp(5− 5/n) for all 2 6 n 6 35. It follows from (29) that (24)
holds for 2 6 n 6 35. Hence we may assume n > 36 and move on to the inductive step.

Replacing hk(y) in the last line of (25) by the upper bound in (29) and using

9n2 − 4
9(n2 − 1) + 4(3n+ 2)

9n(n2 − 1) 6 1 + 5
9(n2 − 1) + 4

3n(n− 1) ,

3n+ 2
3(n+ 1) 6 1,(

k(n− 2− k)
n

)y
k1−y 6 k,

we obtain from (25) that

hn(y) 6 2y
n
hn−1(y) +

((
n− 2
n

)y
+ 5

9(n2 − 1) + 4
3n(n− 1)

)
hn−2(y)

+ 2
3n(n− 1)

(
J1(y)
n− 2hn−3(y) + 2J2(y)

(n− 2)(n− 3)hn−4(y)
)

+ 10
9n(n− 1)

n−5∑
k=3

k(
n−2
k

)hn−2−k(y). (30)

Dividing both sides of (30) by exp (5− 5/n) and using the induction hypothesis and

J1(y) 6 25
6 ,

J2(y) 6 20
3 ,

we obtain
hn(y)

exp(5− 5/n) 6
2y
n

+
((

n− 2
n

)y
+ 5

9(n2 − 1) + 4
3n(n− 1)

)
exp

(
−10

n(n− 2)

)
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+ 2
3n(n− 1)

(
25

6(n− 2) + 40
3(n− 2)(n− 3)

)

+ 10
9n(n− 1)

n−5∑
k=3

k(
n−2
k

) . (31)

Using

(1− t)y 6 1− yt, (0 6 y, t 6 1) (32)

e−t 6 1− 4t
5 , (0 6 t 6 0.45) (33)

n−5∑
k=3

k(
n−2
k

) 6
1

100 , (n > 36)

we obtain from (31) that (noting n > 36)

hn(y)
exp(5− 5/n) 6

2y
n

+
(

1− 2y
n

)(
1− 8

n2

)
+ 5

9(n2 − 1) + 4
3n(n− 1)

+ 2
3n(n− 1) + 1

90n(n− 1)

6 1− 1
n2 .

This completes the proof of Lemma 1.
The range of y in Lemma 7 can be extended, and we illustrate this in the next lemma.

We remark that the upper end y = 2 below is chosen for simplicity, and it can be extended
further. In fact we believe that hn(y) is bounded by a function of y for all y > 0, but we
are unable to prove this at this stage.
Lemma 8. For n > 2 and 1 < y 6 2, we have

hn(y) 6 9n, (34)
hn(y) 6 exp(10− 10/n). (35)

Proof. The proof is essentially the same as that of Lemma 1. Using (15)–(20) and (25),
it is easy to check that both (34) and (35) hold for 2 6 n 6 19. So we assume n > 20
and move on to the inductive step. Dividing both sides of (25) by 9n and using induction
hypothesis, we obtain

hn(y)
9n 6

2y
n

+
(
n− 2
n

)y+1
+ 5

9(n2 − 1) + 4y2

3n(n− 1)

+ 2
3n(n− 1)

(
J1(y)
n− 2 + 2J2(y)

(n− 2)(n− 3)

)

+ 3
n(n− 1)

n−5∑
k=3

1(
n−2
k

) (k(n− 2− k)
n

)y+1

. (36)
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Using (33) and

(1− t)s 6 e−st 6 1− st+ s2t2

2 , (0 < t < 1, s > 0) (37)

J1(y)
n− 2 + 2J2(y)

(n− 2)(n− 3) = y(20y2 + 5)
6(n− 2) + 8y2(8y2 + 7)

9(n− 2)(n− 3) <
5
2 , (38)

we obtain

hn(y)
9n 6

2y
n

+
(

1− 2(y + 1)
n

+ 2(y + 1)2

n2

)
+ 5

9(n2 − 1) + 16 + 5
3n(n− 1)

+ 3
n(n− 1)

n−5∑
k=3

1(
n−2
k

) (k(n− 2− k)
n

)y+1

. (39)

With the help of Maple, it can be checked that, for n > 20 and 1 < y 6 2,

n−5∑
k=3

1(
n−2
k

) (k(n− 2− k)
n

)y+1

<
1
4 . (40)

Substituting this into (39) and using n > 20, 1 < y 6 2, we obtain

hn(y)
9n 6 1− 2

n
+ 1

19n

(
18 + 5

9 + 21
3 + 3

4

)
< 1.

This completes the proof of (34).
The proof of (35) is similar. Using (37), (34), (33), and replacing hk(y) in the last line

of (25) by 9k, we obtain

hn(y)
exp(10− 10/n) 6

2y
n

(
1− y

n
+ y2

2n2

)
+
(

1− 2y
n

+ 2y2

n2

)(
1− 16

n2

)

+ 5
9(n2 − 1) + 4y2

3n(n− 1)

+ 2
3n(n− 1)

(
J1(y)
n− 2 + 2J2(y)

(n− 2)(n− 3)

)

+ 3
n(n− 1)

n−5∑
k=3

k(
n−2
k

) (k(n− 2− k)
n

)y
.

Using 0 6 y 6 2, n > 20, (40), and

n−5∑
k=3

k(
n−2
k

) (k(n− 2− k)
n

)y
<

1
4 . (41)
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we obtain

hn(y)
exp(10− 10/n) 6 1− 1

n2 < 1.

This completes the proof of (35).

The next result gives asymptotics for hn(y) which will be used to prove our main results
(Theorems 1 and 2). In what follows, <(z) and =(z) stand for the real and imaginary
parts of a complex number z, respectively, S shall denote the set {y ∈ C : |y| 6 2,<(y) >
0, |y| − <(y) < 1}, and all the big-O terms are independent of y.
Theorem 9. There is a function K(y) which is analytic in S such that

hn(y) = K(y) + o(1) + J<(y) = 0KO(1). (y ∈ S) (42)

Proof. We have

|hn(y)| = |Jn(y)|n−<(y) 6 Jn(|y|)n−<(y) = hn(|y|)n|y|−<(y). (43)

Using Lemmas 1 and 2, we have

|hn(y)| 6 e10n|y|−<(y). (|y| 6 2) (44)

It follows from (25) that, for |y| 6 2,

hn(y)− hn−2(y) = 2y
n

(hn−1(y)− hn−2(y)) +O
(
n−(2+<(y)−|y|)

)
, (45)

or

hn(y)− hn−1(y) =
(2y
n
− 1

)
(hn−1(y)− hn−2(y)) +O

(
n−(2+<(y)−|y|)

)
. (46)

Define

dn(y) := |hn(y)− hn−1(y)|.

Using (46) and

∣∣∣∣2yn − 1
∣∣∣∣ =

(2<(y)
n
− 1

)2

+
(

2=(y)
n

)2
1/2

= 1− 2<(y)
n

+O
( 1
n2

)
,

we obtain

dn(y) 6
(

1− 2<(y)
n

)
dn−1(y) +O

(
n−(2+<(y)−|y|)

)
.
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It is known (use “rsolve” in Maple or [23, Section 2.2]) that the solutions to the recursion

dn =
(

1− a

n

)
dn−1 + n−b (a > 0, n > 1)

satisfy

dn = O
(
n−a (1 + Jb− a = 1K lnn) + n−(b−1)

)
.

Hence

dn(y) = O
(
n−2<(y) (1 + J<(y) + |y| = 1K lnn) + n−(1+<(y)−|y|)

)
.

That is,

hn(y)− hn−1(y) = o(1) + J<(y) = 0KO(1) (y ∈ S). (47)

On the other hand, using (45) and

hn−2(y)
n− 1 −

hn−2(y)
n

= hn−2(y)
n(n− 1) = O

(
n−(2+<(y)−|y|)

)
,

we obtain

hn(y)− hn−2(y)− 2y
(
hn−1(y)

n
− hn−2(y)

n− 1

)

= hn(y)− hn−2(y)− 2y
n

(hn−1(y)− hn−2(y)) + 2y
( 1
n− 1 −

1
n

)
hn−2(y)

= O
(
n−(2+<(y)−|y|)

)
. (48)

Set
Rn(y) := hn(y)− hn−2(y)− 2y

(
hn−1(y)

n
− hn−2(y)

n− 1

)
.

Since Jn(y) is a polynomial, by (22) Rn(y) is analytic everywhere for each n. It follows
from (48), Weierstrass M-test and Morera’s theorem [26] that the series ∑k>3 Rn(y) =
K1(y) is analytic when <(y)− |y| > −1, and

n∑
k=3

Rn(y) = K1(y) +O
(
n−(1+<(y)−|y|)

)
. (49)

Summing both sides of (48) from 3 to n (noting the cancellations from the telescoping
sum), we obtain

hn(y) + hn−1(y)− h1(y)− h2(y) + yh1(y) = K1(y) +O
(
n−(1+<(y)−|y|)

)
,

or

hn(y) + hn−1(y) = K1(y) + (1− y)h1(y) + h2(y) +O
(
n−(1+<(y)−|y|)

)
. (50)
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Combining this with (47), and setting

K(y) := K1(y) + (1− y)h1(y) + h2(y)
2 , (51)

we obtain (42).

Remark 10. Using Theorem 9, (22) and (10), we have

Hn(1) ∼ K(1)n.

Noting
Cn =

∑
g>0

Cn,g = 1
3n+ 2

∑
g>0

Hn,g = n!
3n+ 26nHn(1),

we obtain

Cn ∼
K(1)

3 n!6n.

Comparing this with the asymptotic expression in Corollary 1, we obtain

K(1) = 9
π
.

Proof of Theorem 1. Using (22) and Theorem 9, we have, uniformly for x in a small
neighborhood of 1, that

Hn(x) ∼ K(1/
√
x)n1/

√
xx(n+2)/2. (52)

We would like to point out that Hwang’s quasi-power theorem [19] does not apply
directly here because of the the factor x(n+2)/2 appearing in (52). It is possible to apply
the quasi-power theorem to Jn(y), and then use (2) to obtain (a). This would also give
the convergence rate. However, we shall apply [12, Theorem 2] directly here. In terms of
the notations in [12], we have

s = ln x,

mr(s) = d

ds

s

2 = 1
2 ,

mα(s) = d

ds
e−s/2 = −1

2e
−s/2,

Br(s) = 0,

Bα(s) = d

ds
mα(s) = 1

4e
−s/2.

Now part (a) follows from Theorem 2 (case (2)) of [12] by noting

mr(0)n+mα(0) lnn = 1
2(n− lnn),

Bα(0) lnn = 1
4 lnn.

Part (b) follows immediately from part (a) and (2).
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Proof of Theorem 2. We may use Theorem 9 and apply the standard saddle-point method
directly. In what follows, we shall apply [12, Theorem 4] to Jn(x). More precisely, to avoid
the parity issue, we shall consider

Gn(x) =
(√

x
)J2-nK

Jn(
√
x). (53)

By Lemma 7, Gn(x) is a polynomial in x. For x 6= 0, write

x = ρeiθ, (−π < θ 6 π)
√
x = √ρ exp (iθ/2) .

Then
<(
√
x) = √ρ cos(θ/2) > 0.

Using Theorem 9, we obtain, for some small positive constants ε and δ,

Gn(x) ∼ K(
√
x)
(√

x
)J2-nK

n
√
x, (ρ < 1, |θ| 6 π − ε)

Gn(x)
Gn(ρ) = O

(
n−δ

)
. (ρ < 1, |θ| > π − ε)

Applying [12, Theorem 4(2)] with α(s) = es/2, we obtain

[xk]Gn(x) ∼
K(√ρ)√

2π(lnn)√ρ/4
(√ρ)J2-nKn

√
ρρ−k, (54)

where ρ satisfies
√
ρ

2 = k

lnn (0 < ρ < 1). (55)

Substituting (55) into (54), we obtain

[xk]Gn(x) ∼ K(2k/ lnn)√
kπ

e2k
(

2k
lnn

)J2-nK−2k

. (56)

Using (2) and (53), we obtain

[xk]Gn(x) = J2 | nK[x2k]Jn(
√
x) + J2 - nK[x2k−1]Jn(

√
x)

= 3n+ 2
n! 6−n

(
J2 | nKCn,n

2 +1−k + J2 - nKCn,n+1
2 +1−k

)
= 3n+ 2

n! 6−nC
n,

n+J2-nK
2 +1−k.

Combining this with (54) and setting k = n+J2-nK
2 + 1− g, we obtain

Cn,g ∼
(n− 1)!

3 6nK(2k/ lnn)√
kπ

e2k
(

2k
lnn

)J2-nK−2k
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∼ (n− 1)!
3 6n

√
2K((n− 2g)/ lnn)√

(n− 2g)π
en−2g+2+J2-nK

×
(
n− 2g + 2 + J2 - nK

lnn

)2g−n−2

∼ (n− 1)!
3 6n

√
2K((n− 2g)/ lnn)√

(n− 2g)π

(
n− 2g

lnn

)2g−n−2

× en−2g+2+J2-nK

(
1 + 2 + J2 - nK

n− 2g

)−(n−2g)

∼ (n− 1)!
3 6n

√
2K((n− 2g)/ lnn)√

(n− 2g)π

(
n− 2g

lnn

)2g−n−2
en−2g.

Now Theorem 6 follows by using Stirling’s formula:

(n− 2g)! ∼
√

2π(n− 2g)
(
n− 2g
e

)n−2g
(n− 2g →∞).

4 Conclusion

Using the Goulden-Jackson recursion for the number of rooted cubic maps, we derived
an asymptotic formula for the number of rooted cubic maps with 2n vertices and genus g
when n, g →∞ and (n− 2g)/ lnn lies in any closed subinterval of (0, 1). The asymptotic
formula is accurate up to a constant factor. We also showed that the genus distribution of
cubic graphs is asymptotically normal with mean and variance, respectively, asymptotic
to 1

2(n − lnn) and 1
4 lnn. Asymptotic formulas were also obtained for the number of

rooted regular maps, disregarding the genus, for constant degree and as the number of
vertices going to infinity.
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