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Abstract

In 1991 Gyori, Pach, and Simonovits proved that for any bipartite graph H
containing a matching avoiding at most 1 vertex, the maximum number of copies
of H in any large enough triangle-free graph is achieved in a balanced complete
bipartite graph. In this paper we improve their result by showing that if H is a
bipartite graph containing a matching of size x and at most %\/:n — 1 unmatched
vertices, then the maximum number of copies of H in any large enough triangle-free
graph is achieved in a complete bipartite graph. We also prove that such a statement
cannot hold if the number of unmatched vertices is Q(x).

Mathematics Subject Classifications: 05C35

1 Introduction

A classical theorem of Turan [8] states that the unique K,-free graph on n vertices with
the maximum number of edges is the balanced complete (r — 1)-partite graph, denoted by
T,—1(n). This result was further generalized by Zykov [9] (and independently by Erdds [2]),
who proved that among K,-free n-vertex graphs, also T,_1(n) maximizes the number of
copies of any complete graph K, for s < r. In general, the maximum number of copies of
a given graph H among all K,-free n-vertex graphs (for » > yx(H)) is not always achieved
in 7,_1(n). For example if H is a star on 4 vertices and r = 3. Nevertheless, recently,
Morrison, Nir, Norin, Rzazewski and Wesolek [7], answering a conjecture of Gerbner and
Palmer [4], showed that for any graph H the maximum number of copies of H in a large
enough K,-free n-vertex graph is obtained in 7,_;(n) as long as r is large enough.

A natural generalization of the previously mentioned results is to search for sufficient
conditions for the maximum number of copies of a given graph H in a K,-free G to be
maximized when G is some (not necessarily balanced) complete (r — 1)-partite graph.
Note that an easy application of the graph removal lemma (see e.g. [3, Theorem 2])
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implies that if x(H) < x(F') then the maximum number of copies of H in F-free graphs is
asymptotically the same as in K, r)-free graphs, so solving the problem when a complete
graph is forbidden is essentially solving it in the more general case as well.

One necessary condition to have the maximum number of copies of H achieved in a
complete (r — 1)-partite graph is x(H) < r. However, this is not sufficient as shown by
the following example.

Example 1 (Gy6ri, Pach, Simonovits [6]). Let H be a bipartite graph on 2k vertices
formed by two disjoint stars K ;_o with centers connected by a path of length 3. The
number of copies of H in any n-vertex bipartite graph is maximized in T5(n), since H
has the same number of vertices in both color classes. However, for sufficiently large k
and n, the number of copies of H in T5(n) is significantly smaller than in a blow-up of a

: : n n n n 2n
five-cycle with blobs of sizes 37, o+, o1, 5%, and n — =*.

For a similar example for higher values of r, see [5].

In the most interesting case r = 3, asking when the maximum number of copies of
a given bipartite graph in triangle-free graphs is achieved in a complete bipartite graph,
Gydri, Pach, and Simonovits proved the following sufficient condition.

Theorem 2 (Gyéri, Pach, and Simonovits [6]). Let H be a bipartite graph on m vertices
containing a matching of size |%]. Then, for n > m, Thy(n) is the unique n-vertex
triangle-free graph mazximizing the number of copies of H.

Intuitively, if H contains a large matching, then T5(n) is the best choice for a triangle-
free maximizer, because it contains the largest number of copies of the matching itself.
The condition that H must have a perfect matching (or an almost perfect matching if
24 m) cannot be relaxed to a matching on m — 2 vertices if we want to have T(n) as the
maximizer. For example the maximum number of copies of a star K3 in triangle-free
graphs is not achieved in T3(n), but in a non-balanced complete bipartite graph.

We show that the maximizer is a complete bipartite graph even using a far weaker
condition on the size of a matching in H.

Theorem 3. Let H be a bipartite graph containing a matching of size x and at most

%\/x — 1 unmatched vertices. Then, for n sufficiently large, a complete bipartite graph

mazximizes the number of copies of H among all triangle-free n-vertex graphs.

We do not know whether the bound on the number of unmatched vertices O(y/x) is
optimal, but we show that it needs to be sublinear.

Theorem 4. For any constant A > 0 and integer ng > 0, there exist an integer x, a
bipartite graph H containing a matching of size x and at most Ax unmatched vertices,
and a triangle-free non-bipartite graph G on more than ng vertices, such that the number
of copies of H in G 1is larger than in any bipartite graph on the same number of vertices.
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2 Proofs

We start with introducing the needed notation and some preliminary results.

By the number of copies of H in G, denoted by H(G), we mean the number of
subgraphs of G isomorphic to H. For easier calculations we consider injective embeddings
of H in G, i.e., injective functions ¢ : V(H) — V(G) such that ¢(v1)p(v2) € E(G)
if vjuy € E(H). We denote the number of different injective embeddings of H in G
by H(G). Observe that H(G) differs from H(G) just by a factor equal to the number of
automorphisms of H, so maximizing H(G) is equivalent to maximizing H(G).

For two graphs H and G we define the H-degree of a vertex v € V(G), denoted h(v),
as the number of injective embeddings of H in G whose image contains v. Analogously,
for u,v € V(G) we define h(u,v) as the number of injective embeddings whose image
contains vertices u and v, and h(u, v) as the number of injective embeddings whose image
contains vertex u and does not contain vertex v.

Lemma 5. For an m-vertex graph H let G be a triangle-free n-vertex graph that maximizes
the number of injective embeddings of H. Then for any two vertices u,v € V(G) it holds
h(v) < h(u) 4+ O (n™2).

Proof. Modify the graph G by deleting u and adding instead a copy of v (not adjacent
to v). The obtained graph remains triangle-free after such modification. In this process we
lose h(u) injective embeddings and gain h(v, @) new ones. Since h(v) = h(v,u)+h(v, ), we
get h(v, u)—h(u) = h(v)—h(u,v)—h(u) <0, s0 h(v) < h(u) + h(u,v) = h(u) + O (n™2).

0

Lemma 6. Let G be a triangle-free graph on n vertices with maximum degree A. Then

E(G)] < A(n — A).

Proof. Consider a vertex of degree A and let A be the set of its neighbors. The set
V(G) \ A contains n — A vertices of degree at most A. Moreover, from triangle-freeness
of G there are no edges between vertices in A. Thus, |E(G)| < A(n — A).

Note that the equality holds only for the complete bipartite graph Ka ,—a. O

We are ready to prove the main theorem.

Proof of Theorem 3. If H contains an isolated vertex, then the graph H’ obtained by
removing it satisfies the assumptions of Theorem 3 (with a smaller number of unmatched
vertices). Moreover, for every n-vertex graph G we have H(G) = H'(G)(n — |V(H")]).
Thus, if the theorem holds for H' then it also holds for H. Therefore, we may assume that
H does not contain isolated vertices. We may also assume that the matching of size x is
a maximal matching in H and z > 2.

Let m be the number of vertices in H and ¢ be the number of connected components
of H. For a sufficiently large n let G be a triangle-free graph on n vertices that has the
largest number of copies of H. By summing up the H-degrees of all vertices in G we

THE ELECTRONIC JOURNAL OF COMBINATORICS 31(2) (2024), #P2.50 3



count each injective embedding exactly m times, so

Z h(v) =m-H(G) = m - H(Ty(n)) =m-2° <g>m+0(nm_1).
veV(Q)

The last equality holds because we can count the number of injective embeddings of H
in T5(n) by embedding each vertex connected to already embedded vertices in n/2 ways
and a vertex in a new component of H in n ways. The lower order error term comes from
the possibility of selecting the same vertex multiple times.

For any vertex u € V(G) by summing up the inequality from Lemma 5 for each vertex
v € V(G), and combining it with the above bound, we obtain

n-h(u) > Z h(v) + O(n™ ) = m - 2° (g)m +0 (™).
veV(Q)

Therefore

h(u) > m2e! (g)ml L0 (2. (1)

Our plan now is to upper-bound h(u) for a vertex u of the minimum degree ¢ in G.
Consider an arbitrary vertex w € V(H). We estimate the number of injective embeddings
that map w to w in the following way. As H does not contain isolated vertices and the
matching of size x is maximal, w is adjacent to some matched vertex. This implies that
there exists a matching M in H of size x, which contains w. Thus, we have § ways to
embed in G the neighbor of w in the matching M. Then, we have at most |E(G)| ways
to embed in G any edge of M from the same component as already embedded vertices,
and at most 2| F(G)| ways for each edge in a new component. Finally, we have at most
A" ways to embed all vertices of H not belonging to M, where A is the maximum
degree of GG. Therefore, taking into account that we can choose w in V(H) in m ways
and applying Lemma 6 to bound the number of edges of G, we obtain

h(u) < m&2° 7 E(G) " TA™ 2 < ma2s T AT (n — A)TL (2)
By combining inequalities (1) and (2) we conclude the following bound for o

(3)"™!
6> 2
= Am—z—l (TL _ A)x—l

+0(1). (3)

Our goal is to show that under the assumptions of Theorem 3 from inequality (3) we
derive that § > %n Then, since the Andrasfai-Erdgs-Sos [1] theorem gives that every
n-vertex triangle-free graph with minimum degree greater than %n is bipartite, the graph
G will be bipartite.

For convenience, we replace m — 2z with 2d. Since a function f(z) = 2%(1 — 2)" attains
its maximum in [0, 1] for z = -%, the denominator A™ =1 (n—A)*~1 = AZ+e=1(n_A)z=1

pEu
is maximized for
B 2d +x —1

T 2dtor—2"
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Thus, from (3) we obtain

(d +r— 1)2d+2m—2
7 2(2d + x — 1)2d+e-1(p — 1)=-1

n+ O(1).

Note that it is enough to show that

(d+x— 1)2d+2:c—2
2(2d + x — 1)2d+e—1(g — 1)e-1

2
5

as then, for large enough n, we have the wanted inequality § > %n
Rearranging the terms and using 2d > 0, Bernoulli’s inequality and d? < %(m - 1)
implied by assumptions of the theorem we obtain
(d +x— 1)2d+2272
2(2d +x— 1)2d+x—1($ _ 1)35—1

_1 1 d 2d+x—1 1+ d x—1
2 2d + 1 —1 x—1

1 d 2d+z—1 d z—1
>—(1- 1
2( x—l) <+x—1>
2d r—1
:1 1-— d 1-— d 1+ d
2 r—1 xr—1 xr—1
1 d 2d d2 z—1
(1-25) (-a5)
L2 (o
~ 2 r—1 r—1
(2 (1
2 16 16
S 2
5
as needed. O

Proof of Theorem 4. It is enough to consider rational A\. Let d > 1 and x > 3 be large
enough integers such that A = %d. We modify Example 1. Consider a graph H consisting
of two stars having d 4+ 1 leaves with centers connected by a path of length 3 and an
additional x — 3 paths of length 2 starting in a central vertex from the aforementioned
path, see Figure 1. Note that H has a matching of size x and 2d = Az unmatched vertices.

We will show that if x is large enough then H(73(n)) < H(G), where G is an unbal-
anced blow-up of a Cs with parts of sizes an, bn, cn, cn, cn for large enough n and some
values of a, b, ¢ with a + b+ 3¢ = 1 to be established later. Since H is balanced, Ty(n)
maximizes the number of injective embeddings of H among all bipartite graphs, and so
the inequality H(7T5(n)) < H(G) implies that no bipartite graph on n vertices contains
more copies of H than G.

ot
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Figure 1: Graphs H and G.

The intuition behind this example is as follows. Every embedding of H in a bipartite
graph needs to have the same number of vertices in each part. Therefore, there is a
relatively small number of copies of H in such a graph if x and d are large enough, because
then the probability that random 2z + 2d vertices in a bipartite graph are distributed
equally between the parts is quite low. On the other hand, in a random choice of 2x + 2d
vertices in G with a large a and a tiny ¢, we have a high probability that random 2d + 2
vertices in GG are in the set of size an and a still fairly high probability of having additional
x — 3 edges between parts of sizes an and bn. This gives many copies of H in G. In the
rest of the proof we will count this precisely.

Since H is a connected balanced bipartite graph, H(T5(n)) < 2(3)**FAep2e iz,

On the other hand, to lower bound H(G) we count the number of embeddings where
each vertex of H is embedded to a specific blob of G marked in Figure 1

m > az+/\x—1bx—263n2z+>\z + O(n2x+)\x—1)

— a:):Jr/\a:fl(l —a— 3c)x72c3n21+)\z + O<n2x+/\x71).

Note that for arbitrary A > 0 it is possible to choose a > % such that

1 A+2
(1 —a) — (5) > 0.

This is due to the fact that the function f(z) = 22 (1 — 2) — (%)2“ has a root in 3 and
its derivative at % is greater than zero.

Now consider the function g(z) = a*™ (1 —a —3z2) — (%)HA. It is continuous at z =0
and ¢(0) = f(a) > 0. Thus, we can choose ¢ > 0 small enough so that g(c) > 0. For such

c define
a*1(1 —a — 3c¢)

(%))\+2

p= > 1

and take = > log, <M) Then

c3

a***(1 —a—3c)*  2a(l —a—3c)?
(l)2x+2)\ > C3
2

Y
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which implies

2x+2A
aa:—l—)\x—l(l —a-— m 2 3 ( )
H(T:

This means that for large enough n we have H(G) > »(n)) as needed. O
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