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Abstract

Every simple drawing of a graph in the plane naturally induces a rotation system,
but it is easy to exhibit a rotation system that does not arise from a simple drawing
in the plane. We extend this to all surfaces: for every fixed surface Σ, there is a
rotation system that does not arise from a simple drawing in Σ.
Mathematics Subject Classifications: 05C88, 05C89

1 Introduction

All graphs under consideration are simple, that is, they have no loops or parallel edges.
In a drawing of a graph, distinct vertices are represented by distinct points in the

plane, and each edge e = uv is represented by a Jordan arc whose endpoints are the
points that represent u and v. It is also required that (D1) no edge contains a vertex
other than its endvertices; (D2) every pair of edges intersect each other a finite number of
times; (D3) every intersection of edges is either a common endvertex or a crossing (rather
than a tangential intersection); and (D4) no three edges cross at a common point.

A drawing of a graph in an orientable surface determines a rotation π(v) at each vertex
v: this is the cyclic permutation that records the (clockwise) order in which the edges
incident with v leave v. The set of the rotations of all the vertices is the rotation system
of the drawing.

Rotation systems can be considered independently of their relationship with graph
drawings. Let S be a set. A rotation of an element s ∈ S is a cyclic permutation π(s) of
a subset of S \ {s}. A rotation system on S is a collection Π = {π(s)}s∈S of rotations of
all the elements of S. If for each s ∈ S we have that π(s) is a cyclic permutation of the
entire set S \ {s}, then Π is a complete rotation system. Thus a drawing of a complete
graph in an orientable surface determines a complete rotation system.
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Figure 1: Two drawings with the same rotation system Π = {π(1) = (2, 3, 4), π(2) =
(1, 3, 4), π(3) = (1, 4, 2), π(4) = (1, 2, 3)}. Note that the drawing on the left-hand side is
not simple, since the adjacent edges 12 and 13 cross each other. It is straightforward to
verify that this rotation system cannot be realized by a simple drawing in the plane. As
illustrated on the right-hand side, Π can be realized by a simple drawing in the torus.

It is easy to see that every rotation system is the rotation system of a drawing of a
graph in the plane; that is, every rotation system can be realized by a drawing in the
plane. However, this does not hold if we slightly restrict the class of drawings under
consideration.

One is often interested in drawing a graph so that the total number of edge crossings is
as small as possible. It is easy to see that in this context we may focus on simple drawings,
that is, drawings in which (D5) any two edges are either disjoint or have exactly one point
in common (which, in view of (D3), is either a common endvertex or a crossing). For
instance, the drawing of K4 in the plane on the left-hand side in Figure 1 is not simple.
It is worth noting that simplicity is a natural restriction beyond the context of crossing-
minimal drawings, and it appears as a basic assumption in a variety of settings [2,4,6,8,11].

Simple drawings thus play a paramount role in topological graph theory, and so it is
natural to ask: which rotation systems can be realized by a simple drawing in the plane?
Equivalently: which rotation systems are simply realizable in the plane?

As far as we know, this question was first asked by Dan Archdeacon [3], for complete
rotation systems. Archdeacon’s question was settled by Kynčl in [8] (see also [1] and [9]):
the decision problem of whether a given complete rotation system is simply realizable in
the plane is in P.

For arbitrary rotation systems little seems to be known, and serious difficulties seem to
arise even if one imposes additional restrictions on the drawings under consideration [6].
One of the few positive results known is that K2,n has a simple realization for any rotation
system (see [6, Figure 9] or [11, Lemma 4.8]). A good illustration of the intricacies of the
notion of simplicity is a recent result by Arroyo et al. [5], who proved that testing whether
a single edge can be added to a simple drawing while keeping simplicity is NP-hard. It
is also worth mentioning that recently Schaefer proved that straight-line realizability (a
stronger notion than simple realizability) of a graph with a given rotation system and
bounded degree is ∃R-complete [12].

As we discuss in more detail in Section 8, Archdeacon also considered the simple
realizability of rotation systems on compact orientable surfaces. For brevity, throughout
this paper we shall refer to a compact orientable surface simply as a surface.

When we began to investigate the simple realizability of rotation systems in surfaces,
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we quickly realized that we needed to start with a question that we had implicitly mis-
judged as a routine exercise: given a surface Σ, does there exist a rotation system that
cannot be simply realized in Σ? To our surprise, answering this question was far from
trivial.

Theorem 1. For each surface Σ, there is a rotation system that is not simply realizable
in Σ.

With the exception of the final discussion in Section 8, the rest of the paper is devoted
to the proof of Theorem 1.

2 Reducing Theorem 1 to three lemmas

To prove Theorem 1 we define, for each positive integer n, a rotation system Πn on the
set [n]∪{b, r} and prove the following: if Σ is a fixed surface, and n is large enough, then
Πn cannot be realized in Σ.

As illustrated in Figure 2, the description of Πn is quite simple:

π(b) = (n, · · · , 2, 1), π(r) = (1, 2, . . . , n), and π(i) = (b, 1, 2, . . . , i−1, i+1, . . . , n, r) for i ∈ [n],

with obvious adjustments for i = 1 and i = n. In a simple drawing that realizes Πn, the
stars with centers b, r, and each i ∈ [n] are drawn as illustrated in Figure 2.
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Figure 2: Illustration of the rotation system Πn.

To help comprehension, in a drawing that realizes Πn we say that b is the blue vertex,
and the edge bi that joins b to i is a blue edge, for i = 1, . . . , n. Similarly, vertex r is red,
and the edge ri that joins r to i is a red edge, for i = 1, . . . , n. Finally, for each distinct
i, j ∈ [n], the edge joining vertices i and j is a green edge. For each distinct i, j ∈ [n], the
edges bi, bj, rj, ri form a 4-cycle, the canonical cycle Ci,j.

Note that a drawing that realizes Πn is a drawing of a graph Ln that is isomorphic to
Kn+2 minus one edge, since the only two elements in [n] ∪ {b, r} that are not adjacent to
each other under Πn are b and r.

It is easy to see that in a simple drawing that realizes Πn, each canonical cycle is either
crossing-free, or crosses itself exactly once, or crosses itself exactly twice. For ℓ = 0, 1, 2,
we say that an ℓ-drawing of Ln is a simple drawing that realizes Πn in some surface, in such
a way that every canonical cycle has exactly ℓ self-crossings. In Figure 3 we illustrate a
1-drawing of L3 in the double torus. We use the standard polygonal representation of the
double torus as an octagon whose sides are identified in pairs, according to the indicated
labels and orientations.
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Figure 3: On the left-hand side we illustrate a simple drawing of L3 that realizes Π3 in
the double torus, with three crossings. One crossing involves b2 (dashed) and r1 (solid),
another crossing involves b3 (dotted) and r1, and the other crossing involves b3 and r2
(dashed). Thus each canonical cycle has exactly one self-crossing, and so this is a 1-
drawing of L3 in the double torus. If we omit the green edges, we obtain the 1-drawing
of K2,3 in the double torus shown on the right-hand side.

If we discard the green edges from a drawing Dn that realizes Πn, the result is a
drawing En of K2,n in which the rotations of the vertices are π(b) = (n, · · · , 2, 1), π(r) =
(1, 2, . . . , n), and π(i) = (b, r), for i ∈ [n]. Note that the notion of a canonical cycle
carries over naturally to En. If Dn is an ℓ-drawing for some ℓ ∈ {0, 1, 2}, then clearly each
canonical cycle also has ℓ self-crossings in En, and we also say that En is an ℓ-drawing of
K2,n. As it happens, most of the proof of Theorem 1 involves 1-drawings and 2-drawings
of K2,n.

The following proposition is crucial, as it will allow us to focus for the rest of the paper
on drawings of Ln that are ℓ-drawings for some ℓ ∈ {0, 1, 2}.

Proposition 2. Let Σ be a surface. Suppose that for each positive integer m, there is a
simple drawing of Lm that realizes Πm in Σ. Then for each positive integer n, there is an
ℓ-drawing of Ln in Σ, for some ℓ ∈ {0, 1, 2}.

Proof. Let n be a positive integer, and let m be the Ramsey number R2(n, n, n): if we
colour each edge of the complete graph Km with one of three available colours, then there
is a complete subgraph of size n all of whose edges are of the same colour.

By hypothesis, there is a simple drawing Dm that realizes Πm in Σ. We construct an
auxiliary complete graph G with vertex set [m], and colour an edge ij of G with colour
ℓ ∈ {0, 1, 2} if the canonical cycle Ci,j has exactly ℓ self-crossings in Dm. Since each
canonical cycle has either 0, 1, or 2 self-crossings, this edge colouring of G is well-defined.

By Ramsey’s theorem there is a complete subgraph H of G of size n, all of whose
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By Ramsey’s theorem there is a complete subgraph H of G of size n, all of whose
edges are of the same colour ℓ ∈ {0, 1, 2}. Let i1, i2, . . . , in be the vertices of H, labelled
so that i1 < i2 < · · · < in. Delete from Dm all the vertices in [m] \ {i1, i2, . . . , in} and
their incident edges, and for each j = 1, . . . , n relabel the vertex ij with j. Clearly, as a
result we obtain an ℓ-drawing of Ln in Σ.

In view of Proposition 2, to prove Theorem 1 it suffices to show that, for each ℓ ∈
{0, 1, 2}, no fixed surface can host ℓ-drawings of Ln for arbitrarily large values of n. This
is achieved with the next three lemmas, which take care separately of the three possible
values of ℓ. Actually, in Lemmas 4 and 5 we establish results that are strictly stronger
than we need to prove Theorem 1, as they involve 1- and 2-drawings of K2,n, a very sparse
subgraph of Ln.

Lemma 3. For each surface Σ, there is an n such that there is no 0-drawing of Ln in Σ.

Lemma 4. For each surface Σ, there is an n such that there is no 1-drawing of K2,n in
Σ.

Lemma 5. For each surface Σ, there is an n such that there is no 2-drawing of K2,n in
Σ.

The rest of the paper is devoted to the proofs of these lemmas. Assuming the lemmas,
Theorem 1 immediately follows. We include the proof for completeness.

Proof of Theorem 1, assuming Lemmas 3, 4, and 5. Let Σ be a surface. We note that
Lemma 4 (respectively, Lemma 5) implies that there is an n such that there is no 1-
drawing (respectively, 2-drawing) of Ln in Σ. Combining this with Lemma 3, we conclude
that there is an N such that there is no ℓ-drawing of LN in Σ, for any ℓ ∈ {0, 1, 2}.

The contrapositive of Proposition 2 then implies that there is an integer m such that
there is no simple drawing that realizes Πm in Σ. In other words, Πm is not simply
realizable in Σ.

3 Proof of Lemma 3

To prove Lemma 3, we establish the next two propositions, where we use the following
terminology. A main cycle of Ln is a canonical cycle of the form Ci,i+1, for some i =
1, . . . , n (indices are read modulo n). In a 0-drawing of Ln in some surface, a main cycle
is good if it bounds a region homeomorphic to a disk. Otherwise, it is bad. We note that
the notions of a main cycle, of a good cycle, and of a bad cycle, carry over naturally to
0-drawings of K2,n.

Proposition 6. Let n ⩾ 3 be an integer. If Dn is a 0-drawing of Ln in a surface, then
every main cycle is bad in Dn.

In the next statement, and in the rest of the paper, we use gen(Σ) to denote the genus
of a surface Σ.
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Proposition 7. Let n ⩾ 3 be an integer. If En is a 0-drawing of K2,n in a surface Σ,
then at least n− 2 gen(Σ) main cycles are good in En.

Deferring the proofs of these statements for a moment, we note that Lemma 3 follows
easily from them.

Proof of Lemma 3. If Σ has genus 0 we let n = 3. Otherwise, let n = 2 gen(Σ) + 1. By
way of contradiction, suppose there is a 0-drawing Dn of Ln in Σ. Note that Dn contains
a 0-drawing En of K2,n in Σ. Thus by Proposition 7 it follows that there is at least one
good main cycle in En, and so there is at least one good main cycle in Dn. But this
contradicts Proposition 6.

We conclude the section with the proofs of Propositions 6 and 7.

Proof of Proposition 6. Let Dn be a 0-drawing of Ln in a surface. By way of contradiction,
suppose that the main cycle Ci,i+1 is good in Dn, for some i ∈ [n]. Without loss of
generality we may then assume that as we traverse in Dn the cycle Ci,i+1 visiting the
vertices b, i, r, i + 1 in this order, we find that on the left-hand side of this traversal we
bound a disk ∆. See Figure 4.
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Figure 4: Illustration of the proof of Proposition 6.

The rotation at i in Πn contains the cyclic subpermutation (b, i+1, r), and this means
that at least part of the green edge g that joins i and i+1 must lie inside ∆, as illustrated in
Figure 4. On the other hand, the rotation at i+1 in Πn contains the cyclic subpermutation
(b, i, r), and so part of g must lie outside ∆, as we also illustrate in Figure 4. By the Jordan
curve theorem, it follows that the edge g must cross the cycle Ci,i+1. But this contradicts
that Dn is a simple drawing, since g joins i and i + 1 and each edge of Ci,i+1 is incident
with either i or i+ 1.

Proof of Proposition 7. We prove the proposition by induction on the genus of Σ. In the
base case gen(Σ) = 0, and so Σ is the sphere. In this case the proposition claims that all
n main cycles in Dn are good. This is trivially true, since the host surface is the sphere.

The inductive hypothesis is that the proposition holds for surfaces of genus k − 1, for
some integer k ⩾ 1. For the inductive step, let En be a 0-drawing of K2,n in a surface Σ
of genus gen(Σ) = k. Now En has n main cycles, and so we assume that n > 2 gen(Σ), as
otherwise there is nothing to prove. Note that since En is a 0-drawing of K2,n, we have
in particular that no edge of K2,n is crossed in En.
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If all main cycles in En are good we are done, and so we suppose that there is a main
cycle Ci,i+1 in En that is bad. Thus Ci,i+1 is a noncontractible Jordan curve in Σ. As
illustrated in Figure 5, we take two simple closed curves γ1, γ2 homotopic to Ci,i+1, drawn
very close to Ci,i+1 so that En does not intersect the closed annulus bounded by γ1 and
γ2. Note that such a closed annulus (disjoint from En) must exist, as otherwise some edge
of Ci,i+1 would be crossed in En.

If all main cycles in En are good we are done, and so we suppose that there is a main
cycle Ci,i+1 in En that is bad. Thus Ci,i+1 is a noncontractible Jordan curve in Σ. As
illustrated in Figure 5, we take two simple closed curves γ1, γ2 homotopic to Ci,i+1, drawn
very close to Ci,i+1 so that En does not intersect the closed annulus bounded by γ1 and
γ2. Note that such a closed annulus (disjoint from En) must exist, as otherwise some edge
of Ci,i+1 would be crossed in En.

b

i i+ 1

r

Σ
γ2

γ1

Figure 5: Illustration of the proof of Proposition 7.

We now remove the open annulus bounded by γ1 and γ2. This turns Σ into a compact
surface with two boundary components, namely γ1 and γ2. We glue the boundary of a
disk ∆1 to γ1, and we glue the boundary of a disk ∆2 to γ2. As a result, we obtain a
(compact, without boundary) surface Σ′ of genus gen(Σ)− 1 = k − 1.

The drawing En naturally induces a drawing E ′
n in Σ′ with the same properties as En.

That is, E ′
n is a 0-drawing of K2,n in Σ′. Thus by the induction hypothesis E ′

n has at
least n − 2 gen(Σ′) = n − 2( gen(Σ) − 1) = n − 2 gen(Σ) + 2 main cycles that are good.
To finish the proof, we show that at most two of these main cycles are bad in En.

Note that the main cycle Ci,i+1 is bad in En, but it became good in E ′
n, as it now

bounds a disk that contains ∆1. The key point is that there is at most one other main
cycle that is bad in En but became good in E ′

n: this would be a main cycle that in Σ was
homotopic to Ci,i+1 (and hence it was bad in En), but became good in E ′

n because in Σ′

it bounds a disk that contains ∆2.
From this discussion, we conclude that the number of main cycles that are good in

En is at least the number of main cycles that are good in E ′
n minus two. Since this last
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4 Narrowing down the class of 1-drawings we need to consider

At a high level, the strategy of the proof of Lemma 4 has two main steps. The first
step, which is the goal of this section, is the following. Let Σ be a surface. Seeking a
contradiction, we show that if for every n there is a 1-drawing of K2,n in Σ, then there
is one such drawing that satisfies certain highly restrictive properties (to be specified
shortly). The second step, achieved in the next section, will consist of showing that
no fixed surface can host arbitrarily large 1-drawings that satisfy these properties, thus
providing the desired contradiction.

Throughout this section and Section 5, whenever we refer to a 1-drawing we mean
a 1-drawing of K2,n in a surface Σ, for some positive integer n. We use several times
expressions such as “if there are arbitrarily large 1-drawings in Σ”. This is to be interpreted
as “if there exist 1-drawings of K2,n in Σ for arbitrarily large values of n”.

Let Dn be a 1-drawing of K2,n. Since Dn is simple, each crossing in Dn involves a blue
edge bi and a red edge rj, for some distinct i, j ∈ [n]. We use ×i,j to denote this crossing.
We assign a sign to ×i,j as follows. Orient each blue edge bi from b to i, and orient each
red edge rj from r to j. As illustrated in Figure 6, a crossing is positive if the red edge
crosses the blue edge from the left-hand side of the blue edge. Otherwise, the crossing is
negative. If all the crossings in Dn are positive (respectively, negative), then we say that
Dn itself is positive (respectively, negative). On the left-hand side of Figure 7 we illustrate
a negative 1-drawing of K2,3, and on the right-hand side we show a positive 1-drawing of
K2,3.
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Figure 6: Every crossing in a simple drawing of K2,n is positive or negative, according to
this convention.

We start to narrow down the 1-drawings of interest with the following statement.

Proposition 8. Let Σ be a surface. If there exist arbitrarily large 1-drawings in Σ, then
there exist arbitrarily large 1-drawings in Σ that are positive.

Proof. Let n be any positive integer. Suppose that there exist arbitrarily large 1-drawings
in Σ. Similarly as in the proof of Proposition 2, an application of Ramsey’s theorem yields
that there exists a 1-drawing Dn of K2,n in Σ that is either positive or negative.

If Dn is positive, then we are done. If it is negative, we proceed as illustrated in
Figure 7: we relabel the vertices b 7→ r, r 7→ b, and i 7→ n− i+ 1 for i = 1, . . . , n, and as
a result we obtain a 1-drawing of K2,n that is positive.
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Figure 7: On the left-hand side we illustrate a 1-drawing of K2,3 in the double torus.
Each crossing in this drawing is negative, and so this 1-drawing is negative. The three
crossings ×2,1,×3,1,×3,2 in this drawing are backward crossings, and so this is a backward
1-drawing. If we perform the relabellings b 7→ r, r 7→ b, 1 7→ 3, and 3 7→ 1, we obtain the
1-drawing on the right-hand side, which is also backward, but positive.

In order to continue the process of narrowing down the 1-drawings of interest, we
introduce the notions of forward and backward crossings. Let ×i,j be a crossing in a 1-
drawing Dn of K2,n in some surface. Recall that this is a crossing between the blue edge bi
and the red edge rj, where i ̸= j. If i < j, then ×i,j is a forward crossing, and if i > j then
it is a backward crossing. If all the crossings are forward (respectively, backward) then
Dn itself is a forward (respectively, backward) drawing. For instance, both 1-drawings of
K2,3 shown in Figure 7 are backward drawings.

Proposition 9. Let Σ be a surface. If there exist arbitrarily large 1-drawings in Σ that are
positive, then there exist arbitrarily large 1-drawings in Σ that are positive and forward.

Proof. Let n be a positive integer. Suppose that there exist arbitrarily large positive
1-drawings in Σ. Similarly as in the proof of Proposition 2, an application of Ramsey’s
theorem yields that there exists a 1-drawing Dn of K2,n in Σ that is positive and either
forward or backward.

If Dn is forward then we are done. If it is backward, we transform it as illustrated in
Figure 8. First, we perform an orientation-reversing self-homeomorphism on Σ, and let
D′

n denote the drawing that is the image of Dn under this mapping. Finally, we modify
D′

n by exchanging the labels of b and r. The result is a 1-drawing of K2,n that is positive
and forward.

To complete this process of narrowing down the 1-drawings that we need to consider,
we introduce one final notion. Let Dn be a 1-drawing of K2,n. As we traverse a blue edge
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Figure 8: On the left-hand side we have a 1-drawing of K2,3, in the double torus, that is
positive and backward. If we perform a reflection on the polygon (that is, an orientation-
reversing self-homeomorphism of the double torus) and exchange the labels of b and r,
we obtain the drawing on the right-hand side. This is a 1-drawing of K2,3 that is positive
and forward.

bi following its direction (we recall, from b to i), we encounter its crossings with red edges
in some order ×i,j1 ,×i,j2 , . . . ,×i,js . We say that j1, j2, . . . , js is the crossing sequence of bi.

If the crossing sequence of bi is increasing (respectively, decreasing), then we say
that the edge bi is increasing (respectively, decreasing). If every blue edge is increasing
(respectively, decreasing), then Dn is blue increasing (respectively, blue decreasing).

Similarly, as we traverse a red edge rj following its direction (from r to j) we encounter
its crossings with blue edges in some order ×i1,j,×i2,j, . . . ,×it,j. Then i1, i2, . . . , it is the
crossing sequence of ri. If this sequence is increasing (respectively, decreasing), then
rj is increasing (respectively, decreasing). If every red edge is increasing (respectively,
decreasing), then Dn is red increasing (respectively, red decreasing).

If Dn is blue increasing or blue decreasing, then it is blue monotone. If Dn is red
increasing or red decreasing, then it is red monotone. Finally, if Dn is both blue monotone
and red monotone, then it is monotone.

Proposition 10. Let Σ be a surface. If there exist arbitrarily large 1-drawings in Σ
that are positive and forward, then there exist arbitrarily large 1-drawings in Σ that are
positive, forward, and monotone.

Proof. We prove that if (∗) there exist arbitrarily large 1-drawings in Σ that are positive
and forward, then (∗∗) there exist arbitrarily large 1-drawings in Σ that are positive,
forward, and blue monotone. A totally analogous sequence of arguments shows that (∗∗)
implies that there exist arbitrarily large 1-drawings in Σ that are positive, forward, blue
monotone, and red monotone (that is, positive, forward, and monotone, as claimed in the
proposition).
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Let n be any positive integer. Assuming (∗), our aim is to show that there is a
1-drawing of K2,n in Σ that is positive, forward, and blue monotone.

Let m be the Ramsey number R3(n, n): if all the 3-edges in a complete 3-uniform
hypergraph of size m are coloured with one of two available colours, then there is a
complete subhypergraph of size n all of whose 3-edges are of the same colour.

By assumption, there is a 1-drawing Dm of K2,m in Σ that is positive and forward.
Construct an auxiliary complete 3-uniform hypergraph G, whose vertex set is [m]. Let
e = {p, q, s} be a 3-edge of G, where 1⩽p<q<s ⩽ m. Note that since Dm is forward, the
blue edge bp is crossed by the red edges rq and rs. We colour e black if as we traverse the
blue edge bp in Dm from b to p, we encounter its crossing with rq before its crossing with
rs, and we colour e yellow otherwise.

Clearly, every 3-edge of G is either black or yellow, and so by Ramsey’s theorem there
exist integers 1 ⩽ i1 < i2 < · · · < in ⩽ m such that in the complete subhypergraph
H of G on {i1, i2, . . . , in}, all the 3-edges are of the same colour. Remove from Dm all
the vertices in [m] \ {i1, i2, . . . , in} and their incident edges, and relabel the remaining n
vertices with the rule ij 7→ j for j = 1, . . . , n. Let Dn be the resulting 1-drawing of K2,n.

If all the 3-edges of H are black, then Dn is blue increasing, and if all the 3-edges of
H are yellow then Dn is blue decreasing. That is, Dn is blue monotone. We finish the
proof by noting that since Dm is positive and forward, then clearly Dn is also positive
and forward.

Combining Propositions 8, 9, and 10, we obtain the following statement. This propo-
sition will allow us, in the proof of Lemma 4, to focus our attention on 1-drawings that
are positive, forward, and monotone.

Proposition 11. Let Σ be a surface. If there exist arbitrarily large 1-drawings in Σ, then
there exist arbitrarily large 1-drawings in Σ that are positive, forward, and monotone.

5 Proof of Lemma 4

Lemma 4 claims that no fixed surface can host 1-drawings of K2,m for arbitrarily large
values of m. In view of Proposition 11, in order to prove the lemma it suffices to show that
no fixed surface can host 1-drawings of K2,n that are positive, forward, and monotone, for
arbitrarily large values of n.

As we shall see shortly, Lemma 4 in this form follows easily from the next two claims.

Claim 12. Let Dn be a 1-drawing of K2,n in a surface Σ, where n is even. Suppose that Dn

is positive and forward. If Dn is blue increasing or red increasing, then gen(Σ) ⩾ (n−2)/2.

Claim 13. Let Dn be a 1-drawing of K2,n in a surface Σ. Suppose that Dn is positive
and forward. If Dn is blue decreasing and red decreasing, then gen(Σ) ⩾ n− 2.

Proof of Lemma 4, assuming Claims 12 and 13. Let Σ be a surface. By way of contra-
diction, suppose that for every m there is a 1-drawing of K2,m in Σ. By Proposition 11,
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it follows that (†) for every n there is a 1-drawing of K2,n in Σ that is forward, positive,
and monotone.

Let n > 2 + 2 gen(Σ) be an even integer. By (†), there exists a 1-drawing Dn of K2,n

in Σ that is forward, positive, and monotone. Thus Dn is forward, positive, and either (i)
blue increasing or red increasing; or (ii) both blue and red decreasing. If (i) holds, we have
a contradiction to Claim 12, and if (ii) holds, we have a contradiction to Claim 13.

To prove the claims, we make use of the common device of regarding a drawing as an
embedding, by turning each crossing into a degree 4 vertex, a crossing vertex (coloured
white in the figures). Under this perspective, we can use the topological graph theory
machinery to investigate drawings.

Note that under this perspective, what used to be a blue edge bi in a 1-drawing Dn of
K2,n becomes a blue path, as the crossings of bi are now regarded as vertices, which are
the internal vertices of the path bi. Similarly, what used to be a red edge ri becomes a
red path.

The proofs of Lemmas 4 and 5 rely heavily on facial walks, and so it seems worth
to review this crucial notion from topological graph theory. Informally speaking, a facial
walk is simply a walk that bounds a face in an embedding. To define this concept formally,
we recall that all graphs under consideration have neither loops nor parallel edges, and
so in this context a closed walk of a graph is simply a sequence v0v1 · · · vk−1v0 of vertices
such that vi is adjacent to vi+1 for i = 0, . . . , k − 1 (indices are read modulo k).

Let G be a graph embedded on a surface Σ, and let Π = {π(v)}v∈V be the rotation
system of the embedding. A facial walk of this embedding is a closed walk v0v1v2 · · · vk−1v0
where vi−1 and vi+1 appear consecutively in this order in π(vi), for i = 0, . . . , k − 1. For
an exhaustive discussion on facial walks we refer the reader to [10].

We make extensive use of the following fact (see for instance [10, Section 4.1]). If
a graph with ν vertices and ε edges is embedded in Σ, and the embedding has ϕ facial
walks, then

gen(Σ) ⩾
1

2

(
2− ν + ε− ϕ

)
. (1)

Proof of Claim 12. Suppose first that Dn is blue increasing, and recall that by assumption
Dn is positive and forward. Let Jn be the restriction of Dn to the blue path b1 and the
red paths r2, . . . , rn (we suppress the crossing vertices of these red paths with other blue
edges). As illustrated in Figure 9, the vertices of Jn are r, b, 1, . . . , n, and ×1,2, . . . ,×1,n,
which are the crossings of b1 with the red paths r2, . . . , rn, respectively.
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Figure 9: Illustration of the proof of Claim 12.
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Figure 9: Illustration of the proof of Claim 12.

the electronic journal of combinatorics 31(2) (2024), #P2.53 12



Thus Jn has 2n+ 1 vertices and 3n− 2 edges, and it is straightforward to verify that
it has only one facial walk. (Here is where we use that n is even; if n were odd, there
would be two facial walks). Since Σ is the host surface of Jn, it follows from (1) that
gen(Σ) ⩾ (n− 2)/2.

If Dn is red increasing, we consider instead the restriction Jn of Dn to the red path
rn and the blue paths b1, . . . , bn−1. As in the previous case, it is straightforward to
verify that Jn has 2n + 1 vertices, 3n− 2 edges, and one facial walk, thus implying that
gen(Σ) ⩾ (n− 2)/2.

Proof of Claim 13. As in the proof of Claim 12, the strategy is to find a restriction Jn of
Dn that has exactly one face, and to apply (1) to obtain the required bound on gen(Σ).
As we shall see, the restriction Jn is as illustrated in Figure 10.
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Figure 10: Illustration of the proof of Claim 13.

Note that since Dn is positive, forward, and red decreasing, for i = 2, . . . , n the red
path ri crosses the blue paths bi−1, bi−2, . . . , b1 in this order, from their left-hand sides.
In particular, the first crossing of ri as we traverse it from r to i is ×i−1,i, and the last
crossing is ×1,i.

We also note that since Dn is blue decreasing, as we traverse b1 from b to 1 we encounter
the crossings ×1,n−1,×1,n−2, . . . ,×1,3,×1,2 in this order. See Figure 10.

In the restriction Jn we include the blue paths b1, . . . , bn−1, and for i = 2, . . . , n − 1,
we include two portions of the red path ri: the part si from r to its first crossing ×i−1,i,
and the part ti from its last crossing ×1,i to vertex i. Finally, include from rn its part sn
from r to its first crossing ×n−1,n. See Figure 10. Thus Jn has 3n−3 vertices and 5n−8
edges, and it is straightforward to verify that it has only one facial walk. Thus it follows
from (1) that gen(Σ) ⩾ n− 2.

the electronic journal of combinatorics 30 (2023), #P00 13

Figure 10: Illustration of the proof of Claim 13.

Note that since Dn is positive, forward, and red decreasing, for i = 2, . . . , n the red
path ri crosses the blue paths bi−1, bi−2, . . . , b1 in this order, from their left-hand sides.
In particular, the first crossing of ri as we traverse it from r to i is ×i−1,i, and the last
crossing is ×1,i.

We also note that since Dn is blue decreasing, as we traverse b1 from b to 1 we encounter
the crossings ×1,n−1,×1,n−2, . . . ,×1,3,×1,2 in this order. See Figure 10.

In the restriction Jn we include the blue paths b1, . . . , bn−1, and for i = 2, . . . , n − 1,
we include two portions of the red path ri: the part si from r to its first crossing ×i−1,i,
and the part ti from its last crossing ×1,i to vertex i. Finally, include from rn its part sn
from r to its first crossing ×n−1,n. See Figure 10. Thus Jn has 3n−3 vertices and 5n−8
edges, and it is straightforward to verify that it has only one facial walk. Thus it follows
from (1) that gen(Σ) ⩾ n− 2.
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6 Narrowing down the class of 2-drawings we need to consider

As we did for the proof of Lemma 4, we pave the way towards the proof of Lemma 5 by
showing that it suffices to prove the lemma for a highly restricted class of 2-drawings of
K2,n.

Throughout this section and Section 7, whenever we refer to a 2-drawing we mean
a 2-drawing of K2,n in a surface Σ, for some positive integer n. We use several times
expressions such as “if there are arbitrarily large 2-drawings in Σ”. This is to be interpreted
as “if there exist 2-drawings of K2,n in Σ for arbitrarily large values of n”.

We have an additional important remark. In the previous section, for the proof of
Lemma 4, it was convenient to turn crossings into degree 4 vertices: by regarding drawings
as embeddings, we were able to use (1). This device will also be used in the next section
for the proof of Lemma 5. However, in the current section (similarly to Section 4) we
are interested in properties of 2-drawings of K2,n, and so we do not regard crossings as
degree 4 vertices. Thus for i = 1, . . . , n, throughout this section bi and ri maintain their
identities as edges.

We start by noting that in a 2-drawing Dn of K2,n, for each i ∈ [n] the red edge ri
crosses all the blue edges except for bi. Thus the crossing sequence of ri is a permutation
of [n]\{i}. We say that ri is ahead first if in this sequence i+1, i+2, . . . , n appear first in
some order, followed by 1, 2, . . . , i−1 in some order. On the other hand, if in this sequence
1, . . . , i− 1 appear first in some order, followed by i+ 1, i+ 2, . . . , n in some order, then
we say that ri is behind first. If every red edge in Dn is ahead first (respectively, behind
first), then Dn is ahead first (respectively, behind first).

If in the crossing sequence of ri we have that i+1, i+2, . . . , n appear in this order, then
ri is ahead increasing, and if they appear in descending order then it is ahead decreasing.
If all the red edges are ahead increasing (respectively, decreasing), then the drawing Dn

itself is ahead increasing (respectively, ahead decreasing). If Dn is ahead increasing or
ahead decreasing, then it is ahead monotone.

Similarly, if in the crossing sequence of ri we have that 1, 2, . . . , i − 1 appear in this
order, then ri is behind increasing, and if they appear in descending order then it is behind
decreasing. If all the red edges are behind increasing (respectively, decreasing), then the
drawing Dn itself is behind increasing (respectively, decreasing). If Dn is behind increasing
or behind decreasing, then it is behind monotone.

Thus, for instance, if Dn is ahead first, ahead decreasing, and behind increasing, then
for each i ∈ [n] the crossing sequence of the red edge ri is n, n−1, . . . , i+2, i+1, 1, 2, . . . , i−1
(with obvious adjustments for i = 1 and i = n).

If all the crossings of ri with bi+1, bi+2, . . . , bn are positive (respectively, negative) then
ri is ahead positive (respectively, ahead negative). If all the red edges are ahead positive
(respectively, if they are all ahead negative) then Dn itself is ahead positive (respectively,
ahead negative). If Dn is ahead positive or ahead negative, then it is ahead consistent.

Similarly, if all the crossings of ri with b1, b2, . . . , bi−1 are positive (respectively, neg-
ative) then ri is behind positive (respectively, behind negative). If all the red edges are
behind positive (respectively, if they are all behind negative) then Dn itself is behind pos-
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itive (respectively, behind negative). If Dn is behind positive or behind negative, then it
is behind consistent.

Regarding blue edges, we need only pay attention to b1 and bn. If in Dn the crossing
sequence of b1 is 2, . . . , n − 1, n (respectively, n, n − 1, . . . , 2) then we say that Dn is
b1-increasing (respectively, b1-decreasing). In either case we say that Dn is b1-monotone.
Similarly, if in Dn the crossing sequence of bn is 1, 2, . . . , n−1 (respectively, n−1, . . . , 2, 1)
then Dn is bn-increasing (respectively, bn-decreasing). In either case we say that Dn is
bn-monotone.

Let Σ be a surface. An application of Ramsey’s theorem for 3-uniform hypergraphs
shows that if there exist arbitrarily large 2-drawings in Σ, then there exist arbitrarily
large 2-drawings in Σ that are either ahead first or behind first. We note that a behind
first drawing gets transformed into an ahead first drawing by performing the relabelling
i 7→ n−i+1 to each vertex i ∈ [n]. In view of this, the previous observation implies that if
there exist arbitrarily large 2-drawings in Σ, then there exist arbitrarily large 2-drawings
in Σ that are ahead first.

With successive applications of Ramsey’s theorem we get a series of additional prop-
erties, ending up with the following.

Proposition 14. Let Σ be a surface. If there exist arbitrarily large 2-drawings in Σ, then
there exist arbitrarily large 2-drawings in Σ that are ahead first, ahead monotone, behind
monotone, ahead consistent, behind consistent, b1-monotone, and bn-monotone.

7 Proof of Lemma 5

Lemma 5 claims that no fixed surface Σ can host 2-drawings of K2,m for arbitrarily large
values of m. In view of Proposition 14, in order to prove the lemma it suffices to show
that no fixed surface can host 2-drawings of K2,n that are ahead first, ahead monotone,
behind monotone, ahead consistent, behind consistent, b1-monotone, and bn-monotone.

Even though evidently the focus has been reduced to a finite number of possibilities,
at first glance we seem to have a grueling task ahead. Indeed, since there are 2 ways in
which a 2-drawing can be ahead monotone, 2 ways in which it can be behind monotone,
2 ways in which it can be ahead consistent, 2 ways in which it can be behind consistent,
2 ways in which it can be b1-monotone, and 2 ways in which it can be bn-monotone, in
principle we need to investigate 26 = 64 different possibilities. Fortunately, as we shall
see shortly, all cases are disposed of with a handful of simple arguments.

Each of the 64 cases is dealt with in one of the next three claims. For instance, the
next statement swiftly takes care of 60 cases with the same easy observation used to prove
Claim 12.

Claim 15. Let Dn be a 2-drawing of K2,n in a surface Σ, where n is even. Suppose that
Dn is either:

(i) behind positive and b1-increasing; or

(ii) behind negative and b1-decreasing; or
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(iii) ahead positive and bn-increasing; or

(iv) ahead negative and bn-decreasing; or

(v) ahead increasing, and ahead positive; or

(vi) ahead decreasing, and ahead negative; or

(vii) behind increasing, and behind positive; or

(viii) behind decreasing, and behind negative.

Then gen(Σ) ⩾ (n− 2)/2.

With the following claim, we will deal with 3 of the 4 remaining cases.

Claim 16. Let Dn be a 2-drawing of K2,n in a surface Σ. Suppose that Dn is ahead first,
and in addition it is either:

(i) ahead increasing, ahead negative, and bn-increasing; or

(ii) behind increasing, behind negative, and b1-increasing.

Then there exists a 1-drawing of K2,n−1 in Σ.

Finally, with the next statement, we take care of the single remaining case.

Claim 17. Let Dn be a 2-drawing of K2,n in a surface Σ, where n ≡ 1 (mod 3). Suppose
that Dn is ahead first, ahead decreasing, behind decreasing, ahead positive, behind positive,
and b1-decreasing. Then gen(Σ) ⩾ (n− 1)/3.

We defer the proofs of the claims for the moment, and show that they imply Lemma 5.

Proof of Lemma 5, assuming Claims 15, 16, and 17. Let Σ be a surface. To prove the
lemma we exhibit an integer n and show that there cannot exist a 2-drawing of K2,n in
Σ.

To define n, first let N be the maximum integer such that there is a 1-drawing of K2,N

in Σ. The existence of N is guaranteed from Lemma 4. We let n be any integer such that
n ⩾ max{3 gen(Σ) + 3, N + 2} and n ≡ 1 (mod 3).

By Proposition 14 there is a 2-drawing Dn of K2,n that is ahead first, ahead monotone,
behind monotone, ahead consistent, behind consistent, b1-monotone, and bn-monotone.

A trivial analysis shows that Dn either (a) satisfies one of (i)–(viii) in Claim 15; or (b)
it satisfies one of (i)–(ii) in Claim 16; or (c) it satisfies the hypotheses in Claim 17.

Suppose that (a) holds. Note that n is even. By Claim 15, we have that gen(Σ) ⩾
(n − 2)/2, that is, n ⩽ 2 gen(Σ) + 2. But this contradicts the choice of n, which in
particular implies that n ⩾ 2 gen(Σ) + 3.

If (b) holds, Claim 16 guarantees the existence of a 1-drawing of K2,n−1 in Σ, and from
this it follows that n − 1 ⩽ N . But this contradicts the choice of n, which in particular
implies that n− 1 ⩾ N + 1.
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Finally, suppose that (c) holds. By Claim 17, we have that gen(Σ) ⩾ (n− 1)/3, that
is, n ⩽ 3 gen(Σ)+1. But this contradicts the choice of n, which in particular implies that
n ⩾ 3 gen(Σ) + 2.

We reiterate that in the proofs of the claims we adopt once again the perspective used
in the proof of Claims 12 and 13, where crossings are regarded as degree 4 vertices. Thus
once again bi and ri are seen as paths, for i = 1, . . . , n.

Proof of Claim 15. This claim follows using an argument totally analogous to the one
used in the proof of Claim 12, to find a restriction Jn of Dn with 2n+ 1 vertices, 3n− 2
edges, and one facial walk.

For i ∈ {1, n}, we use Dn

∣∣
bi

to denote the restriction of Dn to the blue path bi and all
the red paths with the exception of ri. Similarly, Dn

∣∣
ri

is the restriction of Dn to the red
path ri and all the blue paths with the exception of bi. For instance, Figure 9 in Section 5
illustrates Dn

∣∣
b1

if Dn is behind positive and b1-increasing, that is, if Dn is as in (i) in
Claim 15.

As an additional example, in Figure 11 we illustrate Dn

∣∣
rn

if Dn is behind decreasing
and behind negative, as in (viii) in Claim 15.

Finally, suppose that (c) holds. By Claim 17, we have that gen(Σ) ⩾ (n− 1)/3, that
is, n ⩽ 3 gen(Σ)+1. But this contradicts the choice of n, which in particular implies that
n ⩾ 3 gen(Σ) + 2.
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in the proof of Claims 12 and 13, where crossings are regarded as degree 4 vertices. Thus
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Proof of Claim 15. This claim follows using an argument totally analogous to the one
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edges, and one facial walk.
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Figure 11: Illustration of the proof of Claim 15.

If (i) or (ii) holds, let Jn := Dn

∣∣
b1

. If (iii) or (iv) holds, let Jn := Dn

∣∣
bn

. If (v) or
(vi) holds, let Jn := Dn

∣∣
r1

. Finally, if (vii) or (viii) holds, let Jn := Dn

∣∣
rn

. In all these
cases, as in the proof of Claim 12, it is easily verified that Jn has 2n+ 1 vertices, 3n− 2
edges, and one facial walk. Using (1), we conclude that the genus of the host surface of
Jn (which is the host surface of Dn) is at least (n− 2)/2.

Proof of Claim 16. Suppose that (i) holds. The idea of the proof is quite simple. First,
we remove certain parts of Dn, thus obtaining a drawing D′

n. We then contract a path in
D′

n to a vertex, and show that as a result we obtain a 1-drawing of K2,n−1.
Recall that in a 2-drawing of K2,n, for each i = 1, . . . , n the red path ri crosses the

blue path bj for every j ̸= i. In particular, for i = 1, 2, . . . , n− 1, the red path ri crosses
the blue path bn. As illustrated in Figure 12(a), we let si be the part of the red path ri
from r to its crossing ×n,i with the blue path bn, and we let ti be the rest of ri, that is,
the part from ×n,i to vertex i. In this figure, the parts ti are drawn thick.

As we also illustrate in Figure 12(a), the assumption that Dn is bn-increasing implies
that as we traverse bn from b to n we find ×n,1,×n,2, . . . ,×n,n−1 in this order. Also note
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Figure 12: Illustration of the proof of Claim 16.

that the illustration in Figure 12(a) reflects that Dn is ahead negative, and so in particular
×n,1,×n,2, . . . ,×n,n−1 are negative crossings.

We now discard from Dn the red path rn, the red vertex r, and for i=1, 2, . . . , n−1
we discard the part si of the red path ri. Finally, we also discard the blue edge from b to
×n,1 and also the blue edge from ×n,n−1 to n. We let D′

n be the drawing obtained after
removing these vertices and edges from Dn. In Figure 12(b) we illustrate the part of D′

n

that consists of what remains of the blue path bn (which is the blue path P from ×n,1 to
×n,n−1) and its incident red edges.

Finally, as illustrated in Figure 12(c), we contract in D′
n the whole blue path P to a

vertex that we label r. Note that there is no ambiguity in the use of this label, since the
original red vertex r was discarded at the beginning of the procedure. Let Fn−1 denote
the drawing thus obtained. We conclude the proof of Case (i) by showing that Fn−1 is
a 1-drawing of K2,n−1, where the blue paths are b1, b2, . . . , bn−1, and the red paths are
t1, t2, . . . , tn−1.

To prove that Fn−1 is a 1-drawing of K2,n−1, we need to show that (I) the paths
t1, t2, . . . , tn−1 leave r in this clockwise cyclic order; and (II) for each pair of distinct
i, j ∈ {1, 2, . . . , n− 1}, there is exactly one crossing in the canonical cycle that consists of
bi, bj, ti, and tj.

As illustrated in Figure 12(c), (I) follows simply because the original drawing Dn is
bn-increasing. Finally, to see that (II) holds it suffices to note that for i = 1, 2, . . . , n− 1,
the red path ti crosses the blue paths b1, b2, . . . , bi−1, and it does not cross any of the
blue paths bi+1, . . . , bn: this follows since the original drawing Dn is ahead first and ahead
increasing. Thus (I) and (II) hold, and so Fn−1 is a 1-drawing of K2,n−1 in Σ, as claimed.

If (ii) holds, we proceed in a totally analogous manner. In this case we discard the
red vertex r, the red path r1, and for i = 2, . . . , n the part of ri from r to its crossing ×1,i

with the blue path b1. Next, we discard the portions of b1 from b to ×1,2 and from ×1,n
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Figure 12: Illustration of the proof of Claim 16.
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increasing. Thus (I) and (II) hold, and so Fn−1 is a 1-drawing of K2,n−1 in Σ, as claimed.

If (ii) holds, we proceed in a totally analogous manner. In this case we discard the
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to 1. Finally, we contract the part of b1 from ×1,2 to ×1,n to a vertex we label r, and as
a result we obtain a 1-drawing of K2,n−1 in Σ.

Proof of Claim 17. As we illustrate in Figure 13, the assumption that Dn is ahead decreas-
ing, ahead positive, behind decreasing, and behind positive, implies that for i = 2, . . . , n−
1, as we traverse the red path ri from r to i, we cross the blue paths bn, bn−1, . . . , bi+1, bi−1,
. . . , b2, b1 in this order, and we cross all these paths from their left-hand sides.

to 1. Finally, we contract the part of b1 from ×1,2 to ×1,n to a vertex we label r, and as
a result we obtain a 1-drawing of K2,n−1 in Σ.

Proof of Claim 17. As we illustrate in Figure 13, the assumption that Dn is ahead decreas-
ing, ahead positive, behind decreasing, and behind positive, implies that for i = 2, . . . , n−
1, as we traverse the red path ri from r to i, we cross the blue paths bn, bn−1, . . . , bi+1, bi−1,
. . . , b2, b1 in this order, and we cross all these paths from their left-hand sides.
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i

si si

ti

Figure 13: Illustration of the proof of Claim 17.

As we illustrate in this figure, after crossing bi+1 at ×i+1,i, the path ri reaches bi−1

at ×i−1,i. Thus there is a red edge with endpoints ×i+1,i and ×i−1,i; we use si to denote
this red edge. We also note that as we traverse ri, the last crossing we encounter is its
crossing ×1,i with b1, and after this crossing we arrive in vertex i. Thus there is a red
edge with endpoints ×1,i and i; we use ti to denote this red edge. Both si and ti are thick
in Figure 13.

We let Jn be the restriction of Dn to the part that consists of the blue paths b1, . . . , bn
plus the segments si and ti for i = 3, 6, 9, . . . , n−1. See Figure 14. As we illustrate in that
figure, since Dn is b1-decreasing it follows that the crossing-vertices ×1,n−1, . . . ,×1,6,×1,3

appear in this order as we traverse b1 from b to 1.

b
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s6 s6×5,6 ×7,6
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Figure 14: Illustration of the proof of Claim 17.

We note that Jn has 2n vertices and 8n/3 − 5/3 edges, and it is straightforward to
verify that it has exactly one facial walk. Using (1) we obtain that the genus of the host
surface of Jn (which is the host surface of Dn) is at least (n− 1)/3.
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We let Jn be the restriction of Dn to the part that consists of the blue paths b1, . . . , bn
plus the segments si and ti for i = 3, 6, 9, . . . , n−1. See Figure 14. As we illustrate in that
figure, since Dn is b1-decreasing it follows that the crossing-vertices ×1,n−1, . . . ,×1,6,×1,3

appear in this order as we traverse b1 from b to 1.

b

31

×1,n−1

×1,3

×1,6

×2,3

s3 s3

s6 s6×5,6 ×7,6

×n−2,n−1 sn−1 sn−1
×n,n−1

2 6 n−2 n−1 n754t3

tn−1

t6

Figure 14: Illustration of the proof of Claim 17.

We note that Jn has 2n vertices and 8n/3 − 5/3 edges, and it is straightforward to
verify that it has exactly one facial walk. Using (1) we obtain that the genus of the host
surface of Jn (which is the host surface of Dn) is at least (n− 1)/3.
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We note that Jn has 2n vertices and 8n/3 − 5/3 edges, and it is straightforward to
verify that it has exactly one facial walk. Using (1) we obtain that the genus of the host
surface of Jn (which is the host surface of Dn) is at least (n− 1)/3.
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8 Concluding remarks and open questions

It is well known (see for instance [7, 10]) that every rotation system is realized by an
embedding on a surface. Since an embedding is an (particularly nice) instance of a
simple drawing, it immediately follows that every rotation system, and in particular every
complete rotation system, is simply realizable in every surface whose genus is sufficiently
large.

Archdeacon defined the crossing genus crg(Π) of a rotation system Π as the smallest
genus of a surface in which Π can be simply realized. He put forward the following.

Problem (Archdeacon [3]). Given a complete rotation system, calculate its crossing
genus.

For each nonnegative integer g, let f(g) be the least integer such that there exists a
complete rotation system of size f(g) that is not simply realizable in the surface of genus
g. For instance, f(0) = 4, since there exist complete rotation systems of size 4 that are
not simply realizable in the sphere (equivalently, the plane), but trivially every complete
rotation system of size 3 is simply realizable in the sphere.

Theorem 1 implies that f(g) is well-defined. On the other hand, in our arguments
we use Ramsey’s theorem repeatedly, and so the upper bound we can prove for f(g) is
multiple exponential in g. Can one prove a remarkably better upper bound for f(g)? For
instance, is it true that f(g) = O(2g)?

How about lower bounds for f(g)? Any rotation system of size n can be realized
as a 2-cell embedding (and hence as a simple drawing) of Kn in some surface. If the
rotation system defines ϕ facial walks, then the genus of this surface is (1/2)(2−|V (Kn)|+
|E(Kn)|−ϕ) ⩽ (1/2)(1−n+

(
n
2

)
) = (1/4)(n−1)(n−2) < n2/4. Therefore every rotation

system of size n can be simply realized in the surface of genus n2/4, and this implies that
f(g) = Ω(

√
g). Can one prove a significantly better lower bound for f(g)? For instance,

is it true that f(g) = Ω(g)?
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