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Abstract

In 1991 Győri, Pach, and Simonovits proved that for any bipartite graph H
containing a matching avoiding at most 1 vertex, the maximum number of copies
of H in any large enough triangle-free graph is achieved in a balanced complete
bipartite graph. In this paper we improve their result by showing that if H is a
bipartite graph containing a matching of size x and at most 1

2

√
x− 1 unmatched

vertices, then the maximum number of copies of H in any large enough triangle-free
graph is achieved in a complete bipartite graph. We also prove that such a statement
cannot hold if the number of unmatched vertices is Ω(x).
Mathematics Subject Classifications: 05C35

1 Introduction

A classical theorem of Turán [8] states that the unique Kr-free graph on n vertices with
the maximum number of edges is the balanced complete (r−1)-partite graph, denoted by
Tr−1(n). This result was further generalized by Zykov [9] (and independently by Erdős [2]),
who proved that among Kr-free n-vertex graphs, also Tr−1(n) maximizes the number of
copies of any complete graph Ks for s < r. In general, the maximum number of copies of
a given graph H among all Kr-free n-vertex graphs (for r > χ(H)) is not always achieved
in Tr−1(n). For example if H is a star on 4 vertices and r = 3. Nevertheless, recently,
Morrison, Nir, Norin, Rzążewski and Wesolek [7], answering a conjecture of Gerbner and
Palmer [4], showed that for any graph H the maximum number of copies of H in a large
enough Kr-free n-vertex graph is obtained in Tr−1(n) as long as r is large enough.

A natural generalization of the previously mentioned results is to search for sufficient
conditions for the maximum number of copies of a given graph H in a Kr-free G to be
maximized when G is some (not necessarily balanced) complete (r − 1)-partite graph.
Note that an easy application of the graph removal lemma (see e.g. [3, Theorem 2])
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implies that if χ(H) < χ(F ) then the maximum number of copies of H in F -free graphs is
asymptotically the same as in Kχ(F )-free graphs, so solving the problem when a complete
graph is forbidden is essentially solving it in the more general case as well.

One necessary condition to have the maximum number of copies of H achieved in a
complete (r − 1)-partite graph is χ(H) < r. However, this is not sufficient as shown by
the following example.

Example 1 (Győri, Pach, Simonovits [6]). Let H be a bipartite graph on 2k vertices
formed by two disjoint stars K1,k−2 with centers connected by a path of length 3. The
number of copies of H in any n-vertex bipartite graph is maximized in T2(n), since H
has the same number of vertices in both color classes. However, for sufficiently large k
and n, the number of copies of H in T2(n) is significantly smaller than in a blow-up of a
five-cycle with blobs of sizes n

2k
, n

2k
, n

2k
, n

2k
, and n− 2n

k
.

For a similar example for higher values of r, see [5].
In the most interesting case r = 3, asking when the maximum number of copies of

a given bipartite graph in triangle-free graphs is achieved in a complete bipartite graph,
Győri, Pach, and Simonovits proved the following sufficient condition.

Theorem 2 (Győri, Pach, and Simonovits [6]). Let H be a bipartite graph on m vertices
containing a matching of size bm

2
c. Then, for n > m, T2(n) is the unique n-vertex

triangle-free graph maximizing the number of copies of H.

Intuitively, if H contains a large matching, then T2(n) is the best choice for a triangle-
free maximizer, because it contains the largest number of copies of the matching itself.
The condition that H must have a perfect matching (or an almost perfect matching if
2 - m) cannot be relaxed to a matching on m− 2 vertices if we want to have T2(n) as the
maximizer. For example the maximum number of copies of a star K1,3 in triangle-free
graphs is not achieved in T2(n), but in a non-balanced complete bipartite graph.

We show that the maximizer is a complete bipartite graph even using a far weaker
condition on the size of a matching in H.

Theorem 3. Let H be a bipartite graph containing a matching of size x and at most
1
2

√
x− 1 unmatched vertices. Then, for n sufficiently large, a complete bipartite graph

maximizes the number of copies of H among all triangle-free n-vertex graphs.

We do not know whether the bound on the number of unmatched vertices O(
√
x) is

optimal, but we show that it needs to be sublinear.

Theorem 4. For any constant λ > 0 and integer n0 > 0, there exist an integer x, a
bipartite graph H containing a matching of size x and at most λx unmatched vertices,
and a triangle-free non-bipartite graph G on more than n0 vertices, such that the number
of copies of H in G is larger than in any bipartite graph on the same number of vertices.

the electronic journal of combinatorics 31(2) (2024), #P2.50 2



2 Proofs

We start with introducing the needed notation and some preliminary results.
By the number of copies of H in G, denoted by H(G), we mean the number of

subgraphs of G isomorphic to H. For easier calculations we consider injective embeddings
of H in G, i.e., injective functions ϕ : V (H) → V (G) such that ϕ(v1)ϕ(v2) ∈ E(G)
if v1v2 ∈ E(H). We denote the number of different injective embeddings of H in G
by H(G). Observe that H(G) differs from H(G) just by a factor equal to the number of
automorphisms of H, so maximizing H(G) is equivalent to maximizing H(G).

For two graphs H and G we define the H-degree of a vertex v ∈ V (G), denoted h(v),
as the number of injective embeddings of H in G whose image contains v. Analogously,
for u, v ∈ V (G) we define h(u, v) as the number of injective embeddings whose image
contains vertices u and v, and h(u, v̄) as the number of injective embeddings whose image
contains vertex u and does not contain vertex v.

Lemma 5. For anm-vertex graph H let G be a triangle-free n-vertex graph that maximizes
the number of injective embeddings of H. Then for any two vertices u, v ∈ V (G) it holds
h(v) 6 h(u) +O (nm−2).

Proof. Modify the graph G by deleting u and adding instead a copy of v (not adjacent
to v). The obtained graph remains triangle-free after such modification. In this process we
lose h(u) injective embeddings and gain h(v, ū) new ones. Since h(v) = h(v, u)+h(v, ū), we
get h(v, ū)−h(u) = h(v)−h(u, v)−h(u) 6 0, so h(v) 6 h(u) + h(u, v) = h(u) +O (nm−2).

Lemma 6. Let G be a triangle-free graph on n vertices with maximum degree ∆. Then
|E(G)| 6 ∆(n−∆).

Proof. Consider a vertex of degree ∆ and let A be the set of its neighbors. The set
V (G) \ A contains n−∆ vertices of degree at most ∆. Moreover, from triangle-freeness
of G there are no edges between vertices in A. Thus, |E(G)| 6 ∆(n−∆).

Note that the equality holds only for the complete bipartite graph K∆,n−∆.

We are ready to prove the main theorem.

Proof of Theorem 3. If H contains an isolated vertex, then the graph H ′ obtained by
removing it satisfies the assumptions of Theorem 3 (with a smaller number of unmatched
vertices). Moreover, for every n-vertex graph G we have H(G) = H ′(G)(n − |V (H ′)|).
Thus, if the theorem holds for H ′ then it also holds for H. Therefore, we may assume that
H does not contain isolated vertices. We may also assume that the matching of size x is
a maximal matching in H and x > 2.

Let m be the number of vertices in H and c be the number of connected components
of H. For a sufficiently large n let G be a triangle-free graph on n vertices that has the
largest number of copies of H. By summing up the H-degrees of all vertices in G we
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count each injective embedding exactly m times, so∑
v∈V (G)

h(v) = m ·H(G) > m ·H(T2(n)) = m · 2c
(n

2

)m
+O

(
nm−1

)
.

The last equality holds because we can count the number of injective embeddings of H
in T2(n) by embedding each vertex connected to already embedded vertices in n/2 ways
and a vertex in a new component of H in n ways. The lower order error term comes from
the possibility of selecting the same vertex multiple times.

For any vertex u ∈ V (G) by summing up the inequality from Lemma 5 for each vertex
v ∈ V (G), and combining it with the above bound, we obtain

n · h(u) >
∑

v∈V (G)

h(v) +O(nm−1) > m · 2c
(n

2

)m
+O

(
nm−1

)
.

Therefore
h(u) > m2c−1

(n
2

)m−1

+O
(
nm−2

)
. (1)

Our plan now is to upper-bound h(u) for a vertex u of the minimum degree δ in G.
Consider an arbitrary vertex w ∈ V (H). We estimate the number of injective embeddings
that map w to u in the following way. As H does not contain isolated vertices and the
matching of size x is maximal, w is adjacent to some matched vertex. This implies that
there exists a matching M in H of size x, which contains w. Thus, we have δ ways to
embed in G the neighbor of w in the matching M . Then, we have at most |E(G)| ways
to embed in G any edge of M from the same component as already embedded vertices,
and at most 2|E(G)| ways for each edge in a new component. Finally, we have at most
∆m−2x ways to embed all vertices of H not belonging to M , where ∆ is the maximum
degree of G. Therefore, taking into account that we can choose w in V (H) in m ways
and applying Lemma 6 to bound the number of edges of G, we obtain

h(u) 6 mδ2c−1|E(G)|x−1∆m−2x 6 mδ2c−1∆m−x−1(n−∆)x−1. (2)

By combining inequalities (1) and (2) we conclude the following bound for δ

δ >
(n

2
)m−1

∆m−x−1(n−∆)x−1
+O(1). (3)

Our goal is to show that under the assumptions of Theorem 3 from inequality (3) we
derive that δ > 2

5
n. Then, since the Andrásfai-Erdős-Sós [1] theorem gives that every

n-vertex triangle-free graph with minimum degree greater than 2
5
n is bipartite, the graph

G will be bipartite.
For convenience, we replace m−2x with 2d. Since a function f(z) = za(1−z)b attains

its maximum in [0, 1] for z = a
a+b

, the denominator ∆m−x−1(n−∆)x−1 = ∆2d+x−1(n−∆)x−1

is maximized for
∆ =

2d+ x− 1

2d+ 2x− 2
n.

the electronic journal of combinatorics 31(2) (2024), #P2.50 4



Thus, from (3) we obtain

δ >
(d+ x− 1)2d+2x−2

2(2d+ x− 1)2d+x−1(x− 1)x−1
n+O(1).

Note that it is enough to show that

(d+ x− 1)2d+2x−2

2(2d+ x− 1)2d+x−1(x− 1)x−1
>

2

5

as then, for large enough n, we have the wanted inequality δ > 2
5
n.

Rearranging the terms and using 2d > 0, Bernoulli’s inequality and d2 6 1
16

(x − 1)
implied by assumptions of the theorem we obtain

(d+ x− 1)2d+2x−2

2(2d+ x− 1)2d+x−1(x− 1)x−1

=
1

2

(
1− d

2d+ x− 1

)2d+x−1(
1 +

d

x− 1

)x−1

>
1

2

(
1− d

x− 1

)2d+x−1(
1 +

d

x− 1

)x−1

=
1

2

(
1− d

x− 1

)2d((
1− d

x− 1

)(
1 +

d

x− 1

))x−1

=
1

2

(
1− d

x− 1

)2d(
1− d2

(x− 1)2

)x−1

>
1

2

(
1− 2d2

x− 1

)(
1− d2

x− 1

)
>

1

2

(
1− 2

16

)(
1− 1

16

)
>

2

5

as needed.

Proof of Theorem 4. It is enough to consider rational λ. Let d > 1 and x > 3 be large
enough integers such that λ = 2d

x
. We modify Example 1. Consider a graph H consisting

of two stars having d + 1 leaves with centers connected by a path of length 3 and an
additional x − 3 paths of length 2 starting in a central vertex from the aforementioned
path, see Figure 1. Note that H has a matching of size x and 2d = λx unmatched vertices.

We will show that if x is large enough then H(T2(n)) < H(G), where G is an unbal-
anced blow-up of a C5 with parts of sizes an, bn, cn, cn, cn for large enough n and some
values of a, b, c with a + b + 3c = 1 to be established later. Since H is balanced, T2(n)
maximizes the number of injective embeddings of H among all bipartite graphs, and so
the inequality H(T2(n)) < H(G) implies that no bipartite graph on n vertices contains
more copies of H than G.
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Figure 1: Graphs H and G.

The intuition behind this example is as follows. Every embedding of H in a bipartite
graph needs to have the same number of vertices in each part. Therefore, there is a
relatively small number of copies of H in such a graph if x and d are large enough, because
then the probability that random 2x + 2d vertices in a bipartite graph are distributed
equally between the parts is quite low. On the other hand, in a random choice of 2x+ 2d
vertices in G with a large a and a tiny c, we have a high probability that random 2d+ 2
vertices in G are in the set of size an and a still fairly high probability of having additional
x− 3 edges between parts of sizes an and bn. This gives many copies of H in G. In the
rest of the proof we will count this precisely.

Since H is a connected balanced bipartite graph, H(T2(n)) 6 2(1
2
)2x+λxn2x+λx.

On the other hand, to lower bound H(G) we count the number of embeddings where
each vertex of H is embedded to a specific blob of G marked in Figure 1

H(G) > ax+λx−1bx−2c3n2x+λx +O(n2x+λx−1)

= ax+λx−1(1− a− 3c)x−2c3n2x+λx +O(n2x+λx−1).

Note that for arbitrary λ > 0 it is possible to choose a > 1
2
such that

aλ+1(1− a)−
(

1

2

)λ+2

> 0.

This is due to the fact that the function f(z) = zλ+1(1− z)−
(

1
2

)2+λ has a root in 1
2
and

its derivative at 1
2
is greater than zero.

Now consider the function g(z) = aλ+1(1− a− 3z)−
(

1
2

)2+λ. It is continuous at z = 0
and g(0) = f(a) > 0. Thus, we can choose c > 0 small enough so that g(c) > 0. For such
c define

p =
aλ+1(1− a− 3c)(

1
2

)λ+2
> 1

and take x > logp

(
2a(1−a−3c)2

c3

)
. Then

ax+λx(1− a− 3c)x(
1
2

)2x+2λ
>

2a(1− a− 3c)2

c3
,
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which implies

ax+λx−1(1− a− 3c)x−2c3 > 2

(
1

2

)2x+2λ

.

This means that for large enough n we have H(G) > H(T2(n)) as needed.
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