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Abstract

Motivated by a problem in theoretical computer science suggested by Wigderson,
Alon and Ben-Eliezer studied the following extremal problem systematically one
decade ago. Given a graph H, let C(n,H) be the minimum number k such that the
following holds. There are n colorings of E(Kn) with k colors, each associated with
one of the vertices of Kn, such that for every copy T of H in Kn, at least one of
the colorings that are associated with V (T ) assigns distinct colors to all the edges
of E(T ). In this paper, we obtain several new results in this problem including:

• For paths of short length, we show that C(n, P4) = Ω(n1/5) and C(n, Pt) =
Ω(n1/3) with t ∈ {5, 6}, which significantly improve the previously known
lower bounds (log n)Ω(1).

• We make progress on the problem of Alon and Ben-Eliezer about complete
graphs, more precisely, we show that C(n,Kr) = Ω(n2/3) when r 󰃍 8, and
C(n,Ks,t) = Ω(n2/3) for all t 󰃍 s 󰃍 7.

• When H is a star with at least 4 leaves, a matching of size at least 4, or a path
of length at least 7, we give a new lower bound for C(n,H). We also show
that for any graph H with at least 6 edges, C(n,H) is polynomial in n. All of
these improve the corresponding results obtained by Alon and Ben-Eliezer.

Mathematics Subject Classifications: 05C35, 05C15

1 Introduction

One of the hardest problems of complexity theory is to prove nontrivial lower bounds
on fundamental complexity measures for concrete computing problems. In 1993, Karch-
mer [12] gave a lower bound on non-deterministic circuit size and presented a new proof for
the exponential monotone size lower bound for the clique function. Later, Wigderson [20]

aLaboratory of Mathematics and Complex Systems, Ministry of Education, School of Mathematical
Sciences, Beijing Normal University, Beijing, China. (chengxinbu2006@sina.com).

bExtremal Combinatorics and Probability Group (ECOPRO), Institute for Basic Science (IBS),
Daejeon, South Korea (zixiangxu@ibs.re.kr).

the electronic journal of combinatorics 31(2) (2024), #P2.55 https://doi.org/10.37236/11911

https://doi.org/10.37236/11911


discussed the achievements, potential, and challenges of the elegant fusion method intro-
duced by Karchmer [12], which unifies the previous approximation method of Razborov [16]
and the topological method of Sipser [17]. In the same paper, Wigderson also provided
several concrete open problems, one of which can be stated as follows.

Problem 1. Let χi : {0, 1}n → [k], for i ∈ [n] be a collection of k-colorings of the
n-dimensional hypercube. For a triple of distinct vectors X, Y, Z ∈ {0, 1}n, say that
coordinate i ∈ [n] is interesting if not all three vectors agree in this coordinate. Say
that χi is proper on this triple if the three colors χi(X), χi(Y ) and χi(Z) are distinct.
Define the collection of colorings good if for every triple of vectors, there is an interesting
coordinate i for which χi is proper on this triple. The problem asks to, bound the smallest
number k for which such a good collection exists.

Karchmer and Wigderson [13] later proved that, in the above problem, the small-
est number k has to grow with n. Motivated by Problem 1, Alon and Ben-Eliezer [1]
initiated the study of a new problem in extremal graph theory, which aims to find rain-
bow subgraphs under certain constraints. Formally, for a given graph H, let C(n,H)
be the minimum number k such that the following holds. There is a set of n colorings
{fv : E(Kn) → [k] : v ∈ V (Kn)}, such that for every copy T of H in Kn, at least one of
the colorings that are associated with V (T ) assigns distinct colors to all the edges of E(T ),
that is, at least one vertex in T is associated with a coloring for which T is rainbow. Note
that, we do not require each coloring to be proper edge coloring. Alon and Ben-Eliezer [1]
remarked that a lower bound for C(n, P3) is also a lower bound for Problem 1. To see
this, one can regard the n coordinates of n-dimensional hypercube as the n vertices of
the complete graph Kn and regard

󰀃
[n]
2

󰀄
as the set of edges in Kn. Then in Problem 1,

χi(X), χi(Y ) and χi(Z) are distinct means the edges of corresponding path of length 3
receive distinct colors. Based on this connection, Alon and Ben-Eliezer [1] improved the
lower bound in [13] by showing C(n, P3) = Ω(( logn

log logn
)1/4).

In recent years, there have been many other important problems in the field of ex-
tremal combinatorics involving finding rainbow structures in edge colorings of graphs. For
example, the rainbow Turán problem [4, 5, 9, 11, 14, 18, 19] asks the maximum number
of edges in a properly edge-colored graph that does not contain certain subgraph, all of
whose edges have different colors. The anti-Ramsey problem [3, 7, 10, 21, 22] asks for
the maximum number of colors in an edge coloring of a complete graph without a certain
rainbow subgraph. Moreover, there was a famous conjecture of Ringel in 1963, one of
whose statements involved finding a rainbow copy of any tree with n edges in a particular
proper edge coloring of K2n+1. This conjecture was recently confirmed by Montgomery,
Pokrovskiy, and Sudakov [15] via many new techniques that are based on probabilistic
methods. Return to the extremal problem of Alon and Ben-Eliezer, one can ask the
following natural question.

Question 2. For a fixed graph H, determine the order of growth of C(n,H) as n → ∞.

Alon and Ben-Eliezer [1] characterized the set of all graphs H for which C(n,H) is
bounded by some absolute constant c(H). Using the so-called Lovász local lemma [2, 6],
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they proved a general upper bound for any graph H. Moreover, they also obtained lower
bounds for several graphs of special interests, including paths Pt, matchings It, and stars
St, where t represents the number of edges. Here we list some known results in [1] as
follows.

Theorem 3 ([1]).

• C(n,H) 󰃑 c(H) if and only if H contains at most 3 edges and H is neither P3 nor
P3 together with any number of isolated vertices. Moreover, in all these cases, we
have C(n,H) 󰃑 5 for every n.

• Let H be a fixed graph with r vertices, then C(n,H) = O(r4 · n r−2
r ).

• C(n, P3) = Ω(( logn
log logn

)1/4) and C(n, Pt) = (log n)Ω(1) for t ∈ {4, 5, 6}.

• C(n, I4) = Ω(n1/6) and C(n, It) = Ω(n1/4) for t 󰃍 5.

• C(n, S4) = Ω(n1/4) and C(n, St) = Ω(n1/3) for t 󰃍 5.

• C(n, P7), C(n, P8) = Ω(n1/6) and C(n, Pt) = Ω(n1/4) for t 󰃍 9.

• For any graph H with at least 13 edges, there is a constant b = b(H) > 0 so that
C(n,H) = Ω(nb).

In this paper, we show some new lower bounds on C(n,H) for various graphs, including
several sparse graphs such as paths, stars, and matchings, and dense graphs such as cliques
and complete bipartite graphs.

For complete graphs, Alon and Ben-Eliezer [1] asked whether for every 󰂃 > 0, there
is an r = r(󰂃) such that C(n,Kr) = Ω(n1−󰂃). However, they did not provide any good
bound for C(n,Kr). We make partial progress to their conjecture by showing the following
result.

Theorem 4. For any positive integer r 󰃍 8, we have

C(n,Kr) = Ω(n2/3).

Furthermore, we can also prove a new bound for the complete bipartite graphs as
follows.

Theorem 5. For any positive integers t 󰃍 s 󰃍 7, we have

C(n,Ks,t) = Ω(n2/3).

Our improved lower bounds for sparse graphs can be listed as follows.

Theorem 6. Let Pt be the path of length t, we have

• C(n, P4) = Ω(n1/5).
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• C(n, Pt) = Ω(n1/3), for t ∈ {5, 6, 7}.

• C(n, Pt) = Ω(n1/2), for t 󰃍 8.

Theorem 6 resolves the problem of determining the function is polynomial or not for
almost all paths, leaving only the case of P3 open.

Theorem 7. Let St be the star with t leaves, we have

• C(n, S4) = Ω(n1/3).

• C(n, St) = Ω(n1/2), for t 󰃍 5.

Theorem 8. Let It be the matching of size t, we have

• C(n, I4) = Ω(n1/5).

• C(n, It) = Ω(n1/3), for t ∈ {5, 6}.

• C(n, It) = Ω(n1/2), for t 󰃍 7.

The next result shows that if H has at least 6 edges, then C(n,H) must be polynomial
in n.

Theorem 9. For any graph H with at least 6 edges, there is a constant b = b(H) > 0 so
that C(n,H) = Ω(nb).

This improves the result of Alon and Ben-Eliezer from 13 edges to 6 edges. Note that
the first result in Theorem 3 tells that the constant cannot be improved to 3, thus our
result is very close to being optimal.

Notation. Throughout this paper, we use fv to denote the set of coloring functions
associated with the vertices v. We will write H1 ⊔H2 for the vertex-disjoint union of the
graphs H1 and H2. In particular, we will write H ⊔ {p} for the graph which consists of
H plus an isolated vertex p. We always assume n is a sufficiently large number. The
notations O(·), Ω(·) and o(·) have their usual asymptotic meaning. We omit the floor and
ceiling functions if are not essential.

Structure of the paper. The rest of this paper is organized as follows. We will present
some auxiliary lemmas in Section 2. The proofs of new results for cliques and complete
bipartite graphs are presented in Section 3. We prove the lower bounds for paths, stars
and matchings separately in Section 4. We will show the polynomial lower bound for any
graph with at least 6 edges in Section 5. Finally, we conclude this paper and pose some
open problems in Section 6.

Note added: Recently, Janzer and Janzer [8] proved that C(n,Kr) = Ω(n1− 4
r+2 ) for even

r 󰃍 4 and C(n,Kr) = Ω(n1− 10
r−3 ) for large odd r 󰃍 3, and they proved C(n, P3) = no(1).
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2 Preliminaries

To show C(n,H) > k, our task is to show that for any set of n coloring functions with k
colors, we can always find a copy of H such that none of its vertices induces a rainbow
coloring on this copy of H. Moreover, one can see that if H ′ ⊆ H is a subgraph of H
on the same set of vertices, then every lower bound for C(n,H ′) implies the same lower
bound for C(n,H). The property will help us show the improved bounds for paths of
length at least 5, see Remarks 17 and 21.

Here we present the following simple lemmas, since the proofs of these lemmas are
similar, for simplicity, we only give the proof of Lemma 10 in detail. By the first result
in Theorem 3, we only consider the case where n is a sufficiently large number and k 󰃍 6
is an integer.

Lemma 10. For any set of n k-colorings of Kn associated with n vertices, there exists a
vertex x ∈ V (Kn), a set S with |S| = n−1

k
and fx(xs1) = fx(xs2) for all distinct s1, s2 ∈ S,

and a set P = V (Kn) \ (S ∪ {x}), such that the number of triples (s, s′, p) ∈ S × S × P
with fp(xs) = fp(xs

′) is at least n3

24k3
.

Proof of Lemma 10. Consider the complete graph Kn, for any set of n k-colorings of Kn,
we can take an arbitrary vertex x ∈ V (Kn), by pigeonhole principle, there exists a set S
with |S| = n−1

k
such that fx assigns the same color to all edges xs ∈ E(Kn) with s ∈ S.

We fix this set S, and then we set P := V (Kn)\ (S∪{x}) and count the number of triples
(s, s′, p) ∈ S × S × P with the property that fp(xs) = fp(xs

′). Let f−1
p (i) be the set of

vertices s ∈ S such that fp(xs) = i, as each vertex p ∈ P contributes

k󰁛

i=1

󰀕
|f−1

p (i)|
2

󰀖
󰃍 k ·

󰀕
|S|/k
2

󰀖
󰃍 n2

12k3

many such triples by the convexity of the function
󰀃
x
2

󰀄
. Moreover, since n is sufficiently

large, we have |P | 󰃍 n−n−1
k
−1 󰃍 n

2
. Hence the total number of triples (s, s′, p) ∈ S×S×P

with the desired property is at least n3

24k3
.

Lemma 11. For any set of 3n k-colorings of K3n associated with 3n vertices, let Y ∈
V (K3n) be a subset with |Y | = n and M = {e1, e2, . . . , en} be a matching on vertex set
V (K3n) \ Y . Then the number of triples (e, e′, p) ∈ M ×M × Y with fp(e) = fp(e

′) is at

least n3

3k
.

Lemma 12. For any set of 2n k-colorings of K2n associated with 2n vertices, let A,B ⊆
V (K2n) be two disjoint subsets of size n. Then the number of triples (a, b1, b2) ∈ A×B×B
with fa(ab1) = fa(ab2) is at least n3

3k
.

Lemma 13. For any set of 3n k-colorings of K3n associated with 3n vertices, let X ⊆
V (K3n) be a subset of size n and K2n be a complete subgraph on V3n\X. Then the number
of triples (b, e, e′) ∈ X × E(K2n)× E(K2n) with fb(e) = fb(e

′) is at least n5

3k
.
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3 Dense graphs

In this section, we mainly focus on dense graphs such as complete graphs and complete
bipartite graphs.

3.1 Cliques with at least 8 vertices

Here we first prove that C(n,K8) = Ω(n2/3). Let k := cn2/3, where the constant c is very
small. We consider the complete graph with 2n vertices. For any set of 2n k-colorings
of K2n, our aim is to find a copy of K8 such that none of its vertices induces a rainbow
coloring. By Lemma 12, we can partition the vertex set of K2n into two parts A and B
with |A| = |B| = n and then the number of triples (a, b1, b2) ∈ A × B × B such that

fa(ab1) = fa(ab2) is at least
n7/3

3c
. By pigeonhole principle, there exists a pair of vertices in

B, called (b1, b2), such that there are at least n1/3

3c
many distinct vertices a ∈ A satisfying

fa(ab1) = fa(ab2). Then we choose a subset A′ which consists of vertices satisfying the

above property with size |A′| = n1/3

3c
.

Let E(A′) be the edge set of complete graph K|A′|, then we use fb1 to color the edges

in E(A′). Note that there are |E(A′)| =
󰀃
n1/3/3c

2

󰀄
> n2/3

19c
≫ 300k edges in the complete

graph induced by A′ as the constant c can be very small, hence by pigeonhole princi-
ple, we can recursively find a set of disjoint triples of the form (h3i+1, h3i+2, h3i+3) ∈
E(A′) × E(A′) × E(A′) with the property that fb1(h3i+1) = fb1(h3i+2) = fb1(h3i+3)
till it covers 99% of the edges in E(A′). Eventually, we obtain a subset F1(A

′) =
{h1, h2, . . . , h0.99|E(A′)|} ⊆ E(A′). Moreover, we do the same operation but change b1
to b2, then we obtain another subset F2(A

′) with |F2(A
′)| = 0.99|E(A′)|. Now we can

choose three different edges e1, e2, e3, where e1 ⊆ F1(A
′)∩F2(A

′) satisfies fb1(e
1) = fb1(e

2)
and fb2(e

1) = fb2(e
3). Next we select the vertices of {e1, e2, e3}, if there are some common

vertices of these edges, we arbitrarily add some vertices from A′ to make sure there are
6 distinct vertices, denoted by {a1, a2, a3, a4, a5, a6}. Since all of them belong to the set
A′, we have fai(aib1) = fai(aib2) for 1 󰃑 i 󰃑 6. As a consequence, we find a copy of
K8 induced by {b1, b2, a1, a2, a3, a4, a5, a6}, which does not admit a rainbow coloring. The
proof of C(n,K8) = Ω(n2/3) is finished.

Remark 14. To show C(n,Kr) = Ω(n2/3) for r > 8, we just need to add r − 8 vertices
from A′ to the selected vertex set of K8.

3.2 Complete bipartite graph Ks,t with t 󰃍 s 󰃍 7

Here we first prove that C(n,K7,7) = Ω(n2/3). Let k := cn2/3, where the constant c is very
small. We consider a complete graph with 3n vertices. For any set of 3n k-colorings of
K3n, we try to find a copy of K7,7 such that none of its vertices induces a rainbow coloring.
By Lemma 13, we can partition the vertex set of K3n into two parts, say VL ∪ VR, where
|VL| = 2n and |VR| = n, and writing EL for the edge set of K|VL|, the number of the

triples (b, e, e′) ∈ VR ×EL ×EL with the property that fb(e) = fb(e
′) is at least n13/3

3c
. As

the number of edges in EL is
󰀃
2n
2

󰀄
󰃑 2n2, by pigeonhole principle, there exists some pair
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(e1, e2) ∈ EL × EL such that there are at least n13/3

3c
· 1
4n4 󰃍 n1/3

12c
many vertices b ∈ VR

satisfying fb(e1) = fb(e2). Now let V ′
R be a subset of VR consisting of the vertices b ∈ VR

such that fb(e1) = fb(e2), and |V ′
R| 󰃍 n1/3

12c
. Moreover, we write the vertices of e1 and e2

as e1 = v1v2 and e2 = u1u2, respectively.
Next, we consider the coloring functions fv1 , fv2 , fu1 and fu2 on the edge set E(V ′

R).
Here if e1 and e2 have a common vertex, then we can add an arbitrary vertex from VL

and regard it as the vertex u2.

Note that |E(V ′
R)| =

󰀃
n1/3/12c

2

󰀄
󰃍 n2/3

289c2
, by pigeonhole principle, we can recursively

select a family F1 of edge-disjoint pairs of edges (h2i+1, h2i+2) ∈ E(V ′
R)×E(V ′

R) with the
property that fv1(h2i+1) = fv1(h2i+2), till it covers 99% of the edges in E(V ′

R). This is

possible since we can set c to be small enough so that
|E(V ′

R)|
100

≫ 29k. Then we repeat
the same operations but change v1 to v2 and change the pairs of edges to the sets of 7
edges, we can similarly obtain a family F2 of pairwise edge-disjoint sets of 7 edges, which
covers 99% of the edges in E(V ′

R) and each set of 7 edges receives the same color from the
function fv2 . We continue to do the same operations twice, but replace the corresponding
vertices with u1 and with u2, and also replace the sets of 7 edges to the sets of 16 edges
and 29 edges respectively. Finally, we can obtain four families F1,F2,F3,F4 of internally
disjoint sets of edges.

We can pick one edge such that for each family, there is some set containing this edge,
moreover, we denote this edge as e1. After we choose the edge e1, then the edge e2 with
(e1, e2) ∈ F1 is determined. Next, consider the set of edges in F2 which contains e1, we
need to carefully pick some edge e3 from this set, such that the vertices in {e1, e2, e3} do not
form any odd cycle. Indeed, there are 7 choices but the number of potential edges which
can lead to an odd cycle is at most

󰀃
4
2

󰀄
= 6. Similarly, we need to carefully choose some

edge e4 from the set in F3 which contains the edge e1, such that the vertices {e1, e2, e3, e4}
does not form any odd cycle. This is also possible as there are 16 choices but the number
of potential edges which may induce an odd cycle are at most

󰀃
6
2

󰀄
= 15. Also we pick an

edge e5 from the 29-element set in F4 which contains e1 such that {e1, e2, e3, e4, e5} does
not form any odd cycle for the similar reasons as 29 =

󰀃
8
2

󰀄
+1. We noted that the values 7,

16, 29 are sufficient for the above argument, we do not attempt to optimize these values.
Finally we can find 7 edges e1, e2, e

1, e2, e3, e4, e5 with the following properties.

• fv1(e
1) = fv1(e

2); fv2(e
1) = fv2(e

3); fu1(e
1) = fu1(e

4); fu2(e
1) = fu2(e

5).

The edges can be written as e1 = a1a2, e
2 = a3a4, e

3 = a5a6, e
4 = a7a8 and e5 = a9a10.

If there is some common vertex between any pair of ei and ej for 1 󰃑 i 󰃑 j 󰃑 5,
then we add some unused vertices from V ′

R to guarantee there are 10 distinct vertices,
namely, {a′i}10i=1, where {ai}10i=1 ⊆ {a′i}10i=1. We then find a copy of complete bipartite graph
K7,7, which contains edges {e1, e2, e1, e2, e3, e4, e5}. Moreover the vertex set is V (K7,7) =
{v1, v2, u1, u2} ∪ {a′i}10i=1. Note that, for 1 󰃑 i 󰃑 10, we have fa′i(e1) = fa′i(e2) by the
construction of V ′

R. Hence, we find a copy of K7,7 such that none of its vertices can induce
a rainbow coloring. The proof of C(n,K7,7) = Ω(n2/3) is finished.

Remark 15. To show C(n,Ks,t) = Ω(n2/3) for all t 󰃍 s 󰃍 7, we just need to add s+ t−14
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vertices from V ′
R to the selected vertex set of K7,7. Moreover, we actually proved that

C(n, P3 ⊔K5,5 ⊔Kh) = Ω(n2/3) for every constant h.

4 Sparse Graphs

In this section, we prove the improved lower bounds on C(n,H) when H are relatively
sparse graphs.

4.1 Paths of short length

First we prove C(n, P4) = Ω(n1/5). Let k := cn1/5, where the constant c > 0 can be taken
sufficiently small. For any set of 2n k-colorings of K2n, it suffices to find a copy of P4 such
that there is no vertex that assigns distinct colors to all edges of this special copy of P4.

We partition the vertex set of K2n into two parts A and B with |A| = |B| = n.
Consider the number of quadruples (a, b1, b2, b3) ∈ A × B × B × B such that fa(ab1) =
fa(ab2) = fa(ab3). Let f−1

a (i) be the set of vertices b ∈ B such that fa(ab) = i. Observe
that each element in A contributes

cn
1
5󰁛

i=1

󰀕
|f−1

a (i)|
3

󰀖
󰃍 cn

1
5 ·

󰀕
|B|/cn 1

5

3

󰀖
󰃍 n

13
5

7c2

many such quadruples by the convexity of the function
󰀃
x
3

󰀄
. Moreover, since there are n

choices for a ∈ A, totally there are at least n18/5

7c2
such quadruples in A× B × B × B. By

pigeonhole principle, there is a triple of vertices in B, called (b1, b2, b3), such that there are

at least n3/5

7c2
many vertices a ∈ A satisfying fa(ab1) = fa(ab2) = fa(ab3). Next let A

′ ⊆ A

be a subset with |A′| 󰃍 n3/5

7c2
, which consists of the vertices satisfying the above property.

Then we consider the k3-coloring (fb1(b2a), fb2(b2a), fb3(b2a)) for all a ∈ A′. By pigeonhole
principle, there are at least 1

7c5
󰃍 2 elements in A′ receiving the same color, since c is

sufficiently small. We choose two of them arbitrarily, and denote them as a1 and a2. Now
through the above analysis, we can find a copy of P4 on vertex set {b1, a1, b2, a2, b3} with
the following properties:

• fa1(a1b1) = fa1(a1b2); fa2(a2b3) = fa2(a2b2);

• fb1(b2a2) = fb1(b2a1); fb2(b2a2) = fb2(b2a1); fb3(b2a2) = fb3(b2a1).

That means, none of the vertices in this special copy of P4 can induce a rainbow coloring.
The proof of C(n, P4) = Ω(n1/5) is finished.

4.2 Stars

For the star St with t leaves, we first consider the case of t = 4 and then obtain a better
bound for any larger positive integer t 󰃍 5.
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4.2.1 Star with 4 leaves

Here we give a proof of C(n, S4) = Ω(n1/3). Let k := cn1/3, and c be sufficiently small.
Consider the complete graph Kn, for any set of n k-colorings of Kn, we need to find a copy
of S4 such that no vertex assigns distinct colors to all edges of this special copy of S4. By
Lemma 10, there exists a vertex x ∈ V (Kn), a set S with |S| = n−1

k
and fx(xs1) = fx(xs2)

for all distinct s1, s2 ∈ S and a set P = V (Kn)\ (S∪{x}), such that the number of triples
(s, s′, p) ∈ S × S × P with fp(xs) = fp(xs

′) is at least n2

24c3
.

Then by pigeonhole principle, there exists a pair of elements (s, s′) ∈ S × S such that

the number of vertices p ∈ P with fp(xs) = fp(xs
′) is at least n2

24c3
· c2

n4/3 = n2/3

24c
. Let A be

the subset consisting of the above vertices p ∈ P .
For the coloring function fs, by pigeonhole principle, there is a subset A′ ⊆ A with

|A′| 󰃍 n2/3

24c
· 1
cn1/3 = n1/3

24c2
, such that fs assigns the same color to all edges xa with a ∈ A′.

Similarly for fs′ , by pigeonhole principle again, there is a subset A′′ ⊆ A′ with |A′′| 󰃍
n1/3

24c2
· 1
cn1/3 = 1/(24c3), such that fs′ assigns the same color to all edges xa with a ∈ A′′.

Since c is small enough, we have 1/(24c3) 󰃍 2. Then we can find a pair of distinct elements
(a, a′) ∈ A′′ × A′′.

So, we have found a copy of S4 on vertex set {x, a, a′, s, s′}, where x is the center,
which satisfies the following properties:

• fx(xs) = fx(xs
′); fs(xa) = fs(xa

′); fs′(xa) = fs′(xa
′); fa(xs) = fa(xs

′); fa′(xs) =
fa′(xs

′).

Hence, we find a copy of S4, such that none of its vertices assigns distinct colors to all
edges. The proof of C(n, S4) = Ω(n1/3) is finished.

Remark 16. In the above proof, after we have found a set P with |P | 󰃍 n2/3

24c
and the

pair {s, s′} ∈ S × S satisfying fx(xs) = fx(xs
′), fp(xs) = fp(xs

′) for all p ∈ P , we
can find a matching M on the vertex set P and consider the k2-coloring (fs, fs′). Note

that |P | 󰃍 n2/3

24c
≫ k2, by pigeonhole principle, we can find a pair of edges e1 and e2 in

the matching M such that fs(e1) = fs′(e1) and fs(e2) = fs′(e2). This gives a copy of
P2⊔K2⊔K2 with edge set {xs, xs′, e1, e2} such that no vertex induces a rainbow coloring.
Thus we have C(n, P2 ⊔K2 ⊔K2) = Ω(n1/3).

Remark 17. We can pick a vertex p ∈ P , and use the k2-coloring (fs, fs′) to color all

edges incident to vertex p in the graph induced by P . As |P | 󰃍 n2/3

24c
≫ k2, we can find a

pair of vertices a, b ∈ P such that the edges pa and pb receive the same color under the
k2-coloring (fs, fs′). This gives a copy of P2 ⊔P2 with edges set {pa, pb, xs, xs′} such that
no vertex induces a rainbow coloring. Thus we have C(n, P2 ⊔ P2) = Ω(n1/3). Moreover,
we can add arbitrary r isolated vertices from the set P to obtain same lower bound for
C(n, P2 ⊔K2 ⊔K2 ⊔ rK1) and C(n, P2 ⊔ P2 ⊔ rK1) for arbitrary non-negative integer r.
Moreover, since any path of length at least 5 contains a copy of P2⊔P2, the second result
in Theorem 6 follows.
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4.2.2 Stars with more than 4 leaves

We next consider the case of t = 5. Let k := cn1/2 with sufficiently small constant c > 0.
For any set of n k-colorings of Kn, by Lemma 10, we can find a vertex x ∈ V (Kn), a
set S of size |S| 󰃍 (n− 1)/k with fx(xs1) = fx(xs2) for all distinct s1, s2 ∈ S and a
subset P = V (Kn) \ (S ∪ {x}), such that the number of triples (s, s′, p) ∈ S×S×P with

fp(xs) = fp(xs
′) is at least n3/2

24c3
. Also using pigeonhole principle, we can find a pair of

elements (s, s′) ∈ S × S such that the number of vertices p ∈ P with fp(xs) = fp(xs
′)

is at least n3/2

24c3
· c2/n = n1/2

24c
. Let A consist of the above vertices p ∈ P , without loss of

generality, we assume that |A| is divided by 9.
Note that c is small enough, hence for i = 1, 2, . . . , 2

9
· |A|, by pigeonhole principle,

we can recursively find disjoint triples (p3i+1, p3i+2, p3i+3) ∈ A×A×A with the property
that fs(xp3i+1) = fs(xp3i+2) = fs(xp3i+3). Moreover, we do the same operations for
the other vertex s′, and then we will obtain two sets of internally edge-disjoint triples.
Since the total number of vertices we obtain is larger than |A|, we can find one triple
from each set respectively, such that they intersect, that is, there are distinct triples
{pt, pj, pk} ⊆ A and {pt, ph, pm} ⊆ A such that fs(xpt) = fs(xpj) = fs(xpk), fs′(xpt) =
fs′(xph) = fs′(xpm), where j = h or k = m is also allowed. Finally, we can select a set of
vertices {x, s, s′, pt, ph, pk} to form a copy of star centered at vertex x with 5 leaves with
the properties:

• fx(xs) = fx(xs
′); fs(xpt) = fs(xpk); fs′(xpt) = fs′(xph);

• fpt(xs) = fpt(xs
′); fph(xs) = fph(xs

′); fpk(xs) = fpk(xs
′).

None of the vertices assigns distinct colors to all edges of this S5. The proof of
C(n, S5) = Ω(n1/2) is finished.

Remark 18. For the remaining cases of t > 5, we can just take t− 5 vertices from A and
add them to the selected set {x, s, s′, pt, ph, pk} to obtain a copy of St such that none of
its vertices assigns distinct colors to all its edges, we omit the details here.

4.3 Matchings

For the matching It, we first consider the cases of t = 4 and t ∈ {5, 6}, respectively.
Furthermore, for any larger positive integer t 󰃍 7, we can even obtain a better lower
bound.

4.3.1 Matching of size 4

First we prove that C(n, I4) = Ω(n1/5). Let k := cn1/5 with 1
c5

≫ 12. We consider the
complete graph with 3n vertices. For any set of 3n k-colorings of K3n, it suffices to find a
copy of I4 such that there is no vertex that assigns distinct colors to all edges of this special
copy of I4. By Lemma 11, we can partition the vertex set of K3n into two parts, say X∪Y ,
where |X| = 2n and |Y | = n and there is a matching M = {e1, e2, . . . , en} in X, such
that the number of triples (e, e′, p) ∈ M ×M × Y with the property that fp(e) = fp(e

′) is
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at least n14/5

3c
. By pigeonhole principle, there is a pair of edges in M , called (e1, e2), such

that there are at least n4/5

3c
many vertices p ∈ Y satisfying fp(e1) = fp(e2). Let A ⊆ Y

consist of all the vertices p ∈ Y such that fp(e1) = fp(e2), as we have mentioned above,

|A| 󰃍 n4/5

3c
. Write the vertices of e1 and e2 as e1 := v1u1, e2 := v2u2 respectively. As the

size of A is at least |A| 󰃍 n4/5

3c
, we can choose an arbitrary copy of matching I|A|/2 in A,

whose edge set is H = {h1, h2, . . . , h|A|/2}. Now we consider the coloring functions fv1 ,
fu1 , fv2 and fu2 of edges in H. Using pigeonhole principle for four times, we can find a

subset H ′ ⊆ H of edges with size |H ′| 󰃍 n4/5

6c
· 1
(cn1/5)4

= 1
6c5

󰃍 2 such that there is a pair

of edges h1 and h2 in H ′ satisfying fv1(h1) = fv1(h2), fv2(h1) = fv2(h2), fu1(h1) = fu1(h2)
and fu2(h1) = fu2(h2). Fix such a pair of edges h1 and h2 and write them as h1 := a1b1
and h2 := a2b2, respectively. By the above analysis, we can find a copy of I4 in K3n whose
edge set is {e1, e2, h1, h2} with the following properties:

• fv1(h1) = fv1(h2); fv2(h1) = fv2(h2); fu1(h1) = fu1(h2); fu2(h1) = fu2(h2);

• fa1(e1) = fa1(e2); fa2(e1) = fa2(e2); fb1(e1) = fb1(e2); fb2(e1) = fb2(e2).

The proof of C(n, I4) = Ω(n1/5) is finished since none of the vertices in this I4 we find
can induce a rainbow coloring.

4.4 Matchings of sizes 5 and 6

In this part we show the better bounds for matchings of sizes 5 and 6. More precisely, we
will show that C(n, I5) = Ω(n1/3) in detail. The proof of C(n, I6) = Ω(n1/3) is similar, so
we just provide a simple remark.

Let k := cn1/3, where the constant c is very small. We also focus on the complete graph
with 3n vertices. For any set of 3n k-colorings of K3n, we need to show that there is a copy
of I5 such that none of its vertices induces a rainbow coloring. By Lemma 11, there exists
a partition of the vertex set of K3n into X ∪Y with |X| = 2n and |Y | = n and a matching
M = {e1, e2, . . . , en} in X, such that the number of triples (e, e′, p) ∈ M×M×Y with the

property that fp(e) = fp(e
′) is at least n8/3

3c
. Using pigeonhole principle, we can find a pair

of edges in M := (e1, e2) with e1 = v1u1 and e2 = v2u2, such that there are at least n2/3

3c

many vertices p ∈ Y satisfying fp(e1) = fp(e2). Let A be the subset of Y consisting of the

vertices p ∈ Y such that fp(e1) = fp(e2) and |A| = n2/3

3c
. As |A| = n2/3

3c
, then we can choose

an arbitrary copy of matching I|A|/2 in A, whose edge set is H = {h1, h2, . . . , h|A|/2}.
Now we consider the k2-coloring function (fv1 , fu1) of edges in H. By pigeonhole

principle, we can recursively find disjoint triples (h3i+1, h3i+2, h3i+3) ∈ H × H × H with
the property fv1(h3i+1) = fv1(h3i+2) = fv1(h3i+3) and fu1(h3i+1) = fu1(h3i+2) = fu1(h3i+3)
till they cover 99% of the elements in H (this is possible because c is small enough
such that 1

100
|H| 󰃍 3k2), then we do same operation but change v1 to v2 and u1 to u2

respectively, we will also obtain many disjoint triples cover 99% of the elements in H
and every such chosen triple is colored same by the k2-coloring (fv2 , fu2). Then we can
find two triples from the set of triples such that they intersect, namely, we can find two
triples {ht, hj, hk} ⊆ H and {ht, hq, hm} ⊆ H such that fv1(ht) = fv1(hj) = fv1(hk),
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fu1(ht) = fu1(hj) = fu1(hk), fu2(ht) = fu2(hq) = fu2(hm) and fv2(ht) = fv2(hq) = fv2(hm),
where j = q or k = m is allowed. Then we can find five edges {e1, e2, ht, hj, hm} and
denote the vertices of ht, hj, hm as {at, bt}, {aj, bj}, {am, bm}, respectively. Through the
above argument, we can see the following properties hold.

• fv1(ht) = fv1(hj); fv2(ht) = fv2(hm); fu1(ht) = fu1(hj); fu2(ht) = fu2(hm);

• fat(e1) = fat(e2); faj(e1) = faj(e2); fam(e1) = fam(e2);

• fbt(e1) = fbt(e2); fbj(e1) = fbj(e2); fbm(e1) = fbm(e2).

That means, none of the vertices in this I5 we find above, can induce a rainbow
coloring. Thus we have C(n, I5) = Ω(n1/3). The proof is finished.

Remark 19. If we want to find a special copy of I6 which does not admit the rainbow
coloring, we just need to add one edge from H to the selected set {e1, e2, ht, hj, hm}. We
omit the details here.

4.4.1 Matchings with larger size

We mainly prove that C(n, I7) = Ω(n1/2) here. Let k := cn1/2, where the constant c is
chosen to be very small. We still consider the complete graph with 3n vertices. For any
set of 3n k-colorings of K3n, using similar arguments as in Sections 4.3.1 and 4.4, there is
a partition of the vertex set of K3n into X ∪Y with |X| = 2n and |Y | = n and a matching
M = {e1, e2, . . . , en} in X, such that the number of triples (e, e′, p) ∈ M ×M × Y with

the property that fp(e) = fp(e
′) is at least n5/2

3c
. We can also find a pair of edges in M :=

(e1, e2), such that there are at least n1/2

3c
many vertices p ∈ Y satisfying fp(e1) = fp(e2),

where e1 = v1u1, e2 = v2u2. Let A be a subset of Y consisting of the vertices p ∈ Y such
that fp(e1) = fp(e2) and |A| = n1/2

3c
, we can form an arbitrary copy of matching I|A|/2 in

A, whose edge set is H = {h1, h2, . . . , h|A|/2}.
Now we consider the k-coloring function fv1 of edges in H. By pigeonhole principle, we

can recursively find a set of disjoint quintuples of the form (h5i+1, h5i+2, h5i+3, h5i+4, h5i+5) ∈
H × H × H × H × H with the property that fv1(h5i+1) = fv1(h5i+2) = fv1(h5i+3) =
fv1(h5i+4) = fv1(h5i+5) till it covers 99% of the elements in H (this is possible because we
can set c to be small enough such that 1/100|H| ≫ 5k). Then we do same operations but
change v1 to u1, we can also obtain another set of disjoint quintuples, which covers 99% of
the elements in H. We continue the same operations twice, but replacing the correspond-
ing vertices with u2 and v2. As a consequence, we can obtain four sets of internally disjoint
quintuples, all of which have the desired properties. Next, we pick one quintuple from
each set respectively, such that they contain some common element. That means there
are {ht, hk1 , hk2 , hk3 , hk4} ⊆ H, {ht, hk5 , hk6 , hk7 , hk8} ⊆ H, {ht, hk9 , hk10 , hk11 , hk12} ⊆ H
and {ht, hk13 , hk14 , hk15 , hk16} ⊆ H such that fv1(ht) = fv1(hk1) = fv1(hk2) = fv1(hk3) =
fv1(hk4), fu1(ht) = fu1(hk5) = fu1(hk6) = fu1(hk7) = fu1(hk8), fv2(ht) = fv2(hk9) =
fv2(hk10) = fv2(hk11) = fv2(hk12) and fu2(ht) = fu2(hk13) = fu2(hk14) = fu2(hk15) =
fu2(hk16). Moreover, we can find one edge form each set of the above four quintuples such
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that they are pairwise disjoint, without loss of generality, let {hk1 , hk6 , hk11 , hk16} be the set
of edges with the disjoint property. Then we pick seven edges {e1, e2, ht, hk1 , hk6 , hk11 , hk16}
and denote the vertices of ht, hk1 , hk6 , hk11 , hk16 as {at, bt}, {ak1 , bk1}, {ak6 , bk6}, {ak11 , bk11}
and {ak16 , bk16}, respectively. Then we can see that the following properties hold.

• fv1(ht) = fv1(hk1); fv2(ht) = fv2(hk9); fu1(ht) = fu1(hk5); fu2(ht) = fu2(hk16);

• fat(e1) = fat(e2); fbt(e1) = fbt(e2);

• fak1 (e1) = fak1 (e2); fak5 (e1) = fak5 (e2); fak9 (e1) = fak9 (e2); fak16 (e1) = fak16 (e2);

• fbk1 (e1) = fbk1 (e2); fbk5 (e1) = fbk5 (e2); fbk9 (e1) = fbk9 (e2); fbk16 (e1) = fbk16 (e2).

That means, none of the vertices in this I7 we find above, can give a rainbow coloring.
Thus the proof of C(n, I7) = Ω(n1/2) is finished.

Remark 20. when t > 7, if we want to find an It that does not admit a rainbow coloring,
we just need to add t− 7 edges from H to the selected set {e1, e2, ht, hk1 , hk6 , hk11 , hk16}.
Remark 21. The improved lower bounds for C(n, P2t−1) and C(n, P2t) can be obtained
from the lower bounds for C(n, It), this is because if H ′ ⊆ H is a subgraph of H on the
same set of vertices, then every lower bound for C(n,H ′) implies the same lower bound for
C(n,H). This already shows that C(n, Pt) = Ω(n1/2) for t 󰃍 13. Actually we can slightly
improve this result further via combining the ideas in the proof of C(n, I7) = Ω(n1/2)
and in Remark 16 to show that C(n, P2 ⊔ K2 ⊔ K2 ⊔ K2) = Ω(n1/2). As the proof is
very similar, we omit the details here. Note that any path of length at least 8 contains
P2 ⊔ K2 ⊔ K2 ⊔ K2, hence we have C(n, Pt) = Ω(n1/2) for t 󰃍 8. The third result in
Theorem 6 follows.

5 Graphs with at least 6 edges have polynomial lower bounds

In this section, we will prove that for any graph H with at least 6 edges, there exists some
constant b = b(H) > 0 such that C(n,H) = Ω(nb). First, we need the following auxiliary
lemma.

Lemma 22. If a graph H has at least 6 edges, then H must contain at least one member
of the family H6 as a subgraph, where H6 = {C4, P4, I4, S4, P2 ⊔ P2, P2 ⊔K2 ⊔K2}.

Proof. It suffices to prove the lemma when H has exactly 6 edges. Without loss of
generality, we can assume that H has no isolated vertex. Our proof is based on the
number of connected components of H.

1. If H has more than 4 connected components, then it must contain a copy of I4.

2. If H has 3 connected components, then by pigeonhole principle, there exists some
component with at least 2 edges, then H must contain a copy of P2 ⊔K2 ⊔K2.
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3. If H has 2 connected components, suppose both components have at least 2 edges,
then H must contain a copy of P2 ⊔ P2. Next we assume that some component H1

has exactly 5 edges. If H1 contains a triangle, then H1 contains either a copy of
P2 ⊔K2 or a copy of C4, which means H contains either a copy of P2 ⊔K2 ⊔K2 or
C4. If H1

∼= C5, then we know C(n,C5) 󰃍 C(n, P4) = Ω(n1/5). Therefore it remains
to consider the case that H1 is a tree, if H1 does not contain S4 or P4, then it is easy
to check that H1 contains a copy of P2⊔K2, thus H contains a copy of P2⊔K2⊔K2.

4. If H has only one connected component, suppose H does not contain a cycle, then
either H contains a copy of S4 or the longest path in H has at least 4 edges. Then
we consider the case that H contains at least one cycle. Note that if H does not
contain a copy of C4 or P4, then H contains a triangle. In this case, if the remaining
three edges are incident to the same vertex on the triangle, then H contains a copy
S4, otherwise, H will contain a copy of P4.

It remains to show that C(n,C4) also has the polynomial lower bound, we prove this
result as follows.

Proposition 23.
C(n,C4) = Ω(n1/3).

Proof of Proposition 23. Let k := cn1/3, where the constant c is very small. We consider
a complete graph with 2n vertices. For any set of 2n k-colorings of K2n, we aim to find a
copy of C4 such that none of its vertices can induce a rainbow coloring.

By Lemma 12, we can partition the vertex set of K2n into two parts A and B with
|A| = |B| = n and the number of triples (a, b1, b2) ∈ A×B×B such that fa(ab1) = fa(ab2)

is at least n8/3

3c
. By pigeonhole principle, there is a pair of vertices in B, called (b1, b2),

such that there are at least n2/3

3c
many distinct vertices a ∈ A satisfying fa(ab1) = fa(ab2).

Then we choose a subset A′ which consists of the vertices satisfying the above property.
It is obvious that |A′| 󰃍 n2/3

3c
. Consider the k2-coloring (fb1(b1a), fb2(b2a)) for all a ∈ A′,

by pigeonhole principle, there are 1
3c3

≫ 2 elements in A′ which receive the same color.
Then we pick two vertices and write them as a1 and a2. Now we find a copy of C4 with
vertex set {a1, b2, a2, b1} with the following properties

• fa1(a1b1) = fa1(a1b2); fa2(a2b1) = fa2(a2b2); fb1(b1a2) = fb1(b1a1); fb2(b2a2) =
fb2(b2a1).

That means, none of the vertices in this C4 we find here, can induce a rainbow coloring.
The proof of C(n,C4) = Ω(n1/3) is finished.

The proofs of Theorems 6, 7, 8, Proposition 23, and Remarks 16 and 17 together give
the proof of Theorem 9, since we can easily deal with the isolated vertices in these cases.
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6 Concluding remarks and open problems

One of the most interesting problems in this topic proposed by Alon and Ben-Eliezer [1]
was to decide whether the order of C(n, Pt) is polynomial in n with t ∈ {3, 4, 5, 6}. In
this paper, we show that C(n, P4) = Ω(n1/5), and provide better bounds for P5 and P6.
Now the case of P3 remains open, and although we cannot answer this question on P3, we
give the following polynomial lower bound C(n,C4) = Ω(n1/3), which perhaps gives some
evidence that C(n, P3) is order of n

c for some constant c > 0.
We are also interested in some other small graphs which have few vertices and edges.

The constant 6 in Theorem 9 cannot be directly improved by our results. However, we
suspect that the constant 6 is not the best possible, it will be interesting to improve
further. Moreover, motivated by the first result in Theorem 3, one can further consider
the graphs with four edges, for instance, the graph consists of a triangle plus a pendant
edge and the trees with four edges.
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