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Abstract

We propose a combinatorial framework to analyze quantitative Helly-type ques-
tions. Using this framework, we prove a Quantitative Fractional Helly Theorem
with Fractional Helly Number 3d and a stability version of the Quantitative Helly
Theorem of Bárány, Katchalski, and Pach.

Mathematics Subject Classifications: 52A35, 52A38, 05C65

1 Introduction

Two directions in the study of Helly-type Theorems are quantitative and abstract ques-
tions. Quantitative results concern intersection patterns of convex sets in some specific
space, originally Rd, where instead of finding points in the intersection, one bounds the
size, for example the volume or the diameter of the intersection. Abstract results, on the
other hand, study more general structures, e.g. hypergraphs, with certain properties that
capture some essential aspects of the behavior of convex sets. In this note, we connect
the two.

There are quantitative results, where the usual combinatorial techniques are not di-
rectly applicable, since more than one intersection pattern of convex sets are involved
in them (e.g. convex sets intersecting in large and in small volumes). In this note, we
present a combinatorial framework in which these quantitative Helly-type questions can
be analyzed. In particular, we propose the definition of hypergraph chains (see Definitions
4, 5, 6 and 7) and prove our main result, Theorem 8, that a certain type of Quantitative
Colorful Helly Theorem implies a Quantitative Fractional Helly Theorem.

First, consider the Quantitative Volume Theorem.

Theorem 1 (Bárány, Katchalski and Pach [3]). Assume that the intersection of any 2d
members of a finite family of convex sets in Rd is of volume at least one. Then the volume
of the intersection of all members of the family is of volume at least c(d), a constant
depending on d only.
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In [3], it is proved that one can take c(d) = d−2d2 and conjectured that it should
hold with c(d) = d−cd for an absolute constant c > 0. Theorem 1 was confirmed with
c(d) ≈ d−2d by Naszódi [14], whose argument was refined by Brazitikos [4], who showed
that one may take c(d) ≈ d−3d/2. For more on quantitative Helly-type results, see the
surveys [6, 8].

Helly’s theorem may be stated in the language of hypergraphs as follows. Let V be
a finite family of convex sets in Rd, and call a subset of V an edge of our hypergraph, if
the intersection of the corresponding convex sets is not empty. This construction is also
known as the nerve of the convex sets. Helly’s theorem states that if all (d+1)-tuples of a
subset S of V are edges of the hypergraph, then so is S. Observe that Theorem 1 cannot
be translated to the same language, as two hypergaphs are involved: in one, the edges
correspond to families of convex sets whose intersection is of volume at least one, and in
the other, this volume is at least c(d). The goal of this note is to provide a combinatorial
framework in which Theorem 1, and other quantitative results can be translated.

The Colorful Helly Theorem found by Lovász [12] (and with the first published proof by
Bárány [2]) states the following. If C1, . . . , Cd+1 are finite families (color classes) of convex
sets in Rd, such that for any colorful selection C1 ∈ C1, . . . , Cd+1 ∈ Cd+1, the intersection
d+1
i=1

Ci is non-empty, then for some j, the intersection


C∈Cj C is also non-empty.

In [5], the following quantitative variant is shown.

Theorem 2 (Damásdi, Földvári and Naszódi [5]). Let C1, . . . , C3d be finite families of
convex sets in Rd. Assume that for any colorful selection C1 ∈ C1, . . . , C3d ∈ C3d, the

intersection
3d
i=1

Ci is of volume at least one.

Then, there is a j with 1  j  3d such that vol




C∈Cj
C


 d−cd2 with a universal

constant c > 0.

The Fractional Helly Theorem due to Katchalski and Liu [11] (see also [13, Chapter
8]) is another classical Helly-type result, which states the following. Fix a dimension d,
and an α ∈ (0, 1), and let C be a finite family of convex sets in Rd with the property that
among the subfamilies of C of size d+1, there are at least α

 |C|
d+1


for whom the intersection

of the d+1 members is nonempty. Then, there is a subfamily C ′ ⊂ C of size |C ′|  α
d+1

|C|
such that the intersection of all members of C ′ is nonempty.

In [10], the following quantitative variant of the Fractional Helly Theorem is shown.

Theorem 3 (Jung and Naszódi [10]). For every dimension d  1 and every number
α ∈ (0, 1), there is a number β ∈ (0, 1) such that the following holds.
Let C be a finite family of convex sets in Rd. Assume that among all subfamilies of size
3d + 1, there are at least α

 |C|
3d+1


for whom the intersection of the 3d + 1 members is of

volume at least one.

Then, there is a subfamily C ′ ⊂ C of size at least β|C| such that vol

 
C∈C′

C


 d−cd2 with

a universal constant c > 0.
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In Theorems 1, 2 and 3, the cardinalities 2d, 3d and 3d+ 1 appear, respectively. It is
easy to verify (cf. [3]) that Theorem 1 does not hold with any number below 2d, which
implies the same lower bound for Theorem 2. No better lower bounds are known.

Turning to abstract results, we describe Helly’s Theorem and the Fractional and Col-
orful Helly Theorems in the language of hypergraphs. Let V be a (possibly infinite) set.
A hypergraph on the base set V is any family of its subsets, H ⊂ 2V . A hypergraph
is downwards closed, if H ∈ H and G ⊂ H implies G ∈ H. A downwards closed hy-
pergraph H has Helly Number h, if for every finite subset S ⊂ V the relation


S
h


⊂ H

implies S ∈ H. Now let us denote the family of convex sets of Rd as Cvx(d) and the
hypergraph which contains the subfamilies of convex sets with nonempty intersection by
Kd = {C ⊂ Cvx(d) : ∩C∈CC ∕= ∅}. Helly’s Theorem says that Kd has Helly-number d+ 1.

A downwards closed hypergraph H over a base set V has Fractional Helly Number k,
if there exists a function β : (0, 1) → (0, 1) such that whenever S ⊂ V is a finite subset
such that

H ∩

S
k

, the number of edges of H of size k in S is at least α
|S|

k


with an

α ∈ (0, 1), then there exists a subset S ′ ⊂ S of size at least β|S| such that S ′ ∈ H. The
Fractional Helly Theorem says, that Kd has Fractional Helly Number d+ 1.

We turn to phrasing the Colorful Helly Theorem in an abstract setting. Let S1, . . . , Sk

be (not necessarily disjoint) subsets of a base set V , which we will call color classes. We
call a set F ⊂ V a colorful selection from these color classes, if F contains one element
from each color class. Very formally, to clarify how elements belonging to multiple color
classes are handled, we say that F ⊂ V is a colorful selection, if there is a surjective map
φ : [k] −→ F with φ(i) ∈ Si for all i ∈ [k]. We denote the set of colorful selections by
S1 ⊗ . . .⊗ Sk.

A downwards closed hypergraph H over a base set V has Colorful Helly Number k,
if for every k finite subset S1, . . . , Sk ⊂ V such that (S1 ⊗ . . . ⊗ Sk) ⊆ H, there exists a
color class Sj with Sj ∈ H. The Colorful Helly Theorem says that Kd has Colorful Helly
Number d+ 1.

Alon, Kalai, Matoušek and Meshulam [1] considered Helly-type results in the abstract
setting. They showed, that if a hypergraph has bounded Fractional Helly Number, then
it also has the so called (p, q) property (see the definition in [1]). Holmsen [9] showed
that if a hypergraph has Colorful Helly Number k, then it has Fractional Helly Number
at most k. In this sense, the Fractional Helly Theorem can be deduced from the Colorful
Helly Theorem with a purely combinatorial proof. Note that Holmsen’s result does not
immediately imply a similar relationship between Theorem 2 and Theorem 3, because
there are two different kinds of intersection of convex sets (sets intersecting in volume one
and sets intersecting in volume d−cd2).

In Section 2, we introduce the notion of hypergraph chains, and our main results,
Theorems 8 and 9, which state that Holmsen’s results extend to hypergraph chains. As
a result, they can be applied in the context of quantitative Helly-type questions. The
proof of Theorems 8 and 9 are contained in Section 3. In Section 4 we show geometric
consequences of our main results. Our Theorem 8 implies (see Corollary 12) that in
Theorem 3 we can decrease the number 3d + 1 to 3d (at the expense of a bigger loss of
volume). Our second main result, Theorem 9 implies that Theorem 1 is stable: one does
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not need to check that all 2d-tuples of the given convex sets have intersection of volume
at least one. Instead, it is sufficient to verify it for almost all of them to obtain that
almost all have an intersection of some positive volume. Finally, in Section 5 we state
open questions.

Quantitative Helly-type theorems are considered in [7, 15, 16] with the focus on convex
sets in Rd, or the lattice Zd, or sets in topological spaces with particular topological
properties. To our knowledge, ours is the first attempt to address quantitative Helly-type
questions in the general context of hypergraphs in the spirit of the results of [1] and [9].

2 Hypergraph Chains

Definition 4. Let V be a (possibly infinite) set. The infinite sequence (Hℓ)ℓ∈Z of hyper-
graphs over the base set V is a hypergraph chain, if every Hℓ is downwards closed and for
all ℓ ∈ Z, Hℓ ⊂ Hℓ+1.

If V = Cvx(d) and Hℓ = Kd for all ℓ, then (Hℓ)ℓ∈Z is a hypergraph chain. A more
interesting example is when V = Cvx(d), v ∈ (0, 1) a real number and for an ℓ ∈ Z, a
family of convex sets from Rd is an edge in Hℓ, if and only if their intersection is of volume
at least vℓ. We will denote this hypergraph by Qd


vℓ

.

Definition 5. A hypergraph chain (Hℓ)ℓ∈Z over a base set V has Helly Number h, if for
every S ⊆ V ,


S
h


⊂ Hℓ implies S ∈ Hℓ+1.

According to this definition, (Kd)ℓ∈Z has Helly Number d+ 1.
More interestingly, Theorem 1 states that if v ≈ d−3d/2, then


Qd


vℓ


ℓ∈Z has Helly
Number 2d.

Definition 6. A hypergraph chain (Hℓ)ℓ∈Z over a base set V has Colorful Helly Number
k, if whenever S1, . . . , Sk are finite subsets (color classes) of V and S1 ⊗ . . . ⊗ Sk ⊂ Hℓ,
then there is a color class Sj with Sj ∈ Hℓ+1.

Note that by taking S1 = S2 = · · · = Sk = S, a hypergraph chain with Colorful Helly
Number k has Helly Number h  k.

According to the definition, (Kd)ℓ∈Z has Colorful Helly Number d+ 1.
More interestingly, the Quantitative Colorful Helly Theorem, Theorem 2 may be stated

as follows. If v = d−cd2 from Theorem 2, then

Qd


vℓ


ℓ∈Z has Colorful Helly Number
3d.

Definition 7. A hypergraph chain (Hℓ)ℓ∈Z over a base set V has Fractional Helly Number
k, if there exists a function β : (0, 1) → (0, 1) such that for every finite set S ⊂ V , if
|Hℓ ∩


S
k


|  α

|S|
k


with some α ∈ (0, 1), then there exists an S ′ ⊂ S with |S ′|  β(α)|S|

and S ′ ∈ Hℓ+1.

As in the previous two cases, (Kd)ℓ∈Z has Fractional Helly Number d+1 and Theorem 3
states, that if v = d−cd2 from Theorem 3, then


Qd


vℓ


ℓ∈Z has Fractional Helly Number
3d+ 1.
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Now we are ready to state our main result, which is a quantitative analogue of Theorem
3 from [9].

Theorem 8. If the hypergraph chain (Hℓ)ℓ∈Z has Colorful Helly Number k, then the
hypergraph chain (H(k+1)ℓ)ℓ∈Z has Fractional Helly Number k.

Here, the obtained Fractional Helly Number is the same as the assumed Colorful
Helly Number, but not for the exact same hypergraph chain: we can only take every
(k+1)th element from the original chain. Can the Fractional Helly number go below the
Colorful Helly number? If the Helly number is smaller than the Colorful Helly number,
the following theorem provides a partial result in this direction.

Theorem 9. If the hypergraph chain (Hℓ)ℓ∈Z has Helly Number h and Colorful Helly
Number k  h, then there exists a function β : (0, 1) → [0, 1) with limα→1 β(α) = 1 such
that for every finite set S ⊂ V , if |Hℓ ∩


S
h


|  α

|S|
h


with some α ∈ (0, 1), then there

exists an S ′ ⊂ S with |S ′|  β(α)|S| and S ′ ∈ Hℓ+3.

We can interpret this result as a stability version of the Helly property (under some
additional assumptions), since limα→1 β(α) = 1.

As far as we know, the best possible β here might assign 0 to a large fraction of αs
from (0, 1), this is the difference from hypergraph chains with Fractional Helly Number
h, where this is not possible. But at least, if α is very close to 1, then β(α) is also close
to 1.

3 Proof of Theorems 8 and 9

In the proofs we show how the argument established by Holmsen in [9] can be adapted
to hypergraph chains. We start with a short outline. Let (Hℓ)ℓ∈Z be a hypergraph chain
with Colorful Helly number k. We show Lemma 10, which gives an upper bound of the
density of Hℓ if Hℓ+1 (or Hℓ+2) has bounded clique number. It will be enough to show
Theorem 9. To prove Theorem 8, we suppose for contradiction that Hℓ (and thus all
later hypergraphs in the chain) is dense, but Hℓ+k+1 has small clique number. Based
on this assumption we find k color class of vertices which contradict the Colorful Helly
property of (Hℓ)ℓ∈Z. We find the color classes one by one, and for each we use Lemma 11,
a technical statement based on Lemma 10 and double counting. The k+1 in the index of
Hℓ+k+1 corresponds to the number of times the Colorful Helly or Helly property is used
during the proof.

We denote by ωh(Hℓ|S) the size of the largest h-clique of S, ie. the size of the largest
subset K ⊂ S such that


K
h


⊂ Hℓ. The following lemma is an analogue of Lemma 3.1

from [9].

Lemma 10. Let (Hℓ)ℓ∈Z be a hypergraph chain with Helly Number h and Colorful Helly
Number k over a base set V . Then for every finite subset S ⊂ V , we have

(a)
S

k


\ Hℓ

 
 1

k
(|S|−ωk(Hℓ+1|S))

k


, and
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(b)
S

h


\ Hℓ

 

k
h

−1 1
h
(|S|−ωh(Hℓ+2|S))

h


.

Proof. Note that h  k holds for every hypergraph chain of Helly Number h and Colorful
Helly Number k. Fix ℓ ∈ Z.

For the proof of part (a), let {M1, . . . ,Mt} ⊂

S
k


\ Hℓ+1 be a maximal size family of

disjoint missing edges from Hℓ+1, each of size k. By the maximality of this family, we
have


S\(M1∪...∪Mt)

k


⊂ Hℓ+1, and thus, ωk(Hℓ+1|S)  |S \ (M1 ∪ . . . ∪Mt)| = |S| − tk or,

equivalently,

t  1

k
((|S|− ωk(Hℓ+1|S))). (1)

Consider a selection I ∈

[t]
k


of k indices. Since each Mi is a missing edge from

Hℓ+1, we have that {Mi : i ∈ I} is a family of k color classes, such that neither one is
contained in Hℓ+1. Since (Hℓ)ℓ∈Z has Colorful Helly Number k, there is a colorful selection
{vi : i ∈ I} ⊂ V of vertices (that is, vi ∈ Mi for all i ∈ I) such that {vi : i ∈ I} is not
an edge in Hℓ.

Observe that if I1, I2 ∈

[t]
k


are distinct selections of indices, then, by the disjointness

of the Mj, we have that {vi : i ∈ I1} ∕= {ui : i ∈ I2}. Thus, we found

t
k


members of

S
k


\ Hℓ, completing the proof of part (a).

For the proof of part (b), let {M1, . . . ,Mt} ⊂

S
h


\ Hℓ+2 be a maximal size family of

disjoint missing edges from Hℓ+2, each of size h. Similarly to the argument in part (a),
we have

t  1

h
((|S|− ωh(Hℓ+2|S))). (2)

Consider a selection I ∈

[t]
k


of k indices. Again, as in the proof of part (a), since

(Hℓ)ℓ∈Z has Colorful Helly Number k, there is a colorful selection {vi : i ∈ I} ⊂ V of
vertices from the color classes {Mi : i ∈ I} such that {vi : i ∈ I} is not an edge in Hℓ+1.
By the Helly property, there is a J ∈


I
h


and an F ∈


S
h


\Hℓ such that |F ∩Mj| = 1 for

every j ∈ J . Any fixed J ∈

[t]
h


can appear at most


t−h
k−h


times in this way. Moreover,

any fixed F ∈

S
h


\Hℓ may appear for only one J , so there are at least


t
k


/

t−h
k−h


=


t
h


/

k
h



missing edges F ∈

S
h


\ Hℓ, which combined with (2) completes the proof of part (b) of

Lemma 10.

Proof of Theorem 9. Fix ℓ ∈ Z and assume that the largest edge of Hℓ+3 in S is of size
at most (1 − ε)|S| for some ε > 0. Since (Hℓ)ℓ∈Z has Helly Number h, this implies

ωh(Hℓ+2|S)  (1− ε)|S|. Part (b) of Lemma 10 yields
S

h


\ Hℓ

 

k
h

−1ε|S|/h
h


 δ ·

|S|
h



with some δ = δ(ε, k, h) > 0.
Thus for every number ε > 0 there exists a number δ > 0 such that for every number

α  1− δ there exists a number β(α)  1− ε, such that if
S

h


∩Hℓ

  α
|S|

h


then there

exists an S ′ ⊂ S with |S ′|  β(α)|S|, proving Theorem 9.

In order to prove Theorem 8, we need the following technical lemma, which is an
analogue of Lemma 3.2 from [9] and can be proved using part (a) of Lemma 10.
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Lemma 11. Let (Hℓ)ℓ∈Z be a hypergraph chain over a base set V with Colorful Helly
Number k. Let S ⊂ V be a finite subset with |S| = n large enough compared to k. If
for a t ∈ Z and c ∈ (0, 1) the inequality ωk(Ht+1|S)  cn/2 holds, then given any i ∈ [k]
and a family Fi ⊂


S
i


with |Fi|  c


n
i


there exists another family Fi−1 ⊂


S

i−1


and an

M ∈

S
k


\ Ht such that |Fi−1| 


c

6k2

k  n
i−1


and A ∪ {v} ∈ Fi for all A ∈ Fi−1 and

v ∈ M .

Proof. For every A ∈


S
i−1


let ΓA = {v ∈ S : (A ∪ {v}) ∈ Fi} and let

P =


(A,M) : A ∈


S

i− 1


,M ∈


ΓA

k


\ Ht


.

We want to lower bound |P|. By part (a) of Lemma 10, for a fixed A ∈


S
i−1


there are

at least
 1

k
(|ΓA|−(c/2)n)

k


distinct M ∈


ΓA

k


\ Ht such that (A,M) ∈ P . Jensen’s inequality

gives

|P| 


A∈( S
i−1)


1
k
(|ΓA|− (c/2)n)

k






n

i− 1

 n
i−1

−1 1
k


A∈( S

i−1)
(|ΓA|− (c/2)n)

k


.

Since



A∈( S
i−1)

|ΓA| = i|Fi|  ic


n

i


> (n− i)c


n

i− 1


,

we get


A∈( S
i−1)

(|ΓA|− (c/2)n) > (n− i)c


n

i− 1


− (c/2)n


n

i− 1


,

and thus

|P| 


n

i− 1


nc
2k

− ci
k

k


.

If n is large enough compared to i and k, then

|P| 
 c

6k2

k


n

i− 1


n

k


,

as 
nc
2k

− ci
k

k




 nc
2k

− ci
k

k

k


 c

6k

k en
k

k


 c

6k

k

n

k


.

Since there are

n
k


possible M ∈


S
k


, there is an M with at least


c

6k2

k  n
i−1


different

A ∈


S
i−1


such that (A,M) ∈ P . These A will form Fi−1.
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Proof of Theorem 8. We are given α ∈ (0, 1), and our goal is to find the corresponding
β ∈ (0, 1) satisfying Definition 7. If n is small we may simply set β = 1/n. Otherwise, let

f(x) =


x
6k2

k
, α0 = α, αi+1 = f(αi). We will show that β = αk−1 is a good choice if n is

large enough compared to k (so that we can apply Lemma 11 where we need). Fix ℓ ∈ Z
and suppose for a contradiction that

Hℓ ∩

S
k

  α

n
k


, but Hℓ+k+1 has no edge of size

at least βn inside S. Since (Hℓ)ℓ∈Z has Colorful Helly Number k, it has Helly Number at
most k, so Hℓ+k+1 having no edge of size at least βn implies ωk(Hℓ+k|S) < βn.

Set Fk = Hℓ ∩

S
k


. Since (Hℓ)ℓ∈Z is a hypergraph chain, Fk ⊂ Hℓ+i for all i  0,

in particular, Fk ⊂ Hℓ+k. We have |Fk|  α

n
k


and ωk(Hℓ+k|S) < βn  (α/2)n, so we

can apply Lemma 11 with t = ℓ + k − 1 and c = α to obtain an Fk−1 ⊂


S
k−1


with

|Fk−1|  α1


n

k−1


and an M1 ∈


S
k


\Hℓ+k−1 such that A∪ {v} ∈ Fk for all A ∈ Fk−1 and

v ∈ M1. Now, we have |Fk−1|  α1


n

k−1


and ωk(Hℓ+k−1|S)  ωk(Hℓ+k|S) < βn  (α1/2)n

and we can apply Lemma 11 again, this time with t = ℓ+ k− 2 and c = α1, to obtain an
Fk−2 ⊂


S

k−2


with |Fk−2|  α2


n

k−2


and an M2 ∈


S
k


\Hℓ+k−2 such that (A∪{v}) ∈ Fk−1

for all A ∈ Fk−2 and v ∈ M2. Note that (A ∪ {v1, v2}) ∈ Fk = Hℓ ∩

S
k


for all A ∈ Fk−2,

v1 ∈ M1, v2 ∈ M2.
After repeating this process k−1 times, we obtain an F1 ⊂


S
1


with |F1|  αk−1n = βn

and M1, . . . ,Mk−1 ∈

S
k


\ Hℓ+1 such that A ∪ {v1, . . . , vk−1} ∈ Hℓ ∩


S
k


for all A ∈ F1,

v1 ∈ M1, . . . , vk−1 ∈ Mk−1. Since ωk(Hℓ+1|S) < βn, there must be an Mk ∈

V (F1)

k


\Hℓ+1.

But regarding M1, . . . ,Mk as color classes, (Hℓ)ℓ∈Z having Colorful Helly-number k yields
a contradiction, since M1 ⊗ . . .⊗Mk ⊂ Hℓ, but there is no color class Mi ∈ Hℓ+1.

4 Consequences for Quantitative Theorems

If v = d−cd2 from Theorem 2, then

Qd


vℓ


ℓ∈Z has Colorful Helly Number 3d by Theo-
rem 2, so the following Corollary follows from Theorem 8.

Corollary 12. For every dimension d  1 and every α ∈ (0, 1), there is a number
β ∈ (0, 1) such that the following holds.
Let C be a finite family of convex sets in Rd. Assume that among all subfamilies of size
3d, there are at least α

|C|
3d


for whom the intersection of the 3d members is of volume at

least one.

Then, there is a subfamily C ′ ⊂ C of size at least β|C| such that vol

 
C∈C′

C


 d−cd3 with

a universal constant c > 0.

Proof. The above claim is equivalent to saying that

Qd


vℓ


ℓ∈Z has Fractional Helly

Number 3d, if v = d−c′d3 with a universal constant c′. Theorem 2 states that

Qd


vℓ


ℓ∈Z
has Colorful Helly Number 3d, if v = d−cd2 as in Theorem 2. By applying Theorem 8
to the latter Hypergraph Chain, we can conclude, that


Qd


v(3d+1)ℓ


ℓ∈Z has Fractional

Helly Number 3d and v = d−cd2 . But this is equivalent to

Qd


vℓ


ℓ∈Z having Fractional

Helly Number 3d if v = d−c′d3 .
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This is a slight improvement on the Fractional Helly Number, which was 3d + 1 in
Theorem 3. Can we go below 3d? Theorem 9 implies at least a stability version of the
Quantitative Helly Theorem with Helly Number 2d as follows.

Corollary 13. For every positive integer d there exists a function β : (0, 1) → [0, 1) with
limα→1 β(α) = 1 such that the following holds.
Let C be a finite family of convex sets in Rd. Assume that among all subfamilies of size
2d, there are at least α

|C|
2d


for whom the intersection of the 2d members is of volume at

least one.

Then, there is a subfamily C ′ ⊂ C of size at least β|C| such that vol

 
C∈C′

C


 d−cd2 with

a universal constant c > 0.

Proof. Since

Qd


vℓ


ℓ∈Z, with v = d−cd2 from Theorem 2, has Helly Number 2d by
Theorem 1 and Colorful Helly Number 3d by Theorem 2, we can apply Theorem 9. The
assumption of Corollary 13 states that for a finite subset of convex sets C, the inequalityQd(v

0) ∩
 C
2d

  α
|C|
2d


holds with some α ∈ (0, 1), where v can be v = d−cd2 from

Theorem 2. Theorem 9 yields a subfamily C ′ ⊂ C with C ′ ∈ Qd(v
3) and |C ′|  β(α)|C|,

where β is the function from Theorem 9. For C ′, the inequality vol

 
C∈C′

C





d−cd2

3

=

d−3cd2 holds.

5 Remarks

The following questions are left open.

Conjecture 14. For every dimension d, there is a number v = v(d) ∈ (0, 1), such that
Qd


vℓ


ℓ∈Z has Fractional Helly Number 2d.

Conjecture 15. For every dimension d, there is a number v = v(d) ∈ (0, 1), such that
Qd


vℓ


ℓ∈Z has Colorful Helly Number 2d.

Our Theorem 8 shows that proving Conjecture 15 would also confirm Conjecture 14.
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